pybind.cc 84.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15
#include <algorithm>
16
#include <cstdlib>
C
chengduoZH 已提交
17
#include <map>
S
sneaxiy 已提交
18
#include <memory>
C
chengduoZH 已提交
19 20 21
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
22
#include <unordered_set>
C
chengduoZH 已提交
23 24
#include <utility>
#include <vector>
25

Y
Yi Wang 已提交
26 27 28
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
29
#include "paddle/fluid/framework/garbage_collector.h"
30
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
31
#include "paddle/fluid/framework/ir/pass_builder.h"
32
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
33 34 35
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
36
#include "paddle/fluid/framework/op_compatible_info.h"
S
sneaxiy 已提交
37
#include "paddle/fluid/framework/op_info.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
42
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
43
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/selected_rows.h"
45
#include "paddle/fluid/framework/trainer.h"
X
Xin Pan 已提交
46
#include "paddle/fluid/framework/version.h"
H
hong 已提交
47
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
48
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
49
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
50
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
51
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
52
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
53
#include "paddle/fluid/platform/cpu_info.h"
54
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/platform/enforce.h"
56
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
57 58
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
59
#include "paddle/fluid/pybind/box_helper_py.h"
Y
Yi Wang 已提交
60
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
61
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
63
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
64
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
65
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
66
#include "paddle/fluid/pybind/ir.h"
67

W
wopeizl 已提交
68
#ifndef _WIN32
D
dongdaxiang 已提交
69
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
70
#endif
71
#include "paddle/fluid/framework/data_type.h"
72 73
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
74
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/tensor_py.h"
76
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
77
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
78
#ifndef _WIN32
Y
Yi Wang 已提交
79
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
80
#endif
Y
Yi Wang 已提交
81 82
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
83 84
#endif

85 86 87 88
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/communicator_py.h"
#endif

M
minqiyang 已提交
89 90
#include "pybind11/stl.h"

91 92 93
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");
94
DECLARE_bool(use_mkldnn);
95 96 97
#ifdef PADDLE_WITH_NGRAPH
DECLARE_bool(use_ngraph);
#endif
98

Q
Qiao Longfei 已提交
99 100 101
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

102
namespace paddle {
103
namespace pybind {
104
bool IsCompiledWithCUDA() {
105
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
106 107 108 109 110 111
  return false;
#else
  return true;
#endif
}

112 113 114 115 116 117 118 119
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

120 121 122 123 124 125 126 127
bool IsCompiledWithNGRAPH() {
#ifndef PADDLE_WITH_NGRAPH
  return false;
#else
  return true;
#endif
}

128
bool IsCompiledWithBrpc() {
129
#ifndef PADDLE_WITH_DISTRIBUTE
130 131
  return false;
#endif
132 133 134 135 136 137

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
138 139
}

Y
update  
Yancey1989 已提交
140
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
141
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
142 143 144 145 146 147
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
148 149 150 151 152 153 154 155 156 157
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
    PADDLE_THROW("Python object is not type of %s", typeid(T).name());
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
      PADDLE_THROW("Save parameter [%s] is None", para.first);
    }

    const char *kIVarField = "_ivar";
    PyObject *py_ivar = GetPythonAttribute(py_obj, kIVarField);
    PADDLE_ENFORCE_NOT_NULL(py_ivar, "Can not find  ivar in Variable");

    vec_res.emplace_back(
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_ivar));
    Py_DECREF(py_ivar);
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return vec_res;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
    PADDLE_THROW("Save parameter list is None");
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
      PADDLE_ENFORCE_NOT_NULL(py_name);
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
        PADDLE_ENFORCE_NE(exe, nullptr,
                          "Parameter not Initialized, "
                          "Please set argument [executor] not None "
                          "or run startup program first");
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
        PADDLE_ENFORCE_NOT_NULL(py_var_desc);
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
    PADDLE_THROW("Set parameter should be a list");
  }

  return;
}

290 291 292 293 294 295
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
296 297 298
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
299
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
300

301
  m.doc() = "C++ core of PaddlePaddle";
302

303 304 305 306
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

307
  BindException(&m);
Y
Yu Yang 已提交
308

309 310
  m.def("set_num_threads", &platform::SetNumThreads);

