optimizer.py 319.0 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import os
17
import logging
18
from collections import defaultdict
19

20
import paddle
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22 23 24 25 26 27 28 29 30
from paddle.fluid.framework import (
    Program,
    Variable,
    Parameter,
    name_scope,
    default_main_program,
    default_startup_program,
    device_guard,
)
31

32 33
from . import framework
from . import layers
34
from . import unique_name
35 36 37 38 39 40 41 42 43 44 45 46 47
from .backward import (
    append_backward,
    _some_in_set_,
    _append_grad_suffix_,
    _get_no_grad_set_name,
)
from .clip import (
    GradientClipBase,
    GradientClipByNorm,
    error_clip_callback,
    append_gradient_clip_ops,
    ClipGradByGlobalNorm,
)
48 49 50
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
51
from .layers import ops
52
from .dygraph import base as imperative_base
53
from .dygraph import no_grad
54 55 56 57
from .dygraph.learning_rate_scheduler import (
    LearningRateDecay,
    _LearningRateEpochDecay,
)
58 59 60
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
61
from functools import cmp_to_key
62
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
63
from .. import compat as cpt
64
import warnings
65
from paddle import _C_ops, _legacy_C_ops
66 67 68 69 70
from ..fluid.framework import (
    _in_legacy_dygraph,
    in_dygraph_mode,
    _current_expected_place,
)
71

72
__all__ = [
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'SGD',
    'Momentum',
    'Adagrad',
    'Adam',
    'Adamax',
    'Dpsgd',
    'DecayedAdagrad',
    'Ftrl',
    'SGDOptimizer',
    'MomentumOptimizer',
    'AdagradOptimizer',
    'AdamOptimizer',
    'AdamaxOptimizer',
    'DpsgdOptimizer',
    'DecayedAdagradOptimizer',
    'RMSPropOptimizer',
    'FtrlOptimizer',
    'Adadelta',
    'AdadeltaOptimizer',
    'ModelAverage',
    'LarsMomentum',
    'LarsMomentumOptimizer',
    'LambOptimizer',
    'ExponentialMovingAverage',
    'PipelineOptimizer',
    'LookaheadOptimizer',
    'RecomputeOptimizer',
100
]
Q
Qiao Longfei 已提交
101 102 103 104 105 106


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
107 108
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
109 110
    """

111
    @imperative_base.no_grad
112 113 114 115 116 117 118 119 120 121
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        flatten_param_grads=False,
        align_size=-1,
        name=None,
    ):
122 123
        """
        Args:
124 125
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
126 127
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
128
        # Because of the loop import, so place it in the function body
129
        from paddle.optimizer.lr import LRScheduler
130 131 132 133

        self._parameter_list = (
            list(parameter_list) if parameter_list is not None else None
        )
134
        self._name = name
J
Jiabin Yang 已提交
135
        if framework._non_static_mode():
136 137 138
            if not isinstance(
                learning_rate, (float, LearningRateDecay, LRScheduler)
            ):
M
minqiyang 已提交
139
                raise TypeError(
140
                    "learning rate should be float or LRScheduler, got %s here"
141 142
                    % type(learning_rate)
                )
143
            if self._parameter_list is None:
144 145 146
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
147 148 149 150 151 152
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
153 154
                            % regularization.__str__()
                        )
155
                        break
M
minqiyang 已提交
156
        else:
157 158 159
            if not isinstance(
                learning_rate, (float, framework.Variable, LRScheduler)
            ):
M
minqiyang 已提交
160
                raise TypeError(
161
                    "learning rate should be float or LRScheduler, got %s here"
162 163
                    % type(learning_rate)
                )
M
minqiyang 已提交
164

165 166 167 168 169
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
170
        self.regularization = regularization
171
        self._grad_clip = grad_clip
172
        self._learning_rate = learning_rate
173 174
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
175

D
dzhwinter 已提交
176
        self._dtype = None
L
Leo Chen 已提交
177 178 179 180
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

181
        # each program should have a independent learning rate
182
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
183
        self._learning_rate_map = dict()
184
        if isinstance(self._learning_rate, framework.Variable):
185
            self._learning_rate_map[
186 187
                framework.default_main_program()
            ] = self._learning_rate
188 189 190 191 192
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
193 194
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
195
        self.helper = LayerHelper(self.__class__.__name__)
196
        self._opti_name_list = []
H
hong 已提交
197
        self._accumulators_holder = {}
198
        self._param_device_map = dict()
199 200
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
201
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
202 203
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
204 205 206 207

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
208 209
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
210 211 212

        Args: None
        Return:
T
tianshuo78520a 已提交
213
            state_dict(dict) : dict contains all the variable used by optimizer
214

H
hong 已提交
215 216 217 218
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
219 220 221 222 223 224

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
225 226

        '''
227
        from paddle.optimizer.lr import LRScheduler
228

H
hong 已提交
229 230 231 232
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
233 234
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
235
        # global step if use lr decay
236
        if isinstance(self._learning_rate, LRScheduler):
237 238
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
239
        if isinstance(self._learning_rate, LearningRateDecay):
240 241 242 243
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
244 245 246
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32'
                )
247

248 249 250
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp
                )
H
hong 已提交
251

252
                state_dict['global_step'] = var_temp
H
hong 已提交
253 254 255
        return state_dict

    @framework.dygraph_only
256
    def set_state_dict(self, state_dict):
H
hong 已提交
257
        '''
T
tianshuo78520a 已提交
258
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
259

260
        Args:
H
hong 已提交
261 262 263
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
264

H
hong 已提交
265 266
        Examples:
            .. code-block:: python
267

268 269
                import paddle
                import paddle.fluid as fluid
270 271 272

                paddle.disable_static()

273
                emb = paddle.nn.Embedding(10, 10)
274

275
                state_dict = emb.state_dict()
276
                fluid.save_dygraph(state_dict, "paddle_dy")
277

