tensor.py 67.8 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16

17
import math
18 19 20
import numpy
import warnings

Y
Yu Yang 已提交
21
from ..layer_helper import LayerHelper
22
from ..param_attr import ParamAttr
23
from ..initializer import Initializer
24
from ..framework import _current_expected_place, convert_np_dtype_to_dtype_, _non_static_mode, _varbase_creator, device_guard, _in_legacy_dygraph, in_dygraph_mode, _get_paddle_place
X
xuwei06 已提交
25
from ..framework import Variable
26
from ..initializer import Constant
27
from ..core import VarDesc
28
from .. import core
29
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
30
from . import utils
31
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
32
from paddle.utils import deprecated
33

34
from .utils import check_shape
W
wanghuancoder 已提交
35
from paddle import _C_ops
Y
Yu Yang 已提交
36 37

__all__ = [
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
    'linspace',
    'zeros_like',
    'ones_like',
    'diag',
    'eye',
    'triu',
Y
Yu Yang 已提交
64 65 66
]


X
xuwei06 已提交
67
def create_tensor(dtype, name=None, persistable=False):
68
    """
W
wangchaochaohu 已提交
69
    Create a variable, which will hold a Tensor with data type dtype.
70 71

    Args:
W
wangchaochaohu 已提交
72 73 74 75
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
76
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
77
            default value is False.
78 79

    Returns:
W
wangchaochaohu 已提交
80
        Variable: The tensor to be created according to dtype.
81 82 83 84

    Examples:
        .. code-block:: python

85
          import paddle.fluid as fluid
86 87
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
88 89 90 91
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
92
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
93 94
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
95 96


97 98
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
99
                     name=None,
100 101 102 103
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
104
	:api_attr: Static Graph
S
swtkiwi 已提交
105

106
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
107 108 109 110 111
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

112 113 114 115 116 117 118
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
119 120 121
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
122
        default_initializer (Initializer, optional): Initializer for the parameter
123 124

    Returns:
125
        The created parameter.
Y
yuyang18 已提交
126 127

    Examples:
128 129
        .. code-block:: python

130 131 132
            import paddle
            paddle.enable_static()
            W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
133
    """
134 135
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
T
tianshuo78520a 已提交
136 137 138
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_parameter')
139 140 141 142 143 144 145 146 147

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
148
    helper = LayerHelper("create_parameter", **locals())
149
    if attr is None:
X
xuwei06 已提交
150
        attr = ParamAttr(name=name)
151 152
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
153 154 155
                                   default_initializer)


156 157 158 159 160 161 162
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
163
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
164

165
    Parameters:
166
        shape (list[int]|tuple[int]): Shape of the variable
167
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
168
                      variable will be filled with it.
169 170
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
171
                           Default: False
172
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
173
                         Default: False
174 175
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
176 177

    Returns:
178
        Variable: The created Variable
F
fengjiayi 已提交
179 180 181 182

    Examples:
        .. code-block:: python

183 184 185
            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
186
                                           persistable=True, force_cpu=True, name='new_var')
187
    """
188 189 190
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
T
tianshuo78520a 已提交
191 192 193
        check_type(item, 'item of shape',
                   (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                    numpy.int64), 'create_global_var')
194 195

    check_dtype(dtype, 'dtype', [
196 197 198 199 200 201 202 203 204 205
        'bool',
        'float16',
        'float32',
        'float64',
        'int8',
        'int16',
        'int32',
        'int64',
        'uint8',
        'uint16',
206 207
    ], 'create_global_var')

Q
Qiao Longfei 已提交
208 209
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
210 211 212 213 214
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
215 216 217
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
218

Q
Qiao Longfei 已提交
219 220 221
    return var


222
def cast(x, dtype):
Y
Yu Yang 已提交
223
    """
S
swtkiwi 已提交
224

225
    This OP takes in the Tensor :attr:`x` with :attr:`x.dtype` and casts it
226 227
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
228 229

    Args:
230
        x(Tensor): An input N-D Tensor with data type bool, float16,
231
            float32, float64, int32, int64, uint8.
232
        dtype(np.dtype|str): Data type of the output:
233
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
234 235

