pybind.cc 113.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/device_context.h"
62
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/platform/enforce.h"
64
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
65
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
68 69 70
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
71
#include "paddle/fluid/pybind/box_helper_py.h"
72
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
73
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
74
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
76
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
77
#include "paddle/fluid/pybind/generator_py.h"
78
#include "paddle/fluid/pybind/global_value_getter_setter.h"
79
#include "paddle/fluid/pybind/gloo_context_py.h"
80
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
81
#include "paddle/fluid/pybind/heter_wrapper_py.h"
82
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
84
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
85
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
86
#include "paddle/fluid/pybind/pybind_boost_headers.h"
87

88
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
90
#endif
91
#include "paddle/fluid/framework/data_type.h"
92 93
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
94
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
95
#include "paddle/fluid/pybind/tensor_py.h"
96
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
97
#ifdef PADDLE_WITH_CUDA
98
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
99
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
100
#endif
Y
Yi Wang 已提交
101 102
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
103 104
#endif

105 106 107 108
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
109 110 111 112
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
113
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
114 115 116
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
117 118
#include "pybind11/stl.h"

119
DECLARE_bool(use_mkldnn);
120

Q
Qiao Longfei 已提交
121 122
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
123 124 125
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
126

127
namespace paddle {
128
namespace pybind {
129
bool IsCompiledWithCUDA() {
130
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
131 132 133 134 135 136
  return false;
#else
  return true;
#endif
}

G
gongweibao 已提交
137 138 139 140 141 142 143 144
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

145 146 147 148 149 150 151 152
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

153 154 155 156 157 158 159 160
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

161 162 163 164 165 166 167 168 169 170 171
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

172
bool IsCompiledWithBrpc() {
173
#ifndef PADDLE_WITH_DISTRIBUTE
174 175
  return false;
#endif
176 177 178 179 180 181

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
182 183
}

Y
update  
Yancey1989 已提交
184
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
185
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
186 187 188 189 190 191
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
192 193 194 195 196 197 198 199 200 201
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
224 225 226
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
240 241
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
242 243
    }
    vec_res.emplace_back(
244
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
245 246 247 248 249 250 251 252 253 254 255 256
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
257 258
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
259 260 261 262 263 264 265 266 267 268 269 270
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
271 272 273
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
274 275 276 277
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
278 279
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
280 281 282 283
  }
  return vec_res;
}

284 285 286 287 288 289 290 291
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
292 293
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
294 295 296 297 298 299 300 301 302 303 304 305 306
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
307 308 309
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
310 311 312 313 314
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
315 316 317 318 319
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
320 321
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
322 323 324
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
325 326 327 328 329 330 331 332 333
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
334 335
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
336 337 338 339 340
  }

  return;
}

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

365 366 367 368 369 370
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
371 372 373
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
374
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
375

376 377
  AssertStaticGraphAndDygraphGradMakerNoDiff();

378
  m.doc() = "C++ core of PaddlePaddle";
379

380 381 382 383
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

384
  BindException(&m);
Y
Yu Yang 已提交
385

386 387
  m.def("set_num_threads", &platform::SetNumThreads);

388 389 390 391
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
410 411 412 413 414 415 416 417 418
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
419
           const Scope &scope, const Executor *executor) {
H
hong 已提交
420
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
421
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
422 423 424
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

425 426 427 428 429 430
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
450

451 452 453 454 455 456
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
457 458
  });

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
484 485 486 487 488 489
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
490
  m.def(
S
sneaxiy 已提交
491
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
492 493 494 495
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
496 497 498
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
515 516 517
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
518
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
519

520
  m.def("_set_fuse_parameter_group_size",
521
        &paddle::framework::ir::SetFuseParameterGroupsSize);
522
  m.def("_set_fuse_parameter_memory_size",
523
        &paddle::framework::ir::SetFuseParameterMemorySize);
524

