nn.py 261.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
59
    'sequence_unpad',
X
Xin Pan 已提交
60 61 62 63 64 65 66 67
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
68
    'sequence_slice',
X
Xin Pan 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
112
    'margin_rank_loss',
X
Xin Pan 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
156
    'affine_channel',
Y
Yu Yang 已提交
157 158 159 160 161 162 163 164 165
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
166
       is_test=False,
167
       name=None):
Y
Yu Yang 已提交
168
    """
169
    **Fully Connected Layer**
Y
Yu Yang 已提交
170

171 172 173 174 175 176 177 178
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
179
    to the output as well.
C
caoying03 已提交
180

C
caoying03 已提交
181
    This process can be formulated as follows:
182 183 184

    .. math::

185
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
186 187 188

    In the above equation:

C
caoying03 已提交
189 190 191 192
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
193
    * :math:`Act`: The activation function.
C
caoying03 已提交
194
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
195 196

    Args:
R
ranqiu 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
212 213
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
214
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
215
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
216
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
217

218
    Returns:
F
fengjiayi 已提交
219
        Variable: The transformation result.
220 221

    Raises:
C
caoying03 已提交
222
        ValueError: If rank of the input tensor is less than 2.
223 224 225 226

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
227
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
228
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
229
    """
C
caoying03 已提交
230

C
caoying03 已提交
231
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
232 233 234 235

    dtype = helper.input_dtype()

    mul_results = []
236 237
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
238 239 240
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
241

Y
Yu Yang 已提交
242
        w = helper.create_parameter(
243 244
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
245
        helper.append_op(
246 247 248
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
249
            outputs={"Out": tmp},
M
mozga-intel 已提交
250 251
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
252 253 254 255
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
256
    else:
257 258
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
259 260 261
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
262
            attrs={"use_mkldnn": False})
263 264 265 266
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
267 268


269 270 271
def embedding(input,
              size,
              is_sparse=False,
272
              is_distributed=False,
273 274 275
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
276
    """
277 278
    **Embedding Layer**

279
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
280 281
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
282 283 284

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
285 286

    Args:
287 288 289 290 291
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
292
        is_distributed(bool): Whether to run lookup table from remote parameter server.
293 294
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
295
            with zeros whenever lookup encounters it in :attr:`input`. If
296
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
297 298
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
299
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
300

301 302 303
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
304

305 306
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
307

C
chengduoZH 已提交
308
          dict_size = len(dataset.ids)
309
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
310
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
311 312 313 314 315 316
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
317 318
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
319 320 321 322 323
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
324 325 326 327 328
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
329 330 331
    return tmp


Y
yi.wu 已提交
332
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
333 334
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
335 336
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
337 338 339 340 341 342 343
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
344 345
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
346
    """
Y
yi.wu 已提交
347
    ${comment}
Y
Yibing Liu 已提交
348 349

    Args:
Y
yi.wu 已提交
350 351
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
352 353 354 355 356 357
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
358
        param_attr(ParamAttr|None): The parameter attribute for the learnable
359
                               hidden-hidden weights.
Y
Yibing Liu 已提交
360 361 362

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
363 364
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
365 366 367 368 369

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
370
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
371 372 373
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
374

375
                              1. `use_peepholes = False`
Y
yi.wu 已提交
376 377
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
378
                              2. `use_peepholes = True`
Y
yi.wu 已提交
379
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
380
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
381
                                 - The shape is (1 x 7D).
C
chengduo 已提交
382 383 384 385 386

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
387 388 389 390 391 392 393 394
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
395 396

    Returns:
Y
Yibing Liu 已提交
397 398
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
399

Y
Yibing Liu 已提交
400
    Examples:
Y
Yibing Liu 已提交
401 402
        .. code-block:: python

Y
Yibing Liu 已提交
403 404
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
405
                                           bias_attr=False)
Y
Yibing Liu 已提交
406 407
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
408
    """
C
chengduo 已提交
409
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
410
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
411
    size = size // 4
Y
Yu Yang 已提交
412 413 414 415 416 417 418 419 420 421 422 423
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
424 425 426 427 428 429 430 431 432 433
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
434 435 436

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
437
        inputs=inputs,
Y
Yu Yang 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
454 455 456 457 458 459 460 461 462 463 464
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
465 466
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
467 468 469
    """
    **Dynamic LSTMP Layer**

470 471 472 473 474 475
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
476 477 478 479 480

    The formula is as follows:

    .. math::

481
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
482

483
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
484

485
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
486

487
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
488

489
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
490

491
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
492

493
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
494

Y
Yibing Liu 已提交
495 496 497 498 499 500
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
501
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
502
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
503
          bias vector).
Y
Yibing Liu 已提交
504 505 506
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
507
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
508
    * :math:`h`: The hidden state.
509
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
510 511
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
512
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
513
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
514
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
515 516
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
517 518 519 520

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
521

Y
Yibing Liu 已提交
522 523 524 525 526 527 528 529 530 531 532 533
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
534
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
535 536
                               hidden-hidden weight and projection weight.

537 538
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
539 540
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
541 542
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
543
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
544 545 546 547 548

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
549
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
550 551 552 553 554 555
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
556
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
557 558 559
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
560
                                - The shape is (1 x 7D).
C
chengduo 已提交
561 562 563 564 565

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
566 567 568 569 570 571 572 573 574
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
575
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
576 577
                              default "tanh".
        proj_activation(str): The activation for projection output.
578
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
579 580
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
581 582
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
583 584

    Returns:
585 586 587 588
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
589 590

    Examples:
591

Y
Yibing Liu 已提交
592 593
        .. code-block:: python

594 595 596 597
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
598
            hidden_dim, proj_dim = 512, 256
599
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
600
                                     act=None, bias_attr=None)
601 602 603
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
604 605 606 607
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
608
    """
609

C
chengduo 已提交
610
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
611
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
612
    size = size // 4
Y
Yibing Liu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
657 658 659 660 661 662 663 664 665
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
666
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
667

668
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
669
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
670

G
guosheng 已提交
671 672 673 674 675 676 677 678 679
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
680

G
guosheng 已提交
681
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
682

G
guosheng 已提交
683
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
684 685
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
686 687 688 689
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
690
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
691 692

    Args:
693 694
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
695
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
696
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
697 698
            is the hidden size.
        size(int): The dimension of the gru cell.
699
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
700 701
            hidden-hidden weight matrix. Note:

702
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
703
              :math:`D` is the hidden size.
704
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
705
              The first part are weights of the update gate and reset gate with
706
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
707
              candidate hidden state with shape :math:`(D \\times D)`.
708
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
709
            hidden-hidden bias.
710
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
711 712 713
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
714
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
715
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
716 717 718 719
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
720 721

    Returns:
G
guosheng 已提交
722
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
723
            and sequence length is the same with the input.
724

G
guosheng 已提交
725
    Examples:
726

G
guosheng 已提交
727 728
        .. code-block:: python

729 730 731 732
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
733
            hidden_dim = 512
734
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
735 736 737 738 739 740 741 742 743 744
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
745
    batch_size = input.shape[0]
G
guosheng 已提交
746 747 748
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
749 750 751
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
775 776 777
def gru_unit(input,
             hidden,
             size,
778 779
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
780
             activation='tanh',
781
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
782
    """
783
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
784

785 786
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
787

788
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
789

790
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
791

792
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
793 794

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
795 796 797
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
798 799
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

800 801
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
802 803 804
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
805 806 807 808 809

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
810 811
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
812 813 814 815
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
816

817 818 819 820 821 822
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
823

824
             # assuming we have x_t_data and prev_hidden of size=10
825
             x_t = fluid.layers.fc(input=x_t_data, size=30)
826 827
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
828 829 830 831 832 833 834 835 836 837 838 839

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
840
    size = size // 3
Y
Yu Yang 已提交
841 842

    # create weight
843 844
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
845

846 847 848 849
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
850
    # create bias
851
    if helper.bias_attr:
Y
Yu Yang 已提交
852 853 854
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
855
        inputs['Bias'] = bias
Y
Yu Yang 已提交
856 857 858

    helper.append_op(
        type='gru_unit',
859
        inputs=inputs,
Y
Yu Yang 已提交
860 861 862 863 864 865
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
866 867
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
868 869 870 871 872
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
873
@templatedoc()
874
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
875 876 877 878 879 880 881
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
882
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
883 884 885 886
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
887 888 889
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
890 891

