nn.py 245.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
153 154 155 156 157 158 159 160 161
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
162
       is_test=False,
163
       name=None):
Y
Yu Yang 已提交
164
    """
165
    **Fully Connected Layer**
Y
Yu Yang 已提交
166

167 168 169 170 171 172 173 174
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
175
    to the output as well.
C
caoying03 已提交
176

C
caoying03 已提交
177
    This process can be formulated as follows:
178 179 180

    .. math::

181
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
182 183 184

    In the above equation:

C
caoying03 已提交
185 186 187 188
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
189
    * :math:`Act`: The activation function.
C
caoying03 已提交
190
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
191 192

    Args:
R
ranqiu 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
208 209
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
210
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
211
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
212
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
213

214
    Returns:
F
fengjiayi 已提交
215
        Variable: The transformation result.
216 217

    Raises:
C
caoying03 已提交
218
        ValueError: If rank of the input tensor is less than 2.
219 220 221 222

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
223
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
224
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
225
    """
C
caoying03 已提交
226

C
caoying03 已提交
227
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
228 229 230 231

    dtype = helper.input_dtype()

    mul_results = []
232 233
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
234 235 236
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
237

Y
Yu Yang 已提交
238
        w = helper.create_parameter(
239 240
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
241
        helper.append_op(
242 243 244
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
245
            outputs={"Out": tmp},
M
mozga-intel 已提交
246 247
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
248 249 250 251
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
252
    else:
253 254
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
255 256 257
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
258
            attrs={"use_mkldnn": False})
259 260 261 262
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
263 264


265 266 267
def embedding(input,
              size,
              is_sparse=False,
268
              is_distributed=False,
269 270 271
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
272
    """
273 274
    **Embedding Layer**

275
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
276 277
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
278 279 280

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
281 282

    Args:
283 284 285 286 287
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
288
        is_distributed(bool): Whether to run lookup table from remote parameter server.
289 290
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
291
            with zeros whenever lookup encounters it in :attr:`input`. If
292
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
293 294
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
295
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
296

297 298 299
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
300

301 302
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
303

C
chengduoZH 已提交
304
          dict_size = len(dataset.ids)
305
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
306
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
307 308 309 310 311 312
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
313 314
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
315 316 317 318 319
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
320 321 322 323 324
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
325 326 327
    return tmp


Y
yi.wu 已提交
328
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
329 330
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
331 332
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
333 334 335 336 337 338 339
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
340 341
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
342
    """
Y
yi.wu 已提交
343
    ${comment}
Y
Yibing Liu 已提交
344 345

    Args:
Y
yi.wu 已提交
346 347
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
348 349 350 351 352 353 354
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

355
        param_attr(ParamAttr|None): The parameter attribute for the learnable
356
                               hidden-hidden weights.
Y
Yibing Liu 已提交
357 358 359

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
360 361
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
362
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
363 364 365
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
366

367
                              1. `use_peepholes = False`
Y
yi.wu 已提交
368 369
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
370
                              2. `use_peepholes = True`
Y
yi.wu 已提交
371
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
372
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
373
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
374 375 376 377 378 379 380 381
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
382 383

    Returns:
Y
Yibing Liu 已提交
384 385
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
386

Y
Yibing Liu 已提交
387
    Examples:
Y
Yibing Liu 已提交
388 389
        .. code-block:: python

Y
Yibing Liu 已提交
390 391
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
392
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
393 394
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
395
    """
396

Y
Yu Yang 已提交
397
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
398
    size = size // 4
Y
Yu Yang 已提交
399 400 401 402 403 404 405 406 407 408 409 410
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
411 412 413 414 415 416 417 418 419 420
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
421 422 423

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
424
        inputs=inputs,
Y
Yu Yang 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
441 442 443 444 445 446 447 448 449 450 451
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
452 453
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
454 455 456
    """
    **Dynamic LSTMP Layer**

457 458 459 460 461 462
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
463 464 465 466 467

    The formula is as follows:

    .. math::

468
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
469

470
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
471

472
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
473

474
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
475

476
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
477

478
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
479

480
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
481

Y
Yibing Liu 已提交
482 483 484 485 486 487
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
488
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
489
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
490
          bias vector).
Y
Yibing Liu 已提交
491 492 493
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
494
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
495
    * :math:`h`: The hidden state.
496
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
497 498
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
499
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
500
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
501
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
502 503
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
504 505 506 507

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
508

Y
Yibing Liu 已提交
509 510 511 512 513 514 515 516 517 518 519 520
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
521
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
522 523
                               hidden-hidden weight and projection weight.

524 525
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
526 527
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
528 529
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
530 531
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
532 533 534 535 536 537
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
538
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
539 540 541
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
542
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
543 544 545 546 547 548 549 550 551
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
552
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
553 554
                              default "tanh".
        proj_activation(str): The activation for projection output.
555
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
556 557
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
558 559
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
560 561

    Returns:
562 563 564 565
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
566 567

    Examples:
568

Y
Yibing Liu 已提交
569 570
        .. code-block:: python

571 572 573 574
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
575
            hidden_dim, proj_dim = 512, 256
576
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
577
                                     act=None, bias_attr=None)
578 579 580
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
581 582 583 584
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
585
    """
586

Y
Yibing Liu 已提交
587
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
588
    size = size // 4
Y
Yibing Liu 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
633 634 635 636 637 638 639 640 641
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
642
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
643

644
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
645
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
646

G
guosheng 已提交
647 648 649 650 651 652 653 654 655
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
656

G
guosheng 已提交
657
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
658

G
guosheng 已提交
659
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
660 661
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
662 663 664 665
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
666
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
667 668

    Args:
669 670
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
671
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
672
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
673 674
            is the hidden size.
        size(int): The dimension of the gru cell.
675
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
676 677
            hidden-hidden weight matrix. Note:

678
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
679
              :math:`D` is the hidden size.
680
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
681
              The first part are weights of the update gate and reset gate with
682
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
683
              candidate hidden state with shape :math:`(D \\times D)`.
684
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
685
            hidden-hidden bias.
686
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
687 688 689
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
690
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
691
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
692 693 694 695
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
696 697

    Returns:
G
guosheng 已提交
698
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
699
            and sequence length is the same with the input.
700

G
guosheng 已提交
701
    Examples:
702

G
guosheng 已提交
703 704
        .. code-block:: python

705 706 707 708
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
709
            hidden_dim = 512
710
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
711 712 713 714 715 716 717 718 719 720
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
721
    batch_size = input.shape[0]
G
guosheng 已提交
722 723 724
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
725 726 727
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
751 752 753
def gru_unit(input,
             hidden,
             size,
754 755
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
756
             activation='tanh',
757
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
758
    """
759
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
760

761 762
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
763

764
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
765

766
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
767

768
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
769 770

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
771 772 773
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
774 775
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

776 777
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
778 779 780
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
781 782 783 784 785

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
786 787
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
788 789 790 791
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
792

793 794 795 796 797 798
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
799

800
             # assuming we have x_t_data and prev_hidden of size=10
801
             x_t = fluid.layers.fc(input=x_t_data, size=30)
802 803
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
804 805 806 807 808 809 810 811 812 813 814 815

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
816
    size = size // 3
Y
Yu Yang 已提交
817 818

    # create weight
819 820
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
821

822 823 824 825
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
826
    # create bias
827
    if helper.bias_attr:
Y
Yu Yang 已提交
828 829 830
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
831
        inputs['Bias'] = bias
Y
Yu Yang 已提交
832 833 834

    helper.append_op(
        type='gru_unit',
835
        inputs=inputs,
Y
Yu Yang 已提交
836 837 838 839 840 841
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
842 843
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
844 845 846 847 848
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
849
@templatedoc()
850
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
851 852 853 854 855 856 857
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
858
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
859 860 861 862
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
863 864 865
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
866 867

    """
Y
Yu Yang 已提交
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
893
@templatedoc()
894
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
895 896 897 898 899
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
900