278
                scheduler = paddle.optimizer.lr.NoamDecay(
279 280 281 282
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
283
                state_dict = adam.state_dict()
284
                fluid.save_dygraph(state_dict, "paddle_dy")
285

286
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
287
        '''
288
        from paddle.optimizer.lr import LRScheduler
289

290
        if isinstance(self._learning_rate, LRScheduler):
291
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
292 293

        if isinstance(self._learning_rate, LearningRateDecay):
294 295 296
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
297 298 299
                assert (
                    'global_step' in state_dict
                ), 'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
300 301 302 303 304
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
305 306 307 308 309
                    assert step_np.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        step_np.shape
                    )
310 311 312

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
313 314 315 316 317
                    assert global_step.shape == (
                        1,
                    ), "global step shape is (1,), the shape is {}".format(
                        global_step.shape
                    )
318 319 320 321
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
322 323
                        type(global_step),
                    )
H
hong 已提交
324

325 326 327 328 329 330 331 332 333 334 335 336
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
337 338 339
                raise RuntimeError(
                    "State dict type {} not supprt".format(str(type(load_para)))
                )
340

341 342 343 344 345
            assert (
                model_np.shape == load_para_np.shape
            ), "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                param.name, model_np.shape, load_para_np.shape
            )
346

347 348 349 350 351
            assert (
                model_np.dtype == load_para_np.dtype
            ), "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                param.name, model_np.dtype, load_para_np.dtype
            )
352 353 354

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
355 356 357
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
358 359 360
                assert (
                    var_tmp.name in state_dict
                ), "optimizer variable {} not found".format(var_tmp.name)
361
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
362

363
        for k, v in self._global_accumulators.items():
364 365 366
            assert (
                v.name in state_dict
            ), "optimizer variable {} not found".format(v.name)
367
            _load_state_para(state_dict, v)
368

369 370 371
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

372 373
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
374

375 376 377 378 379 380 381 382 383
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
384
    def _create_global_learning_rate(self):
385
        from paddle.optimizer.lr import LRScheduler
386

387
        if isinstance(self._learning_rate, LRScheduler):
388 389 390 391 392 393 394 395 396 397
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
398 399
                    dtype='float32' if self._dtype is None else self._dtype,
                )
400 401 402
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
403
                self._learning_rate_map[
404 405
                    framework.default_main_program()
                ] = lr_var
406 407 408

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
409 410
                lr_var, initializer=Constant(value=lr_value)
            )
411 412
            return

413 414 415
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
416 417 418 419 420
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
421 422 423
                    self._learning_rate_map[
                        framework.default_main_program()
                    ] = layers.create_global_var(
M
minqiyang 已提交
424 425 426 427
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
428 429
                        persistable=True,
                    )
430
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
431
            elif isinstance(self._learning_rate, LearningRateDecay):
432
                self._learning_rate_map[
433 434
                    framework.default_main_program()
                ] = self._learning_rate()
435
            else:
Q
qiaolongfei 已提交
436
                raise TypeError(
437 438
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
439
        else:
440 441 442 443
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
444 445 446 447 448 449
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
450

451
            # create learning rate in the current main program
452
            self._learning_rate_map[
453 454 455 456 457 458 459 460
                framework.default_main_program()
            ] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True,
            )
461

462 463 464 465
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
466

467 468 469 470 471 472 473 474
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
475

476 477 478 479
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
480

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
515 516
                % (type(value))
            )
517 518 519 520 521 522 523 524
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
525 526
                if in_dygraph_mode():
                    place = _current_expected_place()
527 528 529 530 531 532 533
                    _C_ops.full_(
                        current_lr,
                        list(current_lr.shape),
                        float(value),
                        current_lr.dtype,
                        place,
                    )
534 535

                elif _in_legacy_dygraph():
536 537 538 539 540 541 542 543 544
                    _legacy_C_ops.fill_constant(
                        current_lr,
                        'value',
                        float(value),
                        'dtype',
                        current_lr.dtype,
                        'shape',
                        list(current_lr.shape),
                    )
545
                else:
546 547 548 549 550 551 552 553 554 555 556 557 558
                    global_block = (
                        framework.default_main_program().global_block()
                    )
                    global_block.append_op(
                        type='fill_constant',
                        outputs={'Out': [current_lr]},
                        attrs={
                            'dtype': current_lr.dtype,
                            'shape': list(current_lr.shape),
                            'value': float(value),
                        },
                        stop_gradient=True,
                    )
559
        else:
560 561 562
            assert (
                len(value.shape) == 1 and value.shape[0] == 1
            ), "optimizer's learning rate must be 1-D Tensor with shape[1]"
563 564
            self._learning_rate_map[framework.default_main_program()] = value

565 566 567
    @framework.dygraph_only
    def current_step_lr(self):
        """
568
        :api_attr: imperative
569

570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
596

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
614
        if isinstance(current_lr, framework.Variable):
615 616 617 618
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
619 620 621
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
622 623 624 625 626 627 628
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
629
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
630 631 632 633
        """
        get global decayed learning rate
        :return:
        """
634 635
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
636
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
637

Q
Qiao Longfei 已提交
638
    def _append_optimize_op(self, block, param_and_grad):
639
        """append optimize operator to block and return all the added optimize_op"""
Q
Qiao Longfei 已提交
640 641
        raise NotImplementedError()

642 643 644 645
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
646 647
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
648
        else:
W
Wu Yi 已提交
649
            if param_lr == 1.0:
Y
yuyang18 已提交
650
                return self._global_learning_rate()
W
Wu Yi 已提交
651
            else:
X
Xin Pan 已提交
652
                with default_main_program()._lr_schedule_guard(
653 654
                    is_with_opt=True
                ), framework.name_scope('scale_with_param_lr'):
655
                    return self._global_learning_rate() * param_lr
656 657 658 659 660 661 662

