nn.py 246.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
Y
Yu Yang 已提交
30 31

__all__ = [
X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
110
    'margin_rank_loss',
X
Xin Pan 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
Y
Yu Yang 已提交
154 155 156 157 158 159 160 161 162
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
163
       is_test=False,
164
       name=None):
Y
Yu Yang 已提交
165
    """
166
    **Fully Connected Layer**
Y
Yu Yang 已提交
167

168 169 170 171 172 173 174 175
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
176
    to the output as well.
C
caoying03 已提交
177

C
caoying03 已提交
178
    This process can be formulated as follows:
179 180 181

    .. math::

182
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
183 184 185

    In the above equation:

C
caoying03 已提交
186 187 188 189
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
190
    * :math:`Act`: The activation function.
C
caoying03 已提交
191
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
192 193

    Args:
R
ranqiu 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
209 210
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
211
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
212
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
213
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
214

215
    Returns:
F
fengjiayi 已提交
216
        Variable: The transformation result.
217 218

    Raises:
C
caoying03 已提交
219
        ValueError: If rank of the input tensor is less than 2.
220 221 222 223

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
224
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
225
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
226
    """
C
caoying03 已提交
227

C
caoying03 已提交
228
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
229 230 231 232

    dtype = helper.input_dtype()

    mul_results = []
233 234
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
235 236 237
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
238

Y
Yu Yang 已提交
239
        w = helper.create_parameter(
240 241
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
        tmp = helper.create_tmp_variable(dtype)
242
        helper.append_op(
243 244 245
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
246
            outputs={"Out": tmp},
M
mozga-intel 已提交
247 248
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
249 250 251 252
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
253
    else:
254 255
        pre_bias = helper.create_tmp_variable(dtype)
        helper.append_op(
256 257 258
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
259
            attrs={"use_mkldnn": False})
260 261 262 263
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
264 265


266 267 268
def embedding(input,
              size,
              is_sparse=False,
269
              is_distributed=False,
270 271 272
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
273
    """
274 275
    **Embedding Layer**

276
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
277 278
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
279 280 281

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
282 283

    Args:
284 285 286 287 288
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
289
        is_distributed(bool): Whether to run lookup table from remote parameter server.
290 291
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
292
            with zeros whenever lookup encounters it in :attr:`input`. If
293
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
294 295
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
296
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
297

298 299 300
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
301

302 303
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
304

C
chengduoZH 已提交
305
          dict_size = len(dataset.ids)
306
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
307
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
308 309 310 311 312 313
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    tmp = helper.create_tmp_variable(dtype)
314 315
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
316 317 318 319 320
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
321 322 323 324 325
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
326 327 328
    return tmp


Y
yi.wu 已提交
329
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
330 331
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
332 333
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
334 335 336 337 338 339 340
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
341 342
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
343
    """
Y
yi.wu 已提交
344
    ${comment}
Y
Yibing Liu 已提交
345 346

    Args:
Y
yi.wu 已提交
347 348
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
349 350 351 352 353 354 355
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.

356
        param_attr(ParamAttr|None): The parameter attribute for the learnable
357
                               hidden-hidden weights.
Y
Yibing Liu 已提交
358 359 360

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
361 362
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
yi.wu 已提交
363
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
364 365 366
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
367

368
                              1. `use_peepholes = False`
Y
yi.wu 已提交
369 370
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
371
                              2. `use_peepholes = True`
Y
yi.wu 已提交
372
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
373
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
374
                                 - The shape is (1 x 7D).
Y
yi.wu 已提交
375 376 377 378 379 380 381 382
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
383 384

    Returns:
Y
Yibing Liu 已提交
385 386
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
387

Y
Yibing Liu 已提交
388
    Examples:
Y
Yibing Liu 已提交
389 390
        .. code-block:: python

Y
Yibing Liu 已提交
391 392
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
393
                                           act=None, bias_attr=None)
Y
Yibing Liu 已提交
394 395
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
396
    """
397

Y
Yu Yang 已提交
398
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
399
    size = size // 4
Y
Yu Yang 已提交
400 401 402 403 404 405 406 407 408 409 410 411
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)
Y
Yancey 已提交
412 413 414 415 416 417 418 419 420 421
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
422 423 424

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
425
        inputs=inputs,
Y
Yu Yang 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
442 443 444 445 446 447 448 449 450 451 452
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
453 454
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
455 456 457
    """
    **Dynamic LSTMP Layer**

458 459 460 461 462 463
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
464 465 466 467 468

    The formula is as follows:

    .. math::

469
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
470

471
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
472

473
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
474

475
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
476

477
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
478

479
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
480

481
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
482

Y
Yibing Liu 已提交
483 484 485 486 487 488
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
489
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
490
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
491
          bias vector).
Y
Yibing Liu 已提交
492 493 494
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
495
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
496
    * :math:`h`: The hidden state.
497
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
498 499
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
500
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
501
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
502
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
503 504
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
505 506 507 508

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
509

Y
Yibing Liu 已提交
510 511 512 513 514 515 516 517 518 519 520 521
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
522
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
523 524
                               hidden-hidden weight and projection weight.

525 526
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
527 528
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
529 530
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
531 532
                               - The shape of projection weight is (D x P).
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
533 534 535 536 537 538
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
539
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
540 541 542
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
543
                                - The shape is (1 x 7D).
Y
Yibing Liu 已提交
544 545 546 547 548 549 550 551 552
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
553
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
554 555
                              default "tanh".
        proj_activation(str): The activation for projection output.
556
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
557 558
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
559 560
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
561 562

    Returns:
563 564 565 566
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
567 568

    Examples:
569

Y
Yibing Liu 已提交
570 571
        .. code-block:: python

572 573 574 575
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
576
            hidden_dim, proj_dim = 512, 256
577
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
578
                                     act=None, bias_attr=None)
579 580 581
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
582 583 584 585
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
586
    """
587

Y
Yibing Liu 已提交
588
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
589
    size = size // 4
Y
Yibing Liu 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    projection = helper.create_tmp_variable(dtype)
    cell = helper.create_tmp_variable(dtype)
    ordered_proj0 = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_cell_pre_act = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
634 635 636 637 638 639 640 641 642
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
643
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
644

645
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
646
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
647

G
guosheng 已提交
648 649 650 651 652 653 654 655 656
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
657

G
guosheng 已提交
658
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
659

G
guosheng 已提交
660
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
661 662
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
663 664 665 666
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
667
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
668 669

    Args:
670 671
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
672
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
673
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
674 675
            is the hidden size.
        size(int): The dimension of the gru cell.
676
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
677 678
            hidden-hidden weight matrix. Note:

679
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
680
              :math:`D` is the hidden size.
681
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
682
              The first part are weights of the update gate and reset gate with
683
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
684
              candidate hidden state with shape :math:`(D \\times D)`.
685
        bias_attr(ParamAttr): The parameter attribute for learnable the
G
guosheng 已提交
686
            hidden-hidden bias.
687
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
688 689 690
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
691
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
692
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
693 694 695 696
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
697 698

    Returns:
G
guosheng 已提交
699
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
700
            and sequence length is the same with the input.
701

G
guosheng 已提交
702
    Examples:
703

G
guosheng 已提交
704 705
        .. code-block:: python

706 707 708 709
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
710
            hidden_dim = 512
711
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
712 713 714 715 716 717 718 719 720 721
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
722
    batch_size = input.shape[0]
G
guosheng 已提交
723 724 725
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    if h_0 != None:
        assert h_0.shape == (
Y
Yancey 已提交
726 727 728
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

    hidden = helper.create_tmp_variable(dtype)
    batch_gate = helper.create_tmp_variable(dtype)
    batch_reset_hidden_prev = helper.create_tmp_variable(dtype)
    batch_hidden = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
752 753 754
def gru_unit(input,
             hidden,
             size,
755 756
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
757
             activation='tanh',
758
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
759
    """
760
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
761

762 763
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
764

765
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
766

767
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
768

769
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
770 771

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
772 773 774
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
775 776
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

777 778
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
779 780 781
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
782 783 784 785 786

    Args:
        input (Variable): The fc transformed input value of current step.
        hidden (Variable): The hidden value of lstm unit from previous step.
        size (integer): The input dimension value.
787 788
        param_attr (ParamAttr): The weight parameters for gru unit. Default: None
        bias_attr (ParamAttr): The bias parameters for gru unit. Default: None
789 790 791 792
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
793

794 795 796 797 798 799
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
800

801
             # assuming we have x_t_data and prev_hidden of size=10
802
             x_t = fluid.layers.fc(input=x_t_data, size=30)
803 804
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
805 806 807 808 809 810 811 812 813 814 815 816

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
817
    size = size // 3
Y
Yu Yang 已提交
818 819

    # create weight
820 821
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
822

823 824 825 826
    gate = helper.create_tmp_variable(dtype)
    reset_hidden_pre = helper.create_tmp_variable(dtype)
    updated_hidden = helper.create_tmp_variable(dtype)
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
827
    # create bias
828
    if helper.bias_attr:
Y
Yu Yang 已提交
829 830 831
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
832
        inputs['Bias'] = bias
Y
Yu Yang 已提交
833 834 835

    helper.append_op(
        type='gru_unit',
836
        inputs=inputs,
Y
Yu Yang 已提交
837 838 839 840 841 842
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
843 844
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
845 846 847 848 849
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
850
@templatedoc()
851
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
852 853 854 855 856 857 858
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
859
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
860 861 862 863
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
864 865 866
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
867 868

    """
Y
Yu Yang 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
    alpha = helper.create_tmp_variable(dtype=helper.input_dtype())
    emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype())
    log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
894
@templatedoc()
895
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
896 897 898 899 900
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
901