S
sneaxiy 已提交
525 526 527
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

528 529
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

530 531 532
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

533
  BindImperative(&m);
534

535
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
536
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
537 538
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
539
      .def("_get_dims",
540
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
541
      .def("_set_dims",
Q
qijun 已提交
542
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
543
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
544
           })
Y
yuyang18 已提交
545
      .def("_set_layout",
D
dzhwinter 已提交
546 547 548
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
549
      .def("_alloc_float",
D
dzhwinter 已提交
550
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
551
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
552
           })
553 554 555 556
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
557
      .def("_alloc_float",
Y
Yu Yang 已提交
558
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
559
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
560
           })
561 562 563 564
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
565
      .def("_alloc_int",
Y
Yu Yang 已提交
566
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
567
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
568
           })
569 570 571 572
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
573
      .def("_alloc_int",
D
dzhwinter 已提交
574
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
575
             self.mutable_data<int>(place);
Q
qijun 已提交
576
           })
Y
yuyang18 已提交
577
      .def("_alloc_int",
C
chengduoZH 已提交
578 579 580
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
581
      .def("_alloc_float",
C
chengduoZH 已提交
582 583 584
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
585 586 587 588 589
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
590 591 592 593 594
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
595 596 597 598 599 600 601 602 603 604
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
605
      .def("_clear", &Tensor::clear)
606
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
607
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
608 609
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
610
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
611
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
612
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
613 614
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
615 616 617 618
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
619
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
620
          LoDTensor is to be set.
621 622
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
636

L
Leo Chen 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
676 677 678 679
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
680
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
681
      .def("_dtype", [](Tensor &self) { return self.type(); })
682 683
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
684
      .def("_share_data_with", &Tensor::ShareDataWith)
685 686 687 688 689 690
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
691

L
Leo Chen 已提交
692
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
693
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
768 769 770 771 772 773 774

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
775 776

        )DOC")
777
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
778 779 780 781 782 783 784 785 786
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
787 788
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
789 790 791 792
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
793 794
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
795
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
796
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
797 798
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
799 800 801
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
802
      .def("set_lod",
803
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
804
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
805
             LoD new_lod;
806 807
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
808 809
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
810 811
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
812
             self.set_lod(new_lod);
S
sneaxiy 已提交
813 814 815 816 817
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
818 819 820 821
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
822 823 824 825 826 827 828 829 830 831

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
832
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
833
           )DOC")
834 835 836 837 838 839 840 841 842 843 844
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
845 846
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
847 848 849 850 851
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
852
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
853 854
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
855
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
856

L
Leo Chen 已提交
857
           For example, if recursive_sequence_lengths=[[2, 3]], which means
858
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
859
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
860 861

           Args:
L
Leo Chen 已提交
862 863 864 865
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
866 867 868 869 870 871 872 873 874 875

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
876 877
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
878
           )DOC")
879 880 881 882 883 884 885 886
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
887 888 889 890 891
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
892 893
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
894 895 896 897 898 899 900 901 902 903
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
904
           )DOC")
G
gongweibao 已提交
905
      // Set above comments of set_lod.
906 907 908 909 910 911 912 913
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
914 915
           },
           R"DOC(
L
Leo Chen 已提交
916 917
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
918 919

           Returns:
L
Leo Chen 已提交
920
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
921 922 923 924 925 926 927 928 929 930 931

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
932 933 934 935 936 937 938 939
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
940
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
941 942

           Returns:
L
Leo Chen 已提交
943
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
944 945 946 947 948 949 950 951 952 953 954

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
955 956 957 958 959 960 961
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
962
           )DOC")
963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
981
#ifdef _WIN32
982
      });
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1033

Q
qijun 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1045 1046
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1047 1048
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1058
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1059
      .def("rows", [](SelectedRows &self) {
1060 1061 1062 1063 1064
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1065
      });
Q
qijun 已提交
1066