    """
Y
Yu Yang 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
917
@templatedoc()
918
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
919 920 921 922 923
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
924

Y
yuyang18 已提交
925
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
926

Y
yuyang18 已提交
927 928 929
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
930
        Variable: ${viterbi_path_comment}
931

Y
yi.wu 已提交
932 933 934 935 936
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
937
    """
Y
Yu Yang 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
951
@templatedoc()
F
fengjiayi 已提交
952
def cos_sim(X, Y):
Y
Yu Yang 已提交
953
    """
Y
yi.wu 已提交
954 955 956
    ${comment}

    Args:
957 958
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
959

Y
yi.wu 已提交
960
    Returns:
961
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
962
    """
F
fengjiayi 已提交
963
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
977 978 979 980 981 982
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
            dropout_implementation=False):
983 984 985 986 987
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
988
    training. The dropout operator randomly sets (according to the given dropout
989 990 991 992
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
993 994
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
995 996 997 998 999 1000 1001
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1002 1003 1004 1005 1006 1007 1008 1009
        dropout_implementation(bool): A Flag indicating whether divide (1-dropout_prob). 
                                      When it's True, all the units will divide (1-dropout_prob)
                                      after set some units to zero in the train program.
                                      And do nothing in the inference program.
                                      The dropout op can be removed in the inference program.
                                      The inference program will be more efficient
                                      When it's False, same as original

1010 1011

    Returns:
1012
        Variable: A tensor variable is the shape with `x`.
1013 1014

    Examples:
1015

1016 1017
        .. code-block:: python

1018 1019
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1020 1021
    """

F
fengjiayi 已提交
1022
    helper = LayerHelper('dropout', **locals())
1023 1024
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1025 1026 1027 1028

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1029 1030 1031 1032 1033
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1034 1035 1036 1037
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1038 1039
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1040
        })
1041 1042 1043
    return out


1044
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1045
    """
Y
Yibing Liu 已提交
1046 1047
    **Cross Entropy Layer**

1048 1049 1050
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1051 1052

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1053
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1054

Y
Yibing Liu 已提交
1055
        .. math::
Y
yangyaming 已提交
1056

Y
Yibing Liu 已提交
1057 1058 1059
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1060 1061
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1062 1063 1064 1065 1066

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1067
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1068 1069 1070
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1071 1072
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1073
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1074

Y
Yibing Liu 已提交
1075
    Args:
Y
yangyaming 已提交
1076
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1077 1078 1079 1080
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1081
        label (Variable|list): the ground truth which is a 2-D tensor. When
1082 1083 1084 1085
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1086
        soft_label (bool): a flag indicating whether to
1087
                                           interpretate the given labels as soft
1088
                                           labels. Default: `False`.
M
minqiyang 已提交
1089 1090
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1091
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1092 1093 1094 1095 1096

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1097 1098 1099 1100 1101
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1102 1103 1104 1105 1106 1107

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1108
    """
F
fengjiayi 已提交
1109
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1110 1111 1112 1113 1114 1115
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1116 1117
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1118 1119 1120
    return out


F
fengjiayi 已提交
1121
def square_error_cost(input, label):
Y
Yu Yang 已提交
1122
    """
1123 1124
    **Square error cost layer**

1125 1126
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1141 1142
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1143 1144

    Returns:
G
guosheng 已提交
1145
        Variable: The tensor variable storing the element-wise squared error \
1146
                  difference of input and label.
1147 1148 1149 1150 1151 1152 1153 1154

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1155
    """
F
fengjiayi 已提交
1156
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1166 1167
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1168 1169 1170
    return square_out


Y
yi.wu 已提交
1171
@templatedoc()
Y
Yu Yang 已提交
1172 1173 1174 1175
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1176
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1177
    """
Y
yi.wu 已提交
1178
    **Chunk Evaluator**
Y
yi.wu 已提交
1179

Y
yangyaming 已提交
1180
    This function computes and outputs the precision, recall and
1181
    F1-score of chunk detection.
Y
yi.wu 已提交
1182

Y
yi.wu 已提交
1183 1184 1185 1186 1187 1188 1189 1190
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1191

Y
yi.wu 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1217

Y
yi.wu 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1242
    Args:
1243 1244 1245 1246 1247
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1248

Y
yi.wu 已提交
1249
    Returns:
Y
update  
yi.wu 已提交
1250 1251 1252
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1253

Y
yi.wu 已提交
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1266
    """
F
fengjiayi 已提交
1267
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1268 1269 1270 1271 1272

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1273 1274 1275
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1276 1277 1278 1279 1280 1281 1282 1283

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1284 1285 1286 1287
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1288 1289 1290
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1291 1292
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1293
        })
1294 1295
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1296 1297


1298
@templatedoc()
Y
Yu Yang 已提交
1299 1300 1301 1302 1303 1304 1305
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1306 1307
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1308 1309 1310 1311
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1312 1313 1314 1315 1316 1317 1318

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1332

1333 1334
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1353
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1354 1355 1356 1357 1358 1359
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1360
def sequence_softmax(input, use_cudnn=False, name=None):
1361 1362 1363
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1364
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1381 1382 1383
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1407
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1408
    """
1409
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1410
    has the same shape as the input.
Q
qiaolongfei 已提交
1411

1412 1413 1414 1415 1416 1417
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1418
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1419 1420 1421 1422 1423 1424 1425

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1426
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1427 1428 1429 1430 1431 1432 1433 1434

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1435 1436 1437
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1461 1462 1463
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1464 1465
           stride=1,
           padding=0,
1466
           dilation=1,
Y
Yu Yang 已提交
1467 1468 1469
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1470
           use_cudnn=True,
1471 1472
           act=None,
           name=None):
Y
Yu Yang 已提交
1473
    """
C
chengduoZH 已提交
1474
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1475 1476
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1477
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1478 1479 1480 1481 1482 1483 1484
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1485 1486 1487
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1488

1489
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1490

C
chengduoZH 已提交
1491 1492
    .. math::

C
refine  
chengduoZH 已提交
1493
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1494

T
tensor-tang 已提交
1495
    Where:
C
chengduoZH 已提交
1496

1497 1498 1499 1500 1501
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1502
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1503 1504 1505

    Example:

1506 1507
        - Input:

W
weixing02 已提交
1508
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1509

W
weixing02 已提交
1510
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1511

1512
        - Output:
T
tensor-tang 已提交
1513

W
weixing02 已提交
1514
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1515

C
chengduoZH 已提交
1516
        Where
1517 1518

        .. math::
C
chengduoZH 已提交
1519

W
weixing02 已提交
1520 1521
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1522 1523

    Args:
1524
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1525
        num_filters(int): The number of filter. It is as same as the output
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1554 1555
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1556 1557
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1558
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1559
            will be named automatically. Default: None
C
chengduoZH 已提交
1560 1561

    Returns:
G
guosheng 已提交
1562
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1563 1564
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1565
    Raises:
1566 1567
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1568

C
chengduoZH 已提交
1569 1570 1571
    Examples:
        .. code-block:: python

1572 1573
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1574 1575 1576
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1577
    assert param_attr is not False, "param_attr should not be False here."
1578
    l_type = 'conv2d'
X
xzl 已提交
1579 1580
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1581
        l_type = 'depthwise_conv2d'
1582 1583 1584 1585

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1586 1587 1588 1589 1590
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1591
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1592

C
chengduoZH 已提交
1593 1594 1595
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1596
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1597

C
chengduoZH 已提交
1598 1599
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1600 1601

    input_shape = input.shape
M
minqiyang 已提交
1602
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1603 1604

    def _get_default_param_initializer():
C
chengduo 已提交
1605 1606
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1618
        type=l_type,
Y
Yu Yang 已提交
1619 1620 1621 1622 1623
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1624 1625 1626
        attrs={
            'strides': stride,
            'paddings': padding,
1627
            'dilations': dilation,
C
chengduoZH 已提交
1628
            'groups': groups,
1629
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1630
            'use_mkldnn': False
C
chengduoZH 已提交
1631
        })
Y
Yu Yang 已提交
1632 1633 1634 1635 1636 1637

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1655 1656 1657 1658 1659 1660
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1661 1662 1663 1664 1665 1666 1667 1668 1669

