framework.py 164.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
S
sneaxiy 已提交
46 47 48
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
49
    'in_dygraph_mode',
C
chengduo 已提交
50
    'is_compiled_with_cuda',
51
    'Variable',
52
    'load_op_library',
53
    'require_version',
54
]
Y
Yu Yang 已提交
55

Q
qiaolongfei 已提交
56 57 58 59
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
60 61
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
62 63
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
64 65


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
def require_version(min_version, max_version=None):
    """
        Check if the installed version of PaddlePaddle is in [min_version, max_version],
        if the installed version is lower than ``min_version`` or higher than ``max_version``,
        an exception will be thrown, NO returns if the installed version is satisfied.

        Args:
            min_version (str): the minimum version required (like '1.4.0').
            max_version (str, optional): the max version required (like '1.6.0'), default is None,
                meaning any version equal or higher than ``min_version`` is acceptable.

        Returns:
            None.

        Raises:
            TypeError: if the type of ``min_version`` is not str.
            TypeError: if the type of ``max_version`` is not str or type(None).
            ValueError: if the value of ``min_version`` is not in version format.
            ValueError: if the value of ``max_version`` is not in version format or None.
            Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                # any version >= 0.1.0 is acceptable.
                fluid.require_version('0.1.0')

                # if 0.1.0 <= version <= 10.0.0, it is acceptable.
                fluid.require_version(min_version='0.1.0', max_version='10.0.0')
        """
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
            % (type(min_version)))

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
            % (type(max_version)))

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
            "like '1.5.2.0', but received %s" % min_version)

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
                "like '1.5.2.0', but received %s" % max_version)

    version_installed = [
        fluid_version.major, fluid_version.minor, fluid_version.patch,
        fluid_version.rc
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
        for i in six.moves.range(len(ver_a)):
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, max_version, fluid_version.full_version))
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
                "please make sure the version is good with your code." %
                (min_version, fluid_version.full_version))
        return

    min_version_split = min_version.split('.')
    min_version_to_check = min_version_split + zero_version[len(
        min_version_split):]

    if max_version is not None:
        max_version_split = max_version.split('.')
        max_version_to_check = max_version_split + zero_version[len(
            max_version_split):]

        if version_cmp(version_installed,
                       max_version_to_check) > 0 or version_cmp(
                           version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
                % (min_version, max_version, fluid_version.full_version))
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
                % (min_version, fluid_version.full_version, min_version))


L
lujun 已提交
173
def in_dygraph_mode():
L
lujun 已提交
174
    """
175 176
    This function checks whether the program runs in dynamic graph mode or not.
    You can turn on dynamic graph mode with :ref:`api_fluid_dygraph_guard` api.
L
lujun 已提交
177 178

    Returns:
179
        bool: Whether the program is running in dynamic graph mode.
L
lujun 已提交
180 181 182 183

    Examples:
        .. code-block:: python

184
            import paddle.fluid as fluid
L
lujun 已提交
185
            if fluid.in_dygraph_mode():
186 187 188
                print('running in dygraph mode')
            else:
                print('not running in dygraph mode')
L
lujun 已提交
189 190

    """
L
lujun 已提交
191
    return _dygraph_tracer_ is not None
192 193


194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
216 217
def _dygraph_tracer():
    return _dygraph_tracer_
218

W
Wu Yi 已提交
219

M
minqiyang 已提交
220
def _current_expected_place():
L
lujun 已提交
221
    return _dygraph_current_expected_place_
M
minqiyang 已提交
222 223


S
sneaxiy 已提交
224
def _cpu_num():
225
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
226 227 228 229 230 231 232 233
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
234
        os.environ['CPU_NUM'] = str(1)
235
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
236 237 238 239 240 241 242 243 244 245
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
246 247


C
chengduo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


H
hong 已提交
263 264 265 266 267 268 269 270 271 272 273 274 275
def _var_base_to_np(var_base):
    """
    convert VarBase tp numpy
    
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase

    """
    var = var_base._copy_to(core.CPUPlace(), True)
    return np.array(var.value().get_tensor())


S
sneaxiy 已提交
276
def cuda_places(device_ids=None):
L
lujun 已提交
277
    """
278 279 280 281 282
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

    This function creates a list of :code:`fluid.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
283 284

    If :code:`device_ids` is None, environment variable of
285
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
286 287 288
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
289
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
290 291

    If :code:`device_ids` is not None, it should be the device
292
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
S
add doc  
sneaxiy 已提交
293 294 295
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
296 297
    Parameters:
        device_ids (list or tuple of int, optional): list of GPU device ids.
S
add doc  
sneaxiy 已提交
298 299

    Returns:
300
        list of fluid.CUDAPlace: Created GPU place list.
L
lujun 已提交
301 302 303 304

    Examples:
        .. code-block:: python

305
            import paddle.fluid as fluid
L
lujun 已提交
306 307 308
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
309 310 311
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
312
        device_ids = _cuda_ids()
S
sneaxiy 已提交
313 314 315 316 317 318
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
319
    """
320
    This function creates a list of :code:`fluid.CPUPlace` objects, and returns the created list.
S
add doc  
sneaxiy 已提交
321 322 323
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
324 325
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
326 327
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
328

329 330
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
331 332

    Returns:
333
        list of fluid.CPUPlace: Created list of CPU places.
L
lujun 已提交
334 335 336 337

    Examples:
        .. code-block:: python

338
            import paddle.fluid as fluid
L
lujun 已提交
339 340 341
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
342 343 344 345 346 347
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
348
    """
349
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
350 351 352

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
353 354 355 356
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
357

358 359
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
360 361

    Returns:
362
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
363 364 365 366

    Examples:
        .. code-block:: python

367
            import paddle.fluid as fluid
L
lujun 已提交
368 369 370 371 372
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
373 374 375
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
Y
Youwei Song 已提交
376 377
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
378 379


380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
406
@signature_safe_contextmanager
407 408 409 410
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

411 412 413
    Note: 
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
414 415

    Args:
416
        prefix(str, optional): prefix. Default is none.
417 418 419

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
420

421
          import paddle.fluid as fluid
422
          with fluid.name_scope("s1"):
423 424 425 426 427 428
             a = fluid.data(name='data', shape=[None, 1], dtype='int32')
             b = a + 1
             with fluid.name_scope("s2"):
                c = b * 1
             with fluid.name_scope("s3"):
                d = c / 1
429
          with fluid.name_scope("s1"):
430
                f = fluid.layers.pow(d, 2.0)
431
          with fluid.name_scope("s4"):
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
                g = f - 1

          # Op are created in the default main program.  
          for op in fluid.default_main_program().block(0).ops:
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
451 452
    """
    # TODO(panyx0718): Only [0-9a-z].
453 454 455 456 457 458 459 460 461
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
462 463 464 465 466 467 468 469 470 471 472 473


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
474 475 476
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
477 478 479 480


def grad_var_name(var_name):
    """
481 482
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
483 484 485
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
486

487
def convert_np_dtype_to_dtype_(np_dtype):
488 489
    """
    Convert the data type in numpy to the data type in Paddle
490

491
    Args:
492
        np_dtype(np.dtype): the data type in numpy.
493

494 495
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
496 497

    """
498 499
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
500
        return core.VarDesc.VarType.FP32
501
    elif dtype == np.float64:
502
        return core.VarDesc.VarType.FP64
503
    elif dtype == np.float16:
504
        return core.VarDesc.VarType.FP16
505
    elif dtype == np.int32:
506
        return core.VarDesc.VarType.INT32
507
    elif dtype == np.int16:
508
        return core.VarDesc.VarType.INT16
509
    elif dtype == np.int64:
510
        return core.VarDesc.VarType.INT64
511
    elif dtype == np.bool:
512
        return core.VarDesc.VarType.BOOL
513 514
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
515 516
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
517 518
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
519
    else:
M
minqiyang 已提交
520
        raise ValueError("Not supported numpy dtype %s" % dtype)
521 522 523


def dtype_is_floating(dtype):
524 525 526
    """
    Check the data type is floating or not.
    Args:
527
        dtype(np.dtype|core.VarDesc.VarType): data type.
528 529 530 531 532
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
533
    if not isinstance(dtype, core.VarDesc.VarType):
534 535
        dtype = convert_np_dtype_to_dtype_(dtype)