Y
yuyang18 已提交
902
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
903

Y
yuyang18 已提交
904 905 906
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
907
        Variable: ${viterbi_path_comment}
908

Y
yi.wu 已提交
909 910 911 912 913
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
914
    """
Y
Yu Yang 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
928
@templatedoc()
F
fengjiayi 已提交
929
def cos_sim(X, Y):
Y
Yu Yang 已提交
930
    """
Y
yi.wu 已提交
931 932 933
    ${comment}

    Args:
934 935
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
936

Y
yi.wu 已提交
937
    Returns:
938
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
939
    """
F
fengjiayi 已提交
940
    helper = LayerHelper('cos_sim', **locals())
Y
Yu Yang 已提交
941 942 943 944 945 946 947 948 949 950 951 952 953
    out = helper.create_tmp_variable(dtype=X.dtype)
    xnorm = helper.create_tmp_variable(dtype=X.dtype)
    ynorm = helper.create_tmp_variable(dtype=X.dtype)
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


954
def dropout(x, dropout_prob, is_test=False, seed=None, name=None):
955 956 957 958 959
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
960
    training. The dropout operator randomly sets (according to the given dropout
961 962 963 964
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
965 966
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
967 968 969 970 971 972 973
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
974 975

    Returns:
976
        Variable: A tensor variable is the shape with `x`.
977 978

    Examples:
979

980 981
        .. code-block:: python

982 983
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
984 985
    """

F
fengjiayi 已提交
986
    helper = LayerHelper('dropout', **locals())
987 988
    out = helper.create_tmp_variable(dtype=x.dtype)
    mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
989 990 991 992

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

993 994 995 996 997
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
998 999 1000 1001 1002 1003
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0
        })
1004 1005 1006
    return out


1007
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1008
    """
Y
Yibing Liu 已提交
1009 1010
    **Cross Entropy Layer**

1011 1012 1013
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1014 1015

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1016
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1017

Y
Yibing Liu 已提交
1018
        .. math::
Y
yangyaming 已提交
1019

Y
Yibing Liu 已提交
1020 1021 1022
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1023 1024
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1025 1026 1027 1028 1029

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1030
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1031 1032 1033
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1034 1035
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1036
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1037

Y
Yibing Liu 已提交
1038
    Args:
Y
yangyaming 已提交
1039
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1040 1041 1042 1043
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1044
        label (Variable|list): the ground truth which is a 2-D tensor. When
1045 1046 1047 1048
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1049
        soft_label (bool): a flag indicating whether to
1050
                                           interpretate the given labels as soft
1051
                                           labels. Default: `False`.
M
minqiyang 已提交
1052 1053
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1054
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1055 1056 1057 1058 1059

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1060 1061 1062 1063 1064
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1065 1066 1067 1068 1069 1070

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1071
    """
F
fengjiayi 已提交
1072
    helper = LayerHelper('cross_entropy', **locals())
Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078
    out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1079 1080
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1081 1082 1083
    return out


F
fengjiayi 已提交
1084
def square_error_cost(input, label):
Y
Yu Yang 已提交
1085
    """
1086 1087
    **Square error cost layer**

1088 1089
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1090

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1104 1105
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1106 1107

    Returns:
G
guosheng 已提交
1108
        Variable: The tensor variable storing the element-wise squared error \
1109
                  difference of input and label.
1110 1111 1112 1113 1114 1115 1116 1117

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1118
    """
F
fengjiayi 已提交
1119
    helper = LayerHelper('square_error_cost', **locals())
Y
Yu Yang 已提交
1120 1121 1122 1123 1124 1125 1126 1127 1128
    minus_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

    square_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
F
fengjiayi 已提交
1129 1130
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1131 1132 1133
    return square_out


Y
yi.wu 已提交
1134
@templatedoc()
Y
Yu Yang 已提交
1135 1136 1137 1138
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1139
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1140
    """
Y
yi.wu 已提交
1141
    **Chunk Evaluator**
Y
yi.wu 已提交
1142

Y
yangyaming 已提交
1143
    This function computes and outputs the precision, recall and
1144
    F1-score of chunk detection.
Y
yi.wu 已提交
1145

Y
yi.wu 已提交
1146 1147 1148 1149 1150 1151 1152 1153
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1154

Y
yi.wu 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1180

Y
yi.wu 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1205
    Args:
1206 1207 1208 1209 1210
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1211

Y
yi.wu 已提交
1212
    Returns:
Y
update  
yi.wu 已提交
1213 1214 1215
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1216

Y
yi.wu 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1229
    """
F
fengjiayi 已提交
1230
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1231 1232 1233 1234 1235

    # prepare output
    precision = helper.create_tmp_variable(dtype="float32")
    recall = helper.create_tmp_variable(dtype="float32")
    f1_score = helper.create_tmp_variable(dtype="float32")
1236 1237 1238
    num_infer_chunks = helper.create_tmp_variable(dtype="int64")
    num_label_chunks = helper.create_tmp_variable(dtype="int64")
    num_correct_chunks = helper.create_tmp_variable(dtype="int64")
Y
Yu Yang 已提交
1239 1240 1241 1242 1243 1244 1245 1246

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1247 1248 1249 1250
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1251 1252 1253
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1254 1255
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1256
        })
1257 1258
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1259 1260


1261
@templatedoc()
Y
Yu Yang 已提交
1262 1263 1264 1265 1266 1267 1268
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
1269
                  act=None):
Y
Yu Yang 已提交
1270 1271 1272 1273
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        act (str): the activation type
F
fengjiayi 已提交
1284

1285 1286
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1305
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1306 1307 1308 1309 1310 1311
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


1312
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
1313 1314 1315
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1316
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        bias_attr (ParamAttr|None): attributes for bias
        param_attr (ParamAttr|None): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
1335
        library is installed. Default: False
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


1359
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1360
    """
1361
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1362
    has the same shape as the input.
Q
qiaolongfei 已提交
1363

1364 1365 1366 1367 1368 1369
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1370
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1371 1372 1373 1374 1375 1376 1377

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1378
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        bias_attr (ParamAttr): attributes for bias
        param_attr (ParamAttr): attributes for parameter
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
        library is installed.

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
    softmax_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1413 1414 1415
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1416 1417
           stride=1,
           padding=0,
1418
           dilation=1,
Y
Yu Yang 已提交
1419 1420 1421
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1422
           use_cudnn=True,
1423 1424
           act=None,
           name=None):
Y
Yu Yang 已提交
1425
    """
C
chengduoZH 已提交
1426
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1427 1428
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1429
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1430 1431 1432 1433 1434 1435 1436
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1437 1438 1439
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1440

1441
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1442

C
chengduoZH 已提交
1443 1444
    .. math::

C
refine  
chengduoZH 已提交
1445
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1446

T
tensor-tang 已提交
1447
    Where:
C
chengduoZH 已提交
1448

1449 1450 1451 1452 1453
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1454
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1455 1456 1457

    Example:

1458 1459
        - Input:

W
weixing02 已提交
1460
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1461

W
weixing02 已提交
1462
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1463

1464
        - Output:
T
tensor-tang 已提交
1465

W
weixing02 已提交
1466
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1467

C
chengduoZH 已提交
1468
        Where
1469 1470

        .. math::
C
chengduoZH 已提交
1471

W
weixing02 已提交
1472 1473
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1474 1475

    Args:
1476
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1477
        num_filters(int): The number of filter. It is as same as the output
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
C
chengduoZH 已提交
1503 1504

    Returns:
G
guosheng 已提交
1505
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1506 1507
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1508
    Raises:
1509 1510
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1511

C
chengduoZH 已提交
1512 1513 1514
    Examples:
        .. code-block:: python

1515 1516
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1517 1518 1519
    """

    num_channels = input.shape[1]
1520 1521

    l_type = 'conv2d'
X
xzl 已提交
1522 1523
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1524
        l_type = 'depthwise_conv2d'
1525 1526 1527 1528

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1529 1530 1531 1532 1533
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1534
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1535

C
chengduoZH 已提交
1536 1537 1538
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1539
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1540

C
chengduoZH 已提交
1541 1542
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1543 1544

    input_shape = input.shape
M
minqiyang 已提交
1545
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**2 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
1560
        type=l_type,
Y
Yu Yang 已提交
1561 1562 1563 1564 1565
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1566 1567 1568
        attrs={
            'strides': stride,
            'paddings': padding,
1569
            'dilations': dilation,
C
chengduoZH 已提交
1570
            'groups': groups,
1571
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1572
            'use_mkldnn': False
C
chengduoZH 已提交
1573
        })
Y
Yu Yang 已提交
1574 1575 1576 1577 1578 1579

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1597 1598 1599 1600 1601 1602
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1612 1613
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1614 1615 1616
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1617
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1643
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1644 1645
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1646
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1647 1648
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1649
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1650 1651
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1652
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None
        bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type. Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1678 1679
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
    """

    l_type = 'conv3d'

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1694
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
        std = (2.0 / (filter_size[0]**3 * num_channels))**0.5
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

    pre_bias = helper.create_tmp_variable(dtype)

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1732
            'use_mkldnn': False
C
chengduoZH 已提交
1733 1734
        })

1735
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1736 1737 1738 1739

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1740
def sequence_pool(input, pool_type):
Y
Yu Yang 已提交
1741
    """
Y
yangyaming 已提交
1742 1743 1744
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1756
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1757 1758 1759 1760 1761
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1762
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1763 1764 1765 1766 1767 1768 1769

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1770 1771
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1772

L
Luo Tao 已提交
1773 1774
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1775
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1776 1777 1778 1779 1780 1781 1782 1783
            It supports average, sum, sqrt and max.