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1670 1671
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1672 1673 1674
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1675
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1701
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1702 1703
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1704
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1705 1706
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1707
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1708 1709
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1710
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1711 1712 1713 1714 1715 1716
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1727 1728
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1729 1730
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1731
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1732
            will be named automatically. Default: None.
C
chengduoZH 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1745 1746
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1747 1748 1749
    """

    l_type = 'conv3d'
C
chengduo 已提交
1750
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1761
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1775 1776 1777
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1801
            'use_mkldnn': False
C
chengduoZH 已提交
1802 1803
        })

1804
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1805 1806 1807 1808

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1809
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1810
    """
Y
yangyaming 已提交
1811 1812 1813
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1825
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1826 1827 1828 1829 1830
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1831
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1832 1833 1834 1835 1836 1837 1838

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1839 1840
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1841

L
Luo Tao 已提交
1842 1843
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1844
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1845 1846 1847 1848 1849 1850 1851 1852
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1853

Y
yangyaming 已提交
1854
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1855 1856 1857 1858 1859
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1860 1861
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1862
    """
F
fengjiayi 已提交
1863
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1875 1876 1877 1878 1879
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1880 1881 1882
    return pool_out


C
add doc  
chengduoZH 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1908
def sequence_first_step(input):
L
Luo Tao 已提交
1909
    """
L
Luo Tao 已提交
1910
    This function gets the first step of sequence.
L
Luo Tao 已提交
1911 1912 1913 1914

    .. code-block:: text

       x is a 1-level LoDTensor:
1915
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1916 1917 1918 1919 1920
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1921
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1922
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1923

L
Luo Tao 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1933

Y
yangyaming 已提交
1934
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1935 1936 1937
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1938 1939 1940
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1941
def sequence_last_step(input):
L
Luo Tao 已提交
1942
    """
L
Luo Tao 已提交
1943
    This function gets the last step of sequence.
L
Luo Tao 已提交
1944 1945 1946 1947

    .. code-block:: text

       x is a 1-level LoDTensor:
1948
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1949 1950 1951 1952 1953
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1954
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1955
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1956

L
Luo Tao 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1966

Y
yangyaming 已提交
1967
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1968 1969 1970
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1971 1972 1973
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

    The layer crops a subsequence from given sequence with given start 
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
    
	- Case:

1987 1988 1989 1990 1991
            Given the input Variable **input**:
                
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
1992

1993
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
1994

1995 1996 1997 1998 1999
            the output Variable will be
                
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
Y
Yibing Liu 已提交
2000
	
2001 2002
    NOTE: The first dimension size of **input**, **offset** and **length** 
          should be equal. The **offset** should start from 0.
Y
Yibing Liu 已提交
2003 2004 2005
    
    Args:
        input(Variable): The input Variable which consists of the complete 
Y
Yibing Liu 已提交
2006
                         sequences.
Y
Yibing Liu 已提交
2007 2008 2009 2010 2011 2012
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2013
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset, 
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2044
@templatedoc()
Y
Yu Yang 已提交
2045
def pool2d(input,
C
chengduoZH 已提交
2046 2047
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2048 2049
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2050
           global_pooling=False,
C
chengduoZH 已提交
2051
           use_cudnn=True,
2052
           ceil_mode=False,
C
caoying03 已提交
2053
           name=None):
Y
Yu Yang 已提交
2054
    """
F
fengjiayi 已提交
2055
    ${comment}
2056 2057

    Args:
2058 2059 2060
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2061
                          feature, and W is the width of the feature.
2062
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2063
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2064
        pool_type: ${pooling_type_comment}
2065 2066
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
2067 2068 2069
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
2070
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2071 2072
                        layer will be named automatically.

2073
    Returns:
F
fengjiayi 已提交
2074
        Variable: The pooling result.
F
fengjiayi 已提交
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2088 2089 2090 2091
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2092
                            global_pooling=False)
Y
Yu Yang 已提交
2093 2094 2095 2096 2097
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2098

C
chengduoZH 已提交
2099 2100 2101 2102 2103
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2104 2105 2106 2107
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2108 2109
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2110

C
Add doc  
chengduoZH 已提交
2111
    l_type = 'pool2d'
2112 2113

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2114 2115 2116 2117
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2129
            "use_mkldnn": False
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2146
    pooling configurations mentioned in input parameters.
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2159

2160
    Returns:
2161
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2162 2163 2164 2165 2166
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2167

C
chengduoZH 已提交
2168 2169 2170 2171 2172
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2173 2174 2175
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2176

C
chengduoZH 已提交
2177 2178
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2179

2180 2181
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2182 2183 2184 2185
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2186
        type=l_type,
Y
Yu Yang 已提交
2187 2188 2189 2190 2191 2192 2193
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2194
            "paddings": pool_padding,
2195
            "use_cudnn": use_cudnn,
2196
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2197
            "use_mkldnn": False
Y
Yu Yang 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2210
               data_layout='NCHW',
Y
Yang Yang 已提交
2211
               in_place=False,
2212 2213
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2214
               moving_variance_name=None,
2215 2216
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2217
    """
Q
qiaolongfei 已提交
2218 2219 2220 2221
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2222

Q
qiaolongfei 已提交
2223
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2224

Q
qiaolongfei 已提交
2225 2226
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2227 2228 2229
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2242 2243

    Args:
Q
qiaolongfei 已提交
2244
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2245 2246 2247 2248
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2249 2250 2251 2252 2253 2254 2255 2256
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2257
        data_layout(string, default NCHW): NCHW|NHWC
2258
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2259 2260 2261 2262
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2263
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2264
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2265 2266

    Returns:
Q
qiaolongfei 已提交
2267
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2268 2269 2270 2271 2272 2273 2274

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2275
    """
C
chengduo 已提交
2276
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2299
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2300

2301 2302
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2303 2304 2305
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2306
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2307
        shape=param_shape,
2308 2309 2310 2311 2312 2313 2314
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2315
            trainable=False,
W
wanghaoshuang 已提交
2316
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2317
        shape=param_shape,
2318 2319
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2320 2321 2322 2323 2324 2325

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2326 2327
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2328

2329
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2347 2348 2349 2350
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2351
            "use_mkldnn": False,
2352
            "fuse_with_relu": fuse_with_relu
2353
        })
Y
Yu Yang 已提交
2354 2355 2356 2357

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2358
@templatedoc()
G
guosheng 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2369
    ${comment}
G
guosheng 已提交
2370 2371 2372

    The formula is as follows:

Y
yuyang18 已提交
2373
    ..  math::
G
guosheng 已提交
2374 2375 2376 2377 2378 2379 2380

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2381 2382 2383 2384 2385 2386 2387 2388
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2389

G
guosheng 已提交
2390 2391
    Args:
        input(Variable): The input tensor variable.
2392
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2393
            normalization. Default True.
2394
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2395 2396
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2397
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2398
            Default 1.
2399
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2400
            division by zero. Default 1e-05.
G
guosheng 已提交
2401
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2402 2403 2404 2405
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2406
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2407 2408 2409 2410
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2411
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2412 2413 2414
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2415 2416

    Returns:
Y
yuyang18 已提交
2417
        ${y_comment}
G
guosheng 已提交
2418 2419 2420

    Examples:

Y
yuyang18 已提交
2421 2422 2423
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2439
    if shift:
G
guosheng 已提交
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2464 2465 2466 2467
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2468 2469 2470
                     padding=0,
                     stride=1,
                     dilation=1,
2471
                     groups=None,
C
caoying03 已提交
2472
                     param_attr=None,
2473
                     bias_attr=None,
C
chengduoZH 已提交
2474
                     use_cudnn=True,
2475
                     act=None,
C
caoying03 已提交
2476
                     name=None):
Y
Yu Yang 已提交
2477
    """
2478 2479 2480 2481 2482 2483 2484 2485
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2486 2487
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2488 2489 2490
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2491 2492 2493 2494 2495

    For each input :math:`X`, the equation is:

    .. math::

2496
        Out = \sigma (W \\ast X + b)
2497

2498
    Where:
2499 2500 2501

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2502 2503 2504 2505
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2506

2507 2508 2509 2510
    Example:

        - Input:

2511
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2512

2513
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2514 2515 2516

        - Output:

2517
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2518 2519

        Where
Y
Yu Yang 已提交
2520

2521 2522
        .. math::

2523 2524 2525 2526
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2527 2528

    Args:
2529 2530 2531 2532
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2533 2534 2535 2536
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2565
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2566 2567 2568
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2569
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2570
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2571 2572