536 537 538 539
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
540 541


Y
Yang Yang(Tony) 已提交
542
def _debug_string_(proto, throw_on_error=True):
543 544 545 546 547 548 549 550 551 552 553
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
554
    error_fields = list()
Y
Yang Yang(Tony) 已提交
555
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
556 557
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
558 559 560
    return proto.__str__()


X
Xin Pan 已提交
561
class Variable(object):
562
    """
563
    **Notes**:
564
        **The constructor of Variable should not be invoked directly.**
565

566 567
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**

568 569 570
        **In Dygraph Mode: Please use** :ref:`api_fluid_dygraph_to_variable` **to create a dygraph variable with real data**

    In Fluid, every input and output of an OP is a variable. In most
571
    cases, variables are used for holding different kinds of data or training
572 573
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
574

575
    There are many kinds of variables. Each kind of them has its own attributes
576
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
577

578
    Most of a Variable's member variables can be setted to be None. It mean
579
    it is not available or will be specified later.
580

581
    Examples:
582 583
        In Static Graph Mode:

584 585
        .. code-block:: python

586
            import paddle.fluid as fluid
587
            cur_program = fluid.Program()
588 589 590 591
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
592
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
593 594 595 596 597 598 599 600 601

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

602 603
    """

Y
Yu Yang 已提交
604 605
    def __init__(self,
                 block,
Y
Yu Yang 已提交
606
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
607 608 609 610
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
611
                 capacity=None,
Q
QI JUN 已提交
612
                 persistable=None,
F
fengjiayi 已提交
613
                 error_clip=None,
Y
Yu Yang 已提交
614
                 stop_gradient=False,
F
fengjiayi 已提交
615
                 is_data=False,
H
Huihuang Zheng 已提交
616
                 need_check_feed=False,
H
hong 已提交
617
                 belong_to_optimizer=False,
Y
Yu Yang 已提交
618
                 **kwargs):
Y
Yu Yang 已提交
619 620
        self.block = block
        if name is None:
Y
Yu Yang 已提交
621
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
622

Y
Yu Yang 已提交
623
        if dtype is not None:
624
            if not isinstance(dtype, core.VarDesc.VarType):
625
                dtype = convert_np_dtype_to_dtype_(dtype)
626

H
hong 已提交
627 628
        self.belong_to_optimizer = belong_to_optimizer

L
lujun 已提交
629
        if in_dygraph_mode():
M
minqiyang 已提交
630
            # record vars in tracer rather than blocks
M
minqiyang 已提交
631
            self._ivar = kwargs.get("ivar", None)
632
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
633
            if not self._ivar:
634
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
635 636 637
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
638
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
639
                    if persistable else False)
M
minqiyang 已提交
640
            if persistable:
L
lujun 已提交
641
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
642
            self.op = None
M
minqiyang 已提交
643
        else:
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
708 709 710
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

711 712 713 714 715 716 717 718
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
719
            self.block.vars[name] = self
720
            self.op = None
721
            self._stop_gradient = stop_gradient
722
            self.is_data = is_data
Y
Yu Yang 已提交
723

724
    @dygraph_only
725 726
    def detach(self):
        """
727 728
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
729

730
        Returns a new Variable, detached from the current graph.
731

732
        Returns:
733
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable): The detached Variable.
734

735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

763
    @dygraph_only
764
    def numpy(self):
765
        """
766 767
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
768

769
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
770 771 772 773 774

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
775
            ndarray: dtype is same as current Variable
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
797
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
798
        return np.array(new_ivar.value().get_tensor())
799

800 801 802
    @dygraph_only
    def set_value(self, value):
        """
803 804 805
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.ones([3, 32, 32], dtype='float32')
                with fluid.dygraph.guard():
                    fc = fluid.dygraph.FC("fc", 4)
                    t = to_variable(data)
                    fc(t)  # call with default weight
                    custom_weight = np.random.randn(1024, 4).astype("float32")
                    fc.weight.set_value(custom_weight)  # change existing weight
                    out = fc(t)  # call with different weight

        """
H
hong 已提交
829 830 831 832
        assert isinstance(value, (Variable, np.ndarray, core.VarBase)), \
                "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
833
        if isinstance(value, Variable):
H
hong 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847
            value_np = value.numpy()
        elif isinstance(value, core.VarBase):
            value_np = _var_base_to_np(value)
        self_tensor = self._ivar.value().get_tensor()

        self_tensor_np = np.array(self_tensor)

        assert self_tensor_np.shape == value_np.shape,  \
                                      "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format( self._ivar.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype,  \
                                      "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format( self._ivar.name, self_tensor_np.dtype, value_np.dtype)

        self_tensor.set(value_np, _current_expected_place())
848

849
    @dygraph_only
850
    def backward(self, backward_strategy=None):
851
        """
852 853
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
854 855 856

        Run backward of current Graph which starts from current Variable

857 858
        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
859

860 861
        Returns:
            NoneType: None
862 863 864 865 866 867 868 869 870 871 872 873

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
874 875
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
876 877 878 879 880 881 882 883 884
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
885 886 887 888 889
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
890

J
Jiabin Yang 已提交
891 892 893 894
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
895

896
    @dygraph_only
897
    def gradient(self):
898
        """
899 900
        **Notes**:
            **This API is ONLY avaliable in Dygraph mode**
901 902 903

        Get the Gradient of Current Variable

904 905
        Returns:
            ndarray: Numpy value of the gradient of current Variable
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
936 937
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
938

939
    @dygraph_only
940
    def clear_gradient(self):
941
        """
942 943 944 945
        **Notes**:
            **1. This API is ONLY avaliable in Dygraph mode**

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
946

947
        Clear  (set to ``0`` ) the Gradient of Current Variable
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
974
        self._ivar._clear_gradient()
X
Xin Pan 已提交
975

976
    def __str__(self):
Y
Yang Yang(Tony) 已提交
977 978
        return self.to_string(True)

F
update  
fengjiayi 已提交
979
    def to_string(self, throw_on_error, with_details=False):
980 981 982
        """
        Get debug string.

983 984 985 986 987
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
988

989 990
        Returns:
            str: The debug string.
991 992 993 994 995

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
996

997 998 999 1000 1001
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1002
                print(new_variable.to_string(True))
1003
                print("=============with detail===============")
1004
                print(new_variable.to_string(True, True))
1005
        """
L
lujun 已提交
1006
        if in_dygraph_mode():
L
lujun 已提交
1007
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
1008 1009 1010 1011 1012 1013 1014
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
1015

F
update  
fengjiayi 已提交
1016 1017
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
1018
        protostr = self.desc.serialize_to_string()
1019
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
1020 1021 1022 1023
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
1024 1025 1026
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
1027
        return res_str
1028 1029 1030

    __repr__ = __str__

1031
    @property
1032
    def stop_gradient(self):
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
                fc = fluid.FC("fc1", size=5, dtype="float32")
                fc2 = fluid.FC("fc2", size=3, dtype="float32")
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
                out1 = fc(a)
                out2 = fc2(b)
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

                assert (fc._w.gradient() == 0).all()
                assert (out1.gradient() == 0).all()
        """
L
lujun 已提交
1062
        if in_dygraph_mode():
M
minqiyang 已提交
1063 1064
            return self._ivar.stop_gradient
        else:
1065
            return self._stop_gradient
1066

1067 1068
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
1069
        if in_dygraph_mode():
M
minqiyang 已提交
1070
            self._ivar.stop_gradient = s
1071
        else:
1072
            self._stop_gradient = s
1073

