pybind.cc 113.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/device_context.h"
62
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
63
#include "paddle/fluid/platform/enforce.h"
64
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
65
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
66 67
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
68 69 70
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
H
hutuxian 已提交
71
#include "paddle/fluid/pybind/box_helper_py.h"
72
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
73
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
74
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
75
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
76
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
77
#include "paddle/fluid/pybind/generator_py.h"
78
#include "paddle/fluid/pybind/global_value_getter_setter.h"
79
#include "paddle/fluid/pybind/gloo_context_py.h"
80
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
81
#include "paddle/fluid/pybind/heter_wrapper_py.h"
82
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
83
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
84
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
85
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
86
#include "paddle/fluid/pybind/pybind_boost_headers.h"
87

88
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
89
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
90
#endif
91
#include "paddle/fluid/framework/data_type.h"
92 93
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
94
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
95
#include "paddle/fluid/pybind/tensor_py.h"
96
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
97
#ifdef PADDLE_WITH_CUDA
98
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
99
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
100
#endif
Y
Yi Wang 已提交
101 102
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
103 104
#endif

105 106 107 108
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
109 110 111 112
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
113
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
114 115 116
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
117 118
#include "pybind11/stl.h"

119
DECLARE_bool(use_mkldnn);
120

Q
Qiao Longfei 已提交
121 122
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
123

124 125 126
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
127

128
namespace paddle {
129
namespace pybind {
130
bool IsCompiledWithCUDA() {
131
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
132 133 134 135 136 137
  return false;
#else
  return true;
#endif
}

138 139 140 141 142 143 144 145
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

146 147 148 149 150 151 152 153
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

154 155 156 157 158 159 160 161 162 163 164
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

165
bool IsCompiledWithBrpc() {
166
#ifndef PADDLE_WITH_DISTRIBUTE
167 168
  return false;
#endif
169 170 171 172 173 174

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
175 176
}

Y
update  
Yancey1989 已提交
177
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
178
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
179 180 181 182 183 184
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
185 186 187 188 189 190 191 192 193 194
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
217 218 219
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
233 234
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
235 236
    }
    vec_res.emplace_back(
237
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
238 239 240 241 242 243 244 245 246 247 248 249
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
250 251
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
252 253 254 255 256 257 258 259 260 261 262 263
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
264 265 266
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
267 268 269 270
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
271 272
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
273 274 275 276
  }
  return vec_res;
}

277 278 279 280 281 282 283 284
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
285 286
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
287 288 289 290 291 292 293 294 295 296 297 298 299
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
300 301 302
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
303 304 305 306 307
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
308 309 310 311 312
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
313 314
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
315 316 317
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
318 319 320 321 322 323 324 325 326
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
327 328
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
329 330 331 332 333
  }

  return;
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

358 359 360 361 362 363
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
364 365 366
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
367
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
368

369 370
  AssertStaticGraphAndDygraphGradMakerNoDiff();

371
  m.doc() = "C++ core of PaddlePaddle";
372

373 374 375 376
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

377
  BindException(&m);
Y
Yu Yang 已提交
378

379 380
  m.def("set_num_threads", &platform::SetNumThreads);

381 382 383 384
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
403 404 405 406 407 408 409 410 411
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
412
           const Scope &scope, const Executor *executor) {
H
hong 已提交
413
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
414
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
415 416 417
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

418 419 420 421 422 423
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
443

444 445 446 447 448 449
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
450 451
  });

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
477 478 479 480 481 482
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
483
  m.def(
S
sneaxiy 已提交
484
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
485 486 487 488
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
489 490 491
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
508 509 510
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
511
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
512

513
  m.def("_set_fuse_parameter_group_size",
514
        &paddle::framework::ir::SetFuseParameterGroupsSize);
515
  m.def("_set_fuse_parameter_memory_size",
516
        &paddle::framework::ir::SetFuseParameterMemorySize);
517