Y
yuyang18 已提交
901
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
902

Y
yuyang18 已提交
903 904 905
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
906
        Variable: ${viterbi_path_comment}
907

Y
yi.wu 已提交
908 909 910 911 912
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
913
    """
Y
Yu Yang 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
927
@templatedoc()
F
fengjiayi 已提交
928
def cos_sim(X, Y):
Y
Yu Yang 已提交
929
    """
Y
yi.wu 已提交
930 931 932
    ${comment}

    Args:
933 934
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
935

Y
yi.wu 已提交
936
    Returns:
937
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
938
    """
F
fengjiayi 已提交
939
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
940 941 942 943 944 945 946 947 948 949 950 951 952
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


953
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
954 955 956 957 958
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
959
    training. The dropout operator randomly sets (according to the given dropout
960 961 962 963
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
964 965
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
966 967 968 969 970 971 972
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
973 974

    Returns:
975
        Variable: A tensor variable is the shape with `x`.
976 977

    Examples:
978

979 980
        .. code-block:: python

981 982
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
983 984
    """

F
fengjiayi 已提交
985
    helper = LayerHelper('dropout', **locals())
986 987
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
988 989 990 991

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

992 993 994 995 996
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
997 998 999 1000 1001 1002
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1003 1004 1005
    return out


1006
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1007
    """
Y
Yibing Liu 已提交
1008 1009
    **Cross Entropy Layer**

1010 1011 1012
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1013 1014

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1015
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1016

Y
Yibing Liu 已提交
1017
        .. math::
Y
yangyaming 已提交
1018

Y
Yibing Liu 已提交
1019 1020 1021
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1022 1023
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1024 1025 1026 1027 1028

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1029
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1030 1031 1032
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1033 1034
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1035
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1036

Y
Yibing Liu 已提交
1037
    Args:
Y
yangyaming 已提交
1038
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1039 1040 1041 1042
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1043
        label (Variable|list): the ground truth which is a 2-D tensor. When
1044 1045 1046 1047
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1048
        soft_label (bool): a flag indicating whether to
1049
                                           interpretate the given labels as soft
1050
                                           labels. Default: `False`.
M
minqiyang 已提交
1051 1052
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1053
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1054 1055 1056 1057 1058

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1059 1060 1061 1062 1063
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1064 1065 1066 1067 1068 1069

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1070
    """
F
fengjiayi 已提交
1071
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1072 1073 1074 1075 1076 1077
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1078 1079
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1080 1081 1082
    return out


F
fengjiayi 已提交
1083
def square_error_cost(input, label):
Y
Yu Yang 已提交
1084
    """
1085 1086
    **Square error cost layer**

1087 1088
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1089

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1103 1104
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1105 1106

    Returns:
G
guosheng 已提交
1107
        Variable: The tensor variable storing the element-wise squared error \
1108
                  difference of input and label.
1109 1110 1111 1112 1113 1114 1115 1116

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1117
    """
F
fengjiayi 已提交
1118
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1128 1129
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1130 1131 1132
    return square_out


Y
yi.wu 已提交
1133
@templatedoc()
Y
Yu Yang 已提交
1134 1135 1136 1137
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1138
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1139
    """
Y
yi.wu 已提交
1140
    **Chunk Evaluator**
Y
yi.wu 已提交
1141

Y
yangyaming 已提交
1142
    This function computes and outputs the precision, recall and
1143
    F1-score of chunk detection.
Y
yi.wu 已提交
1144

Y
yi.wu 已提交
1145 1146 1147 1148 1149 1150 1151 1152
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1153

Y
yi.wu 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1179

Y
yi.wu 已提交
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1204
    Args:
1205 1206 1207 1208 1209
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1210

Y
yi.wu 已提交
1211
    Returns:
Y
update  
yi.wu 已提交
1212 1213 1214
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1215

Y
yi.wu 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1228
    """
F
fengjiayi 已提交
1229
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1230 1231 1232 1233 1234

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1235 1236 1237
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1238 1239 1240 1241 1242 1243 1244 1245

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1246 1247 1248 1249
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1250 1251 1252
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1253 1254
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1255
        })
1256 1257
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1258 1259


1260
@templatedoc()
Y
Yu Yang 已提交
1261 1262 1263 1264 1265 1266 1267
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1268
                  act=None):
Y
Yu Yang 已提交
1269 1270 1271 1272
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1283

1284 1285
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1304
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1305 1306 1307 1308 1309 1310
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1311
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1312 1313 1314
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1315
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1334
        library is installed. Default: False
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1358
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1359
    """
1360
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1361
    has the same shape as the input.
Q
qiaolongfei 已提交
1362

1363 1364 1365 1366 1367 1368
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1369
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1370 1371 1372 1373 1374 1375 1376

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1377
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1412 1413 1414
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1415 1416
           stride=1,
           padding=0,
1417
           dilation=1,
Y
Yu Yang 已提交
1418 1419 1420
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1421
           use_cudnn=True,
1422 1423
           act=None,
           name=None):
Y
Yu Yang 已提交
1424
    """
C
chengduoZH 已提交
1425
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1426 1427
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1428
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1429 1430 1431 1432 1433 1434 1435
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1436 1437 1438
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1439

1440
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1441

C
chengduoZH 已提交
1442 1443
    .. math::

C
refine  
chengduoZH 已提交
1444
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1445

T
tensor-tang 已提交
1446
    Where:
C
chengduoZH 已提交
1447

1448 1449 1450 1451 1452
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1453
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1454 1455 1456

    Example:

1457 1458
        - Input:

W
weixing02 已提交
1459
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1460

W
weixing02 已提交
1461
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1462

1463
        - Output:
T
tensor-tang 已提交
1464

W
weixing02 已提交
1465
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1466

C
chengduoZH 已提交
1467
        Where
1468 1469

        .. math::
C
chengduoZH 已提交
1470

W
weixing02 已提交
1471 1472
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1473 1474

    Args:
1475
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1476
        num_filters(int): The number of filter. It is as same as the output
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1502 1503

    Returns:
G
guosheng 已提交
1504
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1505 1506
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1507
    Raises:
1508 1509
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1510

C
chengduoZH 已提交
1511 1512 1513
    Examples:
        .. code-block:: python

1514 1515
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1516 1517 1518
    """

    num_channels = input.shape[1]
1519 1520

    l_type = 'conv2d'
X
xzl 已提交
1521 1522
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1523
        l_type = 'depthwise_conv2d'
1524 1525 1526 1527

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1528 1529 1530 1531 1532
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1533
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1534

C
chengduoZH 已提交
1535 1536 1537
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1538
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1539

C
chengduoZH 已提交
1540 1541
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1542 1543

    input_shape = input.shape
M
minqiyang 已提交
1544
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1559
        type=l_type,
Y
Yu Yang 已提交
1560 1561 1562 1563 1564
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1565 1566 1567
        attrs={
            'strides': stride,
            'paddings': padding,
1568
            'dilations': dilation,
C
chengduoZH 已提交
1569
            'groups': groups,
1570
            'use_cudnn': use_cudnn,
1571
            'use_mkldnn': False
C
chengduoZH 已提交
1572
        })
Y
Yu Yang 已提交
1573 1574 1575 1576 1577 1578

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1596 1597 1598 1599 1600 1601
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1602 1603 1604 1605 1606 1607 1608 1609 1610

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1611 1612
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1613 1614 1615
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1616
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1642
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1643 1644
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1645
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1646 1647
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1648
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1649 1650
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1651
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1677 1678
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1693
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
1731
            'use_mkldnn': False
C
chengduoZH 已提交
1732 1733
        })

1734
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1735 1736 1737 1738

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1739
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1740
    """
Y
yangyaming 已提交
1741 1742 1743
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1755
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1756 1757 1758 1759 1760
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1761
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1762 1763 1764 1765 1766 1767 1768

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1769 1770
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1771