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1784

Y
yangyaming 已提交
1785
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1786 1787 1788 1789 1790
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1791 1792
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1793
    """
F
fengjiayi 已提交
1794
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    max_index = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
        attrs={"pooltype": pool_type.upper()})

Y
yangyaming 已提交
1806 1807 1808 1809 1810
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1811 1812 1813
    return pool_out


C
add doc  
chengduoZH 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1839
def sequence_first_step(input):
L
Luo Tao 已提交
1840
    """
L
Luo Tao 已提交
1841
    This function gets the first step of sequence.
L
Luo Tao 已提交
1842 1843 1844 1845

    .. code-block:: text

       x is a 1-level LoDTensor:
1846
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1847 1848 1849 1850 1851
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1852
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1853
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1854

L
Luo Tao 已提交
1855 1856 1857 1858 1859 1860 1861 1862 1863
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1864

Y
yangyaming 已提交
1865
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1866 1867 1868
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
1869 1870 1871
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
1872
def sequence_last_step(input):
L
Luo Tao 已提交
1873
    """
L
Luo Tao 已提交
1874
    This function gets the last step of sequence.
L
Luo Tao 已提交
1875 1876 1877 1878

    .. code-block:: text

       x is a 1-level LoDTensor:
1879
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1880 1881 1882 1883 1884
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1885
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1886
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
1887

L
Luo Tao 已提交
1888 1889 1890 1891 1892 1893 1894 1895 1896
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1897

Y
yangyaming 已提交
1898
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1899 1900 1901
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
1902 1903 1904
    return sequence_pool(input=input, pool_type="last")


F
fengjiayi 已提交
1905
@templatedoc()
Y
Yu Yang 已提交
1906
def pool2d(input,
C
chengduoZH 已提交
1907 1908
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
1909 1910
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
1911
           global_pooling=False,
C
chengduoZH 已提交
1912
           use_cudnn=True,
1913
           ceil_mode=False,
C
caoying03 已提交
1914
           name=None):
Y
Yu Yang 已提交
1915
    """
F
fengjiayi 已提交
1916
    ${comment}
1917 1918

    Args:
1919 1920 1921
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
1922
                          feature, and W is the width of the feature.
1923
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
1924
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
1925
        pool_type: ${pooling_type_comment}
1926 1927
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
F
fengjiayi 已提交
1928 1929 1930
        global_pooling: ${global_pooling_comment}
        use_cudnn: ${use_cudnn_comment}
        ceil_mode: ${ceil_mode_comment}
1931
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
1932 1933
                        layer will be named automatically.

1934
    Returns:
F
fengjiayi 已提交
1935
        Variable: The pooling result.
F
fengjiayi 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
1949 1950 1951 1952
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
1953
                            global_pooling=False)
Y
Yu Yang 已提交
1954 1955 1956 1957 1958
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
1959

C
chengduoZH 已提交
1960 1961 1962 1963 1964
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
1965 1966 1967 1968
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
1969 1970
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1971

C
Add doc  
chengduoZH 已提交
1972
    l_type = 'pool2d'
1973 1974

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
1975 1976 1977 1978
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
1990
            "use_mkldnn": False
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
           name=None):
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2007
    pooling configurations mentioned in input parameters.
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2020

2021
    Returns:
2022
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2023 2024 2025 2026 2027
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2028

C
chengduoZH 已提交
2029 2030 2031 2032 2033
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2034 2035 2036
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2037

C
chengduoZH 已提交
2038 2039
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2040

2041 2042
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2043 2044 2045 2046
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)

    helper.append_op(
2047
        type=l_type,
Y
Yu Yang 已提交
2048 2049 2050 2051 2052 2053 2054
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2055
            "paddings": pool_padding,
2056
            "use_cudnn": use_cudnn,
2057
            "ceil_mode": ceil_mode,
X
Xin Pan 已提交
2058
            "use_mkldnn": False
Y
Yu Yang 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2071
               data_layout='NCHW',
Y
Yang Yang 已提交
2072
               in_place=False,
2073 2074
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2075
               moving_variance_name=None,
2076 2077
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2078
    """
Q
qiaolongfei 已提交
2079 2080 2081 2082
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2083

Q
qiaolongfei 已提交
2084
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2085

Q
qiaolongfei 已提交
2086 2087
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2088 2089 2090
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2103 2104

    Args:
Q
qiaolongfei 已提交
2105
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2106 2107 2108 2109
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
Q
qiaolongfei 已提交
2110 2111 2112
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        bias_attr(ParamAttr): The parameter attribute for Parameter `bias`.
        data_layout(string, default NCHW): NCHW|NHWC
2113
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2114 2115 2116 2117
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2118
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2119
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2120 2121

    Returns:
Q
qiaolongfei 已提交
2122
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2123 2124 2125 2126 2127 2128 2129

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
    """
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2153
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2154

2155 2156
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2157 2158 2159
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2160
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2161
        shape=param_shape,
2162 2163 2164 2165 2166 2167 2168
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2169
            trainable=False,
W
wanghaoshuang 已提交
2170
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2171
        shape=param_shape,
2172 2173
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2174 2175 2176 2177 2178 2179

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
Q
QI JUN 已提交
2180 2181
    saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2182

2183
    batch_norm_out = input if in_place else helper.create_tmp_variable(dtype)
Y
Yu Yang 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2201 2202 2203 2204
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2205
            "use_mkldnn": False,
2206
            "fuse_with_relu": fuse_with_relu
2207
        })
Y
Yu Yang 已提交
2208 2209 2210 2211

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2212
@templatedoc()
G
guosheng 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2223
    ${comment}
G
guosheng 已提交
2224 2225 2226

    The formula is as follows:

Y
yuyang18 已提交
2227
    ..  math::
G
guosheng 已提交
2228 2229 2230 2231 2232 2233 2234

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2235 2236 2237 2238 2239 2240 2241 2242
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2243

G
guosheng 已提交
2244 2245
    Args:
        input(Variable): The input tensor variable.
2246
        scale(bool): Whether to learn the adaptive gain :math:`g` after
G
guosheng 已提交
2247
            normalization.
2248
        shift(bool): Whether to learn the adaptive bias :math:`b` after
G
guosheng 已提交
2249
            normalization.
2250
        begin_norm_axis(bool): The normalization will be performed along
G
guosheng 已提交
2251
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2252
        epsilon(float): The small value added to the variance to prevent
G
guosheng 已提交
2253 2254 2255 2256 2257 2258
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`.
        act(str): Activation to be applied to the output of layer normalizaiton.
2259
        name (str): The name of this layer. It is optional.
G
guosheng 已提交
2260 2261

    Returns:
Y
yuyang18 已提交
2262
        ${y_comment}
G
guosheng 已提交
2263 2264 2265

    Examples:

Y
yuyang18 已提交
2266 2267 2268
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2284
    if shift:
G
guosheng 已提交
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2309 2310 2311 2312
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2313 2314 2315
                     padding=0,
                     stride=1,
                     dilation=1,
2316
                     groups=None,
C
caoying03 已提交
2317
                     param_attr=None,
2318
                     bias_attr=None,
C
chengduoZH 已提交
2319
                     use_cudnn=True,
2320
                     act=None,
C
caoying03 已提交
2321
                     name=None):
Y
Yu Yang 已提交
2322
    """
2323 2324 2325 2326 2327 2328 2329 2330
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2331 2332
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2333 2334 2335
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2336 2337 2338 2339 2340

    For each input :math:`X`, the equation is:

    .. math::

2341
        Out = \sigma (W \\ast X + b)
2342

2343
    Where:
2344 2345 2346

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2347 2348 2349 2350
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2351

2352 2353 2354 2355
    Example:

        - Input:

2356
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2357

2358
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2359 2360 2361

        - Output:

2362
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2363 2364

        Where
Y
Yu Yang 已提交
2365

2366 2367
        .. math::

2368 2369 2370 2371
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2372 2373

    Args:
2374 2375 2376 2377
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2378 2379 2380 2381
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer.
                               Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2409 2410

    Returns:
2411
        Variable: The tensor variable storing the convolution transpose result.
2412 2413

    Raises:
2414 2415
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2416 2417 2418 2419

    Examples:
       .. code-block:: python

2420 2421
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2422
    """
2423 2424 2425 2426 2427 2428 2429 2430 2431

    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2432 2433 2434
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2435 2436 2437
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2438

C
chengduoZH 已提交
2439 2440
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2441

Y
Yu Yang 已提交
2442 2443 2444 2445 2446
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2447

Y
Yu Yang 已提交
2448 2449
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2450

C
chengduoZH 已提交
2451
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2452
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2453
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2454
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2455
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2456 2457 2458
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
2459 2460 2461 2462 2463 2464 2465
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2466
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2467
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2468 2469 2470
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2471
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2472
    helper.append_op(
2473
        type=op_type,
Y
Yu Yang 已提交
2474 2475
        inputs={'Input': [input],
                'Filter': [img_filter]},
2476
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2477
        attrs={
2478
            'output_size': output_size,
2479 2480 2481 2482 2483
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2484 2485
        })

2486 2487 2488
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2489 2490


2491
def conv3d_transpose(input,
Y
Yu Yang 已提交
2492 2493 2494
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2495 2496 2497
                     padding=0,
                     stride=1,
                     dilation=1,
2498
                     groups=None,
C
caoying03 已提交
2499
                     param_attr=None,
2500
                     bias_attr=None,
C
chengduoZH 已提交
2501
                     use_cudnn=True,
2502
                     act=None,
C
caoying03 已提交
2503
                     name=None):
Y
Yu Yang 已提交
2504
    """
2505
    **Convlution3D transpose layer**
2506

2507
    The convolution3D transpose layer calculates the output based on the input,
2508
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2509 2510 2511 2512 2513 2514
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2515 2516 2517
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2518 2519 2520 2521 2522