1074 1075
    @property
    def persistable(self):
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
L
lujun 已提交
1097
        if in_dygraph_mode():
1098 1099 1100
            return self._ivar.persistable
        else:
            return self.desc.persistable()
1101

Y
Yu Yang 已提交
1102 1103
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
1104
        if in_dygraph_mode():
1105 1106 1107
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
1108 1109
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
1110

Y
Yu Yang 已提交
1111 1112
    @property
    def name(self):
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
L
lujun 已提交
1129
        if in_dygraph_mode():
1130 1131 1132
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
1133

T
typhoonzero 已提交
1134 1135
    @name.setter
    def name(self, new_name):
L
lujun 已提交
1136
        if in_dygraph_mode():
1137 1138 1139
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
1140

Y
Yu Yang 已提交
1141 1142
    @property
    def shape(self):
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1160
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
1161
        if in_dygraph_mode():
1162 1163 1164
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
1165 1166

    @property
F
fengjiayi 已提交
1167
    def dtype(self):
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
L
lujun 已提交
1184
        if in_dygraph_mode():
1185 1186 1187
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
1188 1189

    @property
1190
    @dygraph_not_support
Y
Yu Yang 已提交
1191
    def lod_level(self):
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
L
lujun 已提交
1213
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
1214 1215
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
1216
        return self.desc.lod_level()
Y
Yu Yang 已提交
1217

Y
Yu Yang 已提交
1218 1219
    @property
    def type(self):
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
L
lujun 已提交
1236
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1237
            return self._ivar.type
1238 1239
        else:
            return self.desc.type()
Y
Yu Yang 已提交
1240

W
Wu Yi 已提交
1241
    def _set_error_clip(self, error_clip):
1242 1243 1244 1245 1246 1247 1248 1249 1250
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
1251 1252
        self.error_clip = error_clip

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
1340
    def _cloneVar(self, copy=False):
1341 1342
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
1343 1344
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
1345 1346 1347 1348
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1349
        new_var = self._cloneVar()
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1360
        new_var = self._cloneVar()
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1371
                return self._cloneVar(True)
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1390
                return self._cloneVar(True)
1391
            index = int(item)
1392
            if (index > 0 and index >= self.shape[axis]) \
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1409 1410 1411 1412 1413 1414 1415 1416

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
1417 1418
        slice_step = []
        use_strided_slice = False
H
Hongyu Liu 已提交
1419 1420
        reverse_axis = []

1421
        def fill_constant(shape, value, force_cpu=False, out=None):
1422 1423 1424 1425 1426 1427 1428 1429
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
1430
                    'force_cpu': force_cpu
1431 1432 1433 1434 1435
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1436 1437 1438 1439
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
1440
                step = slice_item.step
H
Hongyu Liu 已提交
1441

1442 1443
                if start is None and end is None and step is None:
                    continue
H
Hongyu Liu 已提交
1444

1445 1446
                if step is None:
                    step = 1
H
Hongyu Liu 已提交
1447 1448

                if start is None and end is None:
1449 1450
                    assert (step == -1)
                    reverse_axis.append(dim)
H
Hongyu Liu 已提交
1451 1452 1453 1454 1455 1456 1457 1458
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

1459 1460 1461
                if step != 1:
                    use_strided_slice = True

H
Hongyu Liu 已提交
1462 1463 1464
                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1465
                slice_step.append(step)
1466
            else:
H
Hongyu Liu 已提交
1467 1468 1469
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1470
                slice_step.append(1)
1471 1472
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
1473
                    fill_constant([1], 1, force_cpu=True, out=temp_1)
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
1501
                    fill_constant([1], dim, force_cpu=True, out=temp_out)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
1512 1513
        if (use_strided_slice == True):
            attrs['strides'] = []
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
        infer_flags = list(1 for i in range(len(slice_axis)))
        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
        # strides
        if use_strided_slice == True:
            if not contain_var(slice_step):
                attrs['strides'] = slice_step
            else:
                inputs['StridesTensorList'] = get_new_list_tensor(slice_step)
                for i, dim in enumerate(slice_step):
                    if isinstance(dim, Variable):
                        attrs['strides'].append(-1)
                        infer_flags[i] = -1
                    else:
                        attrs['strides'].append(dim)
1549 1550
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1551 1552

        out = self
1553
        if use_strided_slice == False and len(slice_axis) > 0:
H
Hongyu Liu 已提交
1554 1555 1556 1557 1558 1559 1560 1561
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1562
                inputs=inputs,
H
Hongyu Liu 已提交
1563
                outputs={'Out': [slice_out_var]},
1564
                attrs=attrs)
H
Hongyu Liu 已提交
1565 1566

            out = slice_out_var
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
        elif use_strided_slice == True and len(slice_axis) > 0:
            strided_slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_strided_slice"),
                dtype=self.dtype)
            self.block.append_op(
                type="strided_slice",
                inputs=inputs,
                outputs={'Out': [strided_slice_out_var]},
                attrs=attrs)

            out = strided_slice_out_var
H
Hongyu Liu 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1594

Y
Yu Yang 已提交
1595

F
fengjiayi 已提交
1596 1597 1598
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1599

1600 1601
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1602 1603 1604 1605
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1606
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1607 1608 1609 1610 1611
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1612 1613 1614 1615
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1625
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1626 1627 1628 1629 1630 1631
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1632 1633 1634 1635 1636 1637 1638 1639
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1640 1641
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1642 1643
        return self.op_proto_map[type]

1644 1645 1646 1647 1648 1649
    def update_op_proto(self):
        op_protos = get_all_op_protos()
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto

1650 1651 1652 1653
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1654
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1655 1656
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1657 1658
        }

F
fengjiayi 已提交
1659

X
Xin Pan 已提交
1660
class Operator(object):
1661
    """
1662 1663 1664 1665 1666 1667 1668
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1669
        type(str): The type of operator. Default None.
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1690
        Block.append_op or Block._prepend_op instead.
1691 1692 1693 1694

    Examples:
        .. code-block:: python

1695
            import paddle.fluid as fluid
1696
            cur_program = fluid.Program()
1697 1698 1699 1700 1701
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1702
    """
1703
    OP_WITHOUT_KERNEL_SET = {
1704 1705
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1706 1707
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1708
        'c_sync_comm_stream'
1709
    }
1710

Y
Yu Yang 已提交
1711 1712
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1713
                 desc,
Y
Yu Yang 已提交
1714 1715 1716
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1717
                 attrs=None):
L
lujun 已提交
1718
        if in_dygraph_mode():
1719 1720
            if type is None:
                raise ValueError(
1721
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1722
            self._type = type
M
minqiyang 已提交
1723
            self.attrs = attrs if attrs else {}
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1738
                )] = self.block.program._op_role
1739 1740 1741

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1742 1743
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1744 1745 1746 1747 1748 1749 1750 1751

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1752
                    "`type` to initialized an Operator can not be None.")
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1784
                        for index, arg in enumerate(in_args):
1785 1786 1787 1788
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1789
                            elif isinstance(arg, Variable):
1790
                                in_arg_names.append(cpt.to_text(arg.name))
1791
                            else:
1792 1793 1794 1795 1796 1797
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
                                    "but received : " % (in_proto.name, type),
                                    arg)
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1824
                        if not in_dygraph_mode():
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1844
    def _has_kernel(self, op_type):
1845 1846
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1847
    def to_string(self, throw_on_error):
1848
        """
1849 1850
        Get debug string.