    Returns:
2573
        Variable: The tensor variable storing the convolution transpose result.
2574 2575

    Raises:
2576 2577
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2578 2579 2580 2581

    Examples:
       .. code-block:: python

2582 2583
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2584
    """
C
chengduo 已提交
2585
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2586 2587 2588 2589 2590 2591 2592 2593
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2594 2595 2596
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2597 2598 2599
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2600

C
chengduoZH 已提交
2601 2602
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2603

Y
Yu Yang 已提交
2604 2605 2606 2607 2608
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2609

Y
Yu Yang 已提交
2610 2611
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2612

C
chengduoZH 已提交
2613
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2614
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2615
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2616
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2617
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2618 2619 2620
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2621

2622 2623 2624 2625 2626 2627 2628
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2629
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2630
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2631

Y
Yu Yang 已提交
2632 2633 2634
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2635
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2636
    helper.append_op(
2637
        type=op_type,
Y
Yu Yang 已提交
2638 2639
        inputs={'Input': [input],
                'Filter': [img_filter]},
2640
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2641
        attrs={
2642
            'output_size': output_size,
2643 2644 2645 2646 2647
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2648 2649
        })

2650 2651 2652
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2653 2654


2655
def conv3d_transpose(input,
Y
Yu Yang 已提交
2656 2657 2658
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2659 2660 2661
                     padding=0,
                     stride=1,
                     dilation=1,
2662
                     groups=None,
C
caoying03 已提交
2663
                     param_attr=None,
2664
                     bias_attr=None,
C
chengduoZH 已提交
2665
                     use_cudnn=True,
2666
                     act=None,
C
caoying03 已提交
2667
                     name=None):
Y
Yu Yang 已提交
2668
    """
2669
    **Convlution3D transpose layer**
2670

2671
    The convolution3D transpose layer calculates the output based on the input,
2672
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2673 2674 2675 2676 2677 2678
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2679 2680 2681
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2682 2683 2684 2685 2686

    For each input :math:`X`, the equation is:

    .. math::

2687
        Out = \sigma (W \\ast X + b)
2688 2689 2690

    In the above equation:

2691 2692
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2693 2694 2695 2696
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2697

2698 2699 2700 2701
    Example:

        - Input:

2702
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2703

2704
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2705 2706 2707

        - Output:

2708
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2709 2710

        Where
Y
Yu Yang 已提交
2711

2712 2713
        .. math::

2714 2715 2716
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2717 2718

    Args:
2719
        input(Variable): The input image with [N, C, D, H, W] format.
2720 2721 2722
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2723
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2724 2725
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2726
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2727 2728 2729
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2730 2731
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2732
        stride(int|tuple): The stride size. If stride is a tuple, it must
2733 2734
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2735
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2736 2737 2738
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2739 2740 2741 2742 2743
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2753 2754
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2755 2756
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2757 2758
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2759 2760

    Returns:
2761
        Variable: The tensor variable storing the convolution transpose result.
2762 2763

    Raises:
2764 2765
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2766 2767 2768 2769

    Examples:
       .. code-block:: python

2770 2771
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2772
    """
C
chengduo 已提交
2773
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2774 2775
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2776
    if not isinstance(input, Variable):
2777
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2778 2779
    input_channel = input.shape[1]

2780 2781 2782
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2783

C
chengduoZH 已提交
2784 2785 2786
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2787 2788 2789 2790 2791 2792
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2793 2794 2795
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2796

2797
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2798
                         padding[0] - 1) // dilation[0] + 1
2799
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2800
                         padding[1] - 1) // dilation[1] + 1
2801
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2802
                         padding[2] - 1) // dilation[2] + 1
2803
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2804
    else:
2805 2806
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2807

2808
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2809
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2810 2811 2812
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2813
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2814
    helper.append_op(
2815
        type=l_type,
Y
Yu Yang 已提交
2816 2817
        inputs={'Input': [input],
                'Filter': [img_filter]},
2818
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2819 2820 2821 2822
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2823
            'groups': groups,
C
chengduoZH 已提交
2824 2825
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2826

2827 2828
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2829
    return out
Y
yangyaming 已提交
2830 2831


Y
yangyaming 已提交
2832
def sequence_expand(x, y, ref_level=-1, name=None):
2833
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2834 2835 2836 2837
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2838 2839 2840 2841 2842

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2843
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2844
                x.data = [[a], [b], [c], [d]]
2845 2846 2847
                x.dims = [4, 1]

            y is a LoDTensor:
2848 2849
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2850

Y
yangyaming 已提交
2851
            ref_level: 0
2852

Y
yangyaming 已提交
2853
            then output is a 1-level LoDTensor:
2854
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2855
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2856 2857 2858 2859
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2860
                x.data = [[a], [b], [c]]
2861 2862 2863
                x.dims = [3, 1]

            y is a LoDTensor:
2864
                y.lod = [[2, 0, 3]]
2865

Y
yangyaming 已提交
2866
            ref_level: -1
2867

Y
yangyaming 已提交
2868 2869 2870
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2871 2872 2873
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2874 2875
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2876
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2877
                        will be named automatically.
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2888
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2889
    """
Y
yangyaming 已提交
2890
    helper = LayerHelper('sequence_expand', input=x, **locals())
2891 2892 2893
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2894 2895 2896 2897 2898
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2899
    return tmp
2900 2901


C
chengduo 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2967
@templatedoc()
2968
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
2969 2970 2971 2972 2973
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2974 2975 2976
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2977
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2978 2979 2980 2981
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
2982 2983 2984
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
2985

F
fengjiayi 已提交
2986
    Returns:
M
minqiyang 已提交
2987
        Variable: The padded sequence batch and the original lengths before
2988
                  padding. All sequences has the same length.
M
minqiyang 已提交
2989

F
fengjiayi 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
3004 3005 3006 3007 3008
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3009 3010 3011 3012 3013 3014
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3015 3016
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3017
        attrs={'padded_length': maxlen})
3018
    return out, length
F
fengjiayi 已提交
3019 3020


3021
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3022
    """
3023
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038

    This layer removes the padding data in the input sequences and convert 
    them into sequences with actual length as output, identitied by lod 
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
		      [11.0, 12.0, 13.0, 14.0, 15.0]], 
     
	in which there are 3 sequences padded to length 5, and the acutal length 
3039
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3040 3041 3042 3043 3044 3045

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3046
	    out.lod = [[2, 3, 4]]      
Y
Yibing Liu 已提交
3047 3048 3049 3050 3051 3052

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3053 3054
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3081 3082 3083 3084 3085 3086 3087 3088 3089
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3090 3091
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3092 3093 3094

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3095 3096

    This layer does the search in beams for one time step. Specifically, it
3097 3098 3099 3100 3101 3102
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3103

3104 3105 3106 3107 3108 3109 3110 3111
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3112

3113
    Args:
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3139

3140
    Returns:
3141 3142
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3143 3144 3145 3146

    Examples:
        .. code-block:: python

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3175
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3193 3194 3195 3196 3197 3198 3199
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3200

3201 3202 3203 3204 3205 3206 3207 3208 3209
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3210

3211 3212 3213 3214 3215 3216
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3217

3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3243 3244 3245 3246
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3247
              param_attr=None,
C
caoying03 已提交
3248 3249
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3250 3251 3252 3253
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3254
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3255

3256
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3257

3258
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3259

3260
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3261 3262 3263

            h_t & = o_t tanh(c_t)

3264 3265 3266 3267 3268 3269
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3270 3271 3272

        .. math::

3273
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3274 3275 3276 3277 3278 3279 3280 3281

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3282
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3283 3284

    Args:
Y
yangyaming 已提交
3285 3286 3287 3288 3289 3290
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3291
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3304 3305
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3306 3307

    Returns:
Y
yangyaming 已提交
3308
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3309 3310

    Raises:
3311 3312 3313 3314
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3315 3316 3317 3318 3319 3320

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3321
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3322
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3323
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3340
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3341 3342 3343 3344
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3345 3346
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3347 3348 3349
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3350
    size = cell_t_prev.shape[1]
3351
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3352 3353
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3354
                param_attr=param_attr,
3355
                bias_attr=bias_attr)
Y
yangyaming 已提交
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3368
    return h, c
G
guosheng 已提交
3369 3370


C
caoying03 已提交
3371
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3372
    """
Y
yangyaming 已提交
3373
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3374 3375 3376