L
Luo Tao 已提交
1772 1773
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1774
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1775 1776 1777 1778 1779 1780 1781 1782
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1783

Y
yangyaming 已提交
1784
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1785 1786 1787 1788 1789
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1790 1791
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1792
    """
F
fengjiayi 已提交
1793
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1805 1806 1807 1808 1809
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1810 1811 1812
    return pool_out


C
add doc  
chengduoZH 已提交
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1838
def sequence_first_step(input):
L
Luo Tao 已提交
1839
    """
L
Luo Tao 已提交
1840
    This function gets the first step of sequence.
L
Luo Tao 已提交
1841 1842 1843 1844

    .. code-block:: text

       x is a 1-level LoDTensor:
1845
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1846 1847 1848 1849 1850
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1851
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1852
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1853

L
Luo Tao 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1863

Y
yangyaming 已提交
1864
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1865 1866 1867
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1868 1869 1870
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1871
def sequence_last_step(input):
L
Luo Tao 已提交
1872
    """
L
Luo Tao 已提交
1873
    This function gets the last step of sequence.
L
Luo Tao 已提交
1874 1875 1876 1877

    .. code-block:: text

       x is a 1-level LoDTensor:
1878
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1879 1880 1881 1882 1883
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1884
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1885
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1886

L
Luo Tao 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1896

Y
yangyaming 已提交
1897
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1898 1899 1900
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1901 1902 1903
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1904
@templatedoc()
Y
Yu Yang 已提交
1905
def pool2d(input,
C
chengduoZH 已提交
1906 1907
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1908 1909
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1910
           global_pooling=False,
C
chengduoZH 已提交
1911
           use_cudnn=True,
1912
           ceil_mode=False,
C
caoying03 已提交
1913
           name=None):
Y
Yu Yang 已提交
1914
    """
F
fengjiayi 已提交
1915
    ${comment}
1916 1917

    Args:
1918 1919 1920
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1921
                          feature, and W is the width of the feature.
1922
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1923
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1924
        pool_type: ${pooling_type_comment}
1925 1926
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1927 1928 1929
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
1930
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1931 1932
                        layer will be named automatically.

1933
    Returns:
F
fengjiayi 已提交
1934
        Variable: The pooling result.
F
fengjiayi 已提交
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1948 1949 1950 1951
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1952
                            global_pooling=False)
Y
Yu Yang 已提交
1953 1954 1955 1956 1957
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1958

C
chengduoZH 已提交
1959 1960 1961 1962 1963
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1964 1965 1966 1967
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1968 1969
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1970

C
Add doc  
chengduoZH 已提交
1971
    l_type = 'pool2d'
1972 1973

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1974 1975 1976 1977
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
1989
            "use_mkldnn": False
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2006
    pooling configurations mentioned in input parameters.
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2019

2020
    Returns:
2021
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2022 2023 2024 2025 2026
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2027

C
chengduoZH 已提交
2028 2029 2030 2031 2032
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2033 2034 2035
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2036

C
chengduoZH 已提交
2037 2038
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2039

2040 2041
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2042 2043 2044 2045
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2046
        type=l_type,
Y
Yu Yang 已提交
2047 2048 2049 2050 2051 2052 2053
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2054
            "paddings": pool_padding,
2055
            "use_cudnn": use_cudnn,
2056
            "ceil_mode": ceil_mode,
2057
            "use_mkldnn": False
Y
Yu Yang 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2070
               data_layout='NCHW',
Y
Yang Yang 已提交
2071
               in_place=False,
2072 2073
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2074
               moving_variance_name=None,
2075 2076
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2077
    """
Q
qiaolongfei 已提交
2078 2079 2080 2081
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2082

Q
qiaolongfei 已提交
2083
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2084

Q
qiaolongfei 已提交
2085 2086
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2087 2088 2089
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2102 2103

    Args:
Q
qiaolongfei 已提交
2104
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2105 2106 2107 2108
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2109 2110 2111
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2112
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2113 2114 2115 2116
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2117
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2118
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2119 2120

    Returns:
Q
qiaolongfei 已提交
2121
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2122 2123 2124 2125 2126 2127 2128

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2152
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2153

2154 2155
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2156 2157 2158
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2159
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2160
        shape=param_shape,
2161 2162 2163 2164 2165 2166 2167
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2168
            trainable=False,
W
wanghaoshuang 已提交
2169
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2170
        shape=param_shape,
2171 2172
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2173 2174 2175 2176 2177 2178

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2179 2180
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2181

2182
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2200 2201 2202 2203
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
2204
            "use_mkldnn": False,
2205
            "fuse_with_relu": fuse_with_relu
2206
        })
Y
Yu Yang 已提交
2207 2208 2209 2210

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2211
@templatedoc()
G
guosheng 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2222
    ${comment}
G
guosheng 已提交
2223 2224 2225

    The formula is as follows:

Y
yuyang18 已提交
2226
    ..  math::
G
guosheng 已提交
2227 2228 2229 2230 2231 2232 2233

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2234 2235 2236 2237 2238 2239 2240 2241
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2242

G
guosheng 已提交
2243 2244
    Args:
        input(Variable): The input tensor variable.
2245
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2246
            normalization. Default True.
2247
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2248 2249
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2250
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2251
            Default 1.
2252
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2253
            division by zero. Default 1e-05.
G
guosheng 已提交
2254
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2255 2256 2257 2258
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The 
            :attr:`param_attr` is initialized as 1 if it is added. Default None. 
G
guosheng 已提交
2259
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2260 2261 2262 2263
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The 
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2264
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2265 2266 2267
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2268 2269

    Returns:
Y
yuyang18 已提交
2270
        ${y_comment}
G
guosheng 已提交
2271 2272 2273

    Examples:

Y
yuyang18 已提交
2274 2275 2276
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2292
    if shift:
G
guosheng 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2317 2318 2319 2320
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2321 2322 2323
                     padding=0,
                     stride=1,
                     dilation=1,
2324
                     groups=None,
C
caoying03 已提交
2325
                     param_attr=None,
2326
                     bias_attr=None,
C
chengduoZH 已提交
2327
                     use_cudnn=True,
2328
                     act=None,
C
caoying03 已提交
2329
                     name=None):
Y
Yu Yang 已提交
2330
    """
2331 2332 2333 2334 2335 2336 2337 2338
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2339 2340
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2341 2342 2343
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2344 2345 2346 2347 2348

    For each input :math:`X`, the equation is:

    .. math::

2349
        Out = \sigma (W \\ast X + b)
2350

2351
    Where:
2352 2353 2354

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2355 2356 2357 2358
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2359

2360 2361 2362 2363
    Example:

        - Input:

2364
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2365

2366
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2367 2368 2369

        - Output:

2370
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2371 2372

        Where
Y
Yu Yang 已提交
2373

2374 2375
        .. math::

2376 2377 2378 2379
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2380 2381

    Args:
2382 2383 2384 2385
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2386 2387 2388 2389
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2417 2418

    Returns:
2419
        Variable: The tensor variable storing the convolution transpose result.
2420 2421

    Raises:
2422 2423
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2424 2425 2426 2427

    Examples:
       .. code-block:: python

2428 2429
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2430
    """
2431 2432 2433 2434 2435 2436 2437 2438 2439

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2440 2441 2442
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2443 2444 2445
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2446

C
chengduoZH 已提交
2447 2448
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2449

Y
Yu Yang 已提交
2450 2451 2452 2453 2454
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2455

Y
Yu Yang 已提交
2456 2457
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2458

C
chengduoZH 已提交
2459
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2460
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2461
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2462
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2463
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2464 2465 2466
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2467 2468 2469 2470 2471 2472 2473
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2474
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2475
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2476 2477 2478
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2479
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2480
    helper.append_op(
2481
        type=op_type,
Y
Yu Yang 已提交
2482 2483
        inputs={'Input': [input],
                'Filter': [img_filter]},
2484
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2485
        attrs={
2486
            'output_size': output_size,
2487 2488 2489 2490 2491
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2492 2493
        })