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
663
        """
664 665
        pass

666
    def _finish_update(self, block, parameters_and_grads):
667 668 669 670 671 672 673 674
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
675
            None
676 677 678
        """
        pass

679 680 681 682 683 684 685 686 687 688
    def _add_accumulator(
        self,
        name,
        param,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
689 690 691 692 693 694 695 696 697
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
698 699
        if self._name is not None:
            name = self._name + "_" + name
700 701 702 703
        if (
            name in self._accumulators
            and param.name in self._accumulators[name]
        ):
J
Jiabin Yang 已提交
704
            if framework._non_static_mode():
X
polish  
Xin Pan 已提交
705
                return self._accumulators[name][param.name]
706 707
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
708 709 710
                    name, param.name
                )
            )
711 712
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
713
        assert isinstance(self.helper, LayerHelper)
714 715 716 717 718

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
719
        var = self.helper.create_global_variable(
720
            name=var_name,
Q
Qiao Longfei 已提交
721
            persistable=True,
F
fengjiayi 已提交
722
            dtype=dtype or param.dtype,
723
            type=core.VarDesc.VarType.LOD_TENSOR
724 725
            if framework._non_static_mode()
            else (param.type if type is None else type),
H
hong 已提交
726
            shape=shape,
727 728
            belong_to_optimizer=True,
        )
729 730 731 732
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
733 734
                var, initializer=Constant(value=float(fill_value))
            )
H
hong 已提交
735

J
Jiabin Yang 已提交
736
        if framework._non_static_mode():
H
hong 已提交
737
            if len(self._accumulators_holder) > 0:
738 739 740 741 742
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
H
hong 已提交
743 744
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
745
        self._accumulators[name][param.name] = var
746
        return var
747

748 749 750 751 752 753 754 755 756
    def _add_global_accumulator(
        self,
        name,
        dtype=None,
        fill_value=0.0,
        shape=None,
        type=None,
        device=None,
    ):
757 758 759 760 761 762 763 764 765 766 767 768 769
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
770
        if name in self._global_accumulators:
J
Jiabin Yang 已提交
771
            if framework._non_static_mode():
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
        if shape == None:
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
788 789
            belong_to_optimizer=True,
        )
790 791 792 793
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
794 795
                var, initializer=Constant(value=float(fill_value))
            )
796

J
Jiabin Yang 已提交
797
        if framework._non_static_mode():
798
            if len(self._accumulators_holder) > 0:
799 800 801 802 803
                assert (
                    var_name in self._accumulators_holder
                ), "Optimizer set error, {} should in state dict".format(
                    var_name
                )
804 805 806 807 808
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

809 810 811 812 813 814 815 816
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
817
            accumulator variable
818
        """
W
whs 已提交
819 820
        if self._name is not None:
            name = self._name + "_" + name
821 822 823 824
        if (
            name not in self._accumulators
            or param.name not in self._accumulators[name]
        ):
825 826
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
827 828 829
                    name, param.name
                )
            )
830 831
        return self._accumulators[name][param.name]

832 833 834 835 836 837 838 839 840 841 842
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
843
        if name not in self._global_accumulators:
844 845 846
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

847 848 849 850 851
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
852 853
                device_attr_name = (
                    core.op_proto_and_checker_maker.kOpDeviceAttrName()
854 855 856 857 858
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
859 860
                            device_attr_name
                        )
861
                        break
862 863 864 865 866 867 868

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

869
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
870 871 872
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
873
          parameters_and_grads(list(tuple(Variable, Variable))):
874
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
875 876

        Returns:
877
          return_op_list: a list of operators that will complete one step of
878 879 880
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
881
        """
882 883 884 885 886
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
887
        # for parameters and extend _finish_update method to add custom ops.
888

889
        # Allways called under program_guard use global block as loss block
890 891 892
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

893
        global_block = framework.default_main_program().global_block()
894 895 896
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
897 898 899
            assert (
                current_block.backward_block_idx != -1
            ), "current block is not global_block, but it doesn't have backward block."
900
            target_block = framework.default_main_program().blocks[
901 902
                current_block.backward_block_idx
            ]
903 904

        start = len(target_block.ops)
905

906
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
907
        self._create_accumulators(
908 909
            target_block, [p[0] for p in parameters_and_grads if p[0].trainable]
        )
910 911
        self._create_global_learning_rate()

J
Jiabin Yang 已提交
912
        if framework._non_static_mode():
913 914 915
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
916 917
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
918 919 920 921 922
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
923 924
                    param_and_grad
                ), name_scope("optimizer"):
925
                    if param_and_grad[0].trainable is True:
926
                        device = self._get_device_for_param(
927 928
                            param_and_grad[0].name
                        )
929 930
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
931 932
                                target_block, param_and_grad
                            )
933 934 935

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
936
        self._finish_update(target_block, parameters_and_grads)
937

938 939
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
940 941

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
942 943 944 945 946 947 948 949 950
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
951 952
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
953 954 955 956 957 958 959 960
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
961 962
                        "multi dist table var found, only support one now!"
                    )
Q
Qiao Longfei 已提交
963 964 965 966 967 968
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
969
            param_and_grad = [table_param, table_grad]
970 971 972
            with table_param.block.program._optimized_guard(
                param_and_grad
            ), framework.name_scope("optimizer"):
973 974 975 976 977 978 979
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
980
                        "LearningRate": self._create_param_lr(param_and_grad),
981
                    },
982 983
                    outputs={"ParamOut": param_and_grad[0]},
                )
Q
Qiao Longfei 已提交
984 985
        return new_param_grads, (table_param, table_grad), sgd_op

986 987 988 989 990 991 992 993
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
994
        """
995
        The first part of ``minimize``, do auto-diff to append backward operations for
996 997 998
        the current program.