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3377
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3378 3379
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3380 3381
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3382
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3383
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3384
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3385 3386
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3387 3388 3389

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3390

G
guosheng 已提交
3391 3392 3393 3394 3395 3396
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3397
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3398 3399 3400 3401
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3402 3403 3404 3405

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3406
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3407 3408 3409
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3410 3411 3412
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3413 3414
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3415 3416 3417 3418 3419
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3420
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3421 3422 3423 3424
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3425 3426


C
caoying03 已提交
3427
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3428
    """
Y
Yibing Liu 已提交
3429
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3430 3431 3432

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3433 3434 3435
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3436
            must be in the range :math:`[-rank(input), rank(input))`. If
3437
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3438
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3439 3440
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3441
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3442
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3443
                       will be named automatically.
G
guosheng 已提交
3444 3445

    Returns:
Y
Yibing Liu 已提交
3446
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3447

G
guosheng 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3458 3459
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3460 3461 3462 3463 3464 3465 3466

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3467 3468 3469
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3470 3471
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3472 3473 3474 3475 3476
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3477
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3478 3479 3480 3481
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3482 3483


C
caoying03 已提交
3484
def reduce_max(input, dim=None, keep_dim=False, name=None):
3485
    """
Y
yangyaming 已提交
3486
    Computes the maximum of tensor elements over the given dimension.
3487 3488 3489

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3490
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3491 3492 3493
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3494
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3495 3496
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3497
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3498 3499
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3500 3501 3502

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3503

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3515 3516 3517 3518 3519 3520 3521

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3522 3523 3524
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3525 3526
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3527 3528 3529 3530 3531
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3532
            'dim': dim if dim != None else [0],
3533 3534 3535 3536 3537 3538
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3539
def reduce_min(input, dim=None, keep_dim=False, name=None):
3540
    """
Y
yangyaming 已提交
3541
    Computes the minimum of tensor elements over the given dimension.
3542 3543 3544

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3545
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3546 3547 3548
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3549
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3550 3551
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3552
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3553 3554
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3555 3556 3557

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3558

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3570 3571 3572 3573 3574 3575 3576

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3577 3578 3579
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3580 3581
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3582 3583 3584 3585 3586
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3587
            'dim': dim if dim != None else [0],
3588 3589 3590 3591
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3592 3593


3594 3595 3596 3597 3598 3599
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3600
        dim (list|int|None): The dimensions along which the product is performed. If
3601 3602
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3603 3604
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3605 3606 3607
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3608
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3609
            layer will be named automatically.
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3624
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3625
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3626 3627 3628 3629 3630 3631 3632

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3633 3634 3635
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3636 3637
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3638 3639 3640 3641 3642
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3643
            'dim': dim if dim != None else [0],
3644 3645 3646 3647 3648 3649
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3650
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3651
    """
C
caoying03 已提交
3652
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3653 3654 3655

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3656 3657 3658 3659 3660
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3661
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3662
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3663
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3664 3665
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3666 3667

    Returns:
D
dzhwinter 已提交
3668
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3678 3679
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3709 3710 3711 3712 3713 3714 3715 3716 3717


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3718
    .. math::
3719 3720

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3721 3722 3723 3724 3725

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3726
        x(Variable|list): The input tensor to l2_normalize layer.
3727
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3728 3729
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3730
        epsilon(float): The epsilon value is used to avoid division by zero, \
3731
            the defalut value is 1e-10.
3732
        name(str|None): A name for this layer(optional). If set None, the layer \
3733
            will be named automatically.
C
caoying03 已提交
3734 3735

    Returns:
3736
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3737 3738

    Examples:
3739

C
caoying03 已提交
3740 3741
        .. code-block:: python

3742 3743 3744 3745
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3746 3747
    """

F
fengjiayi 已提交
3748 3749
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3750 3751
    helper = LayerHelper("l2_normalize", **locals())

3752 3753
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3754
    helper.append_op(
3755 3756 3757 3758
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3759
        attrs={
3760 3761
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3762 3763
        })
    return out
3764 3765


S
sneaxiy 已提交
3766
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3767
    """
Y
ying 已提交
3768 3769 3770 3771
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3772

C
chengduoZH 已提交
3773
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3774
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3775

3776 3777 3778 3779 3780
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3781
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3782

C
chengduoZH 已提交
3783
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3784
      performs in the following way.
G
guosheng 已提交
3785

3786
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3787
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3788
        last two dimensions and a batched matrix multiply supporting broadcast
3789
        applies on the two tensors.
G
guosheng 已提交
3790

Y
ying 已提交
3791 3792
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3793
    removed after matrix multiplication.
G
guosheng 已提交
3794 3795 3796

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3797 3798 3799
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3800
        alpha (float): The scale of output. Default 1.0.
3801
        name(str|None): A name for this layer(optional). If set None, the layer
3802
            will be named automatically.
G
guosheng 已提交
3803 3804

    Returns:
3805
        Variable: The product Tensor variable.
G
guosheng 已提交
3806

G
guosheng 已提交
3807 3808 3809
    Examples:
        .. code-block:: python

3810
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3811 3812
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3813

3814 3815
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3816

3817 3818
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3819

3820 3821
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3822 3823 3824 3825

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3826 3827
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3828

Y
ying 已提交
3829
            # x: [M], y: [N]
3830
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3831
    """
Y
ying 已提交
3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3844
            y_shape = y_shape + [1]
Y
ying 已提交
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3861
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3862
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3863
    helper.append_op(
3864 3865 3866 3867
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3868 3869 3870
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3871
            'alpha': float(alpha),
S
sneaxiy 已提交
3872
        })
3873
    return out
3874 3875


3876
def topk(input, k, name=None):
Q
qingqing01 已提交
3877 3878 3879 3880
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3881
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3882 3883 3884 3885 3886 3887
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3909 3910 3911
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3912
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3913
                 of input.
3914
        name(str|None): A name for this layer(optional). If set None, the layer
3915
                       will be named automatically.
F
fengjiayi 已提交
3916
                       Default: None
Q
qingqing01 已提交
3917 3918

    Returns:
3919 3920 3921
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3922
        within the last dimension of input.
Q
qingqing01 已提交
3923

F
fengjiayi 已提交
3924 3925
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3946
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3947
    """
Y
ying 已提交
3948 3949 3950 3951 3952 3953 3954 3955 3956
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3957

Y
ying 已提交
3958
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3959

3960
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3961 3962
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3963
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3964

3965
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3966 3967
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3968

3969 3970 3971
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3972
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3973
                          the length of reference string.
3974
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3975
                                     calculating edit distance.
3976
        name (str): The name of this layer. It is optional.
3977

W
wanghaoshuang 已提交
3978
    Returns:
W
wanghaoshuang 已提交
3979
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3980 3981 3982 3983 3984

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3985
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3986
            cost = fluid.layers.edit_distance(input=x,label=y)
3987
    """
3988
    helper = LayerHelper("edit_distance", **locals())
3989

3990
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3991
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3992 3993 3994 3995 3996 3997 3998
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3999
            attrs={"tokens": ignored_tokens})
4000 4001 4002 4003 4004
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4005
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4006
            attrs={"tokens": ignored_tokens})
4007 4008
        label = erased_label

4009 4010
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
4011
    sequence_num = helper.create_tmp_variable(dtype="int64")
4012 4013 4014 4015
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4016 4017
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4018 4019
        attrs={"normalized": normalized})

4020
    return edit_distance_out, sequence_num
4021 4022 4023 4024 4025


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4026

Y
ying 已提交
4027 4028 4029 4030
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4048
        input.lod = [[4, 4]]
4049 4050 4051 4052 4053 4054 4055

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4056
        output.lod = [[2, 1]]
4057 4058 4059

    Args:

Y
ying 已提交
4060 4061 4062 4063 4064 4065 4066 4067 4068
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4069
        name (str): The name of this layer. It is optional.
4070 4071

    Returns:
4072
        Variable: CTC greedy decode result. If all the sequences in result were
4073
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4074 4075 4076 4077 4078

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4079

4080
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4081
    """
4082
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4083
    _, topk_indices = topk(input, k=1)
4084 4085 4086 4087 4088 4089

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4090
        outputs={"Output": [ctc_out]},
4091 4092
        attrs={"merge_repeated": True,
               "blank": blank})
4093
    return ctc_out
4094 4095


F
fengjiayi 已提交
4096
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4097
    """
4098 4099
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4100
    to compute Connectionist Temporal Classification (CTC) loss.
4101 4102
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4103 4104 4105
    input tensor.