    Returns:
236
        Tensor: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
237 238 239

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
240

241
            import paddle
242

243 244
            x = paddle.to_tensor([2, 3, 4], 'float64')
            y = paddle.cast(x, 'uint8')
Y
Yu Yang 已提交
245
    """
H
hong 已提交
246 247 248 249 250
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return _C_ops.final_state_cast(x, dtype)

J
Jiabin Yang 已提交
251
    if _non_static_mode():
252 253
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
W
wanghuancoder 已提交
254
        out = _C_ops.cast(x, 'in_dtype', x.dtype, 'out_dtype', dtype)
Z
Zhang Ting 已提交
255
        return out
256

257
    check_variable_and_dtype(x, 'x', [
258 259
        'bool', 'float16', 'float32', 'float64', 'int16', 'int32', 'int64',
        'uint8', 'uint16'
260
    ], 'cast')
261
    check_dtype(dtype, 'dtype', [
262 263
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8', 'uint16'
264 265 266
    ], 'cast')

    helper = LayerHelper('cast', **locals())
267 268
    out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=x.stop_gradient)
Y
Yu Yang 已提交
269 270 271 272 273 274 275 276 277
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


278
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
279
    """
280
    This OP concatenates the input along the axis.
281 282

    Args:
283 284
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
285 286
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
287
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
288
            as ``axis+R``. Default is 0.
289 290 291
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
292 293

    Returns:
294
        Tensor: A Tensor with the same data type as ``input``.
295 296 297

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
298

299
            import paddle.fluid as fluid
300 301
            import numpy as np

302 303 304 305 306 307
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
308 309 310 311
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
312 313
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
314 315
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
316 317 318 319 320 321 322 323
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
324
    """
325

326 327 328 329 330 331 332 333 334
    if in_dygraph_mode():
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis.item(0)
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
        return _C_ops.final_state_concat(input, axis)

    if _in_legacy_dygraph():
S
songyouwei 已提交
335 336
        if isinstance(axis, Variable):
            axis = axis.numpy()
337
            axis = axis.item(0)
338 339
        if not isinstance(input, Variable):
            input = [t for t in input if t.shape.count(0) == 0]
340 341 342
        out = _varbase_creator()
        _C_ops.concat(input, out, 'axis', axis)
        return out
343

344 345 346 347 348 349 350 351 352 353 354
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
355
        input = [input]
356
    check_type(axis, 'axis', (int, Variable), 'concat')
357

358 359 360 361 362
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

363
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
364
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
365 366

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
367 368 369 370
        # NOTE(liym27): Don't remove this if branch!
        # This feature is supported for Dynamic-to-Static, because after transformed, the type of inputs[0]
        # is LOD_TENSOR_ARRAY in some scenarios. And this feature can be used in static mode.

371
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
372
                "number of the elements must be 1, but received %s." % len(input)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
392 393 394
    return out


G
Guo Sheng 已提交
395
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
396
    r"""
G
Guo Sheng 已提交
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
447 448

    Args:
G
Guo Sheng 已提交
449 450 451 452 453 454 455
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
456 457

    Returns:
G
Guo Sheng 已提交
458 459 460
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
461 462 463 464

    Examples:
        .. code-block:: python

465
            import paddle.fluid as fluid
466
            import numpy as np
G
Guo Sheng 已提交
467 468 469 470 471 472 473
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
474
    """
J
Jiabin Yang 已提交
475
    if _non_static_mode():
476 477 478 479 480 481 482 483 484 485
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

486 487 488 489 490
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
491
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
492 493 494
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
495
        type='tensor_array_to_tensor',
L
li099 已提交
496 497 498
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
499 500
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
501 502 503
    return out, out_index


504
def sums(input, out=None):
505
    r"""
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
527 528

    Args:
529 530 531 532
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
533 534

    Returns:
535 536
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
537 538

    Examples:
F
fengjiayi 已提交
539
        .. code-block:: python
K
kavyasrinet 已提交
540

541 542 543 544 545 546 547 548 549
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
550