        Args:
999 1000 1001 1002
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1003
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1004 1005
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1006
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1007 1008 1009
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
1010

1011
        Return:
1012 1013
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
1014

1015
        Examples:
1016
            See examples in ``apply_gradients``.
1017
        """
1018
        act_no_grad_set = None
J
Jiabin Yang 已提交
1019
        if framework._non_static_mode():
1020
            pass
L
Leo Chen 已提交
1021 1022
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
1023

L
Leo Chen 已提交
1024 1025 1026 1027
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
1028
        if framework._non_static_mode():
1029 1030 1031
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
1032

C
chengduo 已提交
1033
            params_grads = []
1034
            for param in parameter_list:
C
chengduo 已提交
1035 1036
                if not param.trainable:
                    continue
1037
                if param._grad_ivar() is not None:
C
chengduo 已提交
1038
                    # create gradient variable
1039
                    grad_var = param._grad_ivar()
C
chengduo 已提交
1040
                    params_grads.append((param, grad_var))
1041
        else:
C
chengduo 已提交
1042 1043 1044
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
1045
                assert isinstance(callbacks, list)
C
chengduo 已提交
1046
            program = loss.block.program
1047 1048
            assert len(loss.shape) == 1 and loss.shape[0] == 1, (
                "The loss.shape should be (1L,), but the current loss.shape is {}. "
1049
                "Maybe that you should call paddle.mean to process the current loss.".format(
1050 1051 1052 1053 1054 1055
                    loss.shape
                )
            )
            parameter_list = (
                parameter_list if parameter_list else self._parameter_list
            )
C
chengduo 已提交
1056
            with program_guard(program, startup_program):
1057 1058 1059
                params_grads = append_backward(
                    loss, parameter_list, act_no_grad_set, callbacks
                )
C
chengduo 已提交
1060
        return params_grads
1061

1062
    def _create_regularization_of_grad(self, param, grad, regularization=None):
1063
        """Create and add backward regularization Operators
1064

1065 1066 1067
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
1068
        if grad is None or (
1069 1070 1071 1072 1073 1074
            (
                not hasattr(param, 'regularizer')
                or (hasattr(param, 'regularizer') and param.regularizer is None)
            )
            and regularization is None
        ):
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

J
Jiabin Yang 已提交
1085
        if framework._non_static_mode():
1086
            return _legacy_C_ops.sum([grad, regularization_term])
1087

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
1099 1100
                type=core.VarDesc.VarType.LOD_TENSOR,
            )
1101 1102 1103

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
1104
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
1105 1106 1107

        return new_grad

1108 1109 1110
    def append_regularization_ops(
        self, parameters_and_grads, regularization=None
    ):
1111
        r"""Create and add backward regularization Operators
1112

1113 1114 1115 1116
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
1117

1118 1119 1120 1121 1122
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
1123

1124 1125 1126
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
1127

1128 1129 1130 1131
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
1132
        if framework._non_static_mode():
1133
            for param, grad in parameters_and_grads:
1134
                new_grad = self._create_regularization_of_grad(
1135 1136
                    param, grad, regularization
                )
1137 1138 1139 1140 1141
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1142 1143 1144 1145 1146
                    if (
                        not repeate_regularizer
                        and getattr(param, 'regularizer', None) is not None
                        and regularization is not None
                    ):
1147 1148 1149 1150
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
1151 1152
                            % regularization.__str__()
                        )
1153 1154
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
1155 1156
                            param, grad, regularization
                        )
1157 1158 1159
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1160 1161 1162 1163 1164 1165 1166
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
1167 1168 1169 1170
            if (
                getattr(p, 'need_clip', True) is False
                or getattr(p, 'regularizer', None) is not None
            ):
1171 1172
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
1173 1174
                    "the regularizer is set".format(p.name)
                )
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
1189 1190
            belong_to_optimizer=True,
        )
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
1201 1202
            belong_to_optimizer=True,
        )
1203 1204

        with program_guard(default_main_program()):
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_params},
                outputs={
                    "Output": need_flatten_params,
                    "FusedOutput": flatten_param,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_params[0].dtype,
                },
            )

            block.append_op(
                type="coalesce_tensor",
                inputs={"Input": need_flatten_grads},
                outputs={
                    "Output": need_flatten_grads,
                    "FusedOutput": flatten_grad,
                },
                attrs={
                    "copy_data": True,
                    "use_align": True,
                    "align_size": self._align_size,
                    "dtype": need_flatten_grads[0].dtype,
                },
            )
1234

1235
        # NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
1236
        # so the shape of flatten_param and flatten_grad will be inferred.
1237 1238 1239 1240 1241 1242
        self.helper.set_variable_initializer(
            flatten_param, initializer=Constant(0.0)
        )
        self.helper.set_variable_initializer(
            flatten_grad, initializer=Constant(0.0)
        )
1243 1244 1245

        return [(flatten_param, flatten_grad)]

1246 1247 1248 1249 1250 1251 1252
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1253

1254 1255
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1256

1257 1258 1259
        Examples:
            .. code-block:: python

1260
                import paddle.fluid as fluid
1261 1262 1263 1264 1265 1266 1267 1268 1269
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1270 1271
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
1272 1273 1274
            if self._grad_clip == None or isinstance(
                self._grad_clip, ClipGradByGlobalNorm
            ):
1275 1276
                params_grads = self.flatten_param_grads(params_grads)

1277
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1278 1279 1280 1281
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1282 1283

        # Add regularization if any
1284 1285 1286
        params_grads = self.append_regularization_ops(
            params_grads, self.regularization
        )
1287 1288 1289 1290