    Args:
4106
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4107 4108 4109 4110
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4111
       label (Variable): The ground truth of variable-length sequence,
4112 4113 4114
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4115 4116
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4117 4118 4119
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4120
         follewed by a mean_op.
W
wanghaoshuang 已提交
4121 4122

    Returns:
4123 4124
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4125 4126

    Examples:
4127

W
wanghaoshuang 已提交
4128
        .. code-block:: python
4129

4130 4131 4132
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4133 4134

    """
F
fengjiayi 已提交
4135
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4162 4163 4164
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4165 4166 4167 4168 4169
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4170

4171
            out.lod  = [[0, 1, 3]]
4172 4173 4174 4175

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4176 4177 4178 4179 4180 4181 4182
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4183 4184 4185

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4186 4187

    Returns:
4188

4189 4190 4191 4192 4193
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4194
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4195
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4196 4197 4198 4199 4200 4201 4202 4203 4204
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4205 4206


4207 4208 4209 4210
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4211 4212 4213 4214 4215 4216
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4217 4218
        num_neg_samples=None,
        name=None):
4219 4220 4221 4222 4223 4224 4225
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4226 4227
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4228
            sample is 1.0.
C
chengduo 已提交
4229 4230 4231 4232 4233 4234 4235 4236 4237
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4238
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4239 4240
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4241

4242
    Returns:
Y
Yibing Liu 已提交
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4270
    """
Y
Yang Yu 已提交
4271 4272 4273
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4274 4275

    dim = input.shape[1]
Y
Yang Yu 已提交
4276 4277 4278 4279 4280 4281
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
Y
Yang Yu 已提交
4295 4296 4297 4298
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4308 4309 4310

    helper.append_op(
        type='nce',
C
chengduo 已提交
4311
        inputs=inputs,
Y
Yang Yu 已提交
4312 4313 4314 4315 4316 4317
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4318
    return cost / (num_neg_samples + 1)
4319 4320


C
chengduo 已提交
4321 4322 4323 4324 4325 4326
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4327 4328
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4329
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4330 4331 4332 4333 4334 4335 4336 4337 4338
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4339

W
weixing02 已提交
4340
    Args:
M
minqiyang 已提交
4341
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4342 4343 4344 4345 4346
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4358 4359 4360 4361 4362 4363 4364 4365

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4366 4367 4368
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4369 4370 4371 4372 4373 4374 4375 4376
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4377
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4378 4379 4380 4381 4382
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4383 4384 4385 4386 4387 4388 4389 4390
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4391 4392
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4393
        inputs=inputs,
W
weixing02 已提交
4394 4395 4396 4397 4398 4399
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4400
def transpose(x, perm, name=None):
Y
ying 已提交
4401 4402 4403 4404 4405 4406 4407
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4408 4409 4410
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4411 4412 4413 4414 4415 4416 4417 4418

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4419
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4420 4421
    """

Y
fix ci.  
ying 已提交
4422
    if len(perm) != len(x.shape):
Y
ying 已提交
4423 4424 4425
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4426 4427 4428 4429 4430 4431
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4432 4433

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4434
    out = helper.create_tmp_variable(x.dtype)
4435
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4436
    helper.append_op(
4437
        type='transpose2',
Y
fix ci.  
ying 已提交
4438
        inputs={'X': [x]},
4439 4440
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4441 4442
        attrs={'axis': perm})
    return out
4443 4444


4445 4446 4447 4448 4449 4450 4451
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4452
    """
4453 4454 4455 4456 4457 4458 4459
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4488 4489 4490 4491 4492 4493 4494 4495 4496
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4497 4498 4499
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4500 4501 4502 4503 4504
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4532 4533 4534
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4547
            output.dims = {8, 8}
4548

4549
            output.lod = [[4, 4]]
4550

D
dzhwinter 已提交
4551
     Examples:
4552 4553 4554

        .. code-block:: python

4555 4556
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4557 4558

    """
W
wanghaoshuang 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4569 4570 4571 4572 4573 4574 4575
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4576
    helper = LayerHelper('im2sequence', **locals())
4577 4578
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4579
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4580
    return out
4581 4582


Y
yuyang18 已提交
4583
@templatedoc()
4584
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4585 4586
    """
    ${comment}
4587 4588

    Args:
Y
yuyang18 已提交
4589
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4590 4591
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4592 4593 4594 4595 4596
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4597
        ${out_comment}.
4598 4599

    Examples:
Y
yuyang18 已提交
4600 4601 4602 4603
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4616
    return helper.append_activation(out)
4617 4618


Y
yuyang18 已提交
4619
@templatedoc()
4620 4621
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4622 4623 4624 4625 4626 4627 4628
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4629 4630

    Args:
Y
yuyang18 已提交
4631 4632
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4633 4634

    Returns:
Y
yuyang18 已提交
4635
        ${out_comment}.
4636 4637
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4638 4639 4640 4641 4642 4643

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4644 4645 4646 4647 4648 4649
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4650 4651


4652 4653 4654 4655
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4656 4657
    """
    **Softmax With Cross Entropy Operator.**
4658

4659 4660 4661 4662
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4663

4664 4665 4666
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4667

4668 4669 4670
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4671

4672
    The equation is as follows:
4673

4674
    1) Hard label (one-hot label, so every sample has exactly one class)
4675

4676 4677 4678 4679
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4680

4681 4682 4683
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4684

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4697 4698
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4699 4700
                            if soft_label is set to False. Default: -100

4701 4702 4703 4704 4705 4706 4707 4708 4709
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4710 4711
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4722 4723
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4724 4725 4726 4727 4728
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4729 4730
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4731
    For each instance, it computes the smooth L1 loss element by element first
4732
    and then sums all the losses. So the shape of ouput Variable is
4733
    [batch_size, 1].
4734

4735 4736
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4737
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4738
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4739
            L1 loss op with same shape as :attr:`x`.
4740
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4741 4742
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4743
            by this tensor element by element.
4744
        outside_weight (Variable|None): A tensor with rank at least 2. This
4745 4746
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4747
            element by element.
4748
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4749 4750
           scalar with default value 1.0.

4751
    Returns:
4752
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4753 4754 4755 4756 4757

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4758 4759
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4760
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4761
            out = fluid.layers.smooth_l1(x=fc, y=label)
4762
    """
4763

4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4779 4780 4781 4782


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4783
    This layer creates the one-hot representations for input indices.
4784 4785

    Args:
Y
Yibing Liu 已提交
4786 4787
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4788 4789

    Returns:
Y
Yibing Liu 已提交
4790
        Variable: The one-hot representations of input.
4791 4792

    Examples:
C
caoying03 已提交
4793
        .. code-block:: python
4794

Y
Yibing Liu 已提交
4795 4796
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4797 4798 4799 4800 4801 4802 4803 4804 4805
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4806 4807


Y
Yu Yang 已提交
4808
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4809
    """
Y
yi.wu 已提交
4810 4811 4812
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4813 4814 4815 4816 4817 4818

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4819 4820
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4821 4822 4823 4824 4825 4826

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4827 4828
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4829 4830
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4831 4832 4833 4834 4835
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4836
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4837
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4838 4839
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4840 4841
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4842 4843 4844
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4845 4846


4847
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4848
    """
C
caoying03 已提交
4849 4850
    Gives a new shape to the input Tensor without changing its data.

