framework.py 148.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
    'load_op_library',
51
]
Y
Yu Yang 已提交
52

Q
qiaolongfei 已提交
53 54 55 56
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
57 58
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
59 60
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
61 62


L
lujun 已提交
63
def in_dygraph_mode():
L
lujun 已提交
64
    """
65 66
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
67 68

    Returns:
69
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
70 71 72 73

    Examples:
        .. code-block:: python

74
            import paddle.fluid as fluid
L
lujun 已提交
75
            if fluid.in_dygraph_mode():
76 77 78
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
79 80

    """
L
lujun 已提交
81
    return _dygraph_tracer_ is not None
82 83


84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
106 107
def _dygraph_tracer():
    return _dygraph_tracer_
108

W
Wu Yi 已提交
109

M
minqiyang 已提交
110
def _current_expected_place():
L
lujun 已提交
111
    return _dygraph_current_expected_place_
M
minqiyang 已提交
112 113


S
sneaxiy 已提交
114
def _cpu_num():
115
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
116 117 118 119 120 121 122 123
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
124
        os.environ['CPU_NUM'] = str(1)
125
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
126 127 128 129 130 131 132 133 134 135
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
136 137


C
chengduo 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
153
def cuda_places(device_ids=None):
L
lujun 已提交
154
    """
155 156 157 158 159
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
160 161

    If :code:`device_ids` is None, environment variable of
162
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
163 164 165
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
166
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
167 168

    If :code:`device_ids` is not None, it should be the device
169
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
170 171 172
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
173 174
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
175 176

    Returns:
177
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
178 179 180 181

    Examples:
        .. code-block:: python

182
            import paddle.fluid as fluid
L
lujun 已提交
183 184 185
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
186 187 188
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
189
        device_ids = _cuda_ids()
S
sneaxiy 已提交
190 191 192 193 194 195
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
196
    """
197
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
198 199 200
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
201 202
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
203 204
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
205

206 207
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
208 209

    Returns:
210
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
211 212 213 214

    Examples:
        .. code-block:: python

215
            import paddle.fluid as fluid
L
lujun 已提交
216 217 218
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
219 220 221 222 223 224
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
225
    """
226
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
227 228 229

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
230 231 232 233
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
234

235 236
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
237 238

    Returns:
239
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
240 241 242 243

    Examples:
        .. code-block:: python

244
            import paddle.fluid as fluid
L
lujun 已提交
245 246 247 248 249
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
250 251 252 253 254 255 256
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
283
@signature_safe_contextmanager
284 285 286 287 288 289 290 291 292 293 294 295
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
296

297
          import paddle.fluid as fluid
298 299 300 301 302 303 304 305 306 307 308
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
309 310
    """
    # TODO(panyx0718): Only [0-9a-z].
311 312 313 314 315 316 317 318 319
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
320 321 322 323 324 325 326 327 328 329 330 331


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
332 333 334
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
335 336 337 338


def grad_var_name(var_name):
    """
339 340
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
341 342 343
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
344

345
def convert_np_dtype_to_dtype_(np_dtype):
346 347
    """
    Convert the data type in numpy to the data type in Paddle
348

349
    Args:
350
        np_dtype(np.dtype): the data type in numpy.
351

352 353
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
354 355

    """
356 357
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
358
        return core.VarDesc.VarType.FP32
359
    elif dtype == np.float64:
360
        return core.VarDesc.VarType.FP64
361
    elif dtype == np.float16:
362
        return core.VarDesc.VarType.FP16
363
    elif dtype == np.int32:
364
        return core.VarDesc.VarType.INT32
365
    elif dtype == np.int16:
366
        return core.VarDesc.VarType.INT16
367
    elif dtype == np.int64:
368
        return core.VarDesc.VarType.INT64
369
    elif dtype == np.bool:
370
        return core.VarDesc.VarType.BOOL
371 372
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
373 374
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
375 376
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
377
    else:
M
minqiyang 已提交
378
        raise ValueError("Not supported numpy dtype %s" % dtype)
379 380 381


def dtype_is_floating(dtype):
382 383 384
    """
    Check the data type is floating or not.
    Args:
385
        dtype(np.dtype|core.VarDesc.VarType): data type.
386 387 388 389 390
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
391
    if not isinstance(dtype, core.VarDesc.VarType):
392 393
        dtype = convert_np_dtype_to_dtype_(dtype)

394 395 396 397
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
398 399


Y
Yang Yang(Tony) 已提交
400
def _debug_string_(proto, throw_on_error=True):
401 402 403 404 405 406 407 408 409 410 411
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
412
    error_fields = list()
Y
Yang Yang(Tony) 已提交
413
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
414 415
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
416 417 418
    return proto.__str__()


X
Xin Pan 已提交
419
class Variable(object):
420
    """
421 422 423 424 425
    **Notes:**
        **The constructor of Variable should not be invoked directly.**
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**
        **In Dygraph Mode: Please use** `fluid.dygraph.to_variable()` **to create a dygraph variable with real data**

426 427 428
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
429
    two variables in different blocks could have the same name.
430

431
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
432
    and usages. Please refer to the framework.proto for details.
433

434
    Most of a Variable's member variables can be setted to be None. It mean
435
    it is not available or will be specified later.
436

437
    Examples:
438 439
        In Static Graph Mode:

440 441
        .. code-block:: python

442
            import paddle.fluid as fluid
443
            cur_program = fluid.Program()
444 445 446 447
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
448 449 450 451 452 453 454 455 456 457
        In Dygraph Mode:

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

458 459
    """

Y
Yu Yang 已提交
460 461
    def __init__(self,
                 block,
Y
Yu Yang 已提交
462
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
463 464 465 466
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
467
                 capacity=None,
Q
QI JUN 已提交
468
                 persistable=None,
F
fengjiayi 已提交
469
                 error_clip=None,
Y
Yu Yang 已提交
470
                 stop_gradient=False,
F
fengjiayi 已提交
471
                 is_data=False,
H
Huihuang Zheng 已提交
472
                 need_check_feed=False,
Y
Yu Yang 已提交
473
                 **kwargs):
Y
Yu Yang 已提交
474 475
        self.block = block
        if name is None:
Y
Yu Yang 已提交
476
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
477