S
sneaxiy 已提交
518 519 520
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

521 522
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

523 524 525
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

526
  BindImperative(&m);
527

528
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
529
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
530 531
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
532
      .def("_get_dims",
533
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
534
      .def("_set_dims",
Q
qijun 已提交
535
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
536
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
537
           })
Y
yuyang18 已提交
538
      .def("_set_layout",
D
dzhwinter 已提交
539 540 541
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
542
      .def("_alloc_float",
D
dzhwinter 已提交
543
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
544
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
545
           })
546 547 548 549
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
550
      .def("_alloc_float",
Y
Yu Yang 已提交
551
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
552
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
553
           })
554 555 556 557
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
558
      .def("_alloc_int",
Y
Yu Yang 已提交
559
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
560
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
561
           })
562 563 564 565
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
566
      .def("_alloc_int",
D
dzhwinter 已提交
567
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
568
             self.mutable_data<int>(place);
Q
qijun 已提交
569
           })
Y
yuyang18 已提交
570
      .def("_alloc_int",
C
chengduoZH 已提交
571 572 573
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
574
      .def("_alloc_float",
C
chengduoZH 已提交
575 576 577
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
578 579 580 581 582
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
583 584 585 586 587
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
588 589 590 591 592 593 594 595 596 597
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
598
      .def("_clear", &Tensor::clear)
599
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
600
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
601 602
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
603
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
604
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
605
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
606 607
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
608 609 610 611
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
612
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
613
          LoDTensor is to be set.
614 615
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
629

L
Leo Chen 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
669 670 671 672
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
673
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
674
      .def("_dtype", [](Tensor &self) { return self.type(); })
675 676
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
677
      .def("_share_data_with", &Tensor::ShareDataWith)
678 679 680 681 682 683
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
684

L
Leo Chen 已提交
685
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
686
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
761 762 763 764 765 766 767

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
768 769

        )DOC")
770
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
771 772 773 774 775 776 777 778 779
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
780 781
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
782 783 784 785
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
786 787
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
788
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
789
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
790 791
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
792 793 794
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
795
      .def("set_lod",
796
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
797
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
798
             LoD new_lod;
799 800
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
801 802
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
803 804
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
805
             self.set_lod(new_lod);
S
sneaxiy 已提交
806 807 808 809 810
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
811 812 813 814
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
815 816 817 818 819 820 821 822 823 824

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
825
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
826
           )DOC")
827 828 829 830 831 832 833 834 835 836 837
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
838 839
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
840 841 842 843 844
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
845
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
846 847
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
848
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
849

L
Leo Chen 已提交
850
           For example, if recursive_sequence_lengths=[[2, 3]], which means
851
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
852
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
853 854

           Args:
L
Leo Chen 已提交
855 856 857 858
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
859 860 861 862 863 864 865 866 867 868

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
869 870
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
871
           )DOC")
872 873 874 875 876 877 878 879
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
880 881 882 883 884
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
885 886
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
887 888 889 890 891 892 893 894 895 896
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
897
           )DOC")
G
gongweibao 已提交
898
      // Set above comments of set_lod.
899 900 901 902 903 904 905 906
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
907 908
           },
           R"DOC(
L
Leo Chen 已提交
909 910
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
911 912

           Returns:
L
Leo Chen 已提交
913
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
914 915 916 917 918 919 920 921 922 923 924

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
925 926 927 928 929 930 931 932
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
933
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
934 935

           Returns:
L
Leo Chen 已提交
936
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
937 938 939 940 941 942 943 944 945 946 947

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
948 949 950 951 952 953 954
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
955
           )DOC")
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
974
#ifdef _WIN32
975
      });
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1026

Q
qijun 已提交
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1038 1039
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1040 1041
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1051
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1052
      .def("rows", [](SelectedRows &self) {
1053 1054 1055 1056 1057
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1058
      });
Q
qijun 已提交
1059

1060
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1061 1062 1063

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1064
      .def(py::init<>())
1065
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1066
      .def("set_int",
1067 1068
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1069 1070 1071 1072 1073 1074 1075
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1076
      .def("get_tensor",
1077 1078
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1079 1080
           },
           py::return_value_policy::reference)
1081 1082 1083 1084
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1085 1086 1087
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1088 1089 1090 1091 1092
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1093 1094 1095
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1096 1097 1098
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1099
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1100 1101 1102 1103 1104
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1105
#endif
Y
Refine  
Yu Yang 已提交
1106 1107
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1108 1109 1110 1111
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1112 1113
             return self.GetMutable<framework::ReaderHolder>();
           },
1114 1115 1116 1117 1118
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1119