551 552
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
553
    """
554 555 556 557
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
558
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
559 560
    else:
        check_variable_and_dtype(input, "input", \
561
                ['float16', 'float32', 'float64', 'int32', 'int64'], 'sums')
562

Y
Yu Yang 已提交
563 564
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
565 566
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
567 568 569 570
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
571 572 573 574 575
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
576 577 578
    return out


F
fengjiayi 已提交
579
def assign(input, output=None):
580
    """
S
swtkiwi 已提交
581

582
    The OP copies the :attr:`input` to the :attr:`output`.
583

584
    Parameters:
585 586 587 588
        input (Tensor|numpy.ndarray|list|tuple|scalar): A tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type supports float16, float32, float64, int32, int64, and bool.
            Note: the float64 data will be converted to float32 because of current platform protobuf
            data limitation.
589
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
590
            be created as :attr:`output`. Default: None.
591 592

    Returns:
593
        Tensor: A tensor with the same shape, data type and value as :attr:`input`.
594 595 596

    Examples:
        .. code-block:: python
597

598
          import paddle
599
          import numpy as np
600
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
601 602 603 604
          array = np.array([[1, 1],
                            [3, 4],
                            [1, 3]]).astype(np.int64)
          result1 = paddle.zeros(shape=[3, 3], dtype='float32')
605 606 607
          paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
          result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
608
    """
Y
Yu Yang 已提交
609
    helper = LayerHelper('assign', **locals())
610 611
    check_type(input, 'input', (Variable, numpy.ndarray, list, tuple, float,
                                int, bool), 'assign')
612 613
    is_inplace = True if output is not None else False

614 615 616 617
    if numpy.isscalar(input) and not isinstance(input, str):
        input = numpy.array([input])
    elif isinstance(input, (list, tuple)):
        input = numpy.array(input)
618 619
    # NOTE(Aurelius84): Why we judge core.VarBase?
    # In case of @to_static, a VarBase can be as input of `assign`,
J
Jiabin Yang 已提交
620
    # but _non_static_mode()==False under @to_static, which means
621 622 623
    # isinstance(VarBase, Variable) == False. It will cause return None
    # after this api.
    if isinstance(input, (Variable, core.VarBase)):
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        if _non_static_mode():
            if output is None:
                if _in_legacy_dygraph():
                    output = core.VarBase()
                else:
                    output = core.eager.Tensor()
            _C_ops.assign(input, output)
        else:
            check_dtype(input.dtype, 'input', [
                'float16', 'uint16', 'float32', 'float64', 'int32', 'int64',
                'uint8', 'bool'
            ], 'assign', '(When the type of input in assign is Variable.)')
            if output is None:
                output = helper.create_variable_for_type_inference(
                    dtype=input.dtype)
            helper.append_op(
                type='assign', inputs={'X': [input]},
                outputs={'Out': [output]})
X
xuwei06 已提交
642
    elif isinstance(input, numpy.ndarray):
643 644 645 646 647
        # Not support [var, var, ...] currently.
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
            raise TypeError(
                "Required type(input) numpy.ndarray, but found `list(Variable)` in input."
            )
X
xuwei06 已提交
648
        dtype = convert_np_dtype_to_dtype_(input.dtype)
649 650 651 652 653 654 655 656
        if dtype == VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
                "it to float32")
            dtype = VarDesc.VarType.FP32
657 658
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
W
wanghuancoder 已提交
659
            values = [int(v) for v in input.flat]
660
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
661
            value_name = "fp32_values"
662
            values = [float(v) for v in input.flat]
663
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
664
            value_name = "int32_values"
665
            values = [int(v) for v in input.flat]
666 667 668
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
669
        else:
670 671
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
672
                "the data type of 'input' must be bool, float32, int32 or int64, but "
673
                "received %s." % convert_dtype(dtype))
674 675 676
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
677 678 679
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
680 681 682 683 684 685
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
686
                value_name: values
X
xuwei06 已提交
687 688
            })

J
Jiabin Yang 已提交
689
    if is_inplace and _non_static_mode():
690
        output._bump_inplace_version()
691