Y
Yu Yang 已提交
478
        if dtype is not None:
479
            if not isinstance(dtype, core.VarDesc.VarType):
480
                dtype = convert_np_dtype_to_dtype_(dtype)
481

L
lujun 已提交
482
        if in_dygraph_mode():
M
minqiyang 已提交
483
            # record vars in tracer rather than blocks
M
minqiyang 已提交
484
            self._ivar = kwargs.get("ivar", None)
485
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
486
            if not self._ivar:
487
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
488 489 490
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
491
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
492
                    if persistable else False)
M
minqiyang 已提交
493
            if persistable:
L
lujun 已提交
494
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
495
            self.op = None
M
minqiyang 已提交
496
        else:
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
561 562 563
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

564 565 566 567 568 569 570 571
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
572
            self.block.vars[name] = self
573
            self.op = None
574
            self._stop_gradient = stop_gradient
575
            self.is_data = is_data
Y
Yu Yang 已提交
576

577
    @dygraph_only
578 579
    def detach(self):
        """
580 581
        **Notes: This API is ONLY avaliable in Dygraph mode**

582
        Returns a new Variable, detached from the current graph.
583

584 585 586
        Returns:
            Variable: The detached Variable.

587 588 589
        Returns type:
            Variable(Tensor|LoDTensor) dtype is same as current Variable

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

617
    @dygraph_only
618
    def numpy(self):
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Returns a numpy array shows the value of current :ref:`api_guide_Variable`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
650
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
651
        return np.array(new_ivar.value().get_tensor())
652

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    @dygraph_only
    def set_value(self, value):
        """
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
        assert isinstance(value, (Variable, np.ndarray))
        if list(value.shape) != list(self.shape):
            raise ValueError(
                "The shape of the new value must be the same as that of the original Variable."
            )
        self_tensor = self._ivar.value().get_tensor()
        if isinstance(value, Variable):
            value = value._ivar.value().get_tensor().__array__()
        self_tensor.set(value, _current_expected_place())

692
    @dygraph_only
693
    def backward(self, backward_strategy=None):
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Run backward of current Graph which starts from current Variable

        Parameter:
            - **backward_strategy** : ( :ref:`api_fluid_dygraph_BackwardStrategy` ) - The Backward Strategy to run backward

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
724 725 726 727 728
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
729

J
Jiabin Yang 已提交
730 731 732 733
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
734

735
    @dygraph_only
736
    def gradient(self):
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Get the Gradient of Current Variable

        Returns:  Numpy value of the gradient of current Variable

        Returns type: ndarray

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
775 776
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
777

778
    @dygraph_only
779
    def clear_gradient(self):
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Clear  (set to zero) the Gradient of Current Variable

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
810
        self._ivar._clear_gradient()
X
Xin Pan 已提交
811

812
    def __str__(self):
Y
Yang Yang(Tony) 已提交
813 814
        return self.to_string(True)

F
update  
fengjiayi 已提交
815
    def to_string(self, throw_on_error, with_details=False):
816 817 818
        """
        Get debug string.

819 820
        Parameters:
            - **throw_on_error** (bool): True if raise an exception when self is
821
                not initialized.
822
            - **with_details** (bool): more details about variables and parameters
823 824
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
825

826 827
        Returns:
            str: The debug string.
828

829 830 831
        Returns Type:
            str

832 833 834 835
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
836

837 838 839 840 841
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
842 843 844
                print(new_variable.to_string(True))
                print("\n=============with detail===============\n")
                print(new_variable.to_string(True, True))
845
        """
L
lujun 已提交
846
        if in_dygraph_mode():
L
lujun 已提交
847
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
848 849 850 851 852 853 854
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
855

F
update  
fengjiayi 已提交
856 857
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
858
        protostr = self.desc.serialize_to_string()
859
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
860 861 862 863
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
864 865 866
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
867
        return res_str
868 869 870

    __repr__ = __str__

871
    @property
872
    def stop_gradient(self):
L
lujun 已提交
873
        if in_dygraph_mode():
M
minqiyang 已提交
874 875
            return self._ivar.stop_gradient
        else:
876
            return self._stop_gradient
877

878 879
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
880
        if in_dygraph_mode():
M
minqiyang 已提交
881
            self._ivar.stop_gradient = s
882
        else:
883
            self._stop_gradient = s
884

885 886
    @property
    def persistable(self):
L
lujun 已提交
887
        if in_dygraph_mode():
888 889 890
            return self._ivar.persistable
        else:
            return self.desc.persistable()
891

Y
Yu Yang 已提交
892 893
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
894
        if in_dygraph_mode():
895 896 897
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
898 899
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
900

Y
Yu Yang 已提交
901 902
    @property
    def name(self):
L
lujun 已提交
903
        if in_dygraph_mode():
904 905 906
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
907

T
typhoonzero 已提交
908 909
    @name.setter
    def name(self, new_name):
L
lujun 已提交
910
        if in_dygraph_mode():
911 912 913
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
914

Y
Yu Yang 已提交
915 916 917
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
918
        if in_dygraph_mode():
919 920 921
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
922 923

    @property
F
fengjiayi 已提交
924
    def dtype(self):
L
lujun 已提交
925
        if in_dygraph_mode():
926 927 928
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
929 930

    @property
931
    @dygraph_not_support
Y
Yu Yang 已提交
932
    def lod_level(self):
L
lujun 已提交
933
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
934 935
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
936
        return self.desc.lod_level()
Y
Yu Yang 已提交
937

Y
Yu Yang 已提交
938 939
    @property
    def type(self):
L
lujun 已提交
940
        if in_dygraph_mode():
J
Jiabin Yang 已提交
941
            return self._ivar.type
942 943
        else:
            return self.desc.type()
Y
Yu Yang 已提交
944

W
Wu Yi 已提交
945
    def _set_error_clip(self, error_clip):
946 947 948 949 950 951 952 953 954
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
955 956
        self.error_clip = error_clip

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1044
    def _cloneVar(self, copy=False):
1045 1046
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1047 1048
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1049 1050 1051 1052
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1053
        new_var = self._cloneVar()
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1064
        new_var = self._cloneVar()
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1075
                return self._cloneVar(True)
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1094
                return self._cloneVar(True)
1095
            index = int(item)
1096
            if (index > 0 and index >= self.shape[axis]) \
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1162
            else:
H
Hongyu Liu 已提交
1163 1164 1165
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1245
                inputs=inputs,
H
Hongyu Liu 已提交
1246
                outputs={'Out': [slice_out_var]},
1247
                attrs=attrs)
H
Hongyu Liu 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1265