1851
        Args:
1852 1853
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1854

1855 1856
        Returns:
            str: The debug string.
1857 1858

        """
1859
        protostr = self.desc.serialize_to_string()
1860
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1861 1862 1863 1864
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1865 1866 1867

    __repr__ = __str__

F
fengjiayi 已提交
1868 1869
    @property
    def type(self):
L
lujun 已提交
1870
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1871
            return self._type
1872 1873
        else:
            return self.desc.type()
F
fengjiayi 已提交
1874 1875

    def input(self, name):
1876
        """
1877
        Get the input arguments according to the input parameter name.
1878

1879 1880
        Args:
            name(str): The input parameter name.
1881

1882 1883 1884
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1885
        """
F
fengjiayi 已提交
1886 1887
        return self.desc.input(name)

W
Wu Yi 已提交
1888
    def _rename_input(self, old_name, new_name):
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1899
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1900

W
Wu Yi 已提交
1901
    def _rename_output(self, old_name, new_name):
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1912
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1913

F
fengjiayi 已提交
1914 1915 1916 1917
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1918 1919 1920 1921 1922 1923 1924 1925
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1926
    def output(self, name):
1927
        """
1928
        Get output arguments by the output parameter name.
1929

1930 1931
        Args:
            name(str): The output parameter name.
1932

1933 1934 1935
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1936
        """
F
fengjiayi 已提交
1937 1938 1939 1940 1941 1942
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1943 1944 1945 1946 1947 1948 1949 1950
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1951
    def has_attr(self, name):
1952
        """
1953 1954
        Whether this Operator has the attribute with name or not.

1955
        Args:
1956
            name(str): the attribute name.
1957

1958 1959
        Returns:
            bool: True if has this attribute.
1960 1961

        """
F
fengjiayi 已提交
1962 1963 1964
        return self.desc.has_attr(name)

    def attr_type(self, name):
1965
        """
1966
        Get the type of attribute by attribute's name.
1967

1968 1969
        Args:
            name(str): the attribute name.
1970

1971 1972
        Returns:
            core.AttrType: the attribute type.
1973
        """
F
fengjiayi 已提交
1974 1975
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1976
    def _set_attr(self, name, val):
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1987 1988
        self._update_desc_attr(name, val)

1989 1990 1991
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
2003 2004
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
2005 2006
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
2007
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
2008 2009 2010 2011
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
2012
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
2013

F
fengjiayi 已提交
2014 2015 2016 2017 2018
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
2019
        """
2020 2021
        Get the attribute by name.

2022
        Args:
2023
            name(str): the attribute name.
2024

2025 2026
        Returns:
            bool|int|str|float|list: The attribute value. The return value
2027 2028
            can be any valid attribute type.
        """
F
fengjiayi 已提交
2029
        return self.desc.attr(name)
Y
Yu Yang 已提交
2030

W
Wu Yi 已提交
2031
    def _block_attr_id(self, name):
2032
        """
G
gongweibao 已提交
2033
        Get the block attribute's id by name.
2034

2035 2036
        Args:
            name(str): the attribute name.
2037

2038 2039
        Returns:
            int: the block index.
2040
        """
W
Wu Yi 已提交
2041
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
2042

W
Wu Yi 已提交
2043
    def _block_attr(self, name):
G
gongweibao 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
2054
        id = self._block_attr_id(name)
G
gongweibao 已提交
2055 2056 2057
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
2058
    def _blocks_attr(self, name):
G
gongweibao 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
2069
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
2070 2071 2072 2073 2074
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
2075
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
2086
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
2087

J
JiayiFeng 已提交
2088
    def all_attrs(self):
F
fengjiayi 已提交
2089
        """
2090 2091 2092
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
2093
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
2094 2095 2096 2097
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
2098 2099
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
2100
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
2101 2102 2103
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
2104
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
2105 2106 2107 2108
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
2109 2110
        return attr_map

Y
Yu Yang 已提交
2111

Y
Yu Yang 已提交
2112
class Block(object):
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
2127
        use `Program._create_block()` to create a block.
2128 2129 2130 2131

    Examples:
        .. code-block:: python

2132 2133 2134
            import paddle.fluid as fluid

            cur_program = fluid.Program()
2135 2136 2137 2138 2139 2140 2141 2142 2143
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
2144
    def __init__(self, program, idx):
Y
Yu Yang 已提交
2145
        self.desc = program.desc.block(idx)
2146
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
2147
        self.ops = list()  # operator list
Y
Yu Yang 已提交
2148
        self.program = program
2149
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
2150

2151
    def __str__(self):
Y
Yang Yang(Tony) 已提交
2152 2153
        return self.to_string(True)

F
fengjiayi 已提交
2154 2155
    def to_string(self, throw_on_error, with_details=False):
        """
2156 2157
        Get debug string.

F
fengjiayi 已提交
2158 2159
        Args:
            throw_on_error(bool): raise exception when self is not initialized
2160
                when throw_on_error is True.
F
update  
fengjiayi 已提交
2161
            with_details(bool): more details about variables and parameters
2162 2163
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
2164

2165 2166
        Returns:
            str: The debug string.
F
fengjiayi 已提交
2167 2168 2169 2170
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
2171
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
2172 2173
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
2174
            for var in list(self.vars.values()):
F
fengjiayi 已提交
2175
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
2176
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
2177
            for op in self.ops:
F
fengjiayi 已提交
2178 2179
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
2180 2181 2182
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
2183 2184
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2185 2186
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2187 2188 2189

    __repr__ = __str__

Y
Yu Yang 已提交
2190 2191
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
2192
        return self.desc.parent
Y
Yu Yang 已提交
2193

Y
Yu Yang 已提交
2194 2195 2196 2197
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
2198
    def _set_forward_block_idx(self, idx):
2199 2200 2201 2202 2203 2204 2205 2206 2207
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
2208
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
2209

Y
Yu Yang 已提交
2210 2211
    @property
    def idx(self):
Y
Yu Yang 已提交
2212
        return self.desc.id
Y
Yu Yang 已提交
2213

Q
Qiao Longfei 已提交
2214
    def var(self, name):
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
2228
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
2229 2230 2231
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
2232 2233
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
2234
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
2235
        return v
Q
Qiao Longfei 已提交
2236

X
Xin Pan 已提交
2237
    def _find_var_recursive(self, name):
2238 2239 2240 2241 2242 2243 2244
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
2245
            Variable: the Variable with the giving name. Or None if not found.
2246
        """
Y
Yu Yang 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
2271
        return None
Y
Yu Yang 已提交
2272

X
Xin Pan 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
2292

Q
Qiao Longfei 已提交
2293
    def all_parameters(self):
2294
        return list(self.iter_parameters())
2295

2296
    def iter_parameters(self):
M
minqiyang 已提交
2297
        return (item[1] for item in six.iteritems(self.vars)
2298
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
2299

Y
Yu Yang 已提交
2300
    def create_var(self, *args, **kwargs):
2301
        var = Variable(block=self, *args, **kwargs)
2302 2303
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
2304
        return var
Y
Yu Yang 已提交
2305

Q
Qiao Longfei 已提交
2306 2307 2308
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
2309
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
2310 2311
        """
        Rename variable in vars and ops' inputs and outputs
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
2324
        """
M
minqiyang 已提交
2325 2326
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
2327

T
typhoonzero 已提交
2328
        if not self.has_var(name):
2329
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
2330 2331
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
2332
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
2333 2334 2335 2336 2337 2338 2339
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
2340
            var_type = "Variable"
T
wip  
typhoonzero 已提交
2341 2342 2343 2344
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
2345
        orig_var_type = v.type
M
minqiyang 已提交
2346
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
2347
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
2348
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
2349
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
2350 2351 2352 2353
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
2354
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2355 2356 2357 2358 2359 2360 2361
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
2362
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
2363 2364
            var = Variable(
                self,
T
typhoonzero 已提交
2365
                type=orig_var_type,
T
wip  
typhoonzero 已提交
2366 2367 2368 2369
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
2370
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
2371 2372 2373
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
2374
        self._sync_with_cpp()
2375
        return var
T
typhoonzero 已提交
2376

W
Wu Yi 已提交
2377 2378
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
2379
        self.desc._remove_var(cpt.to_bytes(name))
2380 2381
        del self.vars[name]

Y
Yu Yang 已提交
2382 2383
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
2384
        param = Parameter(global_block, *args, **kwargs)
2385
        if 'initializer' in kwargs:
2386 2387 2388 2389 2390