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1303
        if framework._non_static_mode():
1304 1305 1306 1307
            with program_guard(
                framework.default_main_program(),
                framework.default_startup_program(),
            ):
1308 1309
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1310
                params_grads = self.append_regularization_ops(
1311 1312
                    params_grads, self.regularization
                )
C
chengduo 已提交
1313 1314 1315 1316 1317 1318 1319
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1320
    def _get_no_grad_set(self, loss, no_grad_set=None):
1321
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1322 1323
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
1324 1325
            [param.name for param in parameters if param.trainable is False]
        )
G
gongweibao 已提交
1326 1327 1328 1329 1330
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1331 1332 1333 1334
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1335 1336

        If not, new gradient will accumulat on previous gradient.
1337

1338 1339
        Returns:
            None
1340

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
1352
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1364
    @imperative_base.no_grad
1365 1366 1367
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1368
        """
1369
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1370

1371
        Args:
1372 1373 1374 1375
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1376
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1377 1378
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1379
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1380
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1381

1382
        Returns:
1383 1384 1385
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1386 1387
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1388
            ``fetch_list`` before run, see details in ``Executor``.
1389 1390 1391

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1392
        """
C
chengduo 已提交
1393
        assert isinstance(loss, Variable), "The loss should be an Variable."
1394

1395 1396 1397
        parameter_list = (
            parameter_list if parameter_list else self._parameter_list
        )
1398

1399 1400 1401 1402 1403 1404
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
1405

1406 1407 1408
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
minqiyang 已提交
1409

Q
Qiao Longfei 已提交
1410
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1411 1412 1413


class SGDOptimizer(Optimizer):
1414
    r"""
Q
qiaolongfei 已提交
1415 1416 1417 1418 1419 1420
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1421 1422 1423
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1424
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1425 1426
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1427 1428 1429 1430 1431
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1432 1433 1434
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1435
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1436 1437
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1438 1439 1440 1441

    Examples:
        .. code-block:: python

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1467 1468
    """

1469 1470 1471 1472 1473 1474 1475 1476 1477
    def __init__(
        self,
        learning_rate,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        multi_precision=False,
        name=None,
    ):
Q
Qiao Longfei 已提交
1478
        assert learning_rate is not None
1479 1480 1481 1482 1483 1484 1485
        super(SGDOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
Qiao Longfei 已提交
1486
        self.type = "sgd"
1487
        self._use_mkldnn = False
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1499 1500 1501 1502 1503 1504 1505
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
1506
            block = self.helper.startup_program.global_block()
1507 1508 1509 1510 1511 1512 1513 1514 1515
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
1529 1530 1531 1532
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
1533 1534 1535 1536
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1537

1538
    @no_grad
1539
    def _append_optimize_op(self, block, param_and_grad):
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
1550

1551
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1552
        if in_dygraph_mode():
1553 1554 1555 1556 1557 1558 1559
            _C_ops.sgd_(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                find_master,
            )
Z
zyfncg 已提交
1560 1561
            return None
        if _in_legacy_dygraph():
1562 1563 1564 1565 1566 1567 1568 1569
            _legacy_C_ops.sgd(
                param_and_grad[0],
                lr,
                param_and_grad[1],
                master_weight,
                param_and_grad[0],
                master_weight,
            )
1570
            return None
1571

1572
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1573
        # create the optimize op
1574 1575 1576
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
1577
            "LearningRate": lr,
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1588 1589 1590 1591 1592 1593 1594
        sgd_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
Q
Qiao Longfei 已提交
1595 1596

        return sgd_op
1597 1598 1599


class MomentumOptimizer(Optimizer):
1600
    r"""
Q
qiaolongfei 已提交
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1614
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1615 1616 1617

        & else:

Q
qiaolongfei 已提交
1618
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1619

1620 1621 1622 1623
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1624
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1625 1626
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1627
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1628 1629 1630 1631 1632
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1633 1634 1635
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1636
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1637 1638
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1639 1640 1641 1642

    Examples:
        .. code-block:: python

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1668 1669 1670
    """
    _velocity_acc_str = "velocity"

1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
    def __init__(
        self,
        learning_rate,
        momentum,
        parameter_list=None,
        use_nesterov=False,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
1681 1682
        assert learning_rate is not None
        assert momentum is not None
1683 1684 1685 1686 1687 1688 1689
        super(MomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1690 1691
        self.type = "momentum"
        self._momentum = momentum
1692
        self._use_nesterov = bool(use_nesterov)
1693 1694 1695 1696 1697

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1698
            self._add_accumulator(self._velocity_acc_str, p)
1699 1700 1701 1702

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1703 1704 1705
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
1706
        lr = self._create_param_lr(param_and_grad)
1707
        master_weight = None
J
Jiabin Yang 已提交
1708
        if framework._non_static_mode():
1709
            _, _, _ = _legacy_C_ops.momentum(
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
                param_and_grad[0],
                param_and_grad[1],
                velocity_acc,
                lr,
                master_weight,
                param_and_grad[0],
                velocity_acc,
                master_weight,
                'mu',
                self._momentum,
                'use_nesterov',
                self._use_nesterov,
            )
1723
            return None
1724

1725
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1726 1727 1728 1729
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1730
            "LearningRate": [lr],
1731 1732 1733 1734
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
1735
            "VelocityOut": [velocity_acc],
1736
        }
1737
        # create the momentum optimize op
1738 1739 1740 1741 1742 1743 1744
        momentum_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
1745 1746

        return momentum_op
1747 1748


1749
class DGCMomentumOptimizer(Optimizer):
1750
    r"""
1751
	:api_attr: Static Graph
S
swtkiwi 已提交
1752

1753
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1754

G
gongweibao 已提交
1755
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1756 1757
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1758
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1759 1760 1761

    Eventually, these gradients become large enough to be transmitted.