Y
Yu Yang 已提交
1266

F
fengjiayi 已提交
1267 1268 1269
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1270

1271 1272
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1273 1274 1275 1276
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1277
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1278 1279 1280 1281 1282
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1283 1284 1285 1286
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1296
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1297 1298 1299 1300 1301 1302
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1303 1304 1305 1306 1307 1308 1309 1310
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1311 1312
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1313 1314
        return self.op_proto_map[type]

1315 1316 1317 1318 1319 1320
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1321 1322 1323 1324
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1325
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1326 1327
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1328 1329
        }

F
fengjiayi 已提交
1330

X
Xin Pan 已提交
1331
class Operator(object):
1332
    """
1333 1334 1335 1336 1337 1338 1339
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1340
        type(str): The type of operator. Default None.
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1361
        Block.append_op or Block._prepend_op instead.
1362 1363 1364 1365

    Examples:
        .. code-block:: python

1366
            import paddle.fluid as fluid
1367
            cur_program = fluid.Program()
1368 1369 1370 1371 1372
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1373
    """
1374
    OP_WITHOUT_KERNEL_SET = {
1375 1376
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1377 1378
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1379
        'c_sync_comm_stream'
1380
    }
1381

Y
Yu Yang 已提交
1382 1383
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1384
                 desc,
Y
Yu Yang 已提交
1385 1386 1387
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1388
                 attrs=None):
L
lujun 已提交
1389
        if in_dygraph_mode():
1390 1391
            if type is None:
                raise ValueError(
1392
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1393
            self._type = type
M
minqiyang 已提交
1394
            self.attrs = attrs if attrs else {}
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1409
                )] = self.block.program._op_role
1410 1411 1412

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1413 1414
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1415 1416 1417 1418 1419 1420 1421 1422

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1423
                    "`type` to initialized an Operator can not be None.")
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1455
                        for index, arg in enumerate(in_args):
1456 1457 1458 1459
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1460
                            elif isinstance(arg, Variable):
1461
                                in_arg_names.append(cpt.to_text(arg.name))
1462 1463 1464 1465
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1492
                        if not in_dygraph_mode():
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1512
    def _has_kernel(self, op_type):
1513 1514
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1515
    def to_string(self, throw_on_error):
1516
        """
1517 1518
        Get debug string.

1519
        Args:
1520 1521
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1522

1523 1524
        Returns:
            str: The debug string.
1525 1526

        """
1527
        protostr = self.desc.serialize_to_string()
1528
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1529 1530 1531 1532
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1533 1534 1535

    __repr__ = __str__

F
fengjiayi 已提交
1536 1537
    @property
    def type(self):
L
lujun 已提交
1538
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1539
            return self._type
1540 1541
        else:
            return self.desc.type()
F
fengjiayi 已提交
1542 1543

    def input(self, name):
1544
        """
1545
        Get the input arguments according to the input parameter name.
1546

1547 1548
        Args:
            name(str): The input parameter name.
1549

1550 1551 1552
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1553
        """
F
fengjiayi 已提交
1554 1555
        return self.desc.input(name)

W
Wu Yi 已提交
1556
    def _rename_input(self, old_name, new_name):
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1567
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1568

W
Wu Yi 已提交
1569
    def _rename_output(self, old_name, new_name):
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1580
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1581

F
fengjiayi 已提交
1582 1583 1584 1585
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1586 1587 1588 1589 1590 1591 1592 1593
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1594
    def output(self, name):
1595
        """
1596
        Get output arguments by the output parameter name.
1597

1598 1599
        Args:
            name(str): The output parameter name.
1600

1601 1602 1603
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1604
        """
F
fengjiayi 已提交
1605 1606 1607 1608 1609 1610
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1611 1612 1613 1614 1615 1616 1617 1618
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1619
    def has_attr(self, name):
1620
        """
1621 1622
        Whether this Operator has the attribute with name or not.

1623
        Args:
1624
            name(str): the attribute name.
1625

1626 1627
        Returns:
            bool: True if has this attribute.
1628 1629

        """
F
fengjiayi 已提交
1630 1631 1632
        return self.desc.has_attr(name)

    def attr_type(self, name):
1633
        """
1634
        Get the type of attribute by attribute's name.
1635

1636 1637
        Args:
            name(str): the attribute name.
1638

1639 1640
        Returns:
            core.AttrType: the attribute type.
1641
        """
F
fengjiayi 已提交
1642 1643
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1644
    def _set_attr(self, name, val):
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1655 1656
        self._update_desc_attr(name, val)

1657 1658 1659
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1671 1672
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1673 1674
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1675
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1676 1677 1678 1679
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1680
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1681

F
fengjiayi 已提交
1682 1683 1684 1685 1686
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1687
        """
1688 1689
        Get the attribute by name.

1690
        Args:
1691
            name(str): the attribute name.
1692

1693 1694
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1695 1696
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1697
        return self.desc.attr(name)
Y
Yu Yang 已提交
1698

W
Wu Yi 已提交
1699
    def _block_attr_id(self, name):
1700
        """
G
gongweibao 已提交
1701
        Get the block attribute's id by name.
1702

1703 1704
        Args:
            name(str): the attribute name.
1705

1706 1707
        Returns:
            int: the block index.
1708
        """
W
Wu Yi 已提交
1709
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1710

W
Wu Yi 已提交
1711
    def _block_attr(self, name):
G
gongweibao 已提交
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1722
        id = self._block_attr_id(name)
G
gongweibao 已提交
1723 1724 1725
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1726
    def _blocks_attr(self, name):
G
gongweibao 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1737
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1738 1739 1740 1741 1742
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1743
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1754
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1755

J
JiayiFeng 已提交
1756
    def all_attrs(self):
F
fengjiayi 已提交
1757
        """
1758 1759 1760
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1761
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1762 1763 1764 1765
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1766 1767
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1768
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1769 1770 1771
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1772
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1773 1774 1775 1776
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1777 1778
        return attr_map

Y
Yu Yang 已提交
1779

Y
Yu Yang 已提交
1780
class Block(object):
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1795
        use `Program._create_block()` to create a block.
1796 1797 1798 1799

    Examples:
        .. code-block:: python

1800 1801 1802
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1803 1804 1805 1806 1807 1808 1809 1810 1811
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1812
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1813
        self.desc = program.desc.block(idx)
1814
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1815
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1816
        self.program = program
1817
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1818

1819
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1820 1821
        return self.to_string(True)

F
fengjiayi 已提交
1822 1823
    def to_string(self, throw_on_error, with_details=False):
        """
1824 1825
        Get debug string.