    For each input :math:`X`, the equation is:

    .. math::

2523
        Out = \sigma (W \\ast X + b)
2524 2525 2526

    In the above equation:

2527 2528
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2529 2530 2531 2532
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2533

2534 2535 2536 2537
    Example:

        - Input:

2538
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2539

2540
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2541 2542 2543

        - Output:

2544
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2545 2546

        Where
Y
Yu Yang 已提交
2547

2548 2549
        .. math::

2550 2551 2552
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2553 2554

    Args:
2555
        input(Variable): The input image with [N, C, D, H, W] format.
2556 2557 2558
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2559
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2560 2561
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2562
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2563 2564 2565
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2566 2567
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2568
        stride(int|tuple): The stride size. If stride is a tuple, it must
2569 2570
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2571
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2572 2573 2574
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2575 2576 2577 2578 2579
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
2580 2581 2582
        param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer.
            Default: None
        bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None
2583 2584 2585 2586 2587
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act(str): Activation type. Default: None
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2588 2589

    Returns:
2590
        Variable: The tensor variable storing the convolution transpose result.
2591 2592

    Raises:
2593 2594
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2595 2596 2597 2598

    Examples:
       .. code-block:: python

2599 2600
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2601
    """
2602 2603
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2604
    if not isinstance(input, Variable):
2605
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2606 2607
    input_channel = input.shape[1]

2608 2609 2610
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2611

C
chengduoZH 已提交
2612 2613 2614
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2615 2616 2617 2618 2619 2620
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2621 2622 2623
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2624

2625
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2626
                         padding[0] - 1) // dilation[0] + 1
2627
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2628
                         padding[1] - 1) // dilation[1] + 1
2629
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2630
                         padding[2] - 1) // dilation[2] + 1
2631
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2632
    else:
2633 2634
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2635

2636
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2637
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2638 2639 2640
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

2641
    pre_bias = helper.create_tmp_variable(dtype=input.dtype)
Y
Yu Yang 已提交
2642
    helper.append_op(
2643
        type=l_type,
Y
Yu Yang 已提交
2644 2645
        inputs={'Input': [input],
                'Filter': [img_filter]},
2646
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2647 2648 2649 2650
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2651
            'groups': groups,
C
chengduoZH 已提交
2652 2653
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2654

2655 2656
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2657
    return out
Y
yangyaming 已提交
2658 2659


Y
yangyaming 已提交
2660
def sequence_expand(x, y, ref_level=-1, name=None):
2661
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2662 2663 2664 2665
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2666 2667 2668 2669 2670

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2671
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2672
                x.data = [[a], [b], [c], [d]]
2673 2674 2675
                x.dims = [4, 1]

            y is a LoDTensor:
2676 2677
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2678

Y
yangyaming 已提交
2679
            ref_level: 0
2680

Y
yangyaming 已提交
2681
            then output is a 1-level LoDTensor:
2682
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2683
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2684 2685 2686 2687
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2688
                x.data = [[a], [b], [c]]
2689 2690 2691
                x.dims = [3, 1]

            y is a LoDTensor:
2692
                y.lod = [[2, 0, 3]]
2693

Y
yangyaming 已提交
2694
            ref_level: -1
2695

Y
yangyaming 已提交
2696 2697 2698
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2699 2700 2701
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2702 2703
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2704
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2705
                        will be named automatically.
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2716
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2717
    """
Y
yangyaming 已提交
2718
    helper = LayerHelper('sequence_expand', input=x, **locals())
2719 2720 2721
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
Y
yangyaming 已提交
2722 2723 2724 2725 2726
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2727
    return tmp
2728 2729


C
chengduo 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
    tmp = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
2795 2796 2797 2798 2799 2800 2801
@templatedoc()
def sequence_pad(x, pad_value, maxlen=None):
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
2802 2803 2804
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
2805
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
2806 2807 2808 2809
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
F
fengjiayi 已提交
2810
            longest original sequence."
M
minqiyang 已提交
2811

F
fengjiayi 已提交
2812
    Returns:
M
minqiyang 已提交
2813
        Variable: The padded sequence batch and the original lengths before
2814
                  padding. All sequences has the same length.
M
minqiyang 已提交
2815

F
fengjiayi 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
            pad_value = fluid.layers.assign(input=numpy.array([0]))
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
2830 2831 2832 2833 2834
    length = helper.create_tmp_variable(dtype)

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
2835 2836 2837 2838 2839 2840
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
2841 2842
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
2843
        attrs={'padded_length': maxlen})
2844
    return out, length
F
fengjiayi 已提交
2845 2846


2847 2848 2849 2850 2851 2852 2853 2854 2855
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
2856 2857
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
2858 2859 2860

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
2861 2862

    This layer does the search in beams for one time step. Specifically, it
2863 2864 2865 2866 2867 2868
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
2869

2870 2871 2872 2873 2874 2875 2876 2877
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
2878

2879
    Args:
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
2905

2906
    Returns:
2907 2908
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
2909 2910 2911 2912

    Examples:
        .. code-block:: python

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

    selected_scores = helper.create_tmp_variable(dtype=score_type)
    selected_ids = helper.create_tmp_variable(dtype=id_type)

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
2941
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


2959 2960 2961 2962 2963 2964 2965
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
2966

2967 2968 2969 2970 2971 2972 2973 2974 2975
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
2976

2977 2978 2979 2980 2981 2982
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
2983

2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
    sentence_ids = helper.create_tmp_variable(dtype=ids.dtype)
    sentence_scores = helper.create_tmp_variable(dtype=ids.dtype)

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3009 3010 3011 3012
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3013
              param_attr=None,
C
caoying03 已提交
3014 3015
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3016 3017 3018 3019
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3020
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3021

3022
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3023

3024
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3025

3026
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3027 3028 3029

            h_t & = o_t tanh(c_t)

3030 3031 3032 3033 3034 3035
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3036 3037 3038

        .. math::

3039
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3040 3041 3042 3043 3044 3045 3046 3047

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3048
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3049 3050

    Args:
Y
yangyaming 已提交
3051 3052 3053 3054 3055 3056
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3057
        forget_bias (float): The forget bias of lstm unit.
Y
yangyaming 已提交
3058 3059
        param_attr (ParamAttr): The attributes of parameter weights, used to set
            initializer, name etc.
Y
yangyaming 已提交
3060 3061
        bias_attr (ParamAttr): The attributes of bias weights, if not False,
            bias weights will be created and be set to default value.
C
caoying03 已提交
3062 3063
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3064 3065

    Returns:
Y
yangyaming 已提交
3066
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3067 3068

    Raises:
3069 3070 3071 3072
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3073 3074 3075 3076 3077 3078

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3079
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3080
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3081
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3098
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3099 3100 3101 3102
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3103 3104
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3105 3106 3107
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3108
    size = cell_t_prev.shape[1]
3109
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3110 3111
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3112
                param_attr=param_attr,
3113
                bias_attr=bias_attr)
Y
yangyaming 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
    dtype = x_t.dtype
    c = helper.create_tmp_variable(dtype)
    h = helper.create_tmp_variable(dtype)

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3126
    return h, c
G
guosheng 已提交
3127 3128


C
caoying03 已提交
3129
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3130
    """
Y
yangyaming 已提交
3131
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3132 3133 3134

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3135
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3136 3137
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3138 3139
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3140
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3141
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3142
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3143 3144
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3145 3146 3147

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3148

G
guosheng 已提交
3149 3150 3151 3152 3153 3154
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3155
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3156 3157 3158 3159
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3160 3161 3162 3163

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3164
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3165 3166 3167
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3168 3169 3170
    """
    helper = LayerHelper('reduce_sum', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3171 3172
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3173 3174 3175 3176 3177
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3178
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3179 3180 3181 3182
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3183 3184


C
caoying03 已提交
3185
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3186
    """
Y
Yibing Liu 已提交
3187
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3188 3189 3190

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3191 3192 3193
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3194
            must be in the range :math:`[-rank(input), rank(input))`. If
3195
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3196
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3197 3198
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3199
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3200
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3201
                       will be named automatically.
G
guosheng 已提交
3202 3203

    Returns:
Y
Yibing Liu 已提交
3204
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3205

G
guosheng 已提交
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3216 3217
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3218 3219 3220 3221 3222 3223 3224

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3225 3226 3227
    """
    helper = LayerHelper('reduce_mean', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3228 3229
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3230 3231 3232 3233 3234
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3235
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3236 3237 3238 3239
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3240 3241


C
caoying03 已提交
3242
def reduce_max(input, dim=None, keep_dim=False, name=None):
3243
    """
Y
yangyaming 已提交
3244
    Computes the maximum of tensor elements over the given dimension.
3245 3246 3247

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3248
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3249 3250 3251
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3252
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3253 3254
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3255
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3256 3257
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3258 3259 3260

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3261

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3273 3274 3275 3276 3277 3278 3279

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3280 3281 3282
    """
    helper = LayerHelper('reduce_max', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3283 3284
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3285 3286 3287 3288 3289
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3290
            'dim': dim if dim != None else [0],
3291 3292 3293 3294 3295 3296
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3297
def reduce_min(input, dim=None, keep_dim=False, name=None):
3298
    """
Y
yangyaming 已提交
3299
    Computes the minimum of tensor elements over the given dimension.
3300 3301 3302

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3303
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3304 3305 3306
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3307
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3308 3309
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3310
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3311 3312
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3313 3314 3315

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3328 3329 3330 3331 3332 3333 3334

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3335 3336 3337
    """
    helper = LayerHelper('reduce_min', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3338 3339
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3340 3341 3342 3343 3344
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3345
            'dim': dim if dim != None else [0],
3346 3347 3348 3349
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3350 3351