6
633WHU 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
329 330 331 332 333 334 335 336 337
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
338
           const Scope &scope, const Executor *executor) {
H
hong 已提交
339
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
340
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
341 342 343
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

344 345 346 347 348 349
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
369

370 371 372 373 374 375
  m.def("save_op_compatible_info", [](framework::ProgramDesc &desc) {
    framework::OpCompatibleMap op_compatible_map;
    op_compatible_map.InitOpCompatibleMap();
    return op_compatible_map.ConvertToProto(desc.OpCompatibleMap());
  });

S
sneaxiy 已提交
376
  m.def(
S
sneaxiy 已提交
377
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
378 379 380 381
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
382 383 384
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

S
sneaxiy 已提交
385 386 387
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
388
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
389

390
  m.def("_set_fuse_parameter_group_size",
391
        &paddle::framework::ir::SetFuseParameterGroupsSize);
392
  m.def("_set_fuse_parameter_memory_size",
393
        &paddle::framework::ir::SetFuseParameterMemorySize);
394

S
sneaxiy 已提交
395 396 397
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

398 399
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

400
  BindImperative(&m);
401

402
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
403
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
404 405
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
406
      .def("_get_dims",
407
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
408
      .def("_set_dims",
Q
qijun 已提交
409
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
410
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
411
           })
Y
yuyang18 已提交
412
      .def("_set_layout",
D
dzhwinter 已提交
413 414 415
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
416
      .def("_alloc_float",
D
dzhwinter 已提交
417
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
418
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
419
           })
Y
yuyang18 已提交
420
      .def("_alloc_float",
Y
Yu Yang 已提交
421
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
422
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
423
           })
424 425 426 427
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
428
      .def("_alloc_int",
Y
Yu Yang 已提交
429
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
430
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
431
           })
Y
yuyang18 已提交
432
      .def("_alloc_int",
D
dzhwinter 已提交
433
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
434
             self.mutable_data<int>(place);
Q
qijun 已提交
435
           })
Y
yuyang18 已提交
436
      .def("_alloc_int",
C
chengduoZH 已提交
437 438 439
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
440
      .def("_alloc_float",
C
chengduoZH 已提交
441 442 443
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
459
      .def("_clear", &Tensor::clear)
460 461 462 463 464 465
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
           py::arg("array"), py::arg("place"))
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
           py::arg("array"), py::arg("place"))
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
           py::arg("array"), py::arg("place"), R"DOC(
L
Leo Chen 已提交
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
          place (CPUPlace|CUDAPlace|CUDAPinnedPlace): The place where the 
          LoDTensor is to be set.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
485

L
Leo Chen 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
525 526 527 528
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
529
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
530
      .def("_dtype", [](Tensor &self) { return self.type(); })
531 532 533 534 535 536
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
537

L
Leo Chen 已提交
538
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
539
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
614 615 616 617 618 619 620

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
621 622

        )DOC")
623
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
624 625 626 627 628 629 630 631 632
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
633 634
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
635 636 637
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
638
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
639
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
640 641
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
642 643 644
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
645
      .def("set_lod",
646
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
647
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
648
             LoD new_lod;
649 650
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
651 652 653
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
                 "the provided lod info is invalid");
654
             self.set_lod(new_lod);
S
sneaxiy 已提交
655 656 657 658 659
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
660 661 662 663
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
664 665 666 667 668 669 670 671 672 673

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
674
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
675
           )DOC")
676 677 678 679 680 681 682 683 684 685 686
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
687 688
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
689 690
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
691 692
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
693
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
694

L
Leo Chen 已提交
695
           For example, if recursive_sequence_lengths=[[2, 3]], which means
696
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
697
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
698 699

           Args:
L
Leo Chen 已提交
700 701 702 703
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
704 705 706 707 708 709 710 711 712 713

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
714 715
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
716
           )DOC")
717 718 719 720 721 722 723 724
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
725 726 727 728 729
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
730 731
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
732 733 734 735 736 737 738 739 740 741
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
742
           )DOC")
G
gongweibao 已提交
743
      // Set above comments of set_lod.
744 745 746 747 748 749 750 751
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
752 753
           },
           R"DOC(
L
Leo Chen 已提交
754 755
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
756 757

           Returns:
L
Leo Chen 已提交
758
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
759 760 761 762 763 764 765 766 767 768 769