Y
Yu Yang 已提交
692 693 694
    return output


695
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
696
    """
S
swtkiwi 已提交
697

W
wangchaochaohu 已提交
698
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
699
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
700

T
tianshuo78520a 已提交
701
    The attribute `stop_gradient` of the created Tensor is set to True.
702 703

    Args:
704 705 706
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
W
wangchaochaohu 已提交
707
        dtype(np.dtype|str): Data type of the output Tensor which can
708
            be float16, float32, float64, uint8, int16, int32, int64.
709 710 711 712 713 714
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
715 716
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
717 718

    Returns:
719
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
720

721 722 723
    Examples:
        .. code-block:: python

724
          import paddle.fluid as fluid
725
          # attr shape is a list which doesn't contain  Tensor.
726 727
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
728
          # data1=[[5], [5]] data2=[[5], [5]]
729

730
          # attr shape is a list which contains Tensor.
731
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
732
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
733

734
          # attr shape is a Tensor.
735
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
736
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
737
          
738
          # attr value is a Tensor.
W
wangchaochaohu 已提交
739 740
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
741
    """
742

W
wangchaochaohu 已提交
743
    attrs = {'force_cpu': force_cpu}
744
    dtype = convert_dtype(dtype)
745
    if not isinstance(value, Variable):
746
        if dtype in ['uint8', 'int16', 'int32', 'int64']:
W
wangchaochaohu 已提交
747
            attrs['str_value'] = str(int(value))
748
            attrs['value'] = int(value)
W
wangchaochaohu 已提交
749 750
        else:
            attrs['str_value'] = str(float(value))
751
            attrs['value'] = float(value)
752

J
Jiabin Yang 已提交
753
    if _non_static_mode():
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
        if out is None and in_dygraph_mode():
            #Currently, final state mode don't support out is None.
            place = _current_expected_place()
            if force_cpu:
                place = core.CPUPlace()

            shape = utils.convert_shape_to_list(shape)
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)
            out = _C_ops.final_state_full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        else:
            shape = utils.convert_shape_to_list(shape)
            if out is None:
                out = _varbase_creator(dtype=dtype)

            if isinstance(value, Variable):
                if dtype in ['uint8', 'int16', 'int32', 'int64']:
                    attrs['str_value'] = str(int(value.numpy().item(0)))
                else:
                    attrs['str_value'] = str(float(value.numpy().item(0)))

            _C_ops.fill_constant(out, 'value',
                                 float(value), 'force_cpu', force_cpu, 'dtype',
                                 out.dtype, 'str_value', attrs['str_value'],
                                 'shape', shape)
            out.stop_gradient = True
            return out
784

785 786 787
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
788 789
        if convert_dtype(value.dtype) != dtype:
            value = cast(value, dtype)
790 791
        inputs['ValueTensor'] = value

792
    check_shape(shape)
793 794
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'uint8', 'int16', 'int32',
795
        'int64', 'complex64', 'complex128'
796
    ], 'fill_constant')
797
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
798

799 800 801 802 803
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
804
    utils.get_shape_tensor_inputs(
805
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
806

Y
Yu Yang 已提交
807
    if out is None:
X
Xin Pan 已提交
808
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
809
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
810 811
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
812
        inputs=inputs,
Y
Yu Yang 已提交
813
        outputs={'Out': [out]},
L
liym27 已提交
814
        attrs=attrs,
M
minqiyang 已提交
815
        stop_gradient=True)
Y
Yu Yang 已提交
816 817 818 819
    out.stop_gradient = True
    return out


820
@deprecated(since='1.8.0', update_to="paddle.fluid.layers.fill_constant")
Y
yuyang18 已提交
821
@templatedoc()
Y
Yu Yang 已提交
822 823 824 825 826
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
827 828
                                  output_dim_idx=0,
                                  force_cpu=False):
829
    """
T
tianshuo78520a 已提交
830
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
831 832 833 834
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
835 836

    Args:
W
wangchaochaohu 已提交
837 838 839 840 841 842 843 844 845 846 847
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
848
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
849 850