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2391 2392 2393 2394 2395
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2411
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2412
        return param
Y
Yu Yang 已提交
2413

Y
Yu Yang 已提交
2414
    def append_op(self, *args, **kwargs):
2415 2416 2417 2418 2419 2420
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2421
        if in_dygraph_mode():
2422 2423 2424
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2425 2426 2427 2428 2429
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2430

J
Jiabin Yang 已提交
2431 2432
            type = kwargs.get("type", None)

2433 2434 2435
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2436
                type=type,
M
minqiyang 已提交
2437 2438
                inputs=None,
                outputs=None,
2439
                attrs=attrs)
2440

M
minqiyang 已提交
2441 2442 2443
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2444
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2445 2446

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2447
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2448 2449
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2450
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2451
        else:
2452 2453 2454 2455 2456 2457 2458 2459 2460
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2461
            self.ops.append(op)
M
minqiyang 已提交
2462

2463 2464
        return op

W
Wu Yi 已提交
2465
    def _insert_op(self, index, *args, **kwargs):
2466 2467 2468 2469 2470 2471 2472 2473 2474
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2475 2476
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2477 2478 2479 2480
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2481
    def _remove_op(self, index):
2482 2483 2484 2485 2486 2487 2488 2489 2490
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2491 2492
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2493 2494
        del self.ops[index]

W
Wu Yi 已提交
2495
    def _slice_ops(self, start, end):
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2506
        return self.ops[start:end]
Y
Yancey1989 已提交
2507

W
Wu Yi 已提交
2508
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2509
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2510 2511
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2512
            op = Operator(
J
Jiabin Yang 已提交
2513
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2514

J
Jiabin Yang 已提交
2515
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2516
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2517 2518
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2519
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2520
        else:
2521 2522 2523 2524 2525 2526 2527 2528
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2529
            self.ops.insert(0, op)
2530

Y
Yu Yang 已提交
2531 2532
        return op

W
Wu Yi 已提交
2533
    def _sync_with_cpp(self):
2534
        """
2535 2536
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2537
        """
Q
Qiao Longfei 已提交
2538 2539 2540 2541 2542
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2543
        # sync variables removed from c++ end
2544
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2545
            if not self.desc.find_var(cpt.to_bytes(var)):
2546 2547
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2548
        # sync operators from cpp
2549 2550 2551 2552
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2569 2570 2571 2572 2573

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2574
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2575 2576 2577 2578 2579 2580 2581

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2595 2596 2597 2598
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2599
    def _copy_param_info_from(self, other):
2600
        """
2601 2602
        Copy the information of parameters from the other block.

2603
        Args:
2604 2605 2606 2607 2608
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2609 2610 2611 2612 2613

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2614 2615
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2616
        for p in other.iter_parameters():
2617 2618 2619
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2620
                raise ValueError("_copy_param_info_from should be invoked with "
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2633
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2634
                error_clip=p.error_clip,
2635 2636 2637
                name=v.name)
            self.vars[new_p.name] = new_p

2638
    def _clone_variable(self, var, force_persistable=True):
2639 2640
        """
        Clone a variable into current block.
2641

2642 2643
        Args:
            var: the variable to be cloned.
2644 2645 2646
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2647 2648

        Returns:
2649
            Variable: the new  variable cloned from 'var' in current block.
2650 2651
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2652 2653 2654 2655 2656
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2657 2658
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2659
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2660 2661 2662 2663 2664 2665
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2666
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2667 2668
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2669 2670 2671 2672 2673 2674 2675
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2676
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2677 2678
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2679
        return ret_var
2680

Y
Yu Yang 已提交
2681

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2777
    def remove_input_by_id(self, node_id):
2778 2779 2780 2781 2782 2783
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2784
        self.node.remove_input(node_id)
2785

2786
    def remove_input(self, node):
2787 2788 2789 2790
        """
        Remove a node from inputs.

        Args:
2791
            node(IrNode): the node being removed.
2792
        """
2793
        self.node.remove_input(node.node)
2794

2795
    def append_input(self, node):
2796 2797 2798 2799
        """
        Append a node in inputs.

        Args:
2800
            node(IrNode): the node being appended.
2801
        """
2802
        self.node.append_input(node.node)
2803 2804 2805 2806 2807 2808 2809 2810

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2811
    def remove_output_by_id(self, node_id):
2812 2813 2814 2815 2816 2817
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2818
        self.node.remove_output(node_id)
2819

2820
    def remove_output(self, node):
2821 2822 2823 2824
        """
        Remove a node from outputs.

        Args:
2825
            node(IrNode): the node being removed.
2826
        """
2827
        self.node.remove_output(node.node)
2828

2829
    def append_output(self, node):
2830 2831 2832 2833
        """
        Append a node in outputs.

        Args:
2834
            node(IrNode): the node being appended.
2835
        """
2836
        self.node.append_output(node.node)
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
3054
                all(isinstance(v, Block) for v in val):
3055 3056
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
3057
                isinstance(val, core.ProgramDesc):
3058 3059 3060 3061
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


3105 3106
class IrGraph(object):
    """
3107
    Python IrGraph. Beneath it is a core.Graph, which is used for
3108
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
3109 3110
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
3111 3112 3113 3114
    """

    def __init__(self, graph, for_test=False):
        """
3115 3116
        Construct an IrGraph using core.Graph.

3117 3118 3119 3120 3121 3122 3123 3124 3125
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

3126 3127 3128 3129
    def clone(self):
        """
        Create a new and duplicated IrGraph.

3130 3131 3132
        Warns:
            The method only clones the graph structure, not its attributes.

3133 3134 3135
        Returns:
            IrGraph: A new and duplicated graph.
        """
3136
        g = self.graph.clone()
3137 3138
        return IrGraph(g, self._for_test)

3139
    def is_test(self):
3140 3141 3142
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
3143 3144
        return self._for_test

W
WangZhen 已提交
3145
    def all_nodes(self):
3146 3147 3148
        """
        Return all nodes included in the graph as a set.
        """
3149
        return {IrNode(node) for node in self.graph.nodes()}
3150

3151
    def all_var_nodes(self):
3152 3153 3154
        """
        Return all variable nodes included in the graph as a set.
        """
3155
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
3156

3157
    def all_persistable_nodes(self):
3158 3159 3160
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
3161 3162 3163 3164 3165
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
3166
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
3167

3168
    def all_op_nodes(self):
3169 3170 3171
        """
        Return all operator nodes included in the graph as a set.
        """
3172
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
3173

3174
    def create_persistable_node(self, name, var_type, shape, var_dtype):
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
3186
            IrVarNode: the created persistable variable node.
3187
        """
3188 3189 3190 3191 3192
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
3193
        return IrVarNode(self.graph.create_var_node(var_desc))
3194 3195

    def create_var_node(self, name, var_type, shape, var_dtype):
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
3207
            IrVarNode: the created variable node.
3208 3209
        """

3210 3211 3212 3213
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
3214
        return IrVarNode(self.graph.create_var_node(var_desc))
3215 3216

    def create_var_node_from_desc(self, var_desc):
3217 3218 3219 3220 3221 3222 3223 3224
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
3225
            IrVarNode: the created variable node.
3226
        """
3227
        return IrVarNode(self.graph.create_var_node(var_desc))
3228 3229

    def create_op_node(self, op_type, attrs, inputs, outputs):
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
3240
            IrOpNode: the created operator node.
3241
        """
3242 3243
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
3244
        for attr, value in six.iteritems(attrs):
3245
            self._update_desc_attr(op_desc, attr, value)
3246
        for input_name, var_nodes in six.iteritems(inputs):
3247 3248 3249 3250
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
3251
        for output_name, var_nodes in six.iteritems(outputs):
3252 3253 3254 3255
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
3256
        return IrOpNode(self.graph.create_op_node(op_desc))
3257 3258

    def create_op_node_from_desc(self, op_desc):
3259 3260 3261 3262 3263 3264 3265
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
3266
            IrOpNode: the created operator node.
3267
        """
3268
        return IrOpNode(self.graph.create_op_node(op_desc))
3269 3270

    def update_input_link(self, old_input_node, new_input_node, op_node):
3271 3272 3273 3274
        """
        Update the input's link of a operator node.