S
sneaxiy 已提交
1120
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1121

S
sneaxiy 已提交
1122
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1136
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1137 1138 1139 1140 1141 1142
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1143 1144
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1145
      .def("var",
1146
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1147
             return self.Var(name);
Y
Yu Yang 已提交
1148
           },
S
sneaxiy 已提交
1149 1150
           py::arg("name"),
           R"DOC(
1151
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1152

1153
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1154
           current scope, the variable would be created. Otherwise,
1155
           return the existing variable.
S
sneaxiy 已提交
1156 1157

           Args:
1158 1159
               name (str): the variable name.

S
sneaxiy 已提交
1160
           Returns:
1161
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1162 1163 1164 1165
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1166
           Find variable named :code:`name` in the current scope or
1167
           its parent scope. Return None if not found. 
1168

S
sneaxiy 已提交
1169 1170
           Args:
               name (str): the variable name.
1171

S
sneaxiy 已提交
1172
           Returns:
1173
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1174
           )DOC",
1175
           py::return_value_policy::reference)
1176
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1177 1178 1179 1180 1181 1182
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1183
           py::return_value_policy::reference)
S
sneaxiy 已提交
1184 1185 1186
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1187 1188
           )DOC")
      .def("_kids", &Scope::kids);
1189

S
sneaxiy 已提交
1190 1191 1192 1193 1194 1195
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1196 1197
        R"DOC(
        Create a new scope.
1198

S
sneaxiy 已提交
1199 1200 1201
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1202 1203
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1204 1205
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1206 1207
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1208 1209 1210 1211
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1212 1213
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1214 1215
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1216 1217 1218
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1219 1220
    return ret_values;
  });
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1250 1251 1252
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1253 1254 1255 1256 1257
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1258 1259 1260
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1275
  m.def("prune", [](const ProgramDesc &origin,
1276
                    const std::set<std::string> &feeded_var_names,
1277
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1278
    ProgramDesc prog_with_targets(origin);
1279

1280
    for (const auto &t : targets) {
1281
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1282
    }
1283
    proto::ProgramDesc pruned_desc;
1284 1285 1286 1287
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1288
  });
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1306 1307 1308 1309
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1310 1311 1312
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1313 1314
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1315

Q
qijun 已提交
1316
  // clang-format off
Y
Yu Yang 已提交
1317
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1318 1319
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1320
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1321 1322
                    return new paddle::platform::CPUDeviceContext();
                  })
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1335
      .def_static("create",
D
dzhwinter 已提交
1336
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1337
                      -> paddle::platform::DeviceContext* {
1338
#ifndef PADDLE_WITH_CUDA
1339 1340 1341 1342
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1343
#else
Q
qijun 已提交
1344
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1345
#endif
C
chengduoZH 已提交
1346 1347 1348 1349 1350
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1351 1352 1353 1354
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1355 1356 1357 1358
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1359
// clang-format on
1360
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1361 1362
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1363
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1364 1365 1366 1367 1368

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1369
    The memory of CUDAPlace with different dev_id is not accessible.
1370 1371 1372 1373 1374 1375 1376 1377
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1378 1379 1380 1381

    Examples:
        .. code-block:: python

1382 1383 1384
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1385

1386
        )DOC")
S
sneaxiy 已提交
1387 1388 1389
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1414 1415
             new (&self) platform::CUDAPlace(dev_id);
#else
1416 1417 1418 1419 1420 1421 1422 1423 1424
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1425 1426
#endif
           })
1427
#ifdef PADDLE_WITH_CUDA
1428 1429
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1430 1431 1432 1433
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1434
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1435 1436
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1437 1438 1439
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1440
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1441
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1488
#ifdef PADDLE_WITH_XPU
1489 1490 1491 1492 1493 1494 1495
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1496 1497 1498
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1499
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1500
      .def("__str__", string::to_string<const platform::XPUPlace &>);
1501 1502 1503
#ifdef PADDLE_WITH_XPU
  m.def("get_xpu_device_count", platform::GetXPUDeviceCount);
#endif
1504
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1505
    CPUPlace is a descriptor of a device.
1506
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1507 1508 1509 1510