    Returns:
W
wangchaochaohu 已提交
851
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
852 853 854 855 856

    Examples:

        .. code-block:: python

857
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
858
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
859
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
860
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
861

862
    """
863 864 865 866 867 868 869 870 871 872 873 874
    if in_dygraph_mode():
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        out = _C_ops.final_state_full_batch_size_like(
            input, shape, dtype, value, input_dim_idx, output_dim_idx, place)
        out.stop_gradient = True
        return out

Y
Yu Yang 已提交
875
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
876
    out = helper.create_variable_for_type_inference(dtype=dtype)
877 878 879 880 881 882
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
883
        'force_cpu': force_cpu
884 885 886 887 888
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
889 890 891 892
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
893
        attrs=attrs)
Y
Yu Yang 已提交
894 895 896 897
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
898 899
def argmin(x, axis=0):
    """
900 901 902
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
903

S
sneaxiy 已提交
904 905
    **argmin**

906 907
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
908 909

    Args:
910 911 912 913 914
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
915

S
sneaxiy 已提交
916
    Returns:
917
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
918

S
sneaxiy 已提交
919 920
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
921

922
            import paddle.fluid as fluid
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
950
    """
951 952 953
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
954
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
955
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
956 957 958 959 960
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
961
    out.stop_gradient = True
S
sneaxiy 已提交
962 963 964 965 966 967 968
    return out


def argmax(x, axis=0):
    """
    **argmax**

969 970
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
971 972

    Args:
973 974 975 976 977
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
978

S
sneaxiy 已提交
979
    Returns:
980
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
981

S
sneaxiy 已提交
982 983
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
984

985
            import paddle.fluid as fluid
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
1013
    """
1014 1015 1016
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
1017
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
1018
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
1019 1020 1021 1022 1023
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
1024
    out.stop_gradient = True
S
sneaxiy 已提交
1025 1026 1027
    return out


1028
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
1029
    """
1030 1031 1032
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
1033

1034 1035 1036
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
1037 1038

    Args:
1039 1040 1041 1042 1043
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
1044 1045 1046
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
1047 1048 1049
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
1050 1051

    Returns:
1052 1053 1054
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
1055 1056 1057 1058

    Examples:
        .. code-block:: python

1059
            import paddle.fluid as fluid
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1101
    """
1102 1103 1104
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1105
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1106 1107 1108 1109
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1110 1111 1112 1113
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1114
                 'Indices': ids},
1115 1116
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1117 1118 1119
    return out, ids


Y
Yang Yu 已提交
1120
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1121
    """
1122 1123
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1124

1125
    Parameters:
1126
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
W
wangchaochaohu 已提交
1127
        dtype (np.dtype|str): Data type of output Tensor, it supports
1128
            bool, float16, float32, float64, int32 and int64.
1129 1130
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1131
            Default: False.
1132 1133

    Returns:
1134
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
1135 1136 1137 1138

    Examples:
        .. code-block:: python

1139
          import paddle.fluid as fluid
1140 1141 1142 1143 1144
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1145 1146 1147 1148
    """
    return fill_constant(value=1.0, **locals())


1149
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1150
    """
1151 1152
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1153

1154
    Parameters:
1155
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
W
wangchaochaohu 已提交
1156
        dtype (np.dtype|str): Data type of output Tensor, it supports
1157
            bool, float16, float32, float64, int32 and int64.
1158 1159
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1160
            Default: False.
1161 1162
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1163 1164

    Returns:
1165
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1166 1167 1168 1169

    Examples:
        .. code-block:: python

1170
          import paddle.fluid as fluid
1171
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1172 1173 1174 1175
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1176 1177
    """
    return fill_constant(value=0.0, **locals())
1178 1179


F
fengjiayi 已提交
1180 1181
def reverse(x, axis):
    """
1182 1183 1184
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1185

1186
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1212
    Parameters:
1213 1214
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1215 1216
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1217 1218
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1219 1220

    Returns:
1221
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1222 1223 1224 1225