2494 2495 2496
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2497 2498


2499
def conv3d_transpose(input,
Y
Yu Yang 已提交
2500 2501 2502
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2503 2504 2505
                     padding=0,
                     stride=1,
                     dilation=1,
2506
                     groups=None,
C
caoying03 已提交
2507
                     param_attr=None,
2508
                     bias_attr=None,
C
chengduoZH 已提交
2509
                     use_cudnn=True,
2510
                     act=None,
C
caoying03 已提交
2511
                     name=None):
Y
Yu Yang 已提交
2512
    """
2513
    **Convlution3D transpose layer**
2514

2515
    The convolution3D transpose layer calculates the output based on the input,
2516
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2517 2518 2519 2520 2521 2522
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2523 2524 2525
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2526 2527 2528 2529 2530

    For each input :math:`X`, the equation is:

    .. math::

2531
        Out = \sigma (W \\ast X + b)
2532 2533 2534

    In the above equation:

2535 2536
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2537 2538 2539 2540
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2541

2542 2543 2544 2545
    Example:

        - Input:

2546
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2547

2548
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2549 2550 2551

        - Output:

2552
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2553 2554

        Where
Y
Yu Yang 已提交
2555

2556 2557
        .. math::

2558 2559 2560
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2561 2562

    Args:
2563
        input(Variable): The input image with [N, C, D, H, W] format.
2564 2565 2566
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2567
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2568 2569
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2570
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2571 2572 2573
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2574 2575
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2576
        stride(int|tuple): The stride size. If stride is a tuple, it must
2577 2578
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2579
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2580 2581 2582
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2583 2584 2585 2586 2587
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2588 2589 2590
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2591 2592 2593 2594 2595
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2596 2597

    Returns:
2598
        Variable: The tensor variable storing the convolution transpose result.
2599 2600

    Raises:
2601 2602
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2603 2604 2605 2606

    Examples:
       .. code-block:: python

2607 2608
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2609
    """
2610 2611
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2612
    if not isinstance(input, Variable):
2613
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2614 2615
    input_channel = input.shape[1]

2616 2617 2618
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2619

C
chengduoZH 已提交
2620 2621 2622
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2623 2624 2625 2626 2627 2628
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2629 2630 2631
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2632

2633
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2634
                         padding[0] - 1) // dilation[0] + 1
2635
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2636
                         padding[1] - 1) // dilation[1] + 1
2637
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2638
                         padding[2] - 1) // dilation[2] + 1
2639
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2640
    else:
2641 2642
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2643

2644
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2645
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2646 2647 2648
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2649
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2650
    helper.append_op(
2651
        type=l_type,
Y
Yu Yang 已提交
2652 2653
        inputs={'Input': [input],
                'Filter': [img_filter]},
2654
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2655 2656 2657 2658
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2659
            'groups': groups,
C
chengduoZH 已提交
2660 2661
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2662

2663 2664
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2665
    return out
Y
yangyaming 已提交
2666 2667


Y
yangyaming 已提交
2668
def sequence_expand(x, y, ref_level=-1, name=None):
2669
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2670 2671 2672 2673
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2674 2675 2676 2677 2678

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2679
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2680
                x.data = [[a], [b], [c], [d]]
2681 2682 2683
                x.dims = [4, 1]

            y is a LoDTensor:
2684 2685
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2686

Y
yangyaming 已提交
2687
            ref_level: 0
2688

Y
yangyaming 已提交
2689
            then output is a 1-level LoDTensor:
2690
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2691
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2692 2693 2694 2695
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2696
                x.data = [[a], [b], [c]]
2697 2698 2699
                x.dims = [3, 1]

            y is a LoDTensor:
2700
                y.lod = [[2, 0, 3]]
2701

Y
yangyaming 已提交
2702
            ref_level: -1
2703

Y
yangyaming 已提交
2704 2705 2706
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2707 2708 2709
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2710 2711
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2712
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2713
                        will be named automatically.
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2724
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2725
    """
Y
yangyaming 已提交
2726
    helper = LayerHelper('sequence_expand', input=x, **locals())
2727 2728 2729
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2730 2731 2732 2733 2734
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2735
    return tmp
2736 2737


C
chengduo 已提交
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2803 2804 2805 2806 2807 2808 2809
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2810 2811 2812
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2813
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2814 2815 2816 2817
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2818
            longest original sequence."
M
minqiyang 已提交
2819

F
fengjiayi 已提交
2820
    Returns:
M
minqiyang 已提交
2821
        Variable: The padded sequence batch and the original lengths before
2822
                  padding. All sequences has the same length.
M
minqiyang 已提交
2823

F
fengjiayi 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2838 2839 2840 2841 2842
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2843 2844 2845 2846 2847 2848
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2849 2850
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2851
        attrs={'padded_length': maxlen})
2852
    return out, length
F
fengjiayi 已提交
2853 2854


2855 2856 2857 2858 2859 2860 2861 2862 2863
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2864 2865
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2866 2867 2868

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2869 2870

    This layer does the search in beams for one time step. Specifically, it
2871 2872 2873 2874 2875 2876
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2877

2878 2879 2880 2881 2882 2883 2884 2885
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2886

2887
    Args:
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2913

2914
    Returns:
2915 2916
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2917 2918 2919 2920

    Examples:
        .. code-block:: python

2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2949
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2967 2968 2969 2970 2971 2972 2973
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2974

2975 2976 2977 2978 2979 2980 2981 2982 2983
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2984

2985 2986 2987 2988 2989 2990
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2991

2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3017 3018 3019 3020
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3021
              param_attr=None,
C
caoying03 已提交
3022 3023
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3024 3025 3026 3027
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3028
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3029

3030
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3031

3032
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3033

3034
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3035 3036 3037

            h_t & = o_t tanh(c_t)

3038 3039 3040 3041 3042 3043
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3044 3045 3046

        .. math::

3047
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3048 3049 3050 3051 3052 3053 3054 3055

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3056
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3057 3058

    Args:
Y
yangyaming 已提交
3059 3060 3061 3062 3063 3064
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3065
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3066 3067
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3068 3069
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3070 3071
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3072 3073

    Returns:
Y
yangyaming 已提交
3074
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3075 3076

    Raises:
3077 3078 3079 3080
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3081 3082 3083 3084 3085 3086

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3087
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3088
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3089
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3106
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3107 3108 3109 3110
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3111 3112
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3113 3114 3115
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3116
    size = cell_t_prev.shape[1]
3117
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3118 3119
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3120
                param_attr=param_attr,
3121
                bias_attr=bias_attr)
Y
yangyaming 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3134
    return h, c
G
guosheng 已提交
3135 3136


C
caoying03 已提交
3137
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3138
    """
Y
yangyaming 已提交
3139
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3140 3141 3142

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3143
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3144 3145
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3146 3147
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3148
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3149
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3150
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3151 3152
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3153 3154 3155

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3156

G
guosheng 已提交
3157 3158 3159 3160 3161 3162
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3163
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3164 3165 3166 3167
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3168 3169 3170 3171

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3172
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3173 3174 3175
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3176 3177 3178
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3179 3180
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3181 3182 3183 3184 3185
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3186
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3187 3188 3189 3190
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3191 3192


C
caoying03 已提交
3193
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3194
    """
Y
Yibing Liu 已提交
3195
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3196 3197 3198

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3199 3200 3201
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3202
            must be in the range :math:`[-rank(input), rank(input))`. If
3203
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3204
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3205 3206
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3207
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3208
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3209
                       will be named automatically.
G
guosheng 已提交
3210 3211

    Returns:
Y
Yibing Liu 已提交
3212
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3213

G
guosheng 已提交
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3224 3225
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3226 3227 3228 3229 3230 3231 3232

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3233 3234 3235
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3236 3237
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3238 3239 3240 3241 3242
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3243
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3244 3245 3246 3247
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3248 3249