    Examples:
        .. code-block:: python

1511 1512
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1513

1514
        )DOC")
1515
      .def(py::init<>())
S
sneaxiy 已提交
1516 1517
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1518
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1519 1520 1521 1522
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1523
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1524
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1525

1526
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1527 1528 1529 1530 1531 1532
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1533 1534 1535 1536

    Examples:
        .. code-block:: python

1537 1538
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1539

1540
        )DOC")
S
sneaxiy 已提交
1541
      .def("__init__",
S
sneaxiy 已提交
1542
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1543
#ifndef PADDLE_WITH_CUDA
1544 1545 1546
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1547
#endif
S
sneaxiy 已提交
1548
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1549
           })
S
sneaxiy 已提交
1550 1551 1552 1553
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1554 1555
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1556 1557 1558 1559
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1560
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1561 1562
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1563 1564
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1565 1566 1567 1568
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1569
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1570
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1571 1572
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1573 1574
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1575 1576
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1577 1578 1579 1580
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1581 1582
      .def("gpu_device_id",
           [](platform::Place &self) {
1583
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1584
           })
1585 1586 1587 1588
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1589 1590
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1591 1592 1593 1594
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1595 1596 1597 1598
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1599
      .def("set_place",
D
dzhwinter 已提交
1600
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1601
             self = gpu_place;
C
chengduoZH 已提交
1602
           })
1603 1604 1605 1606 1607 1608 1609
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1610

Y
Yu Yang 已提交
1611
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1612 1613 1614 1615 1616
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1617 1618 1619 1620 1621 1622 1623
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1624 1625
            return OpRegistry::CreateOp(desc);
          })
1626
      .def("run",
1627
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1628
              const platform::CPUPlace &place) { self.Run(scope, place); })
1629 1630 1631
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1632 1633
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1634
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1635 1636 1637 1638 1639
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1640 1641 1642 1643 1644 1645 1646
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1647 1648
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1649
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1650
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1651 1652 1653 1654
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1655

1656 1657 1658
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1659 1660 1661 1662 1663 1664 1665 1666 1667
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1668
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1669
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1670
      .def("close", &Executor::Close)
1671 1672
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1673 1674
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1675 1676 1677 1678
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1679
             pybind11::gil_scoped_release release;
1680 1681 1682 1683 1684 1685 1686
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1687 1688 1689
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1690
              std::map<std::string, FetchType *> *fetch_targets,
1691 1692 1693 1694 1695 1696 1697 1698
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1699
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1700 1701 1702 1703 1704 1705 1706
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1717
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1718 1719
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1720
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1721 1722
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1723
      });
S
sneaxiy 已提交
1724

D
dzhwinter 已提交
1725
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1726
  m.def("init_glog", framework::InitGLOG);
1727
  m.def("load_op_library", framework::LoadOpLib);
1728
  m.def("init_devices", []() { framework::InitDevices(); });
1729

1730
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1731
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1732
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1733
  m.def("supports_bfloat16", SupportsBfloat16);
1734
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1735
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1736 1737 1738
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1758 1759 1760 1761 1762 1763 1764
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1765 1766 1767 1768 1769 1770 1771 1772 1773
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1774 1775 1776 1777 1778 1779
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1780

1781
  m.def("set_feed_variable", framework::SetFeedVariable);
1782 1783 1784 1785 1786
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1787
            return py::cast(BOOST_GET(LoDTensor, var));
1788
          } else {
1789
            return py::cast(BOOST_GET(LoDTensorArray, var));
1790 1791
          }
        });
1792
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1793

X
Xin Pan 已提交
1794 1795
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1796 1797 1798 1799 1800
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1801
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1802

Y
Yu Yang 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1812
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1813
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1814 1815 1816