1067
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1068 1069 1070

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1071
      .def(py::init<>())
1072
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1073
      .def("set_int",
1074 1075
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1076 1077 1078 1079 1080 1081 1082
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1083
      .def("get_tensor",
1084 1085
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1086 1087
           },
           py::return_value_policy::reference)
1088 1089 1090 1091
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1092 1093 1094
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1095 1096 1097 1098 1099
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1100 1101 1102
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1103 1104 1105
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1106
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1107 1108 1109 1110 1111
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1112
#endif
Y
Refine  
Yu Yang 已提交
1113 1114
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1115 1116 1117 1118
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1119 1120
             return self.GetMutable<framework::ReaderHolder>();
           },
1121 1122 1123 1124 1125
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1126

S
sneaxiy 已提交
1127
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1128

S
sneaxiy 已提交
1129
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1143
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1144 1145 1146 1147 1148 1149
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1150 1151
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1152
      .def("var",
1153
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1154
             return self.Var(name);
Y
Yu Yang 已提交
1155
           },
S
sneaxiy 已提交
1156 1157
           py::arg("name"),
           R"DOC(
1158
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1159

1160
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1161
           current scope, the variable would be created. Otherwise,
1162
           return the existing variable.
S
sneaxiy 已提交
1163 1164

           Args:
1165 1166
               name (str): the variable name.

S
sneaxiy 已提交
1167
           Returns:
1168
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1169 1170 1171 1172
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1173
           Find variable named :code:`name` in the current scope or
1174
           its parent scope. Return None if not found. 
1175

S
sneaxiy 已提交
1176 1177
           Args:
               name (str): the variable name.
1178

S
sneaxiy 已提交
1179
           Returns:
1180
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1181
           )DOC",
1182
           py::return_value_policy::reference)
1183
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1184 1185 1186 1187 1188 1189
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1190
           py::return_value_policy::reference)
S
sneaxiy 已提交
1191 1192 1193
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1194 1195
           )DOC")
      .def("_kids", &Scope::kids);
1196

S
sneaxiy 已提交
1197 1198 1199 1200 1201 1202
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1203 1204
        R"DOC(
        Create a new scope.
1205

S
sneaxiy 已提交
1206 1207 1208
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1209 1210
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1211 1212
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1213 1214
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1215 1216 1217 1218
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1219 1220
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1221 1222
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1223 1224 1225
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1226 1227
    return ret_values;
  });
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1257 1258 1259
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1260 1261 1262 1263 1264
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1265 1266 1267
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1282
  m.def("prune", [](const ProgramDesc &origin,
1283
                    const std::set<std::string> &feeded_var_names,
1284
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1285
    ProgramDesc prog_with_targets(origin);
1286

1287
    for (const auto &t : targets) {
1288
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1289
    }
1290
    proto::ProgramDesc pruned_desc;
1291 1292 1293 1294
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1295
  });
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1313 1314 1315 1316
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1317 1318 1319
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1320 1321
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1322

Q
qijun 已提交
1323
  // clang-format off
Y
Yu Yang 已提交
1324
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1325 1326
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1327
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1328 1329
                    return new paddle::platform::CPUDeviceContext();
                  })
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1342
      .def_static("create",
D
dzhwinter 已提交
1343
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1344
                      -> paddle::platform::DeviceContext* {
1345
#ifndef PADDLE_WITH_CUDA
1346 1347 1348 1349
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1350
#else
Q
qijun 已提交
1351
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1352
#endif
C
chengduoZH 已提交
1353 1354 1355 1356 1357
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1358 1359 1360 1361
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1362 1363 1364 1365
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1366
// clang-format on
1367
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1368 1369
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1370
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1371 1372 1373 1374 1375

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1376
    The memory of CUDAPlace with different dev_id is not accessible.
1377 1378 1379 1380 1381 1382 1383 1384
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1385 1386 1387 1388

    Examples:
        .. code-block:: python

1389 1390 1391
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1392

1393
        )DOC")
S
sneaxiy 已提交
1394 1395 1396
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1421 1422
             new (&self) platform::CUDAPlace(dev_id);
#else
1423 1424 1425 1426 1427 1428 1429 1430 1431
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1432 1433
#endif
           })
1434
#ifdef PADDLE_WITH_CUDA
1435 1436
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1437 1438 1439 1440
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1441
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1442 1443
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1444 1445 1446
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1447
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1448
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1449