1762
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1763

G
gongweibao 已提交
1764
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1765 1766 1767 1768

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1769

1770 1771
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1772

1773
        2. Call momentum to optimize the cost.
1774 1775

    Args:
1776 1777
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1778
        momentum (float): Momentum factor.
G
gongweibao 已提交
1779
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1780 1781 1782 1783 1784 1785 1786
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1787
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1788 1789
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1790
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1791 1792 1793 1794 1795
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1796 1797
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None,
1798
            meaning there is no gradient clipping.
1799 1800
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1801 1802 1803 1804

    Examples:
        .. code-block:: python

1805
            import paddle.fluid as fluid
1806
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1807 1808 1809 1810 1811
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1812 1813

    """
1814 1815
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
    def __init__(
        self,
        learning_rate,
        momentum,
        rampup_begin_step,
        rampup_step=1,
        sparsity=[0.999],
        parameter_list=None,
        use_nesterov=False,
        num_trainers=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
J
Jiabin Yang 已提交
1831
        if framework._non_static_mode():
Z
zhongpu 已提交
1832
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1833

1834 1835 1836
        assert (
            core.is_compiled_with_cuda()
        ), "Paddle is not compiled with CUDA. DGC is only support GPU for now."
1837

1838 1839
        assert learning_rate is not None
        assert momentum is not None
1840 1841 1842 1843 1844 1845 1846
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
1847 1848 1849
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1850

1851
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1852
        self._rampup_begin_step = rampup_begin_step
1853 1854
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1855

1856
        self._rampup_begin_step_var = None
1857
        self._global_step_var = None
1858

1859 1860 1861 1862 1863 1864
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
1865 1866 1867 1868 1869 1870 1871
            assert isinstance(num_trainers, int), (
                "The type of num_trainers should be 'int', but received %s"
                % type(num_trainers)
            )
            assert (
                num_trainers > 0
            ), "The value of num_trainers should be greater than 0!"
1872 1873

            self._num_trainers = num_trainers
1874
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1875

1876
        self.regular_type, self.regular_coeff = self._get_regularization_param(
1877 1878
            self.regularization
        )
1879

1880 1881 1882
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1883

1884 1885
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1886
            from .regularizer import L1Decay, L2Decay
1887

1888 1889 1890 1891
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1892 1893
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1894
        return regular_type, regular_coeff
1895

1896 1897
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
1898 1899 1900 1901 1902 1903
        if (
            var_numel < 16384
            or param_var.type == core.VarDesc.VarType.SELECTED_ROWS
            or grad_var.type == core.VarDesc.VarType.SELECTED_ROWS
            or param_var.dtype != core.VarDesc.VarType.FP32
        ):
1904 1905 1906 1907 1908
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1909 1910 1911
        velocity_acc = self._get_accumulator(
            self._u_velocity_acc_str, param_and_grad[0]
        )
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1925 1926

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1927 1928 1929
            type = "momentum"
        else:
            type = "dgc_momentum"
1930 1931 1932 1933 1934 1935
            inputs.update(
                {
                    "current_step": self._global_step_var,
                    "nranks": self._nranks_var,
                }
            )
1936
            outputs.update({'Grad_out': param_and_grad[1]})
1937
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1938 1939

        # create the dgc momentum optimize op
1940 1941 1942 1943 1944 1945 1946
        dgc_momentum_op = block.append_op(
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
1947 1948
        return dgc_momentum_op

1949 1950 1951
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
1952 1953
            name=counter_name, dtype='float32', shape=[1], persistable=True
        )
1954
        if is_new_var:
1955 1956 1957 1958
            helper.set_variable_initializer(
                counter,
                initializer=Constant(value=float(begin - 1), force_cpu=True),
            )
1959 1960 1961 1962 1963
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
1964 1965
                stop_gradient=True,
            )
1966 1967 1968 1969
            counter.stop_gradient = True

        return counter

1970 1971 1972
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
1973 1974
            name=name, dtype='float32', shape=[1], persistable=True
        )
1975
        if is_new_var:
1976 1977 1978 1979
            helper.set_variable_initializer(
                counter,
                initializer=Constant(value=float(value), force_cpu=True),
            )
1980 1981 1982 1983
            counter.stop_gradient = True

        return counter

1984 1985 1986 1987 1988 1989
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
1990 1991
            counter_name=core.dgc.kDGCCounterName(), begin=0
        )
1992

1993 1994 1995
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1
        )
1996

1997 1998 1999 2000 2001
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
2002
            name=core.dgc.kDGCRampUpBeginStepName(),
2003
            value=self._rampup_begin_step * 1.0,
2004 2005
            force_cpu=True,
        )
2006

2007 2008
        self.helper = LayerHelper(self.__class__.__name__)

2009
        for param_var, grad_var in param_and_grads:
2010 2011 2012
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

2013
            if not self._is_use_dgc(param_var, grad_var):
2014 2015
                continue

2016
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCKName(),
                value=0.0,
                force_cpu=True,
            )

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCEncodedName(),
                value=0.0,
                force_cpu=False,
            )

            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False,
            )
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
2064 2065
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
            self._dgc_op(
                param_var,
                clip_var,
                grad_var,
                u_var,
                v_var,
                k_var,
                encoded_var,
                gather_var,
            )
2076 2077 2078 2079

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
2080 2081 2082
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
2083 2084 2085 2086 2087 2088 2089 2090 2091
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
            name = unique_name.generate_with_ignorable_key(
                ".".join([helper.name, 'tmp'])
            )

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False
        )

        helper.append_op(
            type="dgc_clip_by_norm",
            inputs={"X": x, "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step),
            },
            outputs={"Out": out},
        )
2109 2110 2111 2112
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
2113 2114 2115
            return self._clip_by_norm(
                x=grad_var, max_norm=clip_norm, name=grad_var.name
            )
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
    def _dgc_op(
        self,
        param_var,
        clip_var,
        grad_var,
        u_var,
        v_var,
        k_var,
        encoded_var,
        gather_var,
    ):
2128 2129
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
2130