3352 3353 3354 3355 3356 3357
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3358
        dim (list|int|None): The dimensions along which the product is performed. If
3359 3360
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3361 3362
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3363 3364 3365
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3366
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3367
            layer will be named automatically.
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3382
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3383
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3384 3385 3386 3387 3388 3389 3390

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3391 3392 3393
    """
    helper = LayerHelper('reduce_prod', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
W
whs 已提交
3394 3395
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3396 3397 3398 3399 3400
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3401
            'dim': dim if dim != None else [0],
3402 3403 3404 3405 3406 3407
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3408
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3409
    """
C
caoying03 已提交
3410
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3411 3412 3413

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3414 3415 3416 3417 3418
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3419
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3420
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3421
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3422 3423
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3424 3425

    Returns:
D
dzhwinter 已提交
3426
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3436 3437
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
        helper.create_tmp_variable(dtype=helper.input_dtype())
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3476
    .. math::
3477 3478

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3479 3480 3481 3482 3483

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3484
        x(Variable|list): The input tensor to l2_normalize layer.
3485
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3486 3487
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3488
        epsilon(float): The epsilon value is used to avoid division by zero, \
3489
            the defalut value is 1e-10.
3490
        name(str|None): A name for this layer(optional). If set None, the layer \
3491
            will be named automatically.
C
caoying03 已提交
3492 3493

    Returns:
3494
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3495 3496

    Examples:
3497

C
caoying03 已提交
3498 3499
        .. code-block:: python

3500 3501 3502 3503
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3504 3505
    """

F
fengjiayi 已提交
3506 3507
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3508 3509
    helper = LayerHelper("l2_normalize", **locals())

3510 3511
    out = helper.create_tmp_variable(dtype=x.dtype)
    norm = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
3512
    helper.append_op(
3513 3514 3515 3516
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3517
        attrs={
3518 3519
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3520 3521
        })
    return out
3522 3523


S
sneaxiy 已提交
3524
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3525
    """
Y
ying 已提交
3526 3527 3528 3529
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3530

C
chengduoZH 已提交
3531
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3532
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3533

3534 3535 3536 3537 3538
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3539
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3540

C
chengduoZH 已提交
3541
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3542
      performs in the following way.
G
guosheng 已提交
3543

3544
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3545
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3546
        last two dimensions and a batched matrix multiply supporting broadcast
3547
        applies on the two tensors.
G
guosheng 已提交
3548

Y
ying 已提交
3549 3550
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3551
    removed after matrix multiplication.
G
guosheng 已提交
3552 3553 3554

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3555 3556 3557
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3558
        alpha (float): The scale of output. Default 1.0.
3559
        name(str|None): A name for this layer(optional). If set None, the layer
3560
            will be named automatically.
G
guosheng 已提交
3561 3562

    Returns:
3563
        Variable: The product Tensor variable.
G
guosheng 已提交
3564

G
guosheng 已提交
3565 3566 3567
    Examples:
        .. code-block:: python

3568
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3569 3570
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3571

3572 3573
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3574

3575 3576
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3577

3578 3579
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3580 3581 3582 3583

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3584 3585
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3586

Y
ying 已提交
3587
            # x: [M], y: [N]
3588
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3589
    """
Y
ying 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3602
            y_shape = y_shape + [1]
Y
ying 已提交
3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3619
    helper = LayerHelper('matmul', **locals())
Y
ying 已提交
3620
    out = helper.create_tmp_variable(dtype=x.dtype)
G
guosheng 已提交
3621
    helper.append_op(
3622 3623 3624 3625
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3626 3627 3628
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3629
            'alpha': float(alpha),
S
sneaxiy 已提交
3630
        })
3631
    return out
3632 3633


3634
def topk(input, k, name=None):
Q
qingqing01 已提交
3635 3636 3637 3638
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3639
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3640 3641 3642 3643 3644 3645
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3667 3668 3669
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3670
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3671
                 of input.
3672
        name(str|None): A name for this layer(optional). If set None, the layer
3673
                       will be named automatically.
F
fengjiayi 已提交
3674
                       Default: None
Q
qingqing01 已提交
3675 3676

    Returns:
3677 3678 3679
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
3680
        within the last dimension of input.
Q
qingqing01 已提交
3681

F
fengjiayi 已提交
3682 3683
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
    values = helper.create_tmp_variable(dtype=input.dtype)
    indices = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


3704
def edit_distance(input, label, normalized=True, ignored_tokens=None):
3705
    """
Y
ying 已提交
3706 3707 3708 3709 3710 3711 3712 3713 3714
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
3715

Y
ying 已提交
3716
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
3717

3718
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
3719 3720
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
3721
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
3722

3723
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
3724 3725
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
3726

3727 3728 3729
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
3730
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
3731
                          the length of reference string.
3732
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
3733
                                     calculating edit distance.
3734
        name (str): The name of this layer. It is optional.
3735

W
wanghaoshuang 已提交
3736
    Returns:
W
wanghaoshuang 已提交
3737
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
3738 3739 3740 3741 3742

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
3743
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
3744
            cost = fluid.layers.edit_distance(input=x,label=y)
3745
    """
3746
    helper = LayerHelper("edit_distance", **locals())
3747

3748
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
3749
    if ignored_tokens is not None and len(ignored_tokens) > 0:
3750 3751 3752 3753 3754 3755 3756
        erased_input = helper.create_tmp_variable(dtype="int64")
        erased_label = helper.create_tmp_variable(dtype="int64")

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
3757
            attrs={"tokens": ignored_tokens})
3758 3759 3760 3761 3762
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
3763
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
3764
            attrs={"tokens": ignored_tokens})
3765 3766
        label = erased_label

3767 3768
    # edit distance op
    edit_distance_out = helper.create_tmp_variable(dtype="int64")
3769
    sequence_num = helper.create_tmp_variable(dtype="int64")
3770 3771 3772 3773
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
3774 3775
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
3776 3777
        attrs={"normalized": normalized})

3778
    return edit_distance_out, sequence_num
3779 3780 3781 3782 3783


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
3784

Y
ying 已提交
3785 3786 3787 3788
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

3806
        input.lod = [[4, 4]]
3807 3808 3809 3810 3811 3812 3813

        Then:

        output.data = [[2],
                       [1],
                       [3]]

3814
        output.lod = [[2, 1]]
3815 3816 3817

    Args:

Y
ying 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
3827
        name (str): The name of this layer. It is optional.
3828 3829

    Returns:
3830
        Variable: CTC greedy decode result. If all the sequences in result were
3831
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
3832 3833 3834 3835 3836

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
3837

3838
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
3839
    """
3840
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
3841
    _, topk_indices = topk(input, k=1)
3842 3843 3844 3845 3846 3847

    # ctc align op
    ctc_out = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
3848
        outputs={"Output": [ctc_out]},
3849 3850
        attrs={"merge_repeated": True,
               "blank": blank})
3851
    return ctc_out
3852 3853


F
fengjiayi 已提交
3854
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
3855
    """
3856 3857
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
3858
    to compute Connectionist Temporal Classification (CTC) loss.
3859 3860
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
3861 3862 3863
    input tensor.

    Args:
3864
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
3865 3866 3867 3868
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
3869
       label (Variable): The ground truth of variable-length sequence,
3870 3871 3872
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
3873 3874
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
3875 3876 3877
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
3878
         follewed by a mean_op.
W
wanghaoshuang 已提交
3879 3880

    Returns:
3881 3882
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
3883 3884

    Examples:
3885

W
wanghaoshuang 已提交
3886
        .. code-block:: python
3887

3888 3889 3890
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
3891 3892

    """
F
fengjiayi 已提交
3893
    helper = LayerHelper('warpctc', **locals())
W
wanghaoshuang 已提交
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
    loss_out = helper.create_tmp_variable(dtype=input.dtype)
    grad_out = helper.create_tmp_variable(dtype=input.dtype)
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
3920 3921 3922
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
3923 3924 3925 3926 3927
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
3928

3929
            out.lod  = [[0, 1, 3]]
3930 3931 3932 3933

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
3934 3935 3936 3937 3938 3939 3940
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
3941 3942 3943

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
3944 3945

    Returns:
3946

3947 3948 3949 3950 3951
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

3952
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
3953
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
3954 3955 3956 3957 3958 3959 3960 3961 3962
    """
    helper = LayerHelper('sequence_reshape', **locals())
    out = helper.create_tmp_variable(helper.input_dtype())
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
3963 3964


3965 3966 3967 3968
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
3969 3970 3971 3972 3973 3974 3975
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None):
3976 3977 3978 3979 3980 3981 3982
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
3983 3984
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
3985
            sample is 1.0.
3986 3987 3988
        param_attr (ParamAttr|None): attributes for parameter
        bias_attr (ParamAttr|None): attributes for bias
        num_neg_samples (int): ${num_neg_samples_comment}
F
fengjiayi 已提交
3989

3990
    Returns:
Y
Yibing Liu 已提交
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4018
    """
Y
Yang Yu 已提交
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    dim = input.shape[1]
    assert isinstance(label, Variable)
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
    b = helper.create_parameter(
        attr=helper.bias_attr,
        shape=[num_total_classes, 1],
        is_bias=True,
        dtype=input.dtype)
    cost = helper.create_tmp_variable(dtype=input.dtype)
    sample_logits = helper.create_tmp_variable(dtype=input.dtype)
    sample_labels = helper.create_tmp_variable(dtype=label.dtype)

Y
Yang Yu 已提交
4038 4039 4040 4041 4042 4043 4044 4045 4046
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062

    helper.append_op(
        type='nce',
        inputs={
            'Input': input,
            'Label': label,
            'Weight': w,
            'Bias': b,
            'SampleWeight': sample_weight if sample_weight is not None else []
        },
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4063
    return cost / (num_neg_samples + 1)
4064 4065