F
fengjiayi 已提交
1826 1827
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1828
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1829
            with_details(bool): more details about variables and parameters
1830 1831
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1832

1833 1834
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1835 1836 1837 1838
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1839
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1840 1841
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1842
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1843
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1844
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1845
            for op in self.ops:
F
fengjiayi 已提交
1846 1847
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1848 1849 1850
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1851 1852
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1853 1854
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1855 1856 1857

    __repr__ = __str__

Y
Yu Yang 已提交
1858 1859
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1860
        return self.desc.parent
Y
Yu Yang 已提交
1861

Y
Yu Yang 已提交
1862 1863 1864 1865
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1866
    def _set_forward_block_idx(self, idx):
1867 1868 1869 1870 1871 1872 1873 1874 1875
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1876
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1877

Y
Yu Yang 已提交
1878 1879
    @property
    def idx(self):
Y
Yu Yang 已提交
1880
        return self.desc.id
Y
Yu Yang 已提交
1881

Q
Qiao Longfei 已提交
1882
    def var(self, name):
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1896
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1897 1898 1899
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1900 1901
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1902
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1903
        return v
Q
Qiao Longfei 已提交
1904

X
Xin Pan 已提交
1905
    def _find_var_recursive(self, name):
1906 1907 1908 1909 1910 1911 1912
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1913
            Variable: the Variable with the giving name. Or None if not found.
1914
        """
Y
Yu Yang 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1939
        return None
Y
Yu Yang 已提交
1940

X
Xin Pan 已提交
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1960

Q
Qiao Longfei 已提交
1961
    def all_parameters(self):
1962
        return list(self.iter_parameters())
1963

1964
    def iter_parameters(self):
M
minqiyang 已提交
1965
        return (item[1] for item in six.iteritems(self.vars)
1966
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1967

Y
Yu Yang 已提交
1968
    def create_var(self, *args, **kwargs):
1969
        var = Variable(block=self, *args, **kwargs)
1970 1971
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1972
        return var
Y
Yu Yang 已提交
1973

Q
Qiao Longfei 已提交
1974 1975 1976
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1977
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1978 1979
        """
        Rename variable in vars and ops' inputs and outputs
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1992
        """
M
minqiyang 已提交
1993 1994
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1995

T
typhoonzero 已提交
1996
        if not self.has_var(name):
1997
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1998 1999
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2000
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2001 2002 2003 2004 2005 2006 2007
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2008
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2009 2010 2011 2012
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2013
        orig_var_type = v.type
M
minqiyang 已提交
2014
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2015
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2016
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2017
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2018 2019 2020 2021
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2022
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2023 2024 2025 2026 2027 2028 2029
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2030
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2031 2032
            var = Variable(
                self,
T
typhoonzero 已提交
2033
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2034 2035 2036 2037
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2038
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2039 2040 2041
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2042
        self._sync_with_cpp()
2043
        return var
T
typhoonzero 已提交
2044

W
Wu Yi 已提交
2045 2046
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2047
        self.desc._remove_var(cpt.to_bytes(name))
2048 2049
        del self.vars[name]

Y
Yu Yang 已提交
2050 2051
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2052
        param = Parameter(global_block, *args, **kwargs)
2053
        if 'initializer' in kwargs:
2054 2055 2056 2057 2058

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2059 2060 2061 2062 2063
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2079
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2080
        return param
Y
Yu Yang 已提交
2081

Y
Yu Yang 已提交
2082
    def append_op(self, *args, **kwargs):
2083 2084 2085 2086 2087 2088
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2089
        if in_dygraph_mode():
2090 2091 2092
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2093 2094 2095 2096 2097
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2098

J
Jiabin Yang 已提交
2099 2100
            type = kwargs.get("type", None)

2101 2102 2103
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2104
                type=type,
M
minqiyang 已提交
2105 2106
                inputs=None,
                outputs=None,
2107
                attrs=attrs)
2108

M
minqiyang 已提交
2109 2110 2111
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2112
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2113 2114

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2115
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2116 2117
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2118
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2119
        else:
2120 2121 2122 2123 2124 2125 2126 2127 2128
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2129
            self.ops.append(op)
M
minqiyang 已提交
2130

2131 2132
        return op

W
Wu Yi 已提交
2133
    def _insert_op(self, index, *args, **kwargs):
2134 2135 2136 2137 2138 2139 2140 2141 2142
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2143 2144
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2145 2146 2147 2148
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2149
    def _remove_op(self, index):
2150 2151 2152 2153 2154 2155 2156 2157 2158
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2159 2160
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2161 2162
        del self.ops[index]

W
Wu Yi 已提交
2163
    def _slice_ops(self, start, end):
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2174
        return self.ops[start:end]
Y
Yancey1989 已提交
2175

W
Wu Yi 已提交
2176
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2177
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2178 2179
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2180
            op = Operator(
J
Jiabin Yang 已提交
2181
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2182

J
Jiabin Yang 已提交
2183
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2184
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2185 2186
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2187
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2188
        else:
2189 2190 2191 2192 2193 2194 2195 2196
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2197
            self.ops.insert(0, op)
2198

Y
Yu Yang 已提交
2199 2200
        return op

W
Wu Yi 已提交
2201
    def _sync_with_cpp(self):
2202
        """
2203 2204
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2205
        """
Q
Qiao Longfei 已提交
2206 2207 2208 2209 2210
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2211
        # sync variables removed from c++ end
2212
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2213
            if not self.desc.find_var(cpt.to_bytes(var)):
2214 2215
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2216
        # sync operators from cpp
2217 2218 2219 2220
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2237 2238 2239 2240 2241

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2242
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2243 2244 2245 2246 2247 2248 2249

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2263 2264 2265 2266
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2267
    def _copy_param_info_from(self, other):
2268
        """
2269 2270
        Copy the information of parameters from the other block.