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
770 771 772 773 774 775 776 777
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
778
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
779 780

           Returns:
L
Leo Chen 已提交
781
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
782 783 784 785 786 787 788 789 790 791 792

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
793 794 795 796 797 798 799
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
800
           )DOC")
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
819
      });
D
dangqingqing 已提交
820

Q
qijun 已提交
821 822 823 824 825 826 827 828 829 830 831
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
832 833
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
834 835
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
836 837 838 839 840 841 842 843 844
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
845
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
846
      .def("rows", [](SelectedRows &self) {
847 848 849 850 851
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
852
      });
Q
qijun 已提交
853

854
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
855 856 857

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
858
      .def(py::init<>())
859
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
860
      .def("set_int",
861 862
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
863 864 865 866 867 868 869
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
870
      .def("get_tensor",
871 872
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
873 874
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
875 876 877
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
878 879 880 881 882
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
883 884 885
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
886
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
887 888 889 890 891
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
892
#endif
Y
Refine  
Yu Yang 已提交
893 894
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
C
chengduo 已提交
895
             PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(), true);
Y
Refine  
Yu Yang 已提交
896 897
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
898
           py::return_value_policy::reference);
899

S
sneaxiy 已提交
900
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
901

S
sneaxiy 已提交
902 903 904 905
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
906

S
sneaxiy 已提交
907 908
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
909
      .def("push",
S
sneaxiy 已提交
910
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
911
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
912
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
913
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
914
           })
S
sneaxiy 已提交
915 916 917
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
Z
Zeng Jinle 已提交
918
      .def("kill", &LoDTensorBlockingQueue::Kill)
S
sneaxiy 已提交
919
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
920

S
sneaxiy 已提交
921
  m.def("init_lod_tensor_blocking_queue",
Q
Qiao Longfei 已提交
922 923
        [](Variable &var,
           size_t capacity) -> std::shared_ptr<LoDTensorBlockingQueue> {
Q
Qiao Longfei 已提交
924
          VLOG(1) << "init_lod_tensor_blocking_queue";
Q
Qiao Longfei 已提交
925 926 927 928
          auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
          holder->InitOnce(capacity, FLAGS_reader_queue_speed_test_mode);
          return holder->GetQueue();
        },
S
sneaxiy 已提交
929
        py::return_value_policy::copy);
S
sneaxiy 已提交
930

S
sneaxiy 已提交
931
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

945
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
946 947 948 949 950 951
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
952 953
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
954
      .def("var",
955
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
956
             return self.Var(name);
Y
Yu Yang 已提交
957
           },
S
sneaxiy 已提交
958 959
           py::arg("name"),
           R"DOC(
960
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
961

962
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
963
           current scope, the variable would be created. Otherwise,
964
           return the existing variable.
S
sneaxiy 已提交
965 966

           Args:
967 968
               name (str): the variable name.

S
sneaxiy 已提交
969
           Returns:
970
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
971 972 973 974
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
975
           Find variable named :code:`name` in the current scope or
S
sneaxiy 已提交
976
           its parent scope. Return None if not found.
977

S
sneaxiy 已提交
978 979
           Args:
               name (str): the variable name.
980

S
sneaxiy 已提交
981
           Returns:
982
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
983
           )DOC",
984
           py::return_value_policy::reference)
985
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
986 987 988 989 990 991
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
992
           py::return_value_policy::reference)
S
sneaxiy 已提交
993 994 995
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
996 997
           )DOC")
      .def("_kids", &Scope::kids);
998

S
sneaxiy 已提交
999 1000 1001 1002 1003 1004
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1005 1006
        R"DOC(
        Create a new scope.
1007

S
sneaxiy 已提交
1008 1009 1010
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1011 1012
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1013 1014
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1015 1016
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1017 1018 1019 1020
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1021 1022
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1023 1024 1025 1026
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1027 1028
    return ret_values;
  });
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1045 1046 1047 1048 1049 1050 1051
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
  m.def("get_flags_use_mkldnn", []() { return FLAGS_use_mkldnn; });
1052 1053 1054
#ifdef PADDLE_WITH_NGRAPH
  m.def("get_flags_use_ngraph", []() { return FLAGS_use_ngraph; });
#endif
1055