G
guosheng 已提交
4066
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
W
weixing02 已提交
4067 4068
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4069
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4079

W
weixing02 已提交
4080
    Args:
M
minqiyang 已提交
4081
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4082 4083 4084 4085 4086
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
W
weixing02 已提交
4087 4088
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter
             attribute for learnable parameters/weights of this layer.
M
minqiyang 已提交
4089
        bias_attr (ParamAttr|list of ParamAttr, default None):  The parameter
G
guosheng 已提交
4090 4091
             attribute for the bias of this layer. If it is set to False, no
             bias will be applied.
W
weixing02 已提交
4092 4093 4094 4095 4096 4097 4098 4099

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4100 4101 4102
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4103 4104 4105 4106 4107 4108 4109 4110
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    pre_out = helper.create_tmp_variable(dtype)
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4111
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4112 4113 4114 4115 4116
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4117 4118 4119 4120 4121 4122 4123 4124
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4125 4126
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4127
        inputs=inputs,
W
weixing02 已提交
4128 4129 4130 4131 4132 4133
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4134
def transpose(x, perm, name=None):
Y
ying 已提交
4135 4136 4137 4138 4139 4140 4141
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4142 4143 4144
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4145 4146 4147 4148 4149 4150 4151 4152

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[5, 10, 15], dtype='float32')
Y
fix ci.  
ying 已提交
4153
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4154 4155
    """

Y
fix ci.  
ying 已提交
4156
    if len(perm) != len(x.shape):
Y
ying 已提交
4157 4158 4159
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4160 4161 4162 4163 4164 4165
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4166 4167

    helper = LayerHelper('transpose', **locals())
Y
fix ci.  
ying 已提交
4168
    out = helper.create_tmp_variable(x.dtype)
4169
    x_shape = helper.create_tmp_variable(x.dtype)
Y
ying 已提交
4170
    helper.append_op(
4171
        type='transpose2',
Y
fix ci.  
ying 已提交
4172
        inputs={'X': [x]},
4173 4174
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4175 4176
        attrs={'axis': perm})
    return out
4177 4178


4179 4180 4181 4182 4183 4184 4185
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4186
    """
4187 4188 4189 4190 4191 4192 4193
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4222 4223 4224 4225 4226 4227 4228 4229 4230
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4231 4232 4233
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4234 4235 4236 4237 4238
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4266 4267 4268
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4281
            output.dims = {8, 8}
4282

4283
            output.lod = [[4, 4]]
4284

D
dzhwinter 已提交
4285
     Examples:
4286 4287 4288

        .. code-block:: python

4289 4290
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4291 4292

    """
W
wanghaoshuang 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4303 4304 4305 4306 4307 4308 4309
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4310
    helper = LayerHelper('im2sequence', **locals())
4311 4312
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
4313
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4314
    return out
4315 4316


Y
yuyang18 已提交
4317
@templatedoc()
4318
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4319 4320
    """
    ${comment}
4321 4322

    Args:
Y
yuyang18 已提交
4323
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4324 4325
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4326 4327 4328 4329 4330
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4331
        ${out_comment}.
4332 4333

    Examples:
Y
yuyang18 已提交
4334 4335 4336 4337
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4350
    return helper.append_activation(out)
4351 4352


Y
yuyang18 已提交
4353
@templatedoc()
4354 4355
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4356 4357 4358 4359 4360 4361 4362
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4363 4364

    Args:
Y
yuyang18 已提交
4365 4366
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4367 4368

    Returns:
Y
yuyang18 已提交
4369
        ${out_comment}.
4370 4371
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4372 4373 4374 4375 4376 4377

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

    out = helper.create_tmp_variable(inputs[0].dtype)
4378 4379 4380 4381 4382 4383
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4384 4385


4386 4387 4388 4389
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100):
4390 4391
    """
    **Softmax With Cross Entropy Operator.**
4392

4393 4394 4395 4396
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4397

4398 4399 4400
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4401

4402 4403 4404
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4405

4406
    The equation is as follows:
4407

4408
    1) Hard label (one-hot label, so every sample has exactly one class)
4409

4410 4411 4412 4413
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4414

4415 4416 4417
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4418

4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4431 4432
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4433 4434
                            if soft_label is set to False. Default: -100

4435 4436 4437 4438 4439 4440 4441 4442 4443
    Returns:
        Variable: The cross entropy loss is a 2-D tensor with shape [N x 1].

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4444 4445
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_tmp_variable(dtype=logits.dtype)
    loss = helper.create_tmp_variable(dtype=logits.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
4456 4457
        attrs={'soft_label': soft_label,
               'ignore_index': ignore_index})
4458 4459 4460 4461 4462
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4463 4464
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4465
    For each instance, it computes the smooth L1 loss element by element first
4466
    and then sums all the losses. So the shape of ouput Variable is
4467
    [batch_size, 1].
4468

4469 4470
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4471
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4472
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4473
            L1 loss op with same shape as :attr:`x`.
4474
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4475 4476
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4477
            by this tensor element by element.
4478
        outside_weight (Variable|None): A tensor with rank at least 2. This
4479 4480
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4481
            element by element.
4482
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4483 4484
           scalar with default value 1.0.

4485
    Returns:
4486
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4487 4488 4489 4490 4491

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4492 4493
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4494
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4495
            out = fluid.layers.smooth_l1(x=fc, y=label)
4496
    """
4497

4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
    helper = LayerHelper('smooth_l1_loss', **locals())
    diff = helper.create_tmp_variable(dtype=x.dtype)
    loss = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4513 4514 4515 4516


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4517
    This layer creates the one-hot representations for input indices.
4518 4519

    Args:
Y
Yibing Liu 已提交
4520 4521
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4522 4523

    Returns:
Y
Yibing Liu 已提交
4524
        Variable: The one-hot representations of input.
4525 4526

    Examples:
C
caoying03 已提交
4527
        .. code-block:: python
4528

Y
Yibing Liu 已提交
4529 4530
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4531 4532 4533 4534 4535 4536 4537 4538 4539
    """
    helper = LayerHelper("one_hot", **locals())
    one_hot_out = helper.create_tmp_variable(dtype='float32')
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4540 4541


Y
Yu Yang 已提交
4542
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4543
    """
Y
yi.wu 已提交
4544 4545 4546
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4547 4548 4549 4550 4551 4552

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4553 4554
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4555 4556 4557 4558 4559 4560

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4561 4562
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4563 4564
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4565 4566 4567 4568 4569
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4570
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4571
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4572 4573
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4574 4575
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4576 4577 4578
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4579 4580


4581
def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None):
C
caoying03 已提交
4582
    """
C
caoying03 已提交
4583 4584
    Gives a new shape to the input Tensor without changing its data.

4585 4586 4587 4588 4589
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4590

4591
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4592

4593 4594 4595 4596
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4597
    2. 0 means the actual dimension value is going to be copied from the
4598 4599 4600 4601
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4602 4603

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4604
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4605
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4606

4607
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4608 4609
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4610 4611
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
4612
    dimensions.
C
caoying03 已提交
4613

4614
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4615 4616 4617 4618
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
4619 4620

    Args:
4621
        x(variable): The input tensor.
C
caoying03 已提交
4622 4623
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
4624 4625 4626 4627 4628
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
C
caoying03 已提交
4629
        act (str): The non-linear activation to be applied to output variable.
X
Xin Pan 已提交
4630 4631 4632 4633
        inplace(bool): If this flag is set true, the output
                       shares data with input without copying, otherwise
                       a new output tensor is created
                       whose data is copied from input x.
4634
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
4635

4636 4637
    Returns:
        Variable: The output tensor.
C
caoying03 已提交
4638

X
Xin Pan 已提交
4639 4640 4641
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
4642 4643
    Examples:
        .. code-block:: python
G
guosheng 已提交
4644

4645
            data = fluid.layers.data(
4646
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
4647
            reshaped = fluid.layers.reshape(
4648
                x=data, shape=[-1, 0, 3, 2], act='tanh', inplace=True)
C
caoying03 已提交
4649 4650 4651
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
4652
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
4653 4654 4655 4656 4657
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
4658

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

4674
    helper = LayerHelper("reshape2", **locals())
D
dzhwinter 已提交
4675
    out = helper.create_tmp_variable(dtype=x.dtype)
4676
    x_shape = helper.create_tmp_variable(dtype=x.dtype)
C
caoying03 已提交
4677
    helper.append_op(
4678
        type="reshape2",
X
Xin Pan 已提交
4679
        inputs=inputs,
D
dzhwinter 已提交
4680
        attrs={"shape": shape},
4681 4682
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
4683

D
dzhwinter 已提交
4684
    return helper.append_activation(out)
4685

4686

4687
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
4688
    """
M
minqiyang 已提交
4689 4690 4691
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
4692
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
4693

Y
Yibing Liu 已提交
4694 4695
    Examples:
    Case 1:
M
minqiyang 已提交
4696
      Given
Y
Yibing Liu 已提交
4697 4698 4699 4700 4701 4702 4703 4704
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
4705
        and
Y
Yibing Liu 已提交
4706 4707 4708
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
4709

Y
Yibing Liu 已提交
4710
    Args:
4711
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
4712
        axes (list): List of integers, indicating the dimensions to be squeezed.
4713
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4714 4715 4716 4717 4718 4719 4720 4721

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
4722
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4723 4724
    """
    helper = LayerHelper("squeeze", **locals())
4725
    out = helper.create_tmp_variable(dtype=input.dtype)
4726
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4727
    helper.append_op(
4728
        type="squeeze2",
4729
        inputs={"X": input},
Y
Yibing Liu 已提交
4730
        attrs={"axes": axes},
4731 4732
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4733