2271
        Args:
2272 2273 2274 2275 2276
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2277 2278 2279 2280 2281

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2282 2283
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2284
        for p in other.iter_parameters():
2285 2286 2287
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2288
                raise ValueError("_copy_param_info_from should be invoked with "
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2301
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2302
                error_clip=p.error_clip,
2303 2304 2305
                name=v.name)
            self.vars[new_p.name] = new_p

2306
    def _clone_variable(self, var, force_persistable=True):
2307 2308
        """
        Clone a variable into current block.
2309

2310 2311
        Args:
            var: the variable to be cloned.
2312 2313 2314
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2315 2316

        Returns:
2317
            Variable: the new  variable cloned from 'var' in current block.
2318 2319
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2320 2321 2322 2323 2324
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2325 2326
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2327
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2328 2329 2330 2331 2332 2333
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2334
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2335 2336
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2337 2338 2339 2340 2341 2342 2343
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2344
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2345 2346
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2347
        return ret_var
2348

Y
Yu Yang 已提交
2349

2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2445
    def remove_input_by_id(self, node_id):
2446 2447 2448 2449 2450 2451
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2452
        self.node.remove_input(node_id)
2453

2454
    def remove_input(self, node):
2455 2456 2457 2458
        """
        Remove a node from inputs.

        Args:
2459
            node(IrNode): the node being removed.
2460
        """
2461
        self.node.remove_input(node.node)
2462

2463
    def append_input(self, node):
2464 2465 2466 2467
        """
        Append a node in inputs.

        Args:
2468
            node(IrNode): the node being appended.
2469
        """
2470
        self.node.append_input(node.node)
2471 2472 2473 2474 2475 2476 2477 2478

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2479
    def remove_output_by_id(self, node_id):
2480 2481 2482 2483 2484 2485
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2486
        self.node.remove_output(node_id)
2487

2488
    def remove_output(self, node):
2489 2490 2491 2492
        """
        Remove a node from outputs.

        Args:
2493
            node(IrNode): the node being removed.
2494
        """
2495
        self.node.remove_output(node.node)
2496

2497
    def append_output(self, node):
2498 2499 2500 2501
        """
        Append a node in outputs.

        Args:
2502
            node(IrNode): the node being appended.
2503
        """
2504
        self.node.append_output(node.node)
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
2722
                all(isinstance(v, Block) for v in val):
2723 2724
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
2725
                isinstance(val, core.ProgramDesc):
2726 2727 2728 2729
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2773 2774
class IrGraph(object):
    """
2775
    Python IrGraph. Beneath it is a core.Graph, which is used for
2776
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2777 2778
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2779 2780 2781 2782
    """

    def __init__(self, graph, for_test=False):
        """
2783 2784
        Construct an IrGraph using core.Graph.

2785 2786 2787 2788 2789 2790 2791 2792 2793
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2794 2795 2796 2797
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2798 2799 2800
        Warns:
            The method only clones the graph structure, not its attributes.

2801 2802 2803
        Returns:
            IrGraph: A new and duplicated graph.
        """
2804
        g = self.graph.clone()
2805 2806
        return IrGraph(g, self._for_test)

2807
    def is_test(self):
2808 2809 2810
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2811 2812
        return self._for_test

W
WangZhen 已提交
2813
    def all_nodes(self):
2814 2815 2816
        """
        Return all nodes included in the graph as a set.
        """
2817
        return {IrNode(node) for node in self.graph.nodes()}
2818

2819
    def all_var_nodes(self):
2820 2821 2822
        """
        Return all variable nodes included in the graph as a set.
        """
2823
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2824

2825
    def all_persistable_nodes(self):
2826 2827 2828
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2829 2830 2831 2832 2833
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2834
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2835

2836
    def all_op_nodes(self):
2837 2838 2839
        """
        Return all operator nodes included in the graph as a set.
        """
2840
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2841

2842
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2854
            IrVarNode: the created persistable variable node.
2855
        """
2856 2857 2858 2859 2860
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2861
        return IrVarNode(self.graph.create_var_node(var_desc))
2862 2863

    def create_var_node(self, name, var_type, shape, var_dtype):
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2875
            IrVarNode: the created variable node.
2876 2877
        """

2878 2879 2880 2881
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2882
        return IrVarNode(self.graph.create_var_node(var_desc))
2883 2884

    def create_var_node_from_desc(self, var_desc):
2885 2886 2887 2888 2889 2890 2891 2892
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2893
            IrVarNode: the created variable node.
2894
        """
2895
        return IrVarNode(self.graph.create_var_node(var_desc))
2896 2897

    def create_op_node(self, op_type, attrs, inputs, outputs):
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2908
            IrOpNode: the created operator node.
2909
        """
2910 2911
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2912
        for attr, value in six.iteritems(attrs):
2913
            self._update_desc_attr(op_desc, attr, value)
2914
        for input_name, var_nodes in six.iteritems(inputs):
2915 2916 2917 2918
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2919
        for output_name, var_nodes in six.iteritems(outputs):
2920 2921 2922 2923
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2924
        return IrOpNode(self.graph.create_op_node(op_desc))
2925 2926

    def create_op_node_from_desc(self, op_desc):
2927 2928 2929 2930 2931 2932 2933
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2934
            IrOpNode: the created operator node.
2935
        """
2936
        return IrOpNode(self.graph.create_op_node(op_desc))
2937 2938

    def update_input_link(self, old_input_node, new_input_node, op_node):
2939 2940 2941 2942
        """
        Update the input's link of a operator node.

        Args:
2943 2944 2945
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2946
        """
2947
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
2948 2949
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2950 2951 2952 2953
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2954
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2955

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

2974
    def link_to(self, node_in, node_out):
2975 2976 2977 2978
        """
        Connect two nodes.