    Examples:
        .. code-block:: python

1226
          import paddle.fluid as fluid
1227 1228 1229 1230
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1241
    """
1242 1243 1244
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1245 1246 1247
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1248
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1249 1250
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1251
        inputs={'X': x},
F
fengjiayi 已提交
1252 1253 1254 1255 1256
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1257 1258 1259 1260 1261 1262 1263
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1264 1265 1266
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1282 1283
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1284
        file_path(str): The file path where variables will be saved.
1285
        overwrite(bool): Whether or not cover the given file when it has already
1286 1287
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1288 1289 1290 1291 1292 1293 1294 1295

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1296
            import paddle.fluid as fluid
1297 1298 1299 1300 1301 1302 1303
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1316
    Loads a list of variable from a single file.
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1328 1329 1330 1331 1332 1333 1334


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
S
Steffy-zxf 已提交
1335
       x (Tensor): The Tensor to be checked.
1336 1337

    Returns:
S
Steffy-zxf 已提交
1338
       Tensor: The tensor storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1339 1340 1341 1342
    
    Examples:
        .. code-block:: python
          
S
Steffy-zxf 已提交
1343 1344
          import paddle
          data = paddle.randn(shape=[4, 32, 32], dtype="float32")
1345
          res = paddle.fluid.layers.has_inf(data)
S
Steffy-zxf 已提交
1346
          # [False]
1347

1348
    """
J
Jiabin Yang 已提交
1349
    if _non_static_mode():
W
wanghuancoder 已提交
1350
        return _C_ops.isinf(x)
S
Steffy-zxf 已提交
1351

1352
    check_type(x, 'x', (Variable), 'has_inf')
1353
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1354
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1355 1356 1357 1358 1359 1360 1361 1362 1363
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
S
Steffy-zxf 已提交
1364
       x (Tensor): The Tensor to be checked.
1365 1366

    Returns:
S
Steffy-zxf 已提交
1367
       Tensor: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1368 1369 1370 1371
    
    Examples:
        .. code-block:: python
    
S
Steffy-zxf 已提交
1372 1373
          import paddle
          data = paddle.randn(shape=[2,3], dtype="float32")
1374
          res = paddle.fluid.layers.has_nan(data)
S
Steffy-zxf 已提交
1375
          # [False]
1376

1377
    """
J
Jiabin Yang 已提交
1378
    if _non_static_mode():
W
wanghuancoder 已提交
1379
        return _C_ops.isnan(x)
S
Steffy-zxf 已提交
1380

1381
    check_type(x, 'x', (Variable), 'has_nan')
1382
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1383
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1384 1385 1386 1387 1388 1389
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
S
swtkiwi 已提交
1390

1391 1392 1393 1394
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
N
Noel 已提交
1395
        x(Tensor): The Tensor to be checked.
1396 1397

    Returns:
N
Noel 已提交
1398
        Tensor: The tensor storing the output, contains a bool value.
1399 1400 1401 1402 1403

    Examples:

        .. code-block:: python

N
Noel 已提交
1404 1405 1406 1407 1408 1409
            import paddle

            x = paddle.rand(shape=[4, 6], dtype='float32')
            y = paddle.fluid.layers.isfinite(x)
            print(y)

1410
    """
1411 1412
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1413
    helper = LayerHelper("isfinite", **locals())
1414

1415
    out = helper.create_variable_for_type_inference(dtype='bool')
1416 1417
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1418 1419


1420
def range(start, end, step, dtype, name=None):
W
whs 已提交
1421
    """
1422
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1423

1424 1425
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1426

1427 1428
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1429

L
Liufang Sang 已提交
1430
    Parameters:
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1454 1455 1456 1457 1458

    examples:

        .. code-block:: python

1459
            import paddle.fluid as fluid
W
whs 已提交
1460

1461 1462
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1463

1464 1465 1466 1467 1468 1469 1470
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1471

W
whs 已提交
1472
    if not isinstance(start, Variable):
1473
        with device_guard("cpu"):
1474
            start = fill_constant([1], dtype, start, force_cpu=True)
1475 1476
    elif start.dtype != dtype:
        start = cast(start, dtype)
1477