G
gongweibao 已提交
1450
  
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1496
#ifdef PADDLE_WITH_XPU
1497 1498 1499 1500 1501 1502 1503
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1504 1505 1506
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1507
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1508
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1509 1510 1511
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1512
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1513
    CPUPlace is a descriptor of a device.
1514
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1515 1516 1517 1518

    Examples:
        .. code-block:: python

1519 1520
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1521

1522
        )DOC")
1523
      .def(py::init<>())
S
sneaxiy 已提交
1524 1525
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1526
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1527 1528 1529 1530
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1531
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1532
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1533

1534
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1535 1536 1537 1538 1539 1540
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1541 1542 1543 1544

    Examples:
        .. code-block:: python

1545 1546
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1547

1548
        )DOC")
S
sneaxiy 已提交
1549
      .def("__init__",
S
sneaxiy 已提交
1550
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1551
#ifndef PADDLE_WITH_CUDA
1552 1553 1554
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1555
#endif
S
sneaxiy 已提交
1556
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1557
           })
S
sneaxiy 已提交
1558 1559 1560 1561
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1562 1563
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1564 1565 1566 1567
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1568
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1569 1570
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1571 1572
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1573 1574 1575 1576
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1577
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1578
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1579 1580
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1581 1582
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1583 1584
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1585 1586 1587 1588
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1589 1590
      .def("gpu_device_id",
           [](platform::Place &self) {
1591
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1592
           })
1593 1594 1595 1596
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1597 1598
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1599 1600 1601 1602
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1603 1604 1605 1606
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1607
      .def("set_place",
D
dzhwinter 已提交
1608
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1609
             self = gpu_place;
C
chengduoZH 已提交
1610
           })
1611 1612 1613 1614 1615 1616 1617
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1618

Y
Yu Yang 已提交
1619
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1620 1621 1622 1623 1624
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1625 1626 1627 1628 1629 1630 1631
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1632 1633
            return OpRegistry::CreateOp(desc);
          })
1634
      .def("run",
1635
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1636
              const platform::CPUPlace &place) { self.Run(scope, place); })
1637 1638 1639
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1640 1641
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1642
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1643 1644 1645 1646 1647
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1648 1649 1650 1651 1652 1653 1654
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1655 1656
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1657
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1658
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1659 1660 1661 1662
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1663

1664 1665 1666
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1667 1668 1669 1670 1671 1672 1673 1674 1675
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1676
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1677
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1678
      .def("close", &Executor::Close)
1679 1680
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1681 1682
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1683 1684 1685 1686
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1687
             pybind11::gil_scoped_release release;
1688 1689 1690 1691 1692 1693 1694
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1695 1696 1697
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1698
              std::map<std::string, FetchType *> *fetch_targets,
1699 1700 1701 1702 1703 1704 1705 1706
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1707
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1708 1709 1710 1711 1712 1713 1714
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1725
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1726 1727
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1728
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1729 1730
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1731
      });
S
sneaxiy 已提交
1732

D
dzhwinter 已提交
1733
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1734
  m.def("init_glog", framework::InitGLOG);
1735
  m.def("load_op_library", framework::LoadOpLib);
1736
  m.def("init_devices", []() { framework::InitDevices(); });
1737

1738
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
G
gongweibao 已提交
1739
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
1740
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1741
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1742
  m.def("supports_bfloat16", SupportsBfloat16);
1743
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1744
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1745 1746 1747
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1767 1768 1769 1770 1771 1772 1773
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1783 1784 1785 1786 1787 1788
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1789

1790
  m.def("set_feed_variable", framework::SetFeedVariable);
1791 1792 1793 1794 1795
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1796
            return py::cast(BOOST_GET(LoDTensor, var));
1797
          } else {
1798
            return py::cast(BOOST_GET(LoDTensorArray, var));
1799 1800
          }
        });
1801
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1802