        Args:
2979 2980
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2981
        """
2982
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2983
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2984 2985
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2986 2987

    def safe_remove_nodes(self, remove_nodes):
2988 2989 2990 2991 2992 2993 2994
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2995
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2996 2997 2998 2999
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3000 3001
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3002

Z
Zhen Wang 已提交
3003 3004 3005 3006 3007 3008 3009 3010
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3011
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3012 3013 3014 3015
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3016
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3017 3018 3019
                        ]
                    else:
                        var_nodes[each_var_name].append(
3020 3021
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3022 3023
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3024
    def has_circle(self):
3025 3026 3027 3028 3029 3030
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3031 3032 3033
        return core.has_circle(self.graph)

    def graph_num(self):
3034 3035 3036 3037 3038 3039
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3040 3041 3042
        return core.graph_num(self.graph)

    def topology_sort(self):
3043 3044 3045 3046 3047 3048
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3049
            list(IrNode): nodes in topology order.
3050
        """
3051
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3052
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3053 3054

    def build_adjacency_list(self):
3055 3056 3057 3058
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3059
            dict{IrNode: set(IrNode)}: the adjacency list.
3060
        """
3061 3062 3063 3064 3065
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3066

3067 3068 3069 3070 3071 3072 3073 3074
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3075
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3076 3077 3078 3079 3080
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3081 3082 3083
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3084
                                          + ' -o ' + pdf_save_path, shell=True)
3085 3086 3087 3088 3089
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3090
        remove_ctr_vars = set()
3091
        if remove_ctr_var:
3092
            for node in self.all_var_nodes():
3093 3094 3095
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3096 3097
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3098 3099
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3100 3101 3102 3103 3104 3105
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3106 3107 3108 3109
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3110 3111
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3112 3113 3114 3115 3116 3117 3118
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3119 3120 3121
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3122
        WARN: When the graph includes backward operator nodes, the
3123 3124 3125 3126 3127 3128
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3129
        convert_pass = core.get_pass('graph_to_program_pass')
3130 3131
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3132 3133 3134 3135
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3163
class Program(object):
D
dzhwinter 已提交
3164
    """
3165 3166
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3167
    it will contain nested block.
3168

D
dzhwinter 已提交
3169 3170
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
3180 3181 3182
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
3183
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
3184 3185

    Returns:
3186 3187 3188
        An empty Program.

    Return type: Program
D
dzhwinter 已提交
3189 3190

    Examples:
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3204 3205 3206

    """

3207 3208
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3209 3210
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3211
        self._seed = 0
Y
yuyang18 已提交
3212
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3213
        self.__op_role_var = []
T
tangwei12 已提交
3214

3215 3216
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3217
        self._is_distributed = False
3218
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3219
        self._is_chief = False
3220 3221 3222
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3223
        self._endpoints = []
3224 3225 3226
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3227
        self._trainers_endpoints = []
3228
        # the distributed lookup table names
T
tangwei12 已提交
3229
        self._distributed_lookup_table = None
3230 3231 3232

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3233 3234
        self._use_lamb = False

3235 3236 3237
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3238

3239 3240 3241
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3242
        self._program_config = None
3243

H
hutuxian 已提交
3244 3245 3246
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3247 3248 3249
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3250
    @property
3251
    def _op_role(self):
Y
yuyang18 已提交
3252 3253 3254 3255 3256 3257 3258 3259
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3260
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3261 3262 3263 3264
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3265 3266
        return self._current_role

3267 3268
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3269 3270 3271
        self._current_role = role

    @property
3272
    def _op_role_var(self):
Y
yuyang18 已提交
3273
        """
3274
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3275

3276
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3277 3278 3279

        Notes: This is a very low-level API. Users should not use it directly.
        """
3280
        return self.__op_role_var
Y
yuyang18 已提交
3281

3282 3283 3284 3285 3286 3287 3288 3289 3290
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3291
    @signature_safe_contextmanager
W
Wu Yi 已提交
3292
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3293 3294 3295 3296 3297 3298 3299
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3300
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3301 3302 3303

        Examples:

3304
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3305
            >>> p, g = backward(...)
W
Wu Yi 已提交
3306
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3307 3308
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3309
        tmp_role = self._current_role
3310
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3311

Y
yuyang18 已提交
3312 3313
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3314
        self.__op_role_var = [
3315 3316 3317
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3318
        yield
3319
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3320
        self._current_role = tmp_role
Y
Yu Yang 已提交
3321

S
rename  
sneaxiy 已提交
3322
    @signature_safe_contextmanager
X
Xin Pan 已提交
3323
    def _lr_schedule_guard(self, is_with_opt=False):
3324 3325 3326 3327 3328 3329 3330
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3331 3332 3333 3334
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3335 3336 3337

        Examples:

3338
            >>> import paddle.fluid as fluid
3339 3340 3341 3342
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3343 3344

        tmp_role = self._current_role
3345
        tmp_var = self.__op_role_var
3346

3347 3348
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3349 3350
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3351
        # TODO(typhoonzero): how to set target learning rate var
3352
        self.__op_role_var = []
3353
        yield
3354
        self.__op_role_var = tmp_var
3355
        self._current_role = tmp_role
3356

3357
    def __str__(self):
Y
yuyang18 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3367 3368
        return self.to_string(True)

F
fengjiayi 已提交
3369 3370 3371
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3372

3373 3374
        Parameters:
            - **throw_on_error** (bool): raise Value error when any of required fields
Y
yuyang18 已提交
3375
                is not set.
F
fengjiayi 已提交
3376

3377
            - **with_details** (bool): True if more details about variables and
Y
yuyang18 已提交
3378 3379 3380
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3381
        Returns:
3382
            The debug string describe current Program.
Y
yuyang18 已提交
3383 3384 3385 3386

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3397 3398 3399 3400 3401 3402 3403 3404 3405
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3406 3407
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3408 3409
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3410

W
Wu Yi 已提交
3411
    def _get_desc(self):
Y
yuyang18 已提交
3412 3413 3414 3415 3416 3417 3418
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3419 3420
        return self.desc

X
version  
Xin Pan 已提交
3421 3422 3423
    def _version(self):
        return self.desc._version()

3424
    @dygraph_not_support
3425
    def clone(self, for_test=False):
Y
yuyang18 已提交
3426
        """
3427 3428 3429 3430
        **Notes**:
            **1.** :code:`Program.clone()` **method DOES NOT clone** :code:`py_reader`.
            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.**
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3431