Y
Yu Yang 已提交
1056
  m.def("prune", [](const ProgramDesc &origin,
1057
                    const std::set<std::string> &feeded_var_names,
1058
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1059
    ProgramDesc prog_with_targets(origin);
1060

1061
    for (const auto &t : targets) {
1062
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1063
    }
1064
    proto::ProgramDesc pruned_desc;
1065
    Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
Y
Yu Yang 已提交
1066
    return new ProgramDesc(pruned_desc);
1067
  });
1068 1069 1070
  m.def("prune_backward", [](const framework::ProgramDesc &program) {
    return PruneBackward(program);
  });
1071 1072 1073 1074
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1075 1076 1077
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1078 1079
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1080
  // clang-format off
Y
Yu Yang 已提交
1081
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1082 1083
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1084
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1085 1086 1087
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
1088
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1089
                      -> paddle::platform::DeviceContext* {
1090
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
1091
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
1092
#else
Q
qijun 已提交
1093
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1094
#endif
C
chengduoZH 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1106
// clang-format on
P
peizhilin 已提交
1107
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
1108 1109
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1110
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1111 1112 1113 1114 1115 1116 1117 1118
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1119
    The memory of CUDAPlace with different dev_id is not accessible.
1120 1121 1122 1123 1124 1125 1126 1127
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1128 1129 1130 1131

    Examples:
        .. code-block:: python

1132
          import paddle.fluid as fluid
L
lujun 已提交
1133 1134
          gpu_place = fluid.CUDAPlace(0)

1135
        )DOC")
S
sneaxiy 已提交
1136 1137 1138
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1163 1164
             new (&self) platform::CUDAPlace(dev_id);
#else
1165 1166 1167 1168 1169 1170 1171 1172 1173
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1174 1175
#endif
           })
S
sneaxiy 已提交
1176 1177 1178 1179 1180 1181
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
D
dzhwinter 已提交
1182
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1183

1184
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1185 1186
    CPUPlace is a descriptor of a device.
    It represents a CPU device allocated or to be allocated with Tensor or LoDTensor.
L
lujun 已提交
1187 1188 1189 1190

    Examples:
        .. code-block:: python

1191
          import paddle.fluid as fluid
1192
          cpu_place = fluid.CPUPlace()to be allocated
L
lujun 已提交
1193

1194
        )DOC")
1195
      .def(py::init<>())
S
sneaxiy 已提交
1196 1197 1198 1199 1200 1201
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1202
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1203

1204
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1205 1206 1207 1208 1209 1210
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1211 1212 1213 1214

    Examples:
        .. code-block:: python

1215
          import paddle.fluid as fluid
L
lujun 已提交
1216 1217
          place = fluid.CUDAPinnedPlace()

1218
        )DOC")
S
sneaxiy 已提交
1219
      .def("__init__",
S
sneaxiy 已提交
1220
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1221 1222 1223
#ifndef PADDLE_WITH_CUDA
             PADDLE_THROW("Cannot use CUDAPinnedPlace in CPU only version");
#endif
S
sneaxiy 已提交
1224
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1225
           })
S
sneaxiy 已提交
1226 1227 1228 1229 1230 1231 1232 1233
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
C
chengduoZH 已提交
1234 1235
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1236 1237
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1238 1239 1240 1241 1242
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1243 1244
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1245 1246 1247 1248 1249 1250
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1251 1252 1253 1254
      .def("gpu_device_id",
           [](platform::Place &self) {
             return boost::get<platform::CUDAPlace>(self).device;
           })
S
sneaxiy 已提交
1255 1256
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1257 1258 1259 1260 1261
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
1262
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1263
             self = gpu_place;
C
chengduoZH 已提交
1264 1265
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
1266 1267
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
1268
      });
Y
Yu Yang 已提交
1269

Y
Yu Yang 已提交
1270
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
                              "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE_EQ(desc.IsInitialized(), true,
                              "User OpDesc is not initialized, reason %s",
                              desc.InitializationErrorString());
            return OpRegistry::CreateOp(desc);
          })
1282
      .def("run",
1283
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1284 1285 1286
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1287
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1288 1289 1290 1291 1292
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1293 1294 1295 1296 1297 1298 1299
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1300 1301
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1302
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1303
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1304 1305 1306 1307
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1308