C
caoying03 已提交
3250
def reduce_max(input, dim=None, keep_dim=False, name=None):
3251
    """
Y
yangyaming 已提交
3252
    Computes the maximum of tensor elements over the given dimension.
3253 3254 3255

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3256
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3257 3258 3259
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3260
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3261 3262
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3263
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3264 3265
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3266 3267 3268

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3269

3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3281 3282 3283 3284 3285 3286 3287

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3288 3289 3290
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3291 3292
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3293 3294 3295 3296 3297
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3298
            'dim': dim if dim != None else [0],
3299 3300 3301 3302 3303 3304
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3305
def reduce_min(input, dim=None, keep_dim=False, name=None):
3306
    """
Y
yangyaming 已提交
3307
    Computes the minimum of tensor elements over the given dimension.
3308 3309 3310

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3311
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3312 3313 3314
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3315
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3316 3317
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3318
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3319 3320
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3321 3322 3323

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3324

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3336 3337 3338 3339 3340 3341 3342

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3343 3344 3345
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3346 3347
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3348 3349 3350 3351 3352
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3353
            'dim': dim if dim != None else [0],
3354 3355 3356 3357
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3358 3359


3360 3361 3362 3363 3364 3365
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3366
        dim (list|int|None): The dimensions along which the product is performed. If
3367 3368
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3369 3370
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3371 3372 3373
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3374
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3375
            layer will be named automatically.
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3390
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3391
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3392 3393 3394 3395 3396 3397 3398

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3399 3400 3401
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3402 3403
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3404 3405 3406 3407 3408
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3409
            'dim': dim if dim != None else [0],
3410 3411 3412 3413 3414 3415
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3416
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3417
    """
C
caoying03 已提交
3418
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3419 3420 3421

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3422 3423 3424 3425 3426
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3427
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3428
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3429
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3430 3431
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3432 3433

    Returns:
D
dzhwinter 已提交
3434
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3444 3445
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3484
    .. math::
3485 3486

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3487 3488 3489 3490 3491

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3492
        x(Variable|list): The input tensor to l2_normalize layer.
3493
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3494 3495
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3496
        epsilon(float): The epsilon value is used to avoid division by zero, \
3497
            the defalut value is 1e-10.
3498
        name(str|None): A name for this layer(optional). If set None, the layer \
3499
            will be named automatically.
C
caoying03 已提交
3500 3501

    Returns:
3502
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3503 3504

    Examples:
3505

C
caoying03 已提交
3506 3507
        .. code-block:: python

3508 3509 3510 3511
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3512 3513
    """

F
fengjiayi 已提交
3514 3515
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3516 3517
    helper = LayerHelper("l2_normalize", **locals())

3518 3519
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3520
    helper.append_op(
3521 3522 3523 3524
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3525
        attrs={
3526 3527
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3528 3529
        })
    return out
3530 3531


S
sneaxiy 已提交
3532
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3533
    """
Y
ying 已提交
3534 3535 3536 3537
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3538

C
chengduoZH 已提交
3539
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3540
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3541

3542 3543 3544 3545 3546
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3547
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3548

C
chengduoZH 已提交
3549
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3550
      performs in the following way.
G
guosheng 已提交
3551

3552
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3553
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3554
        last two dimensions and a batched matrix multiply supporting broadcast
3555
        applies on the two tensors.
G
guosheng 已提交
3556

Y
ying 已提交
3557 3558
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3559
    removed after matrix multiplication.
G
guosheng 已提交
3560 3561 3562

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3563 3564 3565
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3566
        alpha (float): The scale of output. Default 1.0.
3567
        name(str|None): A name for this layer(optional). If set None, the layer
3568
            will be named automatically.
G
guosheng 已提交
3569 3570

    Returns:
3571
        Variable: The product Tensor variable.
G
guosheng 已提交
3572

G
guosheng 已提交
3573 3574 3575
    Examples:
        .. code-block:: python

3576
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3577 3578
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3579

3580 3581
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3582

3583 3584
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3585

3586 3587
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3588 3589 3590 3591

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3592 3593
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3594

Y
ying 已提交
3595
            # x: [M], y: [N]
3596
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3597
    """
Y
ying 已提交
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3610
            y_shape = y_shape + [1]
Y
ying 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3627
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3628
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3629
    helper.append_op(
3630 3631 3632 3633
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3634 3635 3636
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3637
            'alpha': float(alpha),
S
sneaxiy 已提交
3638
        })
3639
    return out
3640 3641


3642
def topk(input, k, name=None):
Q
qingqing01 已提交
3643 3644 3645 3646
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3647
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3648 3649 3650 3651 3652 3653
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3675 3676 3677
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3678
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3679
                 of input.
3680
        name(str|None): A name for this layer(optional). If set None, the layer
3681
                       will be named automatically.
F
fengjiayi 已提交
3682
                       Default: None
Q
qingqing01 已提交
3683 3684

    Returns:
3685 3686 3687
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3688
        within the last dimension of input.
Q
qingqing01 已提交
3689

F
fengjiayi 已提交
3690 3691
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3712
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3713
    """
Y
ying 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3723

Y
ying 已提交
3724
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3725

3726
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3727 3728
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3729
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3730

3731
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3732 3733
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3734

3735 3736 3737
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3738
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3739
                          the length of reference string.
3740
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3741
                                     calculating edit distance.
3742
        name (str): The name of this layer. It is optional.
3743

W
wanghaoshuang 已提交
3744
    Returns:
W
wanghaoshuang 已提交
3745
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3746 3747 3748 3749 3750

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3751
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3752
            cost = fluid.layers.edit_distance(input=x,label=y)
3753
    """
3754
    helper = LayerHelper("edit_distance", **locals())
3755

3756
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3757
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3758 3759 3760 3761 3762 3763 3764
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3765
            attrs={"tokens": ignored_tokens})
3766 3767 3768 3769 3770
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3771
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3772
            attrs={"tokens": ignored_tokens})
3773 3774
        label = erased_label

3775 3776
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3777
    sequence_num = helper.create_tmp_variable(dtype="int64")
3778 3779 3780 3781
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3782 3783
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3784 3785
        attrs={"normalized": normalized})

3786
    return edit_distance_out, sequence_num
3787 3788 3789 3790 3791


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3792

Y
ying 已提交
3793 3794 3795 3796
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3814
        input.lod = [[4, 4]]
3815 3816 3817 3818 3819 3820 3821

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3822
        output.lod = [[2, 1]]
3823 3824 3825

    Args:

Y
ying 已提交
3826 3827 3828 3829 3830 3831 3832 3833 3834
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3835
        name (str): The name of this layer. It is optional.
3836 3837

    Returns:
3838
        Variable: CTC greedy decode result. If all the sequences in result were
3839
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3840 3841 3842 3843 3844

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3845

3846
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3847
    """
3848
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3849
    _, topk_indices = topk(input, k=1)
3850 3851 3852 3853 3854 3855

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3856
        outputs={"Output": [ctc_out]},
3857 3858
        attrs={"merge_repeated": True,
               "blank": blank})
3859
    return ctc_out
3860 3861


F
fengjiayi 已提交
3862
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3863
    """
3864 3865
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3866
    to compute Connectionist Temporal Classification (CTC) loss.
3867 3868
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3869 3870 3871
    input tensor.