2131 2132 2133 2134 2135
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
                param_var.regularizer
            )

        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
                "Param": param_var,
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
                "rampup_step": float(self._rampup_step),
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
            },
            stop_gradient=True,
        )
2168 2169 2170

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
2171 2172 2173
        dgc_op._set_attr(
            op_maker.kOpRoleVarAttrName(), [param_var.name, grad_var.name]
        )
2174

2175
    @imperative_base.no_grad
2176
    def apply_gradients(self, params_grads):
2177 2178 2179 2180 2181
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

2182
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
2183 2184 2185 2186 2187
        (
            params_grads,
            table_param_and_grad,
            table_optimize_op,
        ) = self._process_distribute_lookuptable(params_grads)
2188 2189 2190

        not_dgc_params_grads = []
        dgc_params_grads = []
2191
        # DGC clip and regularization in optimizer.backward
2192 2193 2194 2195 2196 2197
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

2198
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
2199 2200 2201 2202
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
2203 2204
                not_dgc_params_grads
            )
2205

2206
        not_dgc_params_grads = self.append_regularization_ops(
2207 2208
            not_dgc_params_grads, self.regularization
        )
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

2220

2221
class LarsMomentumOptimizer(Optimizer):
2222
    r"""
2223 2224 2225 2226 2227 2228 2229 2230 2231
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

2232
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
2233 2234 2235

        & param = param - velocity

2236 2237 2238 2239 2240 2241
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
2242
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2243 2244
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2245 2246 2247 2248 2249
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2250 2251 2252
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2253
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2254 2255
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
2256 2257
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
2258 2259 2260
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
2261

2262 2263 2264
    Examples:
        .. code-block:: python

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2281 2282 2283
    """
    _velocity_acc_str = "velocity"

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
    def __init__(
        self,
        learning_rate,
        momentum,
        lars_coeff=0.001,
        lars_weight_decay=0.0005,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        exclude_from_weight_decay=None,
        epsilon=0,
        multi_precision=False,
        rescale_grad=1.0,
    ):
2299 2300
        assert learning_rate is not None
        assert momentum is not None
2301 2302 2303 2304 2305 2306 2307
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2308 2309 2310 2311
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
2312 2313 2314 2315 2316
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
2317 2318 2319 2320 2321
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
2322 2323 2324 2325
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
2326

2327 2328
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
2329 2330 2331 2332 2333 2334 2335
            var = layers.create_global_var(
                name=var_name,
                shape=param.shape,
                value=0,
                dtype='float32',
                persistable=True,
            )
2336
            block = self.helper.startup_program.global_block()
2337 2338 2339 2340 2341 2342 2343 2344 2345
            block.append_op(
                type="cast",
                inputs={"X": [param]},
                outputs={"Out": [var]},
                attrs={
                    "in_dtype": param.dtype,
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
2346
            self._master_weights[param.name] = var
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
2359 2360 2361 2362 2363 2364
        find_master = (
            self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        )
        target_param = (
            self._master_weights[param.name] if find_master else param
        )
2365
        target_name = target_param.name
2366 2367 2368 2369
        if (
            name not in self._accumulators
            or target_name not in self._accumulators[name]
        ):
2370 2371
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
2372 2373 2374
                    name, target_name
                )
            )
2375
        return self._accumulators[name][target_name]
2376 2377 2378 2379 2380

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2381 2382 2383 2384
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
2385 2386 2387 2388
            if (
                p.dtype == core.VarDesc.VarType.FP16
                and not self._multi_precision
            ):
2389 2390 2391 2392
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2393 2394 2395 2396
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2397 2398 2399 2400 2401 2402 2403 2404
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

2405 2406 2407
        velocity_acc = self._get_accumulator(
            self._velocity_acc_str, param_and_grad[0]
        )
2408 2409
        lr = self._create_param_lr(param_and_grad)

2410 2411 2412 2413 2414 2415 2416 2417 2418
        find_master = (
            self._multi_precision
            and param_and_grad[0].dtype == core.VarDesc.VarType.FP16
        )
        master_weight = (
            self._master_weights[param_and_grad[0].name]
            if find_master
            else None
        )
2419 2420 2421

        attrs = {
            "mu": self._momentum,
2422
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
2423
            "lars_weight_decay": [_lars_weight_decay],
2424
            "multi_precision": find_master,
L
limingshu 已提交
2425
            "epsilon": self._epsilon,
2426
            "rescale_grad": self._rescale_grad,
2427 2428 2429 2430 2431 2432
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
2433
            "LearningRate": lr,
2434 2435 2436 2437 2438 2439 2440 2441
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiabin Yang 已提交
2442
        if framework._non_static_mode():
2443
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
                [param_and_grad[0]],
                [param_and_grad[1]],
                [velocity_acc],
                [lr],
                [param_and_grad[0]],
                [velocity_acc],
                "mu",
                self._momentum,
                "lars_coeff",
                self._lars_coeff,
                "lars_weight_decay",
                [_lars_weight_decay],
                "multi_precision",
                find_master,
                "epsilon",
                self._epsilon,
                "rescale_grad",
                self._rescale_grad,
            )
2463 2464
        else:
            # create the momentum optimize op
2465 2466 2467 2468 2469 2470 2471
            momentum_op = block.append_op(
                type=self.type,
                inputs=inputs,
                outputs=outputs,
                attrs=attrs,
                stop_gradient=True,
            )
2472

2473
            return momentum_op
2474 2475


2476
class AdagradOptimizer(Optimizer):
2477
    r"""
2478 2479
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2480

2481
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2482 2483 2484 2485 2486 2487 2488

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2489 2490 2491 2492 2493 2494
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2495 2496 2497
    for numerical stability to avoid the division by zero error.