    Examples:
        .. code-block:: python
1817

Z
Zeng Jinle 已提交
1818 1819 1820 1821
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1822 1823
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1824 1825 1826 1827 1828 1829
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1830 1831 1832 1833
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1834 1835 1836
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1837 1838 1839 1840 1841 1842
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1843 1844
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1845 1846 1847 1848 1849 1850
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1873

1874 1875 1876 1877 1878 1879 1880 1881
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1882
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1883 1884
                 res[i] = py::cast(std::move(data));
               } else {
1885
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1901
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1902 1903 1904 1905 1906 1907 1908 1909
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1910
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1911 1912 1913 1914 1915 1916 1917 1918 1919
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1920 1921
        )DOC")
      .def("_move_to_list",
1922
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1923 1924 1925 1926
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1927
                 if (data_is_lod_tensor(self[i][j])) {
1928
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1929 1930
                   tmp[j] = py::cast(std::move(var));
                 } else {
1931
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1932 1933 1934 1935 1936 1937
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1947
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1948
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1949
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1950

P
peizhilin 已提交
1951
#ifndef _WIN32
D
dangqingqing 已提交
1952 1953 1954
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1955
#endif
P
peizhilin 已提交
1956
#endif
Y
Yu Yang 已提交
1957

1958 1959 1960 1961 1962 1963
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1964 1965 1966 1967
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1968
      .value("kAll", platform::ProfilerState::kAll)
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1980
  m.def("set_tracer_option", platform::SetTracerOption);
1981 1982
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1983
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1984
  m.def("reset_profiler", platform::ResetProfiler);
1985
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1986 1987 1988
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1989

1990 1991
  m.def("size_of_dtype", framework::SizeOfType);

1992 1993 1994
#ifdef PADDLE_WITH_CUDA
  m.def("set_cublas_switch", platform::SetAllowTF32Cublas);
  m.def("get_cublas_switch", platform::AllowTF32Cublas);
A
AshburnLee 已提交
1995 1996
  m.def("set_cudnn_switch", platform::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", platform::AllowTF32Cudnn);
1997 1998
#endif  // PADDLE_WITH_CUDA

1999 2000 2001
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

2002 2003
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
2004
      .def("has", &ir::Pass::Has)
2005 2006 2007
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
2008
           })
2009
      .def(
2010
          "set",
2011 2012 2013
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
2014 2015
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2016 2017
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2032 2033
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2034
        self.Apply(graph.get());
F
flame 已提交
2035
      });
2036

X
fix  
Xin Pan 已提交
2037 2038
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2053
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2054

Y
yuyang18 已提交
2055
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2056 2057 2058 2059
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2060 2061 2062
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2063 2064 2065
    Examples:
        .. code-block:: python

2066 2067 2068 2069 2070 2071 2072 2073 2074
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2075

2076 2077
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2078

2079
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2080 2081
          sgd_optimizer.minimize(avg_loss)

2082
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2083 2084
          exec_strategy.num_threads = 4

2085 2086 2087
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2088 2089
        )DOC");

2090 2091 2092 2093
  py::enum_<paddle::platform::DeviceType>(m, "DeviceType", py::arithmetic())
      .value("CPU", paddle::platform::DeviceType::CPU)
      .value("CUDA", paddle::platform::DeviceType::CUDA)
      .value("XPU", paddle::platform::DeviceType::XPU);
2094

Y
yuyang18 已提交
2095
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2096 2097 2098 2099 2100
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2101
          },
2102 2103
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2104 2105 2106 2107 2108 2109 2110
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2124
      .def_property(
2125 2126
          "_use_device",
          [](const ExecutionStrategy &self) { return self.use_device_; },
2127
          [](ExecutionStrategy &self, paddle::platform::DeviceType use_device) {
2128 2129 2130
            self.use_device_ = use_device;
          })  // NOTE(liuyuhui): Doesn't add doc for 'use_device', because
              // use_device isn‘t exposed to users.
Y
yuyang18 已提交
2131 2132 2133 2134 2135
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2136 2137 2138
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2139 2140
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2141 2142 2143 2144 2145 2146 2147
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2148 2149 2150 2151
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2152
                because the temp variable's shape maybe the same between two iterations.
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2163