        Args:
3275 3276 3277
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
3278
        """
3279
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
3280 3281
               self.graph.nodes() and op_node.node in self.graph.nodes(), \
            'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
3282 3283 3284 3285
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
3286
        op_node.rename_input(old_input_node.name(), new_input_node.name())
3287

3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

3306
    def link_to(self, node_in, node_out):
3307 3308 3309 3310
        """
        Connect two nodes.

        Args:
3311 3312
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
3313
        """
3314
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
3315
            'The two arguments(node_in&node_out) must be in the graph nodes.'
3316 3317
        node_in.append_output(node_out)
        node_out.append_input(node_in)
3318 3319

    def safe_remove_nodes(self, remove_nodes):
3320 3321 3322 3323 3324 3325 3326
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
3327
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
3328 3329 3330 3331
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
3332 3333
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
3334

Z
Zhen Wang 已提交
3335 3336 3337 3338 3339 3340 3341 3342
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3343
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
3344 3345 3346 3347
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
3348
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
3349 3350 3351
                        ]
                    else:
                        var_nodes[each_var_name].append(
3352 3353
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
3354 3355
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
3356
    def has_circle(self):
3357 3358 3359 3360 3361 3362
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
3363 3364 3365
        return core.has_circle(self.graph)

    def graph_num(self):
3366 3367 3368 3369 3370 3371
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
3372 3373 3374
        return core.graph_num(self.graph)

    def topology_sort(self):
3375 3376 3377 3378 3379 3380
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
3381
            list(IrNode): nodes in topology order.
3382
        """
3383
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
3384
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
3385 3386

    def build_adjacency_list(self):
3387 3388 3389 3390
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3391
            dict{IrNode: set(IrNode)}: the adjacency list.
3392
        """
3393 3394 3395 3396 3397
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3398

3399 3400 3401 3402 3403 3404 3405 3406
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3407
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3408 3409 3410 3411 3412
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3413 3414 3415
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
3416
                                          + ' -o ' + pdf_save_path, shell=True)
3417 3418 3419 3420 3421
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3422
        remove_ctr_vars = set()
3423
        if remove_ctr_var:
3424
            for node in self.all_var_nodes():
3425 3426 3427
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3428 3429
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3430 3431
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3432 3433 3434 3435 3436 3437
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3438 3439 3440 3441
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3442 3443
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3444 3445 3446 3447 3448 3449 3450
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3451 3452 3453
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3454
        WARN: When the graph includes backward operator nodes, the
3455 3456 3457 3458 3459 3460
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3461
        convert_pass = core.get_pass('graph_to_program_pass')
3462 3463
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3464 3465 3466 3467
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3495
class Program(object):
D
dzhwinter 已提交
3496
    """
3497 3498
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3499
    it will contain nested block.
3500

3501 3502 3503
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
3504

J
Jiabin Yang 已提交
3505
    A set of Program usually contains startup program and main program.
3506
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
3507 3508 3509 3510 3511 3512 3513
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

3514 3515 3516 3517
    **Notes**:
        **we have** :ref:`api_fluid_default_startup_program` **and** :ref:`api_fluid_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_fluid_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_fluid_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
3518 3519

    Returns:
3520
        Program: An empty Program.
D
dzhwinter 已提交
3521 3522

    Examples:
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3536 3537 3538

    """

3539 3540
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3541 3542
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3543
        self._seed = 0
Y
yuyang18 已提交
3544
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3545
        self.__op_role_var = []
T
tangwei12 已提交
3546

3547 3548
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3549
        self._is_distributed = False
3550
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3551
        self._is_chief = False
3552 3553 3554
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3555
        self._endpoints = []
3556 3557 3558
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3559
        self._trainers_endpoints = []
3560
        # the distributed lookup table names
T
tangwei12 已提交
3561
        self._distributed_lookup_table = None
3562 3563 3564

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3565 3566
        self._use_lamb = False

3567 3568 3569
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3570

3571 3572 3573
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3574
        self._program_config = None
3575

H
hutuxian 已提交
3576 3577 3578
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3579 3580 3581
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3582
    @property
3583
    def _op_role(self):
Y
yuyang18 已提交
3584 3585 3586 3587 3588 3589 3590 3591
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3592
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3593 3594 3595 3596
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3597 3598
        return self._current_role

3599 3600
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3601 3602 3603
        self._current_role = role

    @property
3604
    def _op_role_var(self):
Y
yuyang18 已提交
3605
        """
3606
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3607

3608
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3609 3610 3611

        Notes: This is a very low-level API. Users should not use it directly.
        """
3612
        return self.__op_role_var
Y
yuyang18 已提交
3613

3614 3615 3616 3617 3618 3619 3620 3621 3622
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3623
    @signature_safe_contextmanager
W
Wu Yi 已提交
3624
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3625 3626 3627 3628 3629 3630 3631
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3632
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3633 3634 3635

        Examples:

3636
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3637
            >>> p, g = backward(...)
W
Wu Yi 已提交
3638
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3639 3640
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3641
        tmp_role = self._current_role
3642
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3643

Y
yuyang18 已提交
3644 3645
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3646
        self.__op_role_var = [
3647 3648 3649
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3650
        yield
3651
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3652
        self._current_role = tmp_role
Y
Yu Yang 已提交
3653

S
rename  
sneaxiy 已提交
3654
    @signature_safe_contextmanager
X
Xin Pan 已提交
3655
    def _lr_schedule_guard(self, is_with_opt=False):
3656 3657 3658 3659 3660 3661 3662
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3663 3664 3665 3666
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3667 3668 3669

        Examples:

3670
            >>> import paddle.fluid as fluid
3671 3672 3673 3674
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3675 3676

        tmp_role = self._current_role
3677
        tmp_var = self.__op_role_var
3678

3679 3680
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3681 3682
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3683
        # TODO(typhoonzero): how to set target learning rate var
3684
        self.__op_role_var = []
3685
        yield
3686
        self.__op_role_var = tmp_var
3687
        self._current_role = tmp_role
3688

3689
    def __str__(self):
Y
yuyang18 已提交
3690 3691 3692 3693 3694 3695 3696 3697 3698
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3699 3700
        return self.to_string(True)

F
fengjiayi 已提交
3701 3702 3703
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3704

3705 3706 3707
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
3708

3709
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
3710

H
haowang101779990 已提交
3711
        Returns:
3712
            str: The debug string describe current Program.
Y
yuyang18 已提交
3713 3714

        Raises:
3715
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
3716

3717 3718 3719 3720 3721 3722 3723
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
3724 3725 3726
                print("program string without detial: {}".format(prog_string))
                prog_string_with_detail = prog.to_string(throw_on_error=True, with_details=True)
                print("program string with detial: {}".format(prog_string_with_detail))
F
fengjiayi 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3736 3737
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3738 3739
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3740

W
Wu Yi 已提交
3741
    def _get_desc(self):
Y
yuyang18 已提交
3742 3743 3744 3745 3746 3747 3748
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3749 3750
        return self.desc

X
version  
Xin Pan 已提交
3751 3752 3753
    def _version(self):
        return self.desc._version()

3754
    @dygraph_not_support
3755
    def clone(self, for_test=False):
Y
yuyang18 已提交
3756
        """
3757
        **Notes**:
3758 3759 3760 3761
            **1.** :code:`Program.clone()` **method DOES NOT clone** :ref:`api_fluid_io_DataLoader` .

            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.