X
Xin Pan 已提交
1803 1804
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1805 1806 1807 1808 1809
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1810
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1811

Y
Yu Yang 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1821
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1822
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1823 1824 1825

    Examples:
        .. code-block:: python
1826

Z
Zeng Jinle 已提交
1827 1828 1829 1830
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1831 1832
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1833 1834 1835 1836 1837 1838
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1839 1840 1841 1842
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1843 1844 1845
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1846 1847 1848 1849 1850 1851
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1852 1853
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1854 1855 1856 1857 1858 1859
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1882

1883 1884 1885 1886 1887 1888 1889 1890
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1891
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1892 1893
                 res[i] = py::cast(std::move(data));
               } else {
1894
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1910
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1911 1912 1913 1914 1915 1916 1917 1918
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1919
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1920 1921 1922 1923 1924 1925 1926 1927 1928
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1929 1930
        )DOC")
      .def("_move_to_list",
1931
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1932 1933 1934 1935
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1936
                 if (data_is_lod_tensor(self[i][j])) {
1937
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1938 1939
                   tmp[j] = py::cast(std::move(var));
                 } else {
1940
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1941 1942 1943 1944 1945 1946
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1956
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1957
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1958
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1959

P
peizhilin 已提交
1960
#ifndef _WIN32
D
dangqingqing 已提交
1961 1962 1963
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1964
#endif
P
peizhilin 已提交
1965
#endif
Y
Yu Yang 已提交
1966

1967 1968 1969 1970 1971 1972
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1973 1974 1975 1976
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1977
      .value("kAll", platform::ProfilerState::kAll)
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1989
  m.def("set_tracer_option", platform::SetTracerOption);
1990 1991
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1992
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1993
  m.def("reset_profiler", platform::ResetProfiler);
1994
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1995 1996 1997
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1998

1999 2000
  m.def("size_of_dtype", framework::SizeOfType);

2001 2002 2003
#ifdef PADDLE_WITH_CUDA
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
2004 2005
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
2006 2007
#endif  // PADDLE_WITH_CUDA

2008 2009 2010
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2011 2012
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2013
      .def("has", &ir::Pass::Has)
2014 2015 2016
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2017
           })
2018
      .def(
2019
          "set",
2020 2021 2022
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2023 2024
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2025 2026
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2041 2042
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2043
        self.Apply(graph.get());
F
flame 已提交
2044
      });
2045

X
fix  
Xin Pan 已提交
2046 2047
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2062
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2063

Y
yuyang18 已提交
2064
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2065 2066 2067 2068
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2069 2070 2071
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2072 2073 2074
    Examples:
        .. code-block:: python

2075 2076 2077 2078 2079 2080 2081 2082 2083
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2084

2085 2086
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2087

2088
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2089 2090
          sgd_optimizer.minimize(avg_loss)

2091
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2092 2093
          exec_strategy.num_threads = 4

2094 2095 2096
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2097 2098
        )DOC");

2099 2100 2101 2102
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2103

Y
yuyang18 已提交
2104
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2105 2106 2107 2108 2109
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2110
          },
2111 2112
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2113 2114 2115 2116 2117 2118 2119
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2133
      .def_property(
2134 2135
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2136
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2137 2138 2139
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2140 2141 2142 2143 2144
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2145 2146 2147
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2148 2149
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2150 2151 2152 2153 2154 2155 2156
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2157 2158 2159 2160
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2161
                because the temp variable's shape maybe the same between two iterations.
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2172

2173 2174 2175 2176 2177 2178 2179
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2180
              )DOC")
Q
Qiao Longfei 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2202
              )DOC")
2203 2204 2205 2206 2207 2208 2209 2210
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2211 2212 2213 2214 2215
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2216

Y
yuyang18 已提交
2217
  exec_strategy.def_property(
Y
yuyang18 已提交
2218 2219 2220 2221 2222 2223 2224
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2225 2226
      });