2164 2165 2166 2167 2168 2169 2170
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2171
              )DOC")
Q
Qiao Longfei 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2193
              )DOC")
2194 2195 2196 2197 2198 2199 2200 2201
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2202 2203 2204 2205 2206
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2207

Y
yuyang18 已提交
2208
  exec_strategy.def_property(
Y
yuyang18 已提交
2209 2210 2211 2212 2213 2214 2215
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2216 2217
      });

C
chengduo 已提交
2218 2219 2220 2221
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2222 2223 2224
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2225 2226 2227
    Examples:
        .. code-block:: python

2228
            import os
2229 2230 2231 2232
            import paddle
            import paddle.static as static

            paddle.enable_static()
2233

2234 2235
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2236

2237 2238 2239 2240
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2241

2242
            build_strategy = static.BuildStrategy()
2243 2244
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2245 2246
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2247
            program = program.with_data_parallel(loss_name=loss.name,
2248 2249
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2250
)DOC");
Y
yuyang18 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2267 2268 2269 2270
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2271
            self.reduce_ = strategy;
C
chengduo 已提交
2272
          },
2273
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2274 2275
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2276
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2277 2278
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2279
                Default is 'AllReduce'.
F
flame 已提交
2280 2281 2282 2283

                Examples:
                    .. code-block:: python

2284 2285 2286 2287 2288 2289 2290
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2291
                  )DOC")
Y
yuyang18 已提交
2292 2293 2294 2295 2296
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2297 2298 2299 2300
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2301
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2302
          },
2303
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2304
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2305 2306
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2307
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2308 2309 2310 2311

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2312 2313
                        import numpy
                        import os
2314 2315 2316 2317
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2318 2319

                        use_cuda = True
2320 2321
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2322 2323

                        # NOTE: If you use CPU to run the program, you need
2324
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2325 2326 2327 2328 2329 2330
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2331
                            places = static.cpu_places()
C
chengduo 已提交
2332
                        else:
2333
                            places = static.cuda_places()
C
chengduo 已提交
2334

2335 2336 2337 2338
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2339

2340
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2341

2342
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2343
                        build_strategy.gradient_scale_strategy = \
2344 2345 2346
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2347
                                          loss_name=loss.name, build_strategy=build_strategy,
2348
                                          places=places)
C
chengduo 已提交
2349 2350 2351 2352 2353 2354

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2355 2356
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2357
                   )DOC")
Y
yuyang18 已提交
2358 2359 2360 2361
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2362 2363 2364 2365
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2366
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2367
          },
2368
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2369
                writing the SSA Graph to file in the form of graphviz.
2370
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2371 2372 2373 2374

                Examples:
                    .. code-block:: python

2375 2376 2377 2378
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2379

2380 2381
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2382
                    )DOC")
S
sneaxiy 已提交
2383 2384 2385 2386 2387 2388
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2389 2390 2391 2392
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2393 2394
            self.enable_sequential_execution_ = b;
          },
2395 2396
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2397 2398 2399 2400

                Examples:
                    .. code-block:: python

2401 2402 2403 2404 2405 2406
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2407 2408
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2409 2410 2411 2412 2413 2414
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2415 2416 2417 2418
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2419 2420
            self.remove_unnecessary_lock_ = b;
          },
2421 2422
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2423 2424 2425 2426

                Examples:
                    .. code-block:: python

2427 2428 2429 2430 2431 2432
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2433 2434
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2435 2436 2437 2438
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2439
#ifdef WIN32
2440
            PADDLE_THROW(platform::errors::Unavailable(
2441
                "Distribution mode is not supported on Windows platform."));
2442
#endif
2443 2444
            self.num_trainers_ = num_trainers;
          })
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2457 2458 2459 2460 2461 2462
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2463
      .def_property("use_hierarchical_allreduce",
2464 2465 2466 2467 2468 2469
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2470
      .def_property("hierarchical_allreduce_inter_nranks",
2471 2472 2473 2474 2475 2476 2477
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2478 2479 2480 2481 2482 2483
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2484 2485 2486 2487
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2488 2489
            self.fuse_elewise_add_act_ops_ = b;
          },
2490
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2491
                to fuse elementwise_add_op and activation_op,
2492
                it may make the execution faster. Default is False.
F
flame 已提交
2493 2494 2495 2496