4851 4852 4853 4854 4855
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4856

4857
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4858

4859 4860 4861 4862
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4863
    2. 0 means the actual dimension value is going to be copied from the
4864 4865 4866 4867
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4868 4869

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4870
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4871
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4872

4873
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4874 4875
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4876 4877
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4878
    dimensions.
C
caoying03 已提交
4879

4880
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4881 4882 4883 4884
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4885 4886

    Args:
4887
        x(variable): The input tensor.
C
caoying03 已提交
4888 4889
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4890 4891 4892 4893 4894
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4895
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4896 4897 4898 4899
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4900
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4901

4902 4903
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4904

X
Xin Pan 已提交
4905 4906 4907
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4908 4909
    Examples:
        .. code-block:: python
G
guosheng 已提交
4910

4911
            data = fluid.layers.data(
4912
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4913
            reshaped = fluid.layers.reshape(
4914
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4915 4916 4917
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4918
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4919 4920 4921 4922 4923
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4924

4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4940
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4941
    out = helper.create_tmp_variable(dtype=x.dtype)
4942
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4943
    helper.append_op(
4944
        type="reshape2",
X
Xin Pan 已提交
4945
        inputs=inputs,
D
dzhwinter 已提交
4946
        attrs={"shape": shape},
4947 4948
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4949

D
dzhwinter 已提交
4950
    return helper.append_activation(out)
4951

4952

4953
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4954
    """
M
minqiyang 已提交
4955 4956 4957
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4958
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4959

Y
Yibing Liu 已提交
4960 4961
    Examples:
    Case 1:
M
minqiyang 已提交
4962
      Given
Y
Yibing Liu 已提交
4963 4964 4965 4966 4967 4968 4969 4970
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4971
        and
Y
Yibing Liu 已提交
4972 4973 4974
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4975

Y
Yibing Liu 已提交
4976
    Args:
4977
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4978
        axes (list): List of integers, indicating the dimensions to be squeezed.
4979
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4980 4981 4982 4983 4984 4985 4986 4987

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4988
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4989 4990
    """
    helper = LayerHelper("squeeze", **locals())
4991
    out = helper.create_tmp_variable(dtype=input.dtype)
4992
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4993
    helper.append_op(
4994
        type="squeeze2",
4995
        inputs={"X": input},
Y
Yibing Liu 已提交
4996
        attrs={"axes": axes},
4997 4998
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4999

5000 5001 5002
    return out


5003
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5004
    """
M
minqiyang 已提交
5005 5006 5007
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5008

M
minqiyang 已提交
5009 5010
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5011
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5012

Y
Yibing Liu 已提交
5013
    Args:
5014
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5015
        axes (list): List of integers, indicating the dimensions to be inserted.
5016
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5017 5018 5019 5020 5021 5022 5023 5024

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5025
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5026 5027
    """
    helper = LayerHelper("unsqueeze", **locals())
5028
    out = helper.create_tmp_variable(dtype=input.dtype)
5029
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
5030
    helper.append_op(
5031
        type="unsqueeze2",
5032
        inputs={"X": input},
Y
Yibing Liu 已提交
5033
        attrs={"axes": axes},
5034 5035
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5036

5037 5038
    return out

5039

Y
yangyaming 已提交
5040
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5041
    """
Y
Yibing Liu 已提交
5042
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5043 5044 5045 5046
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5047
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5048 5049 5050 5051 5052 5053

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5054
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5055 5056 5057
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5058
            target_lod: [4, 2]
Y
yangyaming 已提交
5059 5060

            then we get a 1-level LoDTensor:
5061
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5062 5063 5064 5065 5066 5067
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5068
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5069 5070 5071 5072
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5073
                y.data = [[2, 4]]
Y
yangyaming 已提交
5074 5075 5076
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5077
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5078 5079 5080 5081 5082 5083
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5084
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5085 5086 5087 5088
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5089
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5090 5091 5092 5093
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5094
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5095 5096 5097 5098 5099
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5100
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5101
                           from :attr:`y`.
Y
yangyaming 已提交
5102
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5103
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5104 5105

    Returns:
Y
Yibing Liu 已提交
5106
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5107 5108

    Raises:
Y
Yibing Liu 已提交
5109
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5145
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5174 5175
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5203 5204 5205 5206


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5207
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5208
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5209

G
guosheng 已提交
5210 5211 5212 5213
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5236
                         The length of :attr:paddings must be
G
guosheng 已提交
5237 5238 5239 5240 5241 5242 5243 5244 5245 5246
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5247

G
guosheng 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5262 5263


C
chengduo 已提交
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5344 5345 5346 5347 5348 5349 5350
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5351 5352
    called label-smoothing regularization (LSR).

5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5376
                              be :math:`(1, class\_num)`.
5377 5378
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5379
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5407 5408


Y
yi.wu 已提交
5409
@templatedoc()
5410 5411
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5412
    ${comment}
5413 5414

    Args:
Y
yi.wu 已提交
5415 5416
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5417 5418 5419
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5420 5421

    Returns:
Y
update  
yi.wu 已提交
5422
        Variable: ${out_comment}.
5423 5424

    Examples:
5425 5426
        .. code-block:: python

5427
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5473 5474
        .. code-block:: python

W
whs 已提交
5475 5476 5477 5478
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5479
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5480 5481 5482 5483 5484 5485
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5486 5487


5488 5489 5490 5491 5492
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5493
    """
Q
qiaolongfei 已提交
5494
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5495

5496
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5497 5498 5499
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5500

5501
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5502

5503
    Args:
5504
        input (Variable): The input tensor of image resize layer,
5505 5506
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5507
        out_shape(list|tuple|Variable|None): Output shape of image resize
5508 5509
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5510
        scale(float|None): The multiplier for the input height or width.
5511 5512 5513
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5514 5515
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5516 5517
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5518 5519

    Returns:
Q
update  
qiaolongfei 已提交
5520 5521
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5522

5523 5524 5525
    Examples:
        .. code-block:: python

5526
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5527
    """
5528 5529 5530 5531
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5532 5533
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5534 5535
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5536 5537 5538 5539

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5540 5541 5542
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5543
    if out_shape is not None:
B
baiyf 已提交
5544 5545 5546
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5547 5548 5549 5550 5551 5552
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5553 5554 5555 5556
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5557 5558
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5559
        type=resample_methods[resample],
5560
        inputs=inputs,
5561 5562 5563 5564
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5565 5566


Y
yuyang18 已提交
5567
@templatedoc(op_type="bilinear_interp")
5568 5569
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5570 5571 5572 5573 5574 5575
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5576

Y
yuyang18 已提交
5577 5578 5579 5580 5581 5582 5583 5584
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5585 5586 5587 5588 5589 5590 5591
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5592 5593 5594
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5595 5596 5597 5598 5599 5600 5601
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5602
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5603

5604
    Returns:
Q
update  
qiaolongfei 已提交
5605
        Variable: The output is a 4-D tensor of the shape
5606
        (num_batches, channls, out_h, out_w).
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5617 5618 5619
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5620 5621 5622
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5623 5624
def gather(input, index):
    """
Q
qiaolongfei 已提交
5625 5626
    **Gather Layer**

5627
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5628 5629 5630 5631
    of X indexed by `index` and concatenate them together.

    .. math::

5632
        Out = X[Index]
W
whs 已提交
5633 5634 5635 5636 5637 5638 5639


    .. code-block:: text


                Given:

5640 5641
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5652
        input (Variable): The source input with rank>=1.
W
whs 已提交
5653 5654 5655 5656 5657 5658
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5659

W
whs 已提交
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5789

5790 5791 5792
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5793
    """
F
stash  
fengjiayi 已提交
5794
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5795
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5796
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5797
    if seed is None:
5798
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5799
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5800
    if isinstance(seed, int):
F
fengjiayi 已提交
5801 5802 5803 5804 5805
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5806 5807 5808 5809
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5810
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5811 5812
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5813 5814
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5815
    return out
W
whs 已提交
5816 5817


5818
def log(x, name=None):
W
wanghaoshuang 已提交
5819 5820 5821 5822 5823
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5824
        Out = \\ln(x)
W
wanghaoshuang 已提交
5825 5826

    Args:
5827
        x (Variable): Input tensor.
5828 5829
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5830 5831 5832 5833 5834 5835 5836 5837

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5838
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5839 5840
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5841
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5842
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5843
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5844 5845 5846
    return out


5847
def relu(x, name=None):
W
wanghaoshuang 已提交
5848 5849
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5850
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5851 5852 5853 5854
    the tensor elementwise.