4734 4735 4736
    return out


4737
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
4738
    """
M
minqiyang 已提交
4739 4740 4741
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
4742

M
minqiyang 已提交
4743 4744
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
4745
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
4746

Y
Yibing Liu 已提交
4747
    Args:
4748
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
4749
        axes (list): List of integers, indicating the dimensions to be inserted.
4750
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
4751 4752 4753 4754 4755 4756 4757 4758

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
4759
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
4760 4761
    """
    helper = LayerHelper("unsqueeze", **locals())
4762
    out = helper.create_tmp_variable(dtype=input.dtype)
4763
    x_shape = helper.create_tmp_variable(dtype=input.dtype)
Y
Yibing Liu 已提交
4764
    helper.append_op(
4765
        type="unsqueeze2",
4766
        inputs={"X": input},
Y
Yibing Liu 已提交
4767
        attrs={"axes": axes},
4768 4769
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
4770

4771 4772
    return out

4773

Y
yangyaming 已提交
4774
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
4775
    """
Y
Yibing Liu 已提交
4776
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
4777 4778 4779 4780
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
4781
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
4782 4783 4784 4785 4786 4787

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
4788
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
4789 4790 4791
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

4792
            target_lod: [4, 2]
Y
yangyaming 已提交
4793 4794

            then we get a 1-level LoDTensor:
4795
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
4796 4797 4798 4799 4800 4801
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
4802
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4803 4804 4805 4806
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
4807
                y.data = [[2, 4]]
Y
yangyaming 已提交
4808 4809 4810
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
4811
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
4812 4813 4814 4815 4816 4817
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
4818
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
4819 4820 4821 4822
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
4823
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4824 4825 4826 4827
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
4828
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
4829 4830 4831 4832 4833
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
4834
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
4835
                           from :attr:`y`.
Y
yangyaming 已提交
4836
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
4837
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
4838 4839

    Returns:
Y
Yibing Liu 已提交
4840
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
4841 4842

    Raises:
Y
Yibing Liu 已提交
4843
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
4879
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
4908 4909
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

    mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
4937 4938 4939 4940


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
4941
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
4942
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
4943

G
guosheng 已提交
4944 4945 4946 4947
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
4970
                         The length of :attr:paddings must be
G
guosheng 已提交
4971 4972 4973 4974 4975 4976 4977 4978 4979 4980
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
4981

G
guosheng 已提交
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
4996 4997


C
chengduo 已提交
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5078 5079 5080 5081 5082 5083 5084
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5085 5086
    called label-smoothing regularization (LSR).

5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5110
                              be :math:`(1, class\_num)`.
5111 5112
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5113
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5141 5142


Y
yi.wu 已提交
5143
@templatedoc()
5144 5145
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5146
    ${comment}
5147 5148

    Args:
Y
yi.wu 已提交
5149 5150
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5151 5152 5153
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5154 5155

    Returns:
Y
update  
yi.wu 已提交
5156
        Variable: ${out_comment}.
5157 5158

    Examples:
5159 5160
        .. code-block:: python

5161
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_tmp_variable(dtype)
    argmaxes = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206


def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5207 5208
        .. code-block:: python

W
whs 已提交
5209 5210 5211 5212
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5213
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5214 5215 5216 5217 5218 5219
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5220 5221


5222 5223 5224 5225 5226
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
                 resample='BILINEAR'):
5227
    """
Q
qiaolongfei 已提交
5228
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5229

5230
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5231 5232 5233
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5234

5235
        'BILINEAR' : Bilinear interpolation
F
stash  
fengjiayi 已提交
5236

5237
    Args:
5238
        input (Variable): The input tensor of image resize layer,
5239 5240
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5241
        out_shape(list|tuple|Variable|None): Output shape of image resize
5242 5243
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5244
        scale(float|None): The multiplier for the input height or width.
5245 5246 5247
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5248 5249
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5250 5251
        resample(str): The resample method. It can only be 'BILINEAR' currently.
                       Default: 'BILINEAR'
5252 5253

    Returns:
Q
update  
qiaolongfei 已提交
5254 5255
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5256

5257 5258 5259
    Examples:
        .. code-block:: python

5260
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5261
    """
5262 5263 5264 5265
    resample_methods = {'BILINEAR': 'bilinear_interp'}
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR' currently.")
5266 5267
    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None")
5268 5269
    helper = LayerHelper('bilinear_interp', **locals())
    dtype = helper.input_dtype()
5270 5271 5272 5273

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5274 5275 5276
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5277
    if out_shape is not None:
B
baiyf 已提交
5278 5279 5280
        if not (_is_list_or_turple_(out_shape) and
                len(out_shape) == 2) and not isinstance(out_shape, Variable):
            raise ValueError('out_shape should be a list or tuple or variable')
5281 5282 5283 5284 5285 5286
        if _is_list_or_turple_(out_shape):
            out_shape = list(map(int, out_shape))
            out_h = out_shape[0]
            out_w = out_shape[1]
        else:
            inputs['OutSize'] = out_shape
5287 5288 5289 5290
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5291 5292
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
5293
        type=resample_methods[resample],
5294
        inputs=inputs,
5295 5296 5297 5298
        outputs={"Out": out},
        attrs={"out_h": out_h,
               "out_w": out_w})
    return out
F
stash  
fengjiayi 已提交
5299 5300


Y
yuyang18 已提交
5301
@templatedoc(op_type="bilinear_interp")
5302 5303
def resize_bilinear(input, out_shape=None, scale=None, name=None):
    """
Y
yuyang18 已提交
5304 5305 5306 5307 5308 5309
    ${comment}

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5310

Y
yuyang18 已提交
5311 5312 5313 5314 5315 5316 5317 5318
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.

    Returns:
        ${out_comment}.
5319 5320 5321 5322 5323 5324 5325
    """

    return image_resize(input, out_shape, scale, name, 'BILINEAR')


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5326 5327 5328
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5329 5330 5331 5332 5333 5334 5335
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5336
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5337

5338
    Returns:
Q
update  
qiaolongfei 已提交
5339
        Variable: The output is a 4-D tensor of the shape
5340
        (num_batches, channls, out_h, out_w).
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5351 5352 5353
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5354 5355 5356
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5357 5358
def gather(input, index):
    """
Q
qiaolongfei 已提交
5359 5360
    **Gather Layer**

5361
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5362 5363 5364 5365
    of X indexed by `index` and concatenate them together.

    .. math::

5366
        Out = X[Index]
W
whs 已提交
5367 5368 5369 5370 5371 5372 5373


    .. code-block:: text


                Given:

5374 5375
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5386
        input (Variable): The source input with rank>=1.
W
whs 已提交
5387 5388 5389 5390 5391 5392
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5393

W
whs 已提交
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
5523

5524 5525 5526
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
5527
    """
F
stash  
fengjiayi 已提交
5528
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
5529
    dtype = x.dtype
F
stash  
fengjiayi 已提交
5530
    out = helper.create_tmp_variable(dtype)
Y
yuyang18 已提交
5531
    if seed is None:
5532
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
5533
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
5534
    if isinstance(seed, int):
F
fengjiayi 已提交
5535 5536 5537 5538 5539
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
5540 5541 5542 5543
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
5544
        inputs={"X": x,
F
stash  
fengjiayi 已提交
5545 5546
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
5547 5548
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
5549
    return out
W
whs 已提交
5550 5551


5552
def log(x, name=None):
W
wanghaoshuang 已提交
5553 5554 5555 5556 5557
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

5558
        Out = \\ln(x)
W
wanghaoshuang 已提交
5559 5560

    Args:
5561
        x (Variable): Input tensor.
5562 5563
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5564 5565 5566 5567 5568 5569 5570 5571

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

5572
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
5573 5574
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
5575
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5576
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5577
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5578 5579 5580
    return out


5581
def relu(x, name=None):
W
wanghaoshuang 已提交
5582 5583
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
5584
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
5585 5586 5587 5588
    the tensor elementwise.

    .. math::

5589
        Out = \\max(0, x)
W
wanghaoshuang 已提交
5590 5591

    Args:
5592
        x (Variable): The input tensor.
5593 5594
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
5595 5596 5597 5598 5599 5600 5601 5602

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

5603
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
5604 5605
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
5606
    dtype = helper.input_dtype(input_param_name='x')
W
wanghaoshuang 已提交
5607
    out = helper.create_tmp_variable(dtype)
W
wanghaoshuang 已提交
5608
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
5609
    return out
5610 5611


W
whs 已提交
5612 5613 5614
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
5615 5616 5617 5618
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
5619
    .. math::
5620 5621

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
5622

5623
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
5624 5625 5626 5627 5628
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
5629
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
5630
                           Its shape should be the same as input.
5631
        num_classes (int): The possible number of labels.
W
whs 已提交
5632 5633 5634 5635

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
5636
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
5637 5638 5639 5640

    Examples:

        .. code-block:: python
5641

W
whs 已提交
5642 5643 5644 5645 5646 5647 5648 5649 5650
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
    out_mean_iou = helper.create_tmp_variable(dtype='float32')
    out_wrong = helper.create_tmp_variable(dtype='int32')
    out_correct = helper.create_tmp_variable(dtype='int32')
    helper.append_op(
        type="mean_iou",
W
whs 已提交
5651 5652
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
5653
        outputs={
W
whs 已提交
5654 5655 5656
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
5657 5658 5659
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
5734
                    isinstance(shape, Variable)):
5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

    out = helper.create_tmp_variable(x.dtype)
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
5758 5759 5760 5761 5762 5763 5764 5765 5766 5767


def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
5768

5769 5770
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
5771

5772 5773 5774 5775
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
5776

5777 5778 5779 5780 5781
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
5782 5783 5784