3432 3433
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3434

3435 3436

        Some operators, e.g., :ref:`cn_api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3437 3438 3439
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3440

Y
yuyang18 已提交
3441
        * Set for_test to False when we want to clone the program for training.
3442
        * Set for_test to True when we want to clone the program for testing.
3443 3444
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3445
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. For example:
Y
yuyang18 已提交
3446

L
Luo Tao 已提交
3447

3448 3449 3450
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
3451
            # Here we use clone before Momentum
3452 3453
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3454

3455 3456
        Parameters:
            - **for_test** (bool) - True if change the :code:`is_test` attribute of
Y
yuyang18 已提交
3457
                operators to :code:`True`.
3458

3459 3460 3461
        Returns:   A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``

        Return type: Program
Y
yuyang18 已提交
3462 3463 3464

        Examples:

3465
        Notes: The Program's order maybe different after :code:`clone` and
3466 3467 3468 3469 3470
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3508 3509 3510

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3578 3579
        """
        if for_test:
3580
            if self._appending_grad_times > 0:
3581 3582 3583 3584 3585 3586 3587
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3588 3589 3590
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3591
        else:
3592
            p = Program()
G
gongweibao 已提交
3593 3594
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3595
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3596 3597 3598
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3599 3600

            p._current_role = self._current_role
3601
            p.__op_role_var = self.__op_role_var
3602
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3603

W
Wu Yi 已提交
3604
            p._sync_with_cpp()
3605

W
Wu Yi 已提交
3606
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3607
        p._copy_data_info_from(self)
3608
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3609
        return p
3610

3611
    def _prune(self, targets):
Y
yuyang18 已提交
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3625 3626 3627 3628
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3629

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3664
        """
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

3682 3683
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3684 3685
        if not isinstance(targets, list):
            targets = [targets]
3686 3687 3688 3689 3690 3691

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3692 3693 3694 3695
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3696 3697
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3698
                    # and we need to find the current op that generate this
3699 3700 3701 3702 3703 3704 3705 3706
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3707
                    t = t.op
3708 3709 3710 3711
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3712
                else:
3713 3714
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3715 3716 3717

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3718
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3719 3720 3721
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3722
        res._sync_with_cpp()
3723 3724
        return res

X
Xin Pan 已提交
3725
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3726
        """
F
fengjiayi 已提交
3727 3728 3729 3730 3731
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3732
        3. change the :code:`is_test`
Y
yuyang18 已提交
3733 3734 3735
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3736
        Args:
X
Xin Pan 已提交
3737 3738
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3739

Y
yuyang18 已提交
3740 3741 3742 3743 3744 3745
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3746
        res = Program()
3747
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3748 3749 3750 3751

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3752
        if prune_read_op:
3753 3754 3755 3756 3757 3758 3759 3760 3761
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3762
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3763 3764

        # change all `is_test` attributes to True
M
minqiyang 已提交
3765
        for i in six.moves.range(res.desc.num_blocks()):
3766
            block = res.desc.block(i)
M
minqiyang 已提交
3767
            for j in six.moves.range(block.op_size()):
3768 3769
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3770
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3771 3772 3773
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3774
        res._sync_with_cpp()
3775 3776
        return res

3777 3778
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3779
        """
3780 3781 3782
        **Notes:**
            **- All information about parameters will be lost after serialization**
            **- This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3783

3784 3785
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3786

3787 3788
        Parameters:
            - **binary_str_type** (str) - the binary prootbuf string.
Y
yuyang18 已提交
3789

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
        Returns: Program: A deserialized Program.

        Return type: Program

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
3815
        """
3816 3817
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3818
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3819
        p._sync_with_cpp()
3820
        return p
Y
Yu Yang 已提交
3821

3822
    @staticmethod
3823
    def _construct_from_desc(desc):
3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3839 3840
    @property
    def random_seed(self):
Y
yuyang18 已提交
3841
        """
3842 3843
        **Notes: It must be set before the operators have been added.**

Y
yuyang18 已提交
3844 3845 3846
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

3847 3848 3849
        Returns: random seed in current Program

        Return type: int64
3850 3851 3852 3853 3854 3855 3856 3857

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
3858 3859 3860
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
3861 3862
                print(random_seed)
                prog.random_seed = 1
3863 3864
                z_var = fluid.layers.dropout(x_var, 0.7)

3865
                print(prog.random_seed)
Y
yuyang18 已提交
3866
        """
D
dzhwinter 已提交
3867 3868
        return self._seed

Q
qiaolongfei 已提交
3869 3870
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3871
        """
3872 3873 3874 3875 3876 3877 3878
        **Notes: This API has no effect in Dygraph mode**

        The number of :ref:`api_guide_Block_en`  in this Program.

        Returns: num of :ref:`api_guide_Block_en`  in current Program

        Return type: int(Platform-dependent size)
3879 3880 3881 3882 3883 3884 3885 3886 3887

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
3888 3889


Y
yuyang18 已提交
3890
        """
Q
qiaolongfei 已提交
3891 3892
        return self.desc.num_blocks()

D
dzhwinter 已提交
3893 3894 3895 3896 3897 3898
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3899
    def __repr__(self):
3900
        return self.__str__()
3901

Y
Yu Yang 已提交
3902
    def global_block(self):
Y
yuyang18 已提交
3903
        """
3904 3905 3906 3907 3908 3909 3910
        **Notes: This API has no effect in Dygraph mode**

        Get the first :ref:`api_guide_Block_en` of this Program.

        Returns: The first  :ref:`api_guide_Block_en`  of this Program.