C
chengduo 已提交
2227 2228 2229 2230
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2231 2232 2233
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2234 2235 2236
    Examples:
        .. code-block:: python

2237
            import os
2238 2239 2240 2241
            import paddle
            import paddle.static as static

            paddle.enable_static()
2242

2243 2244
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2245

2246 2247 2248 2249
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2250

2251
            build_strategy = static.BuildStrategy()
2252 2253
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2254 2255
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2256
            program = program.with_data_parallel(loss_name=loss.name,
2257 2258
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2259
)DOC");
Y
yuyang18 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2276 2277 2278 2279
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2280
            self.reduce_ = strategy;
C
chengduo 已提交
2281
          },
2282
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2283 2284
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2285
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2286 2287
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2288
                Default is 'AllReduce'.
F
flame 已提交
2289 2290 2291 2292

                Examples:
                    .. code-block:: python

2293 2294 2295 2296 2297 2298 2299
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2300
                  )DOC")
Y
yuyang18 已提交
2301 2302 2303 2304 2305
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2306 2307 2308 2309
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2310
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2311
          },
2312
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2313
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2314 2315
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2316
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2317 2318 2319 2320

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2321 2322
                        import numpy
                        import os
2323 2324 2325 2326
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2327 2328

                        use_cuda = True
2329 2330
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2331 2332

                        # NOTE: If you use CPU to run the program, you need
2333
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2334 2335 2336 2337 2338 2339
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2340
                            places = static.cpu_places()
C
chengduo 已提交
2341
                        else:
2342
                            places = static.cuda_places()
C
chengduo 已提交
2343

2344 2345 2346 2347
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2348

2349
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2350

2351
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2352
                        build_strategy.gradient_scale_strategy = \
2353 2354 2355
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2356
                                          loss_name=loss.name, build_strategy=build_strategy,
2357
                                          places=places)
C
chengduo 已提交
2358 2359 2360 2361 2362 2363

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2364 2365
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2366
                   )DOC")
Y
yuyang18 已提交
2367 2368 2369 2370
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2371 2372 2373 2374
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2375
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2376
          },
2377
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2378
                writing the SSA Graph to file in the form of graphviz.
2379
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2380 2381 2382 2383

                Examples:
                    .. code-block:: python

2384 2385 2386 2387
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2388

2389 2390
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2391
                    )DOC")
S
sneaxiy 已提交
2392 2393 2394 2395 2396 2397
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2398 2399 2400 2401
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2402 2403
            self.enable_sequential_execution_ = b;
          },
2404 2405
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2406 2407 2408 2409

                Examples:
                    .. code-block:: python

2410 2411 2412 2413 2414 2415
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2416 2417
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2418 2419 2420 2421 2422 2423
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2424 2425 2426 2427
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2428 2429
            self.remove_unnecessary_lock_ = b;
          },
2430 2431
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2432 2433 2434 2435

                Examples:
                    .. code-block:: python

2436 2437 2438 2439 2440 2441
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2442 2443
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2444 2445 2446 2447
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2448
#ifdef WIN32
2449
            PADDLE_THROW(platform::errors::Unavailable(
2450
                "Distribution mode is not supported on Windows platform."));
2451
#endif
2452 2453
            self.num_trainers_ = num_trainers;
          })
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2466 2467 2468 2469 2470 2471
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2472
      .def_property("use_hierarchical_allreduce",
2473 2474 2475 2476 2477 2478
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2479
      .def_property("hierarchical_allreduce_inter_nranks",
2480 2481 2482 2483 2484 2485 2486
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2487 2488 2489 2490 2491 2492
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2493 2494 2495 2496
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2497 2498
            self.fuse_elewise_add_act_ops_ = b;
          },
2499
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2500
                to fuse elementwise_add_op and activation_op,
2501
                it may make the execution faster. Default is False.
F
flame 已提交
2502 2503 2504 2505