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

    out = helper.create_tmp_variable("float32")

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
5829 5830


M
minqiyang 已提交
5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
    **Margin Rank loss layer for RankNet**
     Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        list: The value of rank loss.
     Raises:
        ValueError: Any of label, left, and right is not a variable.
     Examples:
         .. code-block:: python
             label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.margin_rank_loss(label, left, right)
     """
    helper = LayerHelper('margin_rank_loss', **locals())
    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")
    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")
    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")
    out = helper.create_tmp_variable("float32")
    act = helper.create_tmp_variable("float32")
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
5885

W
whs 已提交
5886 5887
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
5888

W
whs 已提交
5889
      Case 0:
M
minqiyang 已提交
5890

W
whs 已提交
5891 5892 5893
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
5894

W
whs 已提交
5895 5896 5897
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
5898

W
whs 已提交
5899
      Case 1:
M
minqiyang 已提交
5900

W
whs 已提交
5901 5902
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
5903

W
whs 已提交
5904 5905 5906
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
5907

W
whs 已提交
5908
      Case 2:
M
minqiyang 已提交
5909

W
whs 已提交
5910 5911
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
5912

W
whs 已提交
5913 5914 5915
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
5916 5917


W
whs 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6115
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6116
                        will be named automatically.
J
jerrywgz 已提交
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6235

6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6246 6247
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6263
        ValueError: If axis is not in range [0, rank(x)].
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

    out = helper.create_tmp_variable(x.dtype)
6281
    x_shape = helper.create_tmp_variable(x.dtype)
6282
    helper.append_op(
6283
        type='flatten2',
6284
        inputs={"X": x},
6285 6286
        outputs={'Out': out,
                 'XShape': x_shape},
6287 6288
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6289 6290


C
chenweihang 已提交
6291
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6292
    """
C
chenweihang 已提交
6293
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6294
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6295 6296
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6297

C
chenweihang 已提交
6298 6299 6300 6301
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6302
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6303 6304 6305 6306 6307 6308
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6309
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6310 6311 6312
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6313 6314 6315
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
C
chenweihang 已提交
6327
    out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
6328 6329 6330 6331 6332 6333
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
6334
    return out
6335

6336

S
sneaxiy 已提交
6337 6338 6339 6340 6341 6342 6343 6344 6345
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
6346

S
sneaxiy 已提交
6347
    .. math::
6348

S
sneaxiy 已提交
6349 6350 6351
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
6352
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
6353 6354 6355 6356
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
6357 6358 6359
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
6360 6361
    Returns:
        Variable: The output sequence mask.
6362

S
sneaxiy 已提交
6363 6364
    """

Q
qingqing01 已提交
6365
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
6366 6367 6368 6369 6370
    if name is None:
        out = helper.create_tmp_variable(dtype=dtype)
    else:
        out = helper.create_tmp_variable(dtype=dtype, name=name)

Q
qingqing01 已提交
6371 6372 6373
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
6374 6375
        outputs={'Y': out},
        attrs={
6376
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
6377 6378 6379
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
6380 6381


X
Xin Pan 已提交
6382
def stack(x, axis=0):
S
sneaxiy 已提交
6383 6384 6385 6386
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
6387 6388 6389 6390 6391 6392 6393

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
6394
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
6395
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
6396 6397

    Args:
6398
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
6399
        axis (int|None): The axis along which all inputs are stacked.
6400

S
sneaxiy 已提交
6401 6402
    Returns:
        Variable: The stacked variable.
6403

S
sneaxiy 已提交
6404 6405
    """

X
Xin Pan 已提交
6406 6407 6408 6409 6410 6411 6412 6413
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

    out = helper.create_tmp_variable(x[0].dtype)
    helper.append_op(
S
sneaxiy 已提交
6414 6415
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
6416

X
Xin Pan 已提交
6417
    return out
D
dzhwinter 已提交
6418 6419 6420 6421 6422 6423 6424


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
6425

D
dzhwinter 已提交
6426 6427 6428
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
6429
    raised.
D
dzhwinter 已提交
6430 6431

    Args:
M
minqiyang 已提交
6432
        x (Variable): Input variable.
D
dzhwinter 已提交
6433 6434
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
6435

D
dzhwinter 已提交
6436 6437
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
6438

D
dzhwinter 已提交
6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
        outs.append(helper.create_tmp_variable(x.dtype))

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
6471

W
whs 已提交
6472 6473 6474 6475
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
6476

W
whs 已提交
6477
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
6478

W
whs 已提交
6479
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
6480

W
whs 已提交
6481 6482 6483 6484
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
6485

W
whs 已提交
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_tmp_variable(dtype)
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
6509 6510


G
fix  
gongweibao 已提交
6511 6512 6513
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
6514
@templatedoc()
G
fix  
gongweibao 已提交
6515 6516 6517 6518 6519 6520 6521 6522 6523
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
6524
    ${comment}
G
fix  
gongweibao 已提交
6525 6526

    Args:
G
gongweibao 已提交
6527 6528 6529
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6530
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
6531 6532 6533
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6534 6535
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
6536
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
6558 6559


G
gongweibao 已提交
6560
@templatedoc()
X
Xin Pan 已提交
6561
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6562
    """
G
gongweibao 已提交
6563
    ${comment}
G
fix  
gongweibao 已提交
6564 6565

    Args:
G
gongweibao 已提交
6566 6567 6568 6569
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6570 6571 6572
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
6573
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588

    """

    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
6589
            'use_mkldnn': False
G
fix  
gongweibao 已提交
6590 6591 6592 6593 6594
        })

    return out


G
gongweibao 已提交
6595
@templatedoc()
G
fix  
gongweibao 已提交
6596
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
6597
    """
G
gongweibao 已提交
6598
    ${comment}
G
fix  
gongweibao 已提交
6599 6600

    Args:
G
gongweibao 已提交
6601 6602 6603 6604
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
6605
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6606 6607

    Returns:
G
gongweibao 已提交
6608
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6609 6610 6611 6612

    """

    helper = LayerHelper('sampling_id', **locals())
G
fix  
gongweibao 已提交
6613
    out = helper.create_tmp_variable(dtype)
G
fix  
gongweibao 已提交
6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
6625
@templatedoc()
G
fix  
gongweibao 已提交
6626 6627 6628 6629 6630 6631 6632 6633 6634
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
6635
    ${comment}
G
fix  
gongweibao 已提交
6636 6637

    Args:
G
gongweibao 已提交
6638 6639
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
6640
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
6641 6642 6643 6644
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
6645
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
6646 6647

    Returns:
G
gongweibao 已提交
6648
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
    out = helper.create_tmp_variable(dtype)
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
6671
@templatedoc()
X
Xin Pan 已提交
6672
def sum(x):
G
fix  
gongweibao 已提交
6673
    """
G
gongweibao 已提交
6674
    ${comment}
G
fix  
gongweibao 已提交
6675 6676

    Args:
G
gongweibao 已提交
6677
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
6678 6679

    Returns:
G
gongweibao 已提交
6680
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6681 6682 6683
    """

    helper = LayerHelper('sum', **locals())
G
fix  
gongweibao 已提交
6684
    out = helper.create_tmp_variable(dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
6685 6686 6687 6688
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
6689
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
6690 6691 6692 6693

    return out


G
gongweibao 已提交
6694
@templatedoc()
G
fix  
gongweibao 已提交
6695 6696
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
6697
    ${comment}
G
fix  
gongweibao 已提交
6698 6699

    Args:
G
gongweibao 已提交
6700 6701 6702 6703
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
6704 6705

    Returns:
G
gongweibao 已提交
6706
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6707 6708 6709 6710

    """

    helper = LayerHelper('slice', **locals())
G
fix  
gongweibao 已提交
6711
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
6723
@templatedoc()
G
fix  
gongweibao 已提交
6724 6725
def shape(input):
    """
G
gongweibao 已提交
6726
    ${comment}
G
fix  
gongweibao 已提交
6727 6728

    Args:
G
gongweibao 已提交
6729
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
6730 6731

    Returns:
G
gongweibao 已提交
6732
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
6733 6734 6735 6736

    """

    helper = LayerHelper('shape', **locals())
G
fix  
gongweibao 已提交
6737
    out = helper.create_tmp_variable(dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
6738
    helper.append_op(
G
fix  
gongweibao 已提交
6739
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
6740 6741

    return out
G
merge  
gongweibao 已提交
6742 6743


S
sneaxiy 已提交
6744 6745 6746 6747 6748 6749 6750 6751
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
6752 6753 6754 6755 6756 6757
    name = helper.kwargs.get('name', None)
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6758

S
sneaxiy 已提交
6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
6770
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
6771 6772 6773 6774 6775 6776 6777 6778
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
6779
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
6780
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
6781 6782 6783 6784 6785 6786

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
6787 6788 6789 6790 6791
    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
6792 6793 6794 6795 6796 6797 6798 6799 6800 6801

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
6802
    return helper.append_activation(out)
S
sneaxiy 已提交
6803 6804


X
Xin Pan 已提交
6805
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6806 6807 6808
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
6809
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6810 6811 6812
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
6813
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6814 6815 6816
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
6817
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6818 6819 6820
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
6821
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6822 6823 6824
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
6825
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6826 6827 6828
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
6829
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
6841 6842
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
6843
        ])
M
minqiyang 已提交
6844 6845


6846
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
6847 6848
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
6849 6850
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869

    if out is None:
        if name is None:
            out = helper.create_tmp_variable(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
6870
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6889
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6908
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
6927
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7064 7065
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
        out = helper.create_tmp_variable(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out