    Args:
3872
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3873 3874 3875 3876
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3877
       label (Variable): The ground truth of variable-length sequence,
3878 3879 3880
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3881 3882
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3883 3884 3885
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3886
         follewed by a mean_op.
W
wanghaoshuang 已提交
3887 3888

    Returns:
3889 3890
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3891 3892

    Examples:
3893

W
wanghaoshuang 已提交
3894
        .. code-block:: python
3895

3896 3897 3898
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3899 3900

    """
F
fengjiayi 已提交
3901
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3928 3929 3930
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3931 3932 3933 3934 3935
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3936

3937
            out.lod  = [[0, 1, 3]]
3938 3939 3940 3941

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3942 3943 3944 3945 3946 3947 3948
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3949 3950 3951

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3952 3953

    Returns:
3954

3955 3956 3957 3958 3959
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3960
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3961
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3962 3963 3964 3965 3966 3967 3968 3969 3970
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3971 3972


3973 3974 3975 3976
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3977 3978 3979 3980 3981 3982 3983
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3984 3985 3986 3987 3988 3989 3990
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3991 3992
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3993
            sample is 1.0.
3994 3995 3996
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3997

3998
    Returns:
Y
Yibing Liu 已提交
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4026
    """
Y
Yang Yu 已提交
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4046 4047 4048 4049 4050 4051 4052 4053 4054
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4071
    return cost / (num_neg_samples + 1)
4072 4073


G
guosheng 已提交
4074
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4075 4076
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4077
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4078 4079 4080 4081 4082 4083 4084 4085 4086
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4087

W
weixing02 已提交
4088
    Args:
M
minqiyang 已提交
4089
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4090 4091 4092 4093 4094
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4095 4096
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4097
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4098 4099
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4100 4101 4102 4103 4104 4105 4106 4107

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4108 4109 4110
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4111 4112 4113 4114 4115 4116 4117 4118
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4119
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4120 4121 4122 4123 4124
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4125 4126 4127 4128 4129 4130 4131 4132
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4133 4134
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4135
        inputs=inputs,
W
weixing02 已提交
4136 4137 4138 4139 4140 4141
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4142
def transpose(x, perm, name=None):
Y
ying 已提交
4143 4144 4145 4146 4147 4148 4149
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4150 4151 4152
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4153 4154 4155 4156 4157 4158 4159 4160

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4161
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4162 4163
    """

Y
fix ci.  
ying 已提交
4164
    if len(perm) != len(x.shape):
Y
ying 已提交
4165 4166 4167
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4168 4169 4170 4171 4172 4173
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4174 4175

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4176
    out = helper.create_tmp_variable(x.dtype)
4177
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4178
    helper.append_op(
4179
        type='transpose2',
Y
fix ci.  
ying 已提交
4180
        inputs={'X': [x]},
4181 4182
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4183 4184
        attrs={'axis': perm})
    return out
4185 4186


4187 4188 4189 4190 4191 4192 4193
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4194
    """
4195 4196 4197 4198 4199 4200 4201
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4202 4203 4204 4205 4206 4207 4208 4209 4210 4211

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4230 4231 4232 4233 4234 4235 4236 4237 4238
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4239 4240 4241
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4242 4243 4244 4245 4246
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4274 4275 4276
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4289
            output.dims = {8, 8}
4290

4291
            output.lod = [[4, 4]]
4292

D
dzhwinter 已提交
4293
     Examples:
4294 4295 4296

        .. code-block:: python

4297 4298
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4299 4300

    """
W
wanghaoshuang 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4311 4312 4313 4314 4315 4316 4317
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4318
    helper = LayerHelper('im2sequence', **locals())
4319 4320
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4321
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4322
    return out
4323 4324


Y
yuyang18 已提交
4325
@templatedoc()
4326
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4327 4328
    """
    ${comment}
4329 4330

    Args:
Y
yuyang18 已提交
4331
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4332 4333
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4334 4335 4336 4337 4338
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4339
        ${out_comment}.
4340 4341

    Examples:
Y
yuyang18 已提交
4342 4343 4344 4345
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4358
    return helper.append_activation(out)
4359 4360


Y
yuyang18 已提交
4361
@templatedoc()
4362 4363
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4364 4365 4366 4367 4368 4369 4370
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4371 4372

    Args:
Y
yuyang18 已提交
4373 4374
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4375 4376

    Returns:
Y
yuyang18 已提交
4377
        ${out_comment}.
4378 4379
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4380 4381 4382 4383 4384 4385

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4386 4387 4388 4389 4390 4391
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4392 4393


4394 4395 4396 4397
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4398 4399
    """
    **Softmax With Cross Entropy Operator.**
4400

4401 4402 4403 4404
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4405

4406 4407 4408
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4409

4410 4411 4412
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4413

4414
    The equation is as follows:
4415

4416
    1) Hard label (one-hot label, so every sample has exactly one class)
4417

4418 4419 4420 4421
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4422

4423 4424 4425
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4426

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4439 4440
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4441 4442
                            if soft_label is set to False. Default: -100

4443 4444 4445 4446 4447 4448 4449 4450 4451
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4452 4453
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4464 4465
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4466 4467 4468 4469 4470
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4471 4472
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4473
    For each instance, it computes the smooth L1 loss element by element first
4474
    and then sums all the losses. So the shape of ouput Variable is
4475
    [batch_size, 1].
4476

4477 4478
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4479
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4480
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4481
            L1 loss op with same shape as :attr:`x`.
4482
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4483 4484
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4485
            by this tensor element by element.
4486
        outside_weight (Variable|None): A tensor with rank at least 2. This
4487 4488
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4489
            element by element.
4490
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4491 4492
           scalar with default value 1.0.

4493
    Returns:
4494
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4495 4496 4497 4498 4499

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4500 4501
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4502
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4503
            out = fluid.layers.smooth_l1(x=fc, y=label)
4504
    """
4505

4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4521 4522 4523 4524


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4525
    This layer creates the one-hot representations for input indices.
4526 4527

    Args:
Y
Yibing Liu 已提交
4528 4529
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4530 4531

    Returns:
Y
Yibing Liu 已提交
4532
        Variable: The one-hot representations of input.
4533 4534

    Examples:
C
caoying03 已提交
4535
        .. code-block:: python
4536

Y
Yibing Liu 已提交
4537 4538
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4539 4540 4541 4542 4543 4544 4545 4546 4547
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4548 4549


Y
Yu Yang 已提交
4550
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4551
    """
Y
yi.wu 已提交
4552 4553 4554
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4555 4556 4557 4558 4559 4560

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4561 4562
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4563 4564 4565 4566 4567 4568

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4569 4570
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4571 4572
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4573 4574 4575 4576 4577
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4578
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4579
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4580 4581
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4582 4583
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4584 4585 4586
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4587 4588


4589
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4590
    """
C
caoying03 已提交
4591 4592
    Gives a new shape to the input Tensor without changing its data.

4593 4594 4595 4596 4597
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4598

4599
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4600

4601 4602 4603 4604
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4605
    2. 0 means the actual dimension value is going to be copied from the
4606 4607 4608 4609
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4610 4611

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4612
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4613
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4614

4615
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4616 4617
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4618 4619
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4620
    dimensions.
C
caoying03 已提交
4621

4622
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4623 4624 4625 4626
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4627 4628

    Args:
4629
        x(variable): The input tensor.
C
caoying03 已提交
4630 4631
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4632 4633 4634 4635 4636
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4637
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4638 4639 4640 4641
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4642
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4643

4644 4645
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4646

X
Xin Pan 已提交
4647 4648 4649
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4650 4651
    Examples:
        .. code-block:: python
G
guosheng 已提交
4652

4653
            data = fluid.layers.data(
4654
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4655
            reshaped = fluid.layers.reshape(
4656
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4657 4658 4659
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4660
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4661 4662 4663 4664 4665
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4666

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4682
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4683
    out = helper.create_tmp_variable(dtype=x.dtype)
4684
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4685
    helper.append_op(
4686
        type="reshape2",
X
Xin Pan 已提交
4687
        inputs=inputs,
D
dzhwinter 已提交
4688
        attrs={"shape": shape},
4689 4690
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4691

D
dzhwinter 已提交
4692
    return helper.append_activation(out)
4693

4694

4695
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4696
    """
M
minqiyang 已提交
4697 4698 4699
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4700
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4701

Y
Yibing Liu 已提交
4702 4703
    Examples:
    Case 1:
M
minqiyang 已提交
4704
      Given
Y
Yibing Liu 已提交
4705 4706 4707 4708 4709 4710 4711 4712
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4713
        and
Y
Yibing Liu 已提交
4714 4715 4716
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4717