                Examples:
                    .. code-block:: python

2506 2507 2508 2509 2510 2511
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2512 2513
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2514 2515 2516 2517
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2518
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2519
                              platform::errors::PreconditionNotMet(
2520 2521
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2531 2532 2533 2534 2535 2536
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2537 2538
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2564 2565 2566 2567
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2568
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2569
                              platform::errors::PreconditionNotMet(
2570 2571
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2582 2583 2584 2585 2586 2587
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2588 2589
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2590 2591 2592 2593 2594 2595
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2596 2597 2598 2599
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2600 2601
            self.fuse_relu_depthwise_conv_ = b;
          },
2602
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2603 2604 2605
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2606
                Default is False.
F
flame 已提交
2607 2608 2609 2610

                Examples:
                    .. code-block:: python

2611 2612 2613 2614 2615 2616
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2617 2618
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2619 2620 2621 2622 2623 2624
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2625 2626 2627 2628
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2629 2630
                      self.fuse_broadcast_ops_ = b;
                    },
2631
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2632 2633 2634 2635
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2636 2637 2638 2639 2640
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2641 2642 2643 2644 2645 2646
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2647 2648
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2649 2650
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2651 2652
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2653 2654
                    },
                    [](BuildStrategy &self, bool b) {
2655 2656 2657 2658
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2659 2660
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2661 2662 2663 2664
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2665 2666 2667 2668
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2669 2670
            self.sync_batch_norm_ = b;
          },
2671
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2672 2673 2674
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2675 2676
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2677 2678 2679 2680

                Examples:
                    .. code-block:: python

2681 2682 2683 2684 2685 2686
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2687 2688
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2689 2690
      .def_property(
          "memory_optimize",
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2705 2706 2707
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2708 2709
            }
          },
2710
          R"DOC((bool, optional): memory opitimize aims to save total memory
2711
                consumption, set to True to enable it.
2712

2713 2714 2715
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2730 2731 2732
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2733 2734 2735
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2736
              PADDLE_THROW(platform::errors::Unavailable(
2737
                  "Distribution mode is not supported on Windows platform."));
2738 2739 2740 2741 2742
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2743 2744 2745
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2746
      .def_property(
D
dzhwinter 已提交
2747 2748 2749
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2750 2751 2752 2753
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2754 2755
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2756 2757 2758 2759
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2760
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2761 2762 2763 2764 2765 2766 2767
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2768 2769 2770 2771
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2772 2773 2774 2775 2776 2777 2778 2779 2780
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2781
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2782
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2783 2784 2785 2786 2787
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2788 2789

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2790
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2791
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2792
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2793 2794 2795 2796
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2797 2798 2799 2800 2801
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2802 2803 2804
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2805 2806 2807 2808
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2809 2810
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2811 2812 2813 2814 2815 2816 2817 2818
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2819
               return py::cast(
2820
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2821 2822
             } else {
               return py::cast(std::move(
2823
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2824
             }
2825 2826
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2827

D
dongdaxiang 已提交
2828
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2829

T
Thunderbrook 已提交
2830 2831
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2832 2833 2834
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2835
#endif
2836
  BindGlooWrapper(&m);
H
hutuxian 已提交
2837
  BindBoxHelper(&m);
H
hutuxian 已提交
2838 2839 2840
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2841
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2842
  BindNCCLWrapper(&m);
2843 2844 2845
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2846
#endif
F
flame 已提交
2847 2848
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2849
  BindInferenceApi(&m);
2850
  BindCompatible(&m);
2851
  BindDataset(&m);
Y
yaoxuefeng 已提交
2852
  BindGenerator(&m);
H
hutuxian 已提交
2853 2854 2855
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
G
gongweibao 已提交
2856
  BindAscendDevice(&m);
H
hutuxian 已提交
2857
#endif
Y
Yanghello 已提交
2858 2859 2860
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2861

T
tangwei12 已提交
2862
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2863 2864
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2865
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2866 2867
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2868
#endif
L
Luo Tao 已提交
2869
}
2870
}  // namespace pybind
2871
}  // namespace paddle