3762
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3763

3764 3765
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3766

3767

3768
        Some operators, e.g., :ref:`api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3769 3770 3771
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3772

Y
yuyang18 已提交
3773
        * Set for_test to False when we want to clone the program for training.
3774
        * Set for_test to True when we want to clone the program for testing.
3775 3776
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3777
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
3778

3779 3780
        For Example:
            .. code-block:: python
L
Luo Tao 已提交
3781

3782 3783 3784 3785
                test_program = fluid.default_main_program().clone(for_test=True)
                # Here we use clone before Momentum
                optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize()
3786

3787
        Args:
3788

3789
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`.
3790

3791 3792
        Returns:
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``
3793

Y
yuyang18 已提交
3794 3795 3796

        Examples:

3797
        **Notes: The Program's order maybe different after** :code:`clone` **and
3798
        this will not affect your training or testing progress. In the following
3799
        example we give you an simple method** :code:`print_prog(program)` **to
3800
        print Program Descs inorder to make sure you have same print result
3801
        after** :code:`clone`:
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3839 3840 3841

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3909 3910
        """
        if for_test:
3911
            if self._appending_grad_times > 0:
3912 3913 3914 3915 3916 3917 3918
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3919 3920 3921
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3922
        else:
3923
            p = Program()
G
gongweibao 已提交
3924 3925
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3926
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3927 3928 3929
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3930 3931

            p._current_role = self._current_role
3932
            p.__op_role_var = self.__op_role_var
3933
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3934

W
Wu Yi 已提交
3935
            p._sync_with_cpp()
3936

W
Wu Yi 已提交
3937
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3938
        p._copy_data_info_from(self)
3939
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3940
        return p
3941

3942
    def _prune(self, targets):
Y
yuyang18 已提交
3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
3956 3957 3958 3959
        """

        if not isinstance(targets, list):
            targets = [targets]
Y
yuyang18 已提交
3960

3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
                    # and we need to find the current op that generate this
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

                    t = t.op
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
                else:
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, set(), targets_idx)
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
        res._sync_with_cpp()
        return res

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
3995
        """
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
        Prune operators and variables which are not needed to generate
        :code:`targets`. Prune operators and variables which are needed 
        to generate feeded_var 

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

4013 4014
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
4015 4016
        if not isinstance(targets, list):
            targets = [targets]
4017 4018 4019 4020 4021 4022

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

4023 4024 4025 4026
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
4027 4028
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
4029
                    # and we need to find the current op that generate this
4030 4031 4032 4033 4034 4035 4036 4037
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

4038
                    t = t.op
4039 4040 4041 4042
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
4043
                else:
4044 4045
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
4046 4047 4048

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
4049
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
4050 4051 4052
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4053
        res._sync_with_cpp()
4054 4055
        return res

X
Xin Pan 已提交
4056
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
4057
        """
F
fengjiayi 已提交
4058 4059 4060 4061 4062
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

4063
        3. change the :code:`is_test`
Y
yuyang18 已提交
4064 4065 4066
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

4067
        Args:
X
Xin Pan 已提交
4068 4069
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
4070

Y
yuyang18 已提交
4071 4072 4073 4074 4075 4076
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
4077
        res = Program()
4078
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
4079 4080 4081 4082

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
4083
        if prune_read_op:
4084 4085 4086 4087 4088 4089 4090 4091 4092
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
4093
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
4094 4095

        # change all `is_test` attributes to True
M
minqiyang 已提交
4096
        for i in six.moves.range(res.desc.num_blocks()):
4097
            block = res.desc.block(i)
M
minqiyang 已提交
4098
            for j in six.moves.range(block.op_size()):
4099 4100
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
4101
                    op._set_attr('is_test', True)
M
minqiyang 已提交
4102 4103 4104
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
4105
        res._sync_with_cpp()
4106 4107
        return res

4108 4109
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
4110
        """
4111 4112 4113 4114
        **Notes**:
            **1. All information about parameters will be lost after serialization**

            **2. This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4115

4116 4117
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
4118

4119
        Args:
Y
yuyang18 已提交
4120

4121
            binary_str_type (str): the binary prootbuf string.
4122

4123 4124
        Returns:
            Program: A deserialized Program.
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
4147
        """
4148 4149
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
4150
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
4151
        p._sync_with_cpp()
4152
        return p
Y
Yu Yang 已提交
4153

4154
    @staticmethod
4155
    def _construct_from_desc(desc):
4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
4171 4172
    @property
    def random_seed(self):
Y
yuyang18 已提交
4173
        """
4174
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
4175 4176
        the random seed from random device.

4177 4178 4179 4180
        **Notes: It must be set before the operators have been added.**

        Returns:
            int64: Random seed in current Program
4181

4182 4183 4184 4185 4186 4187 4188 4189

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
4190 4191 4192
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
4193 4194
                print(random_seed)
                prog.random_seed = 1
4195 4196
                z_var = fluid.layers.dropout(x_var, 0.7)

4197
                print(prog.random_seed)
Y
yuyang18 已提交
4198
        """
D
dzhwinter 已提交
4199 4200
        return self._seed

Q
qiaolongfei 已提交
4201 4202
    @property
    def num_blocks(self):
Y
yuyang18 已提交
4203
        """
4204 4205
        The number of :ref:`api_guide_Block_en`  in this Program.

4206 4207 4208 4209
        **Notes: This API has no effect in Dygraph mode**

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
4210

4211 4212 4213 4214 4215 4216 4217 4218 4219

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
4220 4221


Y
yuyang18 已提交
4222
        """
Q
qiaolongfei 已提交
4223 4224
        return self.desc.num_blocks()

D
dzhwinter 已提交
4225 4226 4227 4228 4229 4230
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
4231
    def __repr__(self):
4232
        return self.__str__()
4233

Y
Yu Yang 已提交
4234
    def global_block(self):
Y
yuyang18 已提交
4235
        """
4236 4237
        **Notes**:
            **This API has no effect in Dygraph mode**
4238 4239 4240

        Get the first :ref:`api_guide_Block_en` of this Program.

4241 4242
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
4243

4244 4245 4246 4247 4248 4249 4250 4251 4252

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
4253

Y
yuyang18 已提交
4254
        """
Y
Yu Yang 已提交
4255 4256
        return self.blocks[0]

Q
Qiao Longfei 已提交
4257
    def block(self, index):
Y
yuyang18 已提交
4258
        """
4259 4260
        **Notes**:
            **This API has no effect in Dygraph mode**
Y
yuyang18 已提交
4261

4262 4263
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

4264 4265
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
4266

4267 4268
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
4269 4270 4271 4272 4273 4274 4275 4276 4277

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
4278
        """
Q
Qiao Longfei 已提交
4279 4280
        return self.blocks[index]

Y
Yu Yang 已提交
4281
    def current_block(self):
Y
yuyang18 已提交
4282
        """
4283 4284
        **Notes**:
            **This API has no effect in Dygraph mode**
4285

4286 4287
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
4288

4289 4290
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
4291

4292 4293 4294 4295 4296 4297 4298 4299
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
4300
        """
Y
Yu Yang 已提交
4301 4302
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
4303
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
4304 4305 4306 4307 4308
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
4309

Y
yuyang18 已提交
4310 4311 4312 4313 4314
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
4315
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
4316 4317 4318
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
4319 4320 4321 4322
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
4323
    def _rollback(self):
Y
yuyang18 已提交
4324 4325 4326 4327 4328
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
4329 4330
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
4331
    def _sync_with_cpp(self):
Y
yuyang18 已提交
4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
4342 4343 4344
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
4345
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
4346

W
Wu Yi 已提交
4347
    def _copy_param_info_from(self, other):
4348
        """
4349
        Copy the information of parameters from other program.
D
dzhwinter 已提交
4350

Y
yuyang18 已提交
4351 4352 4353
        Notes: This is a very low level API. Users should not invoke it
        directly.