                Examples:
                    .. code-block:: python

2497 2498 2499 2500 2501 2502
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2503 2504
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2505 2506 2507 2508
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2509
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2510
                              platform::errors::PreconditionNotMet(
2511 2512
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2522 2523 2524 2525 2526 2527
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2528 2529
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2555 2556 2557 2558
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2559
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2560
                              platform::errors::PreconditionNotMet(
2561 2562
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2573 2574 2575 2576 2577 2578
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2579 2580
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2581 2582 2583 2584 2585 2586
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2587 2588 2589 2590
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2591 2592
            self.fuse_relu_depthwise_conv_ = b;
          },
2593
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2594 2595 2596
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2597
                Default is False.
F
flame 已提交
2598 2599 2600 2601

                Examples:
                    .. code-block:: python

2602 2603 2604 2605 2606 2607
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2608 2609
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2610 2611 2612 2613 2614 2615
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2616 2617 2618 2619
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2620 2621
                      self.fuse_broadcast_ops_ = b;
                    },
2622
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2623 2624 2625 2626
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2627 2628 2629 2630 2631
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2632 2633 2634 2635 2636 2637
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2638 2639
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2640 2641
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2642 2643
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2644 2645
                    },
                    [](BuildStrategy &self, bool b) {
2646 2647 2648 2649
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2650 2651
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2652 2653 2654 2655
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2656 2657 2658 2659
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2660 2661
            self.sync_batch_norm_ = b;
          },
2662
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2663 2664 2665
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2666 2667
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2668 2669 2670 2671

                Examples:
                    .. code-block:: python

2672 2673 2674 2675 2676 2677
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2678 2679
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2680 2681
      .def_property(
          "memory_optimize",
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2696 2697 2698
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2699 2700
            }
          },
2701
          R"DOC((bool, optional): memory opitimize aims to save total memory
2702
                consumption, set to True to enable it.
2703

2704 2705 2706
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2721 2722 2723
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2724 2725 2726
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2727
              PADDLE_THROW(platform::errors::Unavailable(
2728
                  "Distribution mode is not supported on Windows platform."));
2729 2730 2731 2732 2733
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2734 2735 2736
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2737
      .def_property(
D
dzhwinter 已提交
2738 2739 2740
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2741 2742 2743 2744
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2745 2746
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2747 2748 2749 2750
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2751
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2752 2753 2754 2755 2756 2757 2758
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2759 2760 2761 2762
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2763 2764 2765 2766 2767 2768 2769 2770 2771
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2772
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2773
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2774 2775 2776 2777 2778
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2779 2780

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2781
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2782
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2783
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2784 2785 2786 2787
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2788 2789 2790 2791 2792
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2793 2794 2795
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2796 2797 2798 2799
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2800 2801
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2802 2803 2804 2805 2806 2807 2808 2809
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2810
               return py::cast(
2811
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2812 2813
             } else {
               return py::cast(std::move(
2814
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2815
             }
2816 2817
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2818

D
dongdaxiang 已提交
2819
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2820

T
Thunderbrook 已提交
2821 2822
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2823 2824 2825
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2826
#endif
2827
  BindGlooWrapper(&m);
H
hutuxian 已提交
2828
  BindBoxHelper(&m);
H
hutuxian 已提交
2829 2830 2831
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2832
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2833
  BindNCCLWrapper(&m);
2834 2835 2836
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2837
#endif
F
flame 已提交
2838 2839
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2840
  BindInferenceApi(&m);
2841
  BindCompatible(&m);
2842
  BindDataset(&m);
Y
yaoxuefeng 已提交
2843
  BindGenerator(&m);
2844 2845 2846 2847
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
#endif
Y
Yanghello 已提交
2848 2849 2850
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2851

T
tangwei12 已提交
2852
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2853 2854
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2855
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2856 2857
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2858
#endif
L
Luo Tao 已提交
2859
}
2860
}  // namespace pybind
2861
}  // namespace paddle