1309 1310 1311
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1312 1313 1314 1315 1316 1317 1318 1319 1320
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1321
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1322
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1323
      .def("close", &Executor::Close)
1324 1325
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
              std::map<std::string, LoDTensor *> *fetch_targets,
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1349
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1350 1351 1352 1353 1354 1355 1356
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1367
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1368 1369
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1370
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1371 1372
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1373
      });
S
sneaxiy 已提交
1374

D
dzhwinter 已提交
1375
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1376
  m.def("init_glog", framework::InitGLOG);
1377
  m.def("load_op_library", framework::LoadOpLib);
X
Xin Pan 已提交
1378 1379
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
1380

1381
  m.def("is_compiled_with_ngraph", IsCompiledWithNGRAPH);
1382
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1383
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1384
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1385
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1386 1387 1388 1389 1390 1391
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1392

1393
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
1394
  m.def("get_fetch_variable", framework::GetFetchVariable);
1395
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1396

X
Xin Pan 已提交
1397 1398
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1399 1400 1401 1402 1403
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
1404

Y
Yu Yang 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1414
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1415
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1416 1417 1418

    Examples:
        .. code-block:: python
1419

Z
Zeng Jinle 已提交
1420 1421 1422 1423
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1424 1425
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1436 1437 1438 1439 1440 1441
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1442 1443
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1444 1445 1446 1447 1448 1449
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1472

Y
Yu Yang 已提交
1473
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1474
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1475
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1476

P
peizhilin 已提交
1477
#ifndef _WIN32
D
dangqingqing 已提交
1478 1479 1480
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1481
#endif
P
peizhilin 已提交
1482
#endif
Y
Yu Yang 已提交
1483

1484 1485 1486 1487
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1488
      .value("kAll", platform::ProfilerState::kAll)
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1502
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1503
  m.def("reset_profiler", platform::ResetProfiler);
1504
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1505 1506 1507
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1508

1509 1510
  m.def("size_of_dtype", framework::SizeOfType);

1511 1512 1513
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1514 1515
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1516
      .def("has", &ir::Pass::Has)
1517 1518 1519
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1520
           })
1521
      .def(
1522
          "set",
1523 1524 1525
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1526 1527
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
1542 1543
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
1544
        self.Apply(graph.get());
F
flame 已提交
1545
      });
1546

X
fix  
Xin Pan 已提交
1547 1548
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
1563
  // -- python binds for parallel executor.
X
Xin Pan 已提交
1564

Y
yuyang18 已提交
1565
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
1566 1567 1568 1569
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
1570 1571 1572
    Examples:
        .. code-block:: python

1573
          import paddle.fluid as fluid
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
          x = fluid.layers.data(name='x', shape=[13], dtype='float32')
          y = fluid.layers.data(name='y', shape=[1], dtype='float32')
          y_predict = fluid.layers.fc(input=x, size=1, act=None)

          cost = fluid.layers.square_error_cost(input=y_predict, label=y)
          avg_loss = fluid.layers.mean(cost)

          sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
          sgd_optimizer.minimize(avg_loss)

C
chengduo 已提交
1584 1585 1586
          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

1587 1588
          train_exe = fluid.ParallelExecutor(use_cuda=False,
                                             loss_name=avg_loss.name,
C
chengduo 已提交
1589 1590
                                             exec_strategy=exec_strategy)

C
chengduo 已提交
1591 1592
        )DOC");

Y
yuyang18 已提交
1593
  exec_strategy.def(py::init())
Y
yuyang18 已提交
1594 1595 1596 1597 1598
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
1609
      .def_property(
1610 1611 1612 1613
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
1614 1615 1616 1617
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
1618 1619 1620 1621 1622
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
1623 1624 1625
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
1626 1627
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
1628 1629 1630 1631 1632 1633 1634
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
1635 1636 1637 1638
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
1639 1640
                because the temp variable's shape maybe the same between two iterations.
                Default 1.
C
chengduo 已提交
1641 1642 1643 1644 1645 1646

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
1647
              )DOC")
Q
Qiao Longfei 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
1657
                user call exe.run() in python
Q
Qiao Longfei 已提交
1658
              )DOC")
1659 1660 1661 1662 1663
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
1664