        Return type: :ref:`api_guide_Block_en`
3911 3912 3913 3914 3915 3916 3917 3918 3919

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
3920

Y
yuyang18 已提交
3921
        """
Y
Yu Yang 已提交
3922 3923
        return self.blocks[0]

Q
Qiao Longfei 已提交
3924
    def block(self, index):
Y
yuyang18 已提交
3925
        """
3926
        **Notes: This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3927

3928 3929 3930 3931 3932 3933 3934 3935
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

        Parameter:
            - **index** (int) - The index of  :ref:`api_guide_Block_en`  to get

        Returns: The :code:`index` block

        Return type:  :ref:`api_guide_Block_en`
3936 3937 3938 3939 3940 3941 3942 3943 3944

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3945
        """
Q
Qiao Longfei 已提交
3946 3947
        return self.blocks[index]

Y
Yu Yang 已提交
3948
    def current_block(self):
Y
yuyang18 已提交
3949
        """
3950 3951
        **Notes: This API has no effect in Dygraph mode**

Y
yuyang18 已提交
3952 3953
        Get the current block. The :code:`current` block is the block to append
        operators.
3954

3955 3956 3957 3958
        Returns: The :code:`index` block

        Return type: Block

3959 3960 3961 3962 3963 3964 3965 3966
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3967
        """
Y
Yu Yang 已提交
3968 3969
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3970
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3981
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3982 3983 3984
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3985 3986 3987 3988
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3989
    def _rollback(self):
Y
yuyang18 已提交
3990 3991 3992 3993 3994
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3995 3996
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3997
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4008 4009 4010
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4011
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4012

W
Wu Yi 已提交
4013
    def _copy_param_info_from(self, other):
4014
        """
4015
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4016

Y
yuyang18 已提交
4017 4018 4019
        Notes: This is a very low level API. Users should not invoke it
        directly.

4020 4021 4022 4023 4024 4025 4026
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4027
            raise TypeError("_copy_param_info_from should be invoked with "
4028 4029 4030
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4031
            raise ValueError("_copy_param_info_from should be invoked with two "
4032
                             "program, with represent the same topology")
W
Wu Yi 已提交
4033
        self.global_block()._copy_param_info_from(other.global_block())
4034

4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4050
        self._parameters_on_pservers = other._parameters_on_pservers
4051
        self._endpoints = other._endpoints
4052
        self._ps_endpoint = other._ps_endpoint
4053 4054
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4055
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4056 4057
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4058

Y
yuyang18 已提交
4059 4060 4061
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4062 4063 4064 4065 4066 4067 4068
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4069
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4070 4071 4072
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4073
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4074
                             "program, with represent the same topology")
4075
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4076 4077
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4078 4079
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4080

4081
    @dygraph_not_support
4082
    def list_vars(self):
Y
yuyang18 已提交
4083
        """
4084
        Get all :ref:`api_guide_Variable` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4085

4086 4087 4088
        Returns: The Generator will yield every variable in this program.

        Return type: iterable :ref:`api_guide_Variable_en`
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4100
        """
4101
        for each_block in self.blocks:
4102
            for each_var in list(each_block.vars.values()):
4103 4104
                yield each_var

Y
Yu Yang 已提交
4105

Y
Yu Yang 已提交
4106
class Parameter(Variable):
4107
    """
4108
    Parameter is derived from Variable. A parameter is a persistable
4109
    Variable, and will be updated by optimizers after each iteration.
4110
    The training of a neural network is essentially the updating of
4111 4112
    its parameters.

4113
    Relative to a general Variable, a Parameter has several its own
4114 4115
    member variables:

4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4128 4129
    """

Y
Yu Yang 已提交
4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
4140 4141 4142

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4143 4144 4145 4146
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4147 4148
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4149
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4150

W
wanghaoshuang 已提交
4151
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4152

4153 4154
        self.is_distributed = False

F
fengjiayi 已提交
4155 4156 4157
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4158 4159 4160
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4161

F
update  
fengjiayi 已提交
4162 4163 4164 4165 4166 4167 4168 4169
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4170 4171 4172 4173 4174 4175 4176 4177 4178
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4179 4180 4181 4182 4183 4184
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4185
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4186
            for attr_name in additional_attr:
4187 4188
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4189 4190
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4191 4192 4193 4194
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4195

Y
Yu Yang 已提交
4196
# program is a global instance.
Y
Yu Yang 已提交
4197 4198
_main_program_ = Program()
_startup_program_ = Program()
4199

4200

4201
def default_startup_program():
Y
Yu Yang 已提交
4202
    """
Y
yuyang18 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
4212

4213 4214 4215
    Returns: current default startup program

    Returns type: Program
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4231
    """
Y
Yu Yang 已提交
4232
    return _startup_program_
4233

4234

4235
def default_main_program():
Y
Yu Yang 已提交
4236
    """
Y
yuyang18 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
4246

Y
Yu Yang 已提交
4247 4248
    Returns:
        Program: main program
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4277 4278
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
4279
    """
Y
Yu Yang 已提交
4280
    return _main_program_
Y
Yu Yang 已提交
4281 4282 4283 4284 4285


def switch_main_program(program):
    """
    Switch the main program to a new program.
4286

Y
Yu Yang 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4301
    Switch the startup program to a new program
Y
Yu Yang 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4314
@signature_safe_contextmanager
Y
Yu Yang 已提交
4315 4316
def program_guard(main_program, startup_program=None):
    """
4317 4318
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4319
    variables to the new main programs.
4320

Y
Yu Yang 已提交
4321
    Examples:
4322 4323 4324
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4325

4326 4327 4328 4329 4330
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4331 4332 4333

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4334

Y
Yu Yang 已提交
4335
    Examples:
4336
       .. code-block:: python
Y
yuyang18 已提交
4337

4338 4339 4340 4341 4342 4343
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
4344

Y
Yu Yang 已提交
4345
    Args:
4346 4347 4348
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4361 4362


W
Wu Yi 已提交
4363
def _get_var(name, program=None):
X
xuwei06 已提交
4364
    """
Y
yuyang18 已提交
4365
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4366

X
xuwei06 已提交
4367 4368 4369
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4370
        If None, default_global_program() will be used.
X
xuwei06 已提交
4371 4372 4373 4374 4375 4376 4377

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4378
    assert isinstance(program, Program)
X
xuwei06 已提交
4379 4380

    return program.global_block().var(name)
4381 4382


S
rename  
sneaxiy 已提交
4383
@signature_safe_contextmanager
L
lujun 已提交
4384 4385 4386 4387
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4388

4389
    yield
P
Paddle CI 已提交
4390

L
lujun 已提交
4391
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4392 4393


S
rename  
sneaxiy 已提交
4394
@signature_safe_contextmanager
L
lujun 已提交
4395 4396 4397 4398
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4399

4400
    yield
M
minqiyang 已提交
4401

L
lujun 已提交
4402
    _dygraph_current_expected_place_ = tmp_place
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()