Y
Yibing Liu 已提交
4718
    Args:
4719
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4720
        axes (list): List of integers, indicating the dimensions to be squeezed.
4721
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4722 4723 4724 4725 4726 4727 4728 4729

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4730
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4731 4732
    """
    helper = LayerHelper("squeeze", **locals())
4733
    out = helper.create_tmp_variable(dtype=input.dtype)
4734
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4735
    helper.append_op(
4736
        type="squeeze2",
4737
        inputs={"X": input},
Y
Yibing Liu 已提交
4738
        attrs={"axes": axes},
4739 4740
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4741

4742 4743 4744
    return out


4745
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4746
    """
M
minqiyang 已提交
4747 4748 4749
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4750

M
minqiyang 已提交
4751 4752
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4753
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4754

Y
Yibing Liu 已提交
4755
    Args:
4756
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4757
        axes (list): List of integers, indicating the dimensions to be inserted.
4758
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4759 4760 4761 4762 4763 4764 4765 4766

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4767
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4768 4769
    """
    helper = LayerHelper("unsqueeze", **locals())
4770
    out = helper.create_tmp_variable(dtype=input.dtype)
4771
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4772
    helper.append_op(
4773
        type="unsqueeze2",
4774
        inputs={"X": input},
Y
Yibing Liu 已提交
4775
        attrs={"axes": axes},
4776 4777
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4778

4779 4780
    return out

4781

Y
yangyaming 已提交
4782
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4783
    """
Y
Yibing Liu 已提交
4784
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4785 4786 4787 4788
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4789
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4790 4791 4792 4793 4794 4795

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4796
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4797 4798 4799
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4800
            target_lod: [4, 2]
Y
yangyaming 已提交
4801 4802

            then we get a 1-level LoDTensor:
4803
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4804 4805 4806 4807 4808 4809
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4810
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4811 4812 4813 4814
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4815
                y.data = [[2, 4]]
Y
yangyaming 已提交
4816 4817 4818
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4819
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4820 4821 4822 4823 4824 4825
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4826
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4827 4828 4829 4830
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4831
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4832 4833 4834 4835
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4836
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4837 4838 4839 4840 4841
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4842
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4843
                           from :attr:`y`.
Y
yangyaming 已提交
4844
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4845
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4846 4847

    Returns:
Y
Yibing Liu 已提交
4848
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4849 4850

    Raises:
Y
Yibing Liu 已提交
4851
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4887
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4916 4917
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4945 4946 4947 4948


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4949
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4950
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4951

G
guosheng 已提交
4952 4953 4954 4955
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4978
                         The length of :attr:paddings must be
G
guosheng 已提交
4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4989

G
guosheng 已提交
4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5004 5005


C
chengduo 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5086 5087 5088 5089 5090 5091 5092
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5093 5094
    called label-smoothing regularization (LSR).

5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5118
                              be :math:`(1, class\_num)`.
5119 5120
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5121
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5149 5150


Y
yi.wu 已提交
5151
@templatedoc()
5152 5153
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5154
    ${comment}
5155 5156

    Args:
Y
yi.wu 已提交
5157 5158
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5159 5160 5161
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5162 5163

    Returns:
Y
update  
yi.wu 已提交
5164
        Variable: ${out_comment}.
5165 5166

    Examples:
5167 5168
        .. code-block:: python

5169
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5215 5216
        .. code-block:: python

W
whs 已提交
5217 5218 5219 5220
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5221
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5222 5223 5224 5225 5226 5227
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5228 5229


5230 5231 5232 5233 5234
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5235
    """
Q
qiaolongfei 已提交
5236
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5237

5238
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5239 5240 5241
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5242

5243
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5244

5245
    Args:
5246
        input (Variable): The input tensor of image resize layer,
5247 5248
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5249
        out_shape(list|tuple|Variable|None): Output shape of image resize
5250 5251
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5252
        scale(float|None): The multiplier for the input height or width.
5253 5254 5255
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5256 5257
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5258 5259
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5260 5261

    Returns:
Q
update  
qiaolongfei 已提交
5262 5263
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5264

5265 5266 5267
    Examples:
        .. code-block:: python

5268
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5269
    """
5270 5271 5272 5273
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5274 5275
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5276 5277
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5278 5279 5280 5281

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5282 5283 5284
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5285
    if out_shape is not None:
B
baiyf 已提交
5286 5287 5288
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5289 5290 5291 5292 5293 5294
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5295 5296 5297 5298
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5299 5300
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5301
        type=resample_methods[resample],
5302
        inputs=inputs,
5303 5304 5305 5306
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5307 5308


Y
yuyang18 已提交
5309
@templatedoc(op_type="bilinear_interp")
5310 5311
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5312 5313 5314 5315 5316 5317
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5318

Y
yuyang18 已提交
5319 5320 5321 5322 5323 5324 5325 5326
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5327 5328 5329 5330 5331 5332 5333
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5334 5335 5336
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5337 5338 5339 5340 5341 5342 5343
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5344
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5345

5346
    Returns:
Q
update  
qiaolongfei 已提交
5347
        Variable: The output is a 4-D tensor of the shape
5348
        (num_batches, channls, out_h, out_w).
5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5359 5360 5361
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5362 5363 5364
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5365 5366
def gather(input, index):
    """
Q
qiaolongfei 已提交
5367 5368
    **Gather Layer**

5369
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5370 5371 5372 5373
    of X indexed by `index` and concatenate them together.

    .. math::

5374
        Out = X[Index]
W
whs 已提交
5375 5376 5377 5378 5379 5380 5381


    .. code-block:: text


                Given:

5382 5383
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5394
        input (Variable): The source input with rank>=1.
W
whs 已提交
5395 5396 5397 5398 5399 5400
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5401

W
whs 已提交
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5531

5532 5533 5534
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5535
    """
F
stash  
fengjiayi 已提交
5536
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5537
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5538
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5539
    if seed is None:
5540
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5541
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5542
    if isinstance(seed, int):
F
fengjiayi 已提交
5543 5544 5545 5546 5547
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5548 5549 5550 5551
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5552
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5553 5554
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5555 5556
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5557
    return out
W
whs 已提交
5558 5559


5560
def log(x, name=None):
W
wanghaoshuang 已提交
5561 5562 5563 5564 5565
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5566
        Out = \\ln(x)
W
wanghaoshuang 已提交
5567 5568

    Args:
5569
        x (Variable): Input tensor.
5570 5571
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5572 5573 5574 5575 5576 5577 5578 5579

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5580
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5581 5582
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5583
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5584
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5585
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5586 5587 5588
    return out


5589
def relu(x, name=None):
W
wanghaoshuang 已提交
5590 5591
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5592
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5593 5594 5595 5596
    the tensor elementwise.