Y
yuyang18 已提交
1665
  exec_strategy.def_property(
Y
yuyang18 已提交
1666 1667 1668 1669 1670 1671 1672
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
1673 1674
      });

C
chengduo 已提交
1675 1676 1677 1678
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
1679 1680 1681
    Examples:
        .. code-block:: python

1682 1683
            import os
            import numpy as np
F
flame 已提交
1684
            import paddle.fluid as fluid
1685 1686 1687 1688 1689 1690 1691 1692 1693

            os.environ["CPU_NUM"] = '2'
            places = fluid.cpu_places()

            data = fluid.layers.data(name="x", shape=[1], dtype="float32")
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

F
flame 已提交
1694
            build_strategy = fluid.BuildStrategy()
1695 1696
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
F
flame 已提交
1697
            build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
1698 1699 1700 1701
            program = fluid.compiler.CompiledProgram(fluid.default_main_program())
            program = program.with_data_parallel(loss_name=loss.name,
                                                 build_strategy=build_strategy,
                                                 places=places)
C
chengduo 已提交
1702
)DOC");
Y
yuyang18 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
C
chengduo 已提交
1719 1720
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1721
            self.reduce_ = strategy;
C
chengduo 已提交
1722
          },
1723
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
1724 1725
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
1726
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
1727 1728
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
1729
                Default is 'AllReduce'.
F
flame 已提交
1730 1731 1732 1733 1734 1735 1736 1737

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
                  )DOC")
Y
yuyang18 已提交
1738 1739 1740 1741 1742
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
C
chengduo 已提交
1743 1744
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finalized.");
Y
yuyang18 已提交
1745
            self.gradient_scale_ = strategy;
C
chengduo 已提交
1746
          },
1747 1748
          R"DOC((fluid.BuildStrategy.GradientScaleStrategy, optional): there are three
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
1749 1750
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
1751
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
1752 1753 1754 1755 1756

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
C
chengduo 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
                        import paddle.fluid.compiler as compiler
                        import numpy
                        import os

                        use_cuda = True
                        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
                        exe = fluid.Executor(place)

                        # NOTE: If you use CPU to run the program, you need
                        # to specify the CPU_NUM, otherwise, fluid will use
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
                            places = fluid.cpu_places()
                        else:
                            places = places = fluid.cuda_places()

                        data = fluid.layers.data(name='X', shape=[1], dtype='float32')
                        hidden = fluid.layers.fc(input=data, size=10)
                        loss = fluid.layers.mean(hidden)
                        fluid.optimizer.SGD(learning_rate=0.01).minimize(loss)

                        fluid.default_startup_program().random_seed=1
                        exe.run(fluid.default_startup_program())

F
flame 已提交
1785
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
                        build_strategy.gradient_scale_strategy = \
                                 fluid.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = compiler.CompiledProgram(
                                 fluid.default_main_program()).with_data_parallel(
                                          loss_name=loss.name, build_strategy=build_strategy,
                                          places = places)

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
                                             feed={"X": x, loss_grad_name : loss_grad},
                                             fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
1800
                   )DOC")
Y
yuyang18 已提交
1801 1802 1803 1804
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
C
chengduo 已提交
1805 1806
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Y
yuyang18 已提交
1807
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
1808
          },
1809
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
1810
                writing the SSA Graph to file in the form of graphviz.
1811
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
1812 1813 1814 1815 1816 1817

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
C
chengduo 已提交
1818 1819
                        build_strategy.debug_graphviz_path = "./graph"

F
flame 已提交
1820
                    )DOC")
S
sneaxiy 已提交
1821 1822 1823 1824 1825 1826
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1827 1828
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1829 1830
            self.enable_sequential_execution_ = b;
          },
1831 1832
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
1833 1834 1835 1836 1837 1838 1839 1840

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
1841 1842 1843 1844 1845 1846
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1847 1848
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
S
sneaxiy 已提交
1849 1850
            self.remove_unnecessary_lock_ = b;
          },
1851 1852
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
1853 1854 1855 1856 1857 1858 1859 1860