4354 4355 4356 4357 4358 4359 4360
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4361
            raise TypeError("_copy_param_info_from should be invoked with "
4362 4363 4364
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4365
            raise ValueError("_copy_param_info_from should be invoked with two "
4366
                             "program, with represent the same topology")
W
Wu Yi 已提交
4367
        self.global_block()._copy_param_info_from(other.global_block())
4368

4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
4384
        self._parameters_on_pservers = other._parameters_on_pservers
4385
        self._endpoints = other._endpoints
4386
        self._ps_endpoint = other._ps_endpoint
4387 4388
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
4389
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
4390 4391
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
4392

Y
yuyang18 已提交
4393 4394 4395
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
4396 4397 4398 4399 4400 4401 4402
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
4403
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
4404 4405 4406
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
4407
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
4408
                             "program, with represent the same topology")
4409
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
4410 4411
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
4412 4413
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
4414

4415
    @dygraph_not_support
4416
    def list_vars(self):
Y
yuyang18 已提交
4417
        """
4418
        Get all :ref:`api_guide_Variable_en` from this Program. A iterable object is returned.
Y
yuyang18 已提交
4419

4420 4421
        Returns:
            iterable :ref:`api_guide_Variable_en`: The Generator will yield every variable in this program.
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
4433
        """
4434
        for each_block in self.blocks:
4435
            for each_var in list(each_block.vars.values()):
4436 4437
                yield each_var

Y
Yu Yang 已提交
4438

Y
Yu Yang 已提交
4439
class Parameter(Variable):
4440
    """
4441
    Parameter is derived from Variable. A parameter is a persistable
4442
    Variable, and will be updated by optimizers after each iteration.
4443
    The training of a neural network is essentially the updating of
4444 4445
    its parameters.

4446
    Relative to a general Variable, a Parameter has several its own
4447 4448
    member variables:

4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4461 4462
    """

Y
Yu Yang 已提交
4463
    def __init__(self, block, shape, dtype, **kwargs):
4464 4465 4466 4467 4468
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
4469
        if len(shape) == 0:
4470 4471
            raise ValueError(
                "The dimensions of shape for Parameter must be greater than 0")
Y
Yu Yang 已提交
4472 4473 4474

        for each in shape:
            if each < 0:
4475 4476 4477
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
                    % list(shape))
4478 4479 4480

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4481 4482 4483 4484
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4485 4486
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4487
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4488

W
wanghaoshuang 已提交
4489
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4490

4491 4492
        self.is_distributed = False

F
fengjiayi 已提交
4493 4494 4495
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4496 4497 4498
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4499

F
update  
fengjiayi 已提交
4500 4501 4502 4503 4504 4505 4506 4507
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4508 4509 4510 4511 4512 4513 4514 4515 4516
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4517 4518 4519 4520 4521 4522
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4523
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4524
            for attr_name in additional_attr:
4525 4526
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4527 4528
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4529 4530 4531 4532
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4533

Y
Yu Yang 已提交
4534
# program is a global instance.
Y
Yu Yang 已提交
4535 4536
_main_program_ = Program()
_startup_program_ = Program()
4537

4538

4539
def default_startup_program():
Y
Yu Yang 已提交
4540
    """
Y
yuyang18 已提交
4541 4542
    Get default/global startup program.

4543 4544 4545
    The layer function in :ref:`api_fluid_layers` will create parameters, :ref:`api_paddle_data_reader_reader` ,
    `NCCL <https://developer.nvidia.com/nccl>`_ handles as global variables. The :code:`startup_program` will
    initialize them by the OPs in startup  :ref:`api_fluid_Program` . The  :ref:`api_fluid_layers`  function will
Y
yuyang18 已提交
4546 4547 4548
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
4549
    program. Users can use  :ref:`api_fluid_program_guard`  to switch :ref:`api_fluid_Program` .
4550

4551
    Returns: current default startup :ref:`api_fluid_Program`
4552

4553
    Returns type: :ref:`api_fluid_Program`
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4569
    """
Y
Yu Yang 已提交
4570
    return _startup_program_
4571

4572

4573
def default_main_program():
Y
Yu Yang 已提交
4574
    """
4575 4576 4577 4578 4579
    This API can be used to get ``default main program`` which store the 
    descriptions of ``op`` and ``variable``.
    
    For example ``z = fluid.layers.elementwise_add(x, y)`` will create a new ``elementwise_add`` 
    ``op`` and a new ``z`` ``variable``, and they will be recorded in ``default main program`` 
Y
yuyang18 已提交
4580

4581 4582
    The ``default_main_program`` is the default value for ``Program`` parameter in 
    a lot of ``fluid`` APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
4583
    :code:`default_main_program` when the program is not specified.
4584

4585 4586
    If you want to replace the ``default main program``, you can use :ref:`api_fluid_program_guard`
    
Y
Yu Yang 已提交
4587
    Returns:
4588
        :ref:`api_fluid_Program`: a ``Program`` which holding the descriptions of ops and variables in the network.
4589 4590 4591 4592 4593

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
4594

4595
            # Sample Network:
4596 4597
            data = fluid.data(name='image', shape=[None, 3, 224, 224], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4617
            #print the number of blocks in the program, 1 in this case
4618
            print(fluid.default_main_program().num_blocks)
4619 4620

            #print the description of variable 'image'
4621
            print(fluid.default_main_program().blocks[0].var('image'))
4622

Y
Yu Yang 已提交
4623
    """
Y
Yu Yang 已提交
4624
    return _main_program_
Y
Yu Yang 已提交
4625 4626 4627 4628 4629


def switch_main_program(program):
    """
    Switch the main program to a new program.
4630

Y
Yu Yang 已提交
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4645
    Switch the startup program to a new program
Y
Yu Yang 已提交
4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4658
@signature_safe_contextmanager
Y
Yu Yang 已提交
4659 4660
def program_guard(main_program, startup_program=None):
    """
4661 4662
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4663
    variables to the new main programs.
4664

4665 4666 4667 4668 4669 4670 4671
    Args:
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program, optional): New startup program inside `"with"` 
            statement. :code:`None` means not changing startup program, 
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
4672
    Examples:
4673 4674 4675
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4676

4677 4678 4679
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
4680
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
4681
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4682 4683 4684

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4685

Y
Yu Yang 已提交
4686
    Examples:
4687
       .. code-block:: python
Y
yuyang18 已提交
4688

4689 4690 4691 4692 4693
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
4694 4695
             data = fluid.data(name='image', shape=[None, 784, 784], dtype='float32')
    
Y
Yu Yang 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4708 4709


W
Wu Yi 已提交
4710
def _get_var(name, program=None):
X
xuwei06 已提交
4711
    """
Y
yuyang18 已提交
4712
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4713

X
xuwei06 已提交
4714 4715 4716
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4717
        If None, default_global_program() will be used.
X
xuwei06 已提交
4718 4719 4720 4721 4722 4723 4724

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4725
    assert isinstance(program, Program)
X
xuwei06 已提交
4726 4727

    return program.global_block().var(name)
4728 4729


S
rename  
sneaxiy 已提交
4730
@signature_safe_contextmanager
L
lujun 已提交
4731 4732 4733 4734
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4735

4736
    yield
P
Paddle CI 已提交
4737

L
lujun 已提交
4738
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4739 4740


S
rename  
sneaxiy 已提交
4741
@signature_safe_contextmanager
L
lujun 已提交
4742 4743 4744 4745
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4746

4747
    yield
M
minqiyang 已提交
4748

L
lujun 已提交
4749
    _dygraph_current_expected_place_ = tmp_place
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771


def load_op_library(lib_filename):
    """
    Load a dynamic library, including custom operators and kernels.
    When library is loaded, ops and kernels registered in the library
    will be available in PaddlePaddle main process.
    Please note, the type of custom operators cann't have the same type
    with the existing operators in the framework.

    Args:
        lib_filename (str): name of dynamic library.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            #fluid.load_op_library('custom_op.so')

    """
    core.load_op_library(lib_filename)
    OpProtoHolder.instance().update_op_proto()