    .. math::

5855
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5856 5857

    Args:
5858
        x (Variable): The input tensor.
5859 5860
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5861 5862 5863 5864 5865 5866 5867 5868

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5869
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5870 5871
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5872
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5873
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5874
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5875
    return out
5876 5877


W
whs 已提交
5878 5879 5880
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5881 5882 5883 5884
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5885
    .. math::
5886 5887

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5888

5889
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5890 5891 5892 5893 5894
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5895
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5896
                           Its shape should be the same as input.
5897
        num_classes (int): The possible number of labels.
W
whs 已提交
5898 5899 5900 5901

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5902
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5903 5904 5905 5906

    Examples:

        .. code-block:: python
5907

W
whs 已提交
5908 5909 5910 5911 5912 5913 5914 5915 5916
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5917 5918
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5919
        outputs={
W
whs 已提交
5920 5921 5922
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5923 5924 5925
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6000
                    isinstance(shape, Variable)):
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6034

6035 6036
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6037

6038 6039 6040 6041
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6042

6043 6044 6045 6046 6047
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6048 6049 6050

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6095 6096


M
minqiyang 已提交
6097 6098
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6099
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6100
    which compares left score and right score passed in.
M
minqiyang 已提交
6101
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6102 6103 6104 6105 6106 6107

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6108
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6109 6110
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6111
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6112 6113 6114
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6115
       Variable: The ranking loss.
M
minqiyang 已提交
6116
    Raises:
M
minqiyang 已提交
6117
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6118 6119 6120 6121 6122 6123 6124
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6125
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6126 6127 6128 6129 6130 6131
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
M
minqiyang 已提交
6132 6133
    out = helper.create_tmp_variable(left.dtype)
    act = helper.create_tmp_variable(left.dtype)
M
minqiyang 已提交
6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6159

W
whs 已提交
6160 6161
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6162

W
whs 已提交
6163
      Case 0:
M
minqiyang 已提交
6164

W
whs 已提交
6165 6166 6167
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6168

W
whs 已提交
6169 6170 6171
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6172

W
whs 已提交
6173
      Case 1:
M
minqiyang 已提交
6174

W
whs 已提交
6175 6176
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6177

W
whs 已提交
6178 6179 6180
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6181

W
whs 已提交
6182
      Case 2:
M
minqiyang 已提交
6183

W
whs 已提交
6184 6185
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6186

W
whs 已提交
6187 6188 6189
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6190 6191


W
whs 已提交
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6389
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6390
                        will be named automatically.
J
jerrywgz 已提交
6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6509

6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6520 6521
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6537
        ValueError: If axis is not in range [0, rank(x)].
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6555
    x_shape = helper.create_tmp_variable(x.dtype)
6556
    helper.append_op(
6557
        type='flatten2',
6558
        inputs={"X": x},
6559 6560
        outputs={'Out': out,
                 'XShape': x_shape},
6561 6562
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6563 6564


C
chenweihang 已提交
6565
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6566
    """
C
chenweihang 已提交
6567
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6568
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6569 6570
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6571

C
chenweihang 已提交
6572 6573 6574 6575
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6576
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6577 6578 6579 6580 6581 6582
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6583
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6584 6585 6586
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6587 6588 6589
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6601
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6602 6603 6604 6605 6606 6607
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6608
    return out
6609

6610

S
sneaxiy 已提交
6611 6612 6613 6614 6615 6616 6617 6618 6619
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6620

S
sneaxiy 已提交
6621
    .. math::
6622

S
sneaxiy 已提交
6623 6624 6625
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6626
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6627 6628 6629 6630
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6631 6632 6633
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6634 6635
    Returns:
        Variable: The output sequence mask.
6636

S
sneaxiy 已提交
6637 6638
    """

Q
qingqing01 已提交
6639
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6640 6641 6642 6643 6644
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6645 6646 6647
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6648 6649
        outputs={'Y': out},
        attrs={
6650
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6651 6652 6653
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6654 6655


X
Xin Pan 已提交
6656
def stack(x, axis=0):
S
sneaxiy 已提交
6657 6658 6659 6660
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6661 6662 6663 6664 6665 6666 6667

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6668
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6669
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6670 6671

    Args:
6672
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6673
        axis (int|None): The axis along which all inputs are stacked.
6674

S
sneaxiy 已提交
6675 6676
    Returns:
        Variable: The stacked variable.
6677

S
sneaxiy 已提交
6678 6679
    """

X
Xin Pan 已提交
6680 6681 6682 6683 6684 6685 6686 6687
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6688 6689
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6690

X
Xin Pan 已提交
6691
    return out
D
dzhwinter 已提交
6692 6693 6694 6695 6696 6697 6698


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6699

D
dzhwinter 已提交
6700 6701 6702
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6703
    raised.
D
dzhwinter 已提交
6704 6705

    Args:
M
minqiyang 已提交
6706
        x (Variable): Input variable.
D
dzhwinter 已提交
6707 6708
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6709

D
dzhwinter 已提交
6710 6711
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6712

D
dzhwinter 已提交
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6745

W
whs 已提交
6746 6747 6748 6749
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6750

W
whs 已提交
6751
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6752

W
whs 已提交
6753
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6754

W
whs 已提交
6755 6756 6757 6758
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6759

W
whs 已提交
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6783 6784


G
fix  
gongweibao 已提交
6785 6786 6787
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6788
@templatedoc()
G
fix  
gongweibao 已提交
6789 6790 6791 6792 6793 6794 6795 6796 6797
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6798
    ${comment}
G
fix  
gongweibao 已提交
6799 6800

    Args:
G
gongweibao 已提交
6801 6802 6803
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6804
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6805 6806 6807
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6808 6809
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6810
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6832 6833


G
gongweibao 已提交
6834
@templatedoc()
X
Xin Pan 已提交
6835
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6836
    """
G
gongweibao 已提交
6837
    ${comment}
G
fix  
gongweibao 已提交
6838 6839

    Args:
G
gongweibao 已提交
6840 6841 6842 6843
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6844 6845 6846
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6847
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6863
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6864 6865 6866 6867 6868
        })

    return out


G
gongweibao 已提交
6869
@templatedoc()
G
fix  
gongweibao 已提交
6870
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6871
    """
G
gongweibao 已提交
6872
    ${comment}
G
fix  
gongweibao 已提交
6873 6874

    Args:
G
gongweibao 已提交
6875 6876 6877 6878
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6879
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6880 6881

    Returns:
G
gongweibao 已提交
6882
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6883 6884 6885 6886

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6887
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6899
@templatedoc()
G
fix  
gongweibao 已提交
6900 6901 6902 6903 6904 6905 6906 6907 6908
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6909
    ${comment}
G
fix  
gongweibao 已提交
6910 6911

    Args:
G
gongweibao 已提交
6912 6913
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6914
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6915 6916 6917 6918
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6919
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6920 6921

    Returns:
G
gongweibao 已提交
6922
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6945
@templatedoc()
X
Xin Pan 已提交
6946
def sum(x):
G
fix  
gongweibao 已提交
6947
    """
G
gongweibao 已提交
6948
    ${comment}
G
fix  
gongweibao 已提交
6949 6950

    Args:
G
gongweibao 已提交
6951
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6952 6953

    Returns:
G
gongweibao 已提交
6954
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6955 6956 6957
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6958
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6959 6960 6961 6962
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6963
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6964 6965 6966 6967

    return out


G
gongweibao 已提交
6968
@templatedoc()
G
fix  
gongweibao 已提交
6969 6970
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6971
    ${comment}
G
fix  
gongweibao 已提交
6972 6973

    Args:
G
gongweibao 已提交
6974 6975 6976 6977
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6978 6979

    Returns:
G
gongweibao 已提交
6980
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6981 6982 6983 6984

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6985
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6997
@templatedoc()
G
fix  
gongweibao 已提交
6998 6999
def shape(input):
    """
G
gongweibao 已提交
7000
    ${comment}
G
fix  
gongweibao 已提交
7001 7002

    Args:
G
gongweibao 已提交
7003
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7004 7005

    Returns:
G
gongweibao 已提交
7006
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7007 7008 7009 7010

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
7011
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7012
    helper.append_op(
G
fix  
gongweibao 已提交
7013
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7014 7015

    return out
G
merge  
gongweibao 已提交
7016 7017


S
sneaxiy 已提交
7018 7019 7020 7021 7022 7023 7024 7025
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7026 7027 7028 7029 7030 7031
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7032

S
sneaxiy 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7044
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7045 7046 7047 7048 7049 7050 7051 7052
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7053
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7054
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7055 7056 7057 7058 7059 7060

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7061 7062 7063 7064 7065
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7076
    return helper.append_activation(out)
S
sneaxiy 已提交
7077 7078


X
Xin Pan 已提交
7079
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7080 7081 7082
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7083
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7084 7085 7086
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7087
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7088 7089 7090
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7091
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7092 7093 7094
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7095
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7096 7097 7098
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7099
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7100 7101 7102
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7103
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7115 7116
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7117
        ])
M
minqiyang 已提交
7118 7119


7120
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7121 7122
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7123 7124
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7144
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7163
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7182
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7201
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7338 7339
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443


def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
    
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out