W
whs 已提交
1478
    if not isinstance(end, Variable):
1479
        with device_guard("cpu"):
1480
            end = fill_constant([1], dtype, end, force_cpu=True)
1481 1482
    elif end.dtype != dtype:
        end = cast(end, dtype)
1483

W
whs 已提交
1484
    if not isinstance(step, Variable):
1485
        with device_guard("cpu"):
1486
            step = fill_constant([1], dtype, step, force_cpu=True)
1487 1488
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1489

Z
zyfncg 已提交
1490 1491 1492 1493
    if in_dygraph_mode():
        return _C_ops.final_state_arange(start, end, step, dtype,
                                         _current_expected_place())

Z
zyfncg 已提交
1494
    if _in_legacy_dygraph():
J
Jiawei Wang 已提交
1495 1496 1497
        out = _C_ops.range(start, end, step)
        out.stop_gradient = True
        return out
W
whs 已提交
1498

W
wanghuancoder 已提交
1499 1500 1501 1502 1503
    out_shape = None
    if not isinstance(start, Variable) and not isinstance(
            end, Variable) and not isinstance(step, Variable):
        out_shape = [int(math.ceil((end - start) / step))]

1504 1505 1506
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
1507
    out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
W
whs 已提交
1508 1509 1510 1511 1512
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1513
        outputs={'Out': out})
1514
    out.stop_gradient = True
W
whs 已提交
1515
    return out
Z
zhoukunsheng 已提交
1516 1517


1518
def linspace(start, stop, num, dtype=None, name=None):
1519
    r"""
1520
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1521 1522

    Args:
1523 1524 1525 1526
        start(int|float|Tensor): The input :attr:`start` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is start variable of range. It is a scalar, \
            or a Tensor of shape [1] with input data type int32, int64, float32 or float64.
1527
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
1528
            or a Tensor of shape [1] with data type int32.
W
wangchaochaohu 已提交
1529
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
1530
            int32, int64, float32 and float64. Default: if None, the data type is float32.
1531 1532
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1533 1534

    Returns:
1535
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1536 1537
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1538

Z
zhoukunsheng 已提交
1539
    Examples:
Z
zhoukunsheng 已提交
1540 1541
        .. code-block:: python

1542 1543 1544
             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1545 1546

    """
1547 1548
    if dtype is None:
        dtype = 'float32'
1549 1550 1551
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
1552 1553
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
1554 1555
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
Z
zhoukunsheng 已提交
1556
    if not isinstance(start, Variable):
1557 1558
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
Z
zhoukunsheng 已提交
1559
    if not isinstance(stop, Variable):
1560 1561
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
Z
zhoukunsheng 已提交
1562
    if not isinstance(num, Variable):
1563 1564
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
Y
YuanRisheng 已提交
1565
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
1566 1567
        return _C_ops.linspace(tensor_start, tensor_stop, tensor_num, 'dtype',
                               dtype)
Y
YuanRisheng 已提交
1568 1569 1570
    if in_dygraph_mode():
        return _C_ops.final_state_linspace(tensor_start, tensor_stop,
                                           tensor_num, dtype)
1571 1572
    helper = LayerHelper("linspace", **locals())

1573 1574 1575
    start_dtype = convert_dtype(tensor_start.dtype)
    stop_dtype = convert_dtype(tensor_stop.dtype)
    out_dtype = convert_dtype(dtype)
1576
    if isinstance(start, Variable):
1577 1578
        check_dtype(start.dtype, 'start',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1579 1580
    else:
        check_type(start, 'start', (int, float), 'linspace')
Z
zhoukunsheng 已提交
1581