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
1861 1862 1863 1864
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
1865 1866 1867
#ifdef WIN32
            PADDLE_THROW("Windows has NO support to distribute mode.");
#endif
1868 1869
            self.num_trainers_ = num_trainers;
          })
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
1882 1883 1884 1885 1886 1887
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
1888
      .def_property("use_hierarchical_allreduce",
1889 1890 1891 1892 1893 1894
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
1895
      .def_property("hierarchical_allreduce_inter_nranks",
1896 1897 1898 1899 1900 1901 1902
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
1903 1904 1905 1906 1907 1908
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1909 1910
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
C
chengduo 已提交
1911 1912
            self.fuse_elewise_add_act_ops_ = b;
          },
1913
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
1914
                to fuse elementwise_add_op and activation_op,
1915
                it may make the execution faster. Default is False.
F
flame 已提交
1916 1917 1918 1919 1920 1921 1922 1923

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
1924 1925 1926 1927 1928 1929
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1930 1931
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
1932 1933
            self.fuse_relu_depthwise_conv_ = b;
          },
1934
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
1935 1936 1937
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
1938
                Default is False.
F
flame 已提交
1939 1940 1941 1942 1943 1944 1945 1946

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
                      self.fuse_broadcast_ops_ = b;
                    },
1957
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
1958 1959 1960 1961
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
1962 1963 1964 1965 1966 1967 1968 1969 1970
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

                              import paddle.fluid as fluid
                              build_strategy = fluid.BuildStrategy()
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
1971 1972
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
1973 1974
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
1975 1976
                    },
                    [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1977 1978
                      PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                                        "BuildStrategy is finlaized.");
C
chengduo 已提交
1979 1980
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
1981 1982 1983 1984
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
C
chengduo 已提交
1985 1986
            PADDLE_ENFORCE_EQ(!self.IsFinalized(), true,
                              "BuildStrategy is finlaized.");
Q
qingqing01 已提交
1987 1988
            self.sync_batch_norm_ = b;
          },
1989
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
1990 1991 1992
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
1993 1994
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
1995 1996 1997 1998 1999 2000 2001 2002

                Examples:
                    .. code-block:: python

                        import paddle.fluid as fluid
                        build_strategy = fluid.BuildStrategy()
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2003 2004
      .def_property(
          "memory_optimize",
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
              PADDLE_THROW(
H
hong 已提交
2020 2021
                  "BuildStrategy.memory_optimize must be None, False or "
                  "True");
2022 2023
            }
          },
2024
          R"DOC((bool, optional): memory opitimize aims to save total memory
2025
                consumption, set to True to enable it.
2026

2027 2028 2029
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2030
                True means enabling and False means disabling. Default is None.)DOC")
2031 2032 2033
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2034 2035 2036 2037 2038 2039 2040 2041 2042
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
              PADDLE_THROW("Windows has NO support to distribute mode.");
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2043 2044 2045
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2046
      .def_property(
D
dzhwinter 已提交
2047 2048 2049
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
C
chengduo 已提交
2050 2051
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2052 2053 2054 2055
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2056
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2057 2058 2059 2060 2061 2062 2063
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2064 2065 2066 2067
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2068 2069 2070 2071 2072 2073 2074 2075 2076
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2077
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2078
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2079 2080 2081 2082 2083
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2084 2085

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2086
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2087
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2088
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2089 2090 2091 2092
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2093 2094 2095 2096 2097
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2098 2099 2100
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2101 2102 2103 2104
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
2105
      .def("run", [](ParallelExecutor &self,
2106
                     const std::vector<std::string> &fetch_tensors) {
S
sneaxiy 已提交
2107
        pybind11::gil_scoped_release release;
2108
        return self.Run(fetch_tensors);
S
sneaxiy 已提交
2109
      });
Y
Yu Yang 已提交
2110

D
dongdaxiang 已提交
2111
  BindFleetWrapper(&m);
H
hutuxian 已提交
2112
  BindBoxHelper(&m);
W
wopeizl 已提交
2113
#ifndef _WIN32
D
dongdaxiang 已提交
2114
  BindNCCLWrapper(&m);
W
wopeizl 已提交
2115
#endif
F
flame 已提交
2116 2117
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2118
  BindInferenceApi(&m);
2119
  BindDataset(&m);
2120 2121 2122
#ifdef PADDLE_WITH_DISTRIBUTE
  BindCommunicator(&m);
#endif
L
Luo Tao 已提交
2123
}
2124
}  // namespace pybind
2125
}  // namespace paddle