    .. math::

5597
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5598 5599

    Args:
5600
        x (Variable): The input tensor.
5601 5602
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5603 5604 5605 5606 5607 5608 5609 5610

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5611
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5612 5613
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5614
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5615
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5616
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5617
    return out
5618 5619


W
whs 已提交
5620 5621 5622
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5623 5624 5625 5626
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5627
    .. math::
5628 5629

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5630

5631
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5632 5633 5634 5635 5636
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5637
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5638
                           Its shape should be the same as input.
5639
        num_classes (int): The possible number of labels.
W
whs 已提交
5640 5641 5642 5643

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5644
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5645 5646 5647 5648

    Examples:

        .. code-block:: python
5649

W
whs 已提交
5650 5651 5652 5653 5654 5655 5656 5657 5658
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5659 5660
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5661
        outputs={
W
whs 已提交
5662 5663 5664
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5665 5666 5667
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5742
                    isinstance(shape, Variable)):
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5776

5777 5778
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5779

5780 5781 5782 5783
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5784

5785 5786 5787 5788 5789
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5790 5791 5792

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5837 5838


W
whs 已提交
5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5853

W
whs 已提交
5854 5855
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5856

W
whs 已提交
5857
      Case 0:
M
minqiyang 已提交
5858

W
whs 已提交
5859 5860 5861
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5862

W
whs 已提交
5863 5864 5865
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5866

W
whs 已提交
5867
      Case 1:
M
minqiyang 已提交
5868

W
whs 已提交
5869 5870
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5871

W
whs 已提交
5872 5873 5874
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5875

W
whs 已提交
5876
      Case 2:
M
minqiyang 已提交
5877

W
whs 已提交
5878 5879
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5880

W
whs 已提交
5881 5882 5883
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5884 5885


W
whs 已提交
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6083
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6084
                        will be named automatically.
J
jerrywgz 已提交
6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6203

6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6214 6215
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6231
        ValueError: If axis is not in range [0, rank(x)].
6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6249
    x_shape = helper.create_tmp_variable(x.dtype)
6250
    helper.append_op(
6251
        type='flatten2',
6252
        inputs={"X": x},
6253 6254
        outputs={'Out': out,
                 'XShape': x_shape},
6255 6256
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6257 6258


C
chenweihang 已提交
6259
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6260
    """
C
chenweihang 已提交
6261
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6262
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6263 6264
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6265

C
chenweihang 已提交
6266 6267 6268 6269
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6270
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6271 6272 6273 6274 6275 6276
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6277
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6278 6279 6280
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6281 6282 6283
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6295
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6296 6297 6298 6299 6300 6301
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
6302

6303

S
sneaxiy 已提交
6304 6305 6306 6307 6308 6309 6310 6311 6312
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6313

S
sneaxiy 已提交
6314
    .. math::
6315

S
sneaxiy 已提交
6316 6317 6318
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6319
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6320 6321 6322 6323
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6324 6325 6326
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6327 6328
    Returns:
        Variable: The output sequence mask.
6329

S
sneaxiy 已提交
6330 6331
    """

Q
qingqing01 已提交
6332
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6333 6334 6335 6336 6337
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6338 6339 6340
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6341 6342
        outputs={'Y': out},
        attrs={
6343
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6344 6345 6346
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6347 6348


X
Xin Pan 已提交
6349
def stack(x, axis=0):
S
sneaxiy 已提交
6350 6351 6352 6353
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6354 6355 6356 6357 6358 6359 6360

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6361
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6362
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6363 6364

    Args:
6365
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6366
        axis (int|None): The axis along which all inputs are stacked.
6367

S
sneaxiy 已提交
6368 6369
    Returns:
        Variable: The stacked variable.
6370

S
sneaxiy 已提交
6371 6372
    """

X
Xin Pan 已提交
6373 6374 6375 6376 6377 6378
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

S
sneaxiy 已提交
6379
    out = helper.create_tmp_variable(dtype=x[0].dtype)
X
Xin Pan 已提交
6380
    helper.append_op(
S
sneaxiy 已提交
6381 6382
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6383

X
Xin Pan 已提交
6384
    return out
D
dzhwinter 已提交
6385 6386 6387 6388 6389 6390 6391


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6392

D
dzhwinter 已提交
6393 6394 6395
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6396
    raised.
D
dzhwinter 已提交
6397 6398

    Args:
M
minqiyang 已提交
6399
        x (Variable): Input variable.
D
dzhwinter 已提交
6400 6401
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6402

D
dzhwinter 已提交
6403 6404
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6405

D
dzhwinter 已提交
6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
S
sneaxiy 已提交
6416 6417
    for _ in xrange(num):
        outs.append(helper.create_tmp_variable(dtype=x.dtype))
D
dzhwinter 已提交
6418 6419 6420 6421 6422 6423 6424 6425

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6438

W
whs 已提交
6439 6440 6441 6442
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6443

W
whs 已提交
6444
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6445

W
whs 已提交
6446
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6447

W
whs 已提交
6448 6449 6450 6451
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6452

W
whs 已提交
6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
G
fix  
gongweibao 已提交
6476 6477 6478 6479 6480


from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6481
@templatedoc()
G
fix  
gongweibao 已提交
6482 6483 6484 6485 6486 6487 6488 6489 6490
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6491
    ${comment}
G
fix  
gongweibao 已提交
6492 6493

    Args:
G
gongweibao 已提交
6494 6495 6496
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6497
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6498 6499 6500
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6501 6502
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6503
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6525 6526


G
gongweibao 已提交
6527
@templatedoc()
6528
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6529
    """
G
gongweibao 已提交
6530
    ${comment}
G
fix  
gongweibao 已提交
6531 6532

    Args:
G
gongweibao 已提交
6533 6534 6535 6536
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6537 6538 6539
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6540
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
6556
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6557 6558 6559 6560 6561
        })

    return out


G
gongweibao 已提交
6562
@templatedoc()
G
fix  
gongweibao 已提交
6563
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6564
    """
G
gongweibao 已提交
6565
    ${comment}
G
fix  
gongweibao 已提交
6566 6567

    Args:
G
gongweibao 已提交
6568 6569 6570 6571
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6572
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6573 6574

    Returns:
G
gongweibao 已提交
6575
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6576 6577 6578 6579

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6580
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6592
@templatedoc()
G
fix  
gongweibao 已提交
6593 6594 6595 6596 6597 6598 6599 6600 6601
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6602
    ${comment}
G
fix  
gongweibao 已提交
6603 6604

    Args:
G
gongweibao 已提交
6605 6606
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6607
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6608 6609 6610 6611
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6612
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6613 6614

    Returns:
G
gongweibao 已提交
6615
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6638
@templatedoc()
6639
def sum(x):
G
fix  
gongweibao 已提交
6640
    """
G
gongweibao 已提交
6641
    ${comment}
G
fix  
gongweibao 已提交
6642 6643

    Args:
G
gongweibao 已提交
6644
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6645 6646

    Returns:
G
gongweibao 已提交
6647
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6648 6649 6650
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6651
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6652 6653 6654 6655
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
6656
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6657 6658 6659 6660

    return out


G
gongweibao 已提交
6661
@templatedoc()
G
fix  
gongweibao 已提交
6662 6663
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6664
    ${comment}
G
fix  
gongweibao 已提交
6665 6666

    Args:
G
gongweibao 已提交
6667 6668 6669 6670
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6671 6672

    Returns:
G
gongweibao 已提交
6673
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6674 6675 6676 6677

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6678
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6690
@templatedoc()
G
fix  
gongweibao 已提交
6691 6692
def shape(input):
    """
G
gongweibao 已提交
6693
    ${comment}
G
fix  
gongweibao 已提交
6694 6695

    Args:
G
gongweibao 已提交
6696
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6697 6698

    Returns:
G
gongweibao 已提交
6699
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6700 6701 6702 6703

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6704
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6705
    helper.append_op(
G
fix  
gongweibao 已提交
6706
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6707 6708

    return out
G
merge  
gongweibao 已提交
6709 6710


S
sneaxiy 已提交
6711 6712 6713 6714 6715 6716 6717 6718
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6719 6720 6721 6722 6723 6724
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6725

S
sneaxiy 已提交
6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6737
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6738 6739 6740 6741 6742 6743 6744 6745
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6746
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6747
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6748 6749 6750 6751 6752 6753

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6754 6755 6756 6757 6758
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6769
    return helper.append_activation(out)
S
sneaxiy 已提交
6770 6771


6772
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6773 6774 6775
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


6776
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6777 6778 6779
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


6780
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6781 6782 6783
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


6784
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6785 6786 6787
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


6788
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6789 6790 6791
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


6792
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6793 6794 6795
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


6796
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6808 6809
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6810
        ])
M
minqiyang 已提交
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972


def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
    helper = LayerHelper(op_name, **locals())

    if binary_op:
        assert x.dtype == y.dtype

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
def logical_and(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_or(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_xor(x, y, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
def logical_not(x, out=None, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out