1582
    if isinstance(stop, Variable):
1583 1584
        check_dtype(stop.dtype, 'stop',
                    ['float32', 'float64', 'int32', 'int64'], 'linspace')
1585 1586 1587 1588 1589 1590
    else:
        check_type(stop, 'stop', (int, float), 'linspace')
    if isinstance(num, Variable):
        check_dtype(num.dtype, 'num', ['int32'], 'linspace')
    check_dtype(dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'],
                'linspace')
1591 1592 1593 1594 1595 1596 1597 1598
    if ((stop_dtype == "float64" or start_dtype == "float64") and
            out_dtype in ["float32", "int32"]) or ((stop_dtype == "int64" or
                                                    start_dtype == "int64") and
                                                   out_dtype == "int32"):
        raise ValueError(
            "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
            "which may cause data type overflows. Please reset attr(dtype) of linspace."
            .format(start_dtype, stop_dtype, dtype))
1599 1600

    out = helper.create_variable_for_type_inference(dtype=dtype)
Z
zhoukunsheng 已提交
1601 1602 1603

    helper.append_op(
        type='linspace',
1604 1605 1606 1607
        inputs={'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num},
        attrs={'dtype': dtype},
Z
zhoukunsheng 已提交
1608
        outputs={'Out': [out]})
1609 1610
    if isinstance(num, int):
        out.desc.set_shape((num, ))
Z
zhoukunsheng 已提交
1611
    return out
1612 1613


Z
zhoukunsheng 已提交
1614 1615
def zeros_like(x, out=None):
    """
1616
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1617 1618 1619
    with `x`.

    Args:
1620 1621 1622 1623 1624 1625
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1626 1627

    Returns:
1628 1629 1630
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1631 1632 1633 1634

    Examples:
        .. code-block:: python

1635
          import paddle.fluid as fluid
1636
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1637 1638
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1639 1640
    """

1641 1642
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1643 1644 1645
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1646 1647 1648
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1649
            'zeros_like')
1650

Z
zhoukunsheng 已提交
1651 1652 1653 1654
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1655 1656


1657
@deprecated(since="2.0.0", update_to="paddle.diag")
Z
zhoukunsheng 已提交
1658
def diag(diagonal):
1659
    r"""
1660 1661 1662
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1663

1664
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1665 1666

    Args:
1667 1668
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1669 1670

    Returns:
1671 1672
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1673 1674 1675 1676 1677 1678 1679

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1680 1681 1682

          import paddle.fluid as fluid
          import numpy as np
1683 1684 1685
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1686 1687

    """
1688 1689 1690
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1703 1704


1705 1706 1707 1708 1709
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1710
    """
1711
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1712 1713 1714

    Args:
        num_rows(int): the number of rows in each batch tensor.
1715 1716
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1717 1718
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
W
wangchaochaohu 已提交
1719
        dtype(np.dtype|str, optional): The data type of the returned tensor.
1720 1721 1722 1723
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1724 1725

    Returns:
1726
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1727 1728 1729 1730 1731

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1732 1733
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1734
          #  [0, 1, 0]
1735 1736
          #  [0, 0, 1]]

1737
          data = fluid.layers.eye(2, 3, dtype='int32')
1738
          # [[1, 0, 0]
1739
          #  [0, 1, 0]]
1740 1741

          data = fluid.layers.eye(2, batch_shape=[3])
1742 1743 1744 1745 1746
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1747 1748
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1749 1750 1751 1752 1753
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1754

J
Jiabin Yang 已提交
1755
    if _non_static_mode():
W
wanghuancoder 已提交
1756 1757
        out = _C_ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                         num_columns)
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1776 1777

    if batch_shape is not None:
1778 1779 1780
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
J
Jiabin Yang 已提交
1781
        if _non_static_mode():
W
wanghuancoder 已提交
1782 1783
            out = _C_ops.reshape(out, 'shape', re_shape)
            return _C_ops.expand(out, None, 'expand_times', expand_times)
1784

1785 1786
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1787
        for batch_val in (batch_shape):
1788 1789
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1790 1791 1792 1793 1794 1795

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1796 1797 1798
    return out


Z
zhoukunsheng 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1811
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1822 1823
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1824 1825 1826 1827

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1828 1829 1830 1831
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1832 1833 1834 1835 1836 1837
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out
Y
yaoxuefeng 已提交
1838 1839 1840 1841 1842 1843


@deprecated(since="2.0.0", update_to="paddle.triu")
def triu(input, diagonal=0, name=None):
    import paddle
    return paddle.tensor.triu(x=input, diagonal=diagonal, name=name)