    Args:
2498 2499 2500 2501
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2502
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2503 2504
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2505 2506 2507 2508 2509
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2510 2511 2512
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2513
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2514 2515 2516 2517 2518
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2519 2520 2521 2522

    Examples:
        .. code-block:: python

2523
            import numpy as np
2524
            import paddle.fluid as fluid
2525 2526

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2527
            inp = fluid.data(name="inp", shape=[2, 2])
2528 2529
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
2530
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2531 2532 2533 2534 2535 2536 2537
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2538 2539 2540
    """
    _moment_acc_str = "moment"

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        initial_accumulator_value=0.0,
    ):
2551 2552
        assert learning_rate is not None
        assert epsilon is not None
2553 2554 2555 2556 2557 2558 2559
        super(AdagradOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
2560 2561
        self.type = "adagrad"
        self._epsilon = epsilon
2562
        self.initial_accumulator_value = initial_accumulator_value
2563 2564 2565 2566 2567

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2568 2569 2570 2571 2572
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value,
            )
2573 2574 2575 2576

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2577 2578 2579
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
2580
        if in_dygraph_mode():
2581 2582 2583 2584 2585 2586 2587
            _C_ops.adagrad_(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                self._epsilon,
            )
C
caozhou 已提交
2588 2589
            return None
        elif _in_legacy_dygraph():
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
            _legacy_C_ops.adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
            )
C
caozhou 已提交
2600
            return None
2601 2602 2603 2604 2605 2606 2607 2608
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
2609
                    "LearningRate": self._create_param_lr(param_and_grad),
2610 2611 2612
                },
                outputs={
                    "ParamOut": param_and_grad[0],
2613
                    "MomentOut": moment_acc,
2614 2615
                },
                attrs={"epsilon": self._epsilon},
2616 2617
                stop_gradient=True,
            )
2618

2619
            return adagrad_op
2620 2621 2622


class AdamOptimizer(Optimizer):
2623
    r"""
T
tianshuo78520a 已提交
2624
    The Adam optimizer uses an optimization described at the end
2625 2626 2627
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2628

2629
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2644 2645
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2646
    Args:
2647 2648
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2649 2650
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2651
            The default value is 0.9.
2652 2653
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2654
            The default value is 0.999.
2655 2656
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2657
            The default value is 1e-08.
H
hong 已提交
2658
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2659 2660
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2661 2662 2663 2664 2665
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2666 2667 2668
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2669
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2680
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2681
            for whole model instead of creating beta_pow for each parameter. Default is false.
2682 2683
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2684
            use same align_size as allocator.
Q
qiaolongfei 已提交
2685 2686 2687 2688

    Examples:
        .. code-block:: python

2689 2690 2691 2692 2693 2694
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2695 2696
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2712

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2730
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2747 2748 2749 2750 2751 2752 2753
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2754 2755 2756 2757 2758 2759 2760

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2761
                    return beta1, beta2, epsilon
2762

2763
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2764 2765
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2766
                                                    beta1=beta1,
2767 2768
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2779 2780 2781
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2782 2783
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2784

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
        lazy_mode=False,
        use_global_beta_pow=False,
        flatten_param_grads=False,
        align_size=-1,
    ):
2800 2801 2802 2803
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2804 2805 2806 2807 2808 2809 2810 2811 2812
        super(AdamOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            flatten_param_grads=flatten_param_grads,
            align_size=align_size,
            name=name,
        )
2813 2814 2815 2816
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2817
        self._lazy_mode = lazy_mode
2818
        self._use_global_beta_pow = use_global_beta_pow
2819 2820 2821 2822 2823 2824

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2825 2826
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2827 2828 2829 2830
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
2831 2832 2833
                    fill_value=0.9
                    if isinstance(self._beta1, Variable)
                    else self._beta1,
2834
                    shape=[1],
2835 2836 2837
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2838 2839 2840
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
2841 2842 2843
                    fill_value=0.999
                    if isinstance(self._beta2, Variable)
                    else self._beta2,
2844
                    shape=[1],
2845 2846 2847
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    device='cpu',
                )
2848 2849
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2850
                name=self._beta1_pow_acc_str,
2851 2852 2853
                fill_value=0.9
                if isinstance(self._beta1, Variable)
                else self._beta1,
2854
                shape=[1],
2855 2856 2857
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2858
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2859
                name=self._beta2_pow_acc_str,
2860 2861 2862
                fill_value=0.999
                if isinstance(self._beta2, Variable)
                else self._beta2,
2863
                shape=[1],
2864 2865 2866
                type=core.VarDesc.VarType.LOD_TENSOR,
                device='cpu',
            )
2867 2868 2869 2870

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

2871 2872 2873 2874 2875 2876
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
2877 2878
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2879 2880
                self._beta1_pow_acc_str
            )
2881
            beta2_pow_acc = self._get_global_accumulator(
2882 2883
                self._beta2_pow_acc_str
            )
2884
        else:
2885 2886 2887 2888 2889 2890
            beta1_pow_acc = self._get_accumulator(
                self._beta1_pow_acc_str, param_and_grad[0]
            )
            beta2_pow_acc = self._get_accumulator(
                self._beta2_pow_acc_str, param_and_grad[0]
            )
2891
        lr = self._create_param_lr(param_and_grad)
2892
        # create the adam optimize op
2893

J
Jiabin Yang 已提交
2894
        if framework._non_static_mode():
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
            _beta1 = (
                self._beta1
                if not isinstance(self._beta1, Variable)
                else self._beta1.numpy().item(0)
            )
            _beta2 = (
                self._beta2
                if not isinstance(self._beta2, Variable)
                else self._beta2.numpy().item(0)
            )
2905
            master_weight = None
2906
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'epsilon',
                self._epsilon,
                'lazy_mode',
                self._lazy_mode,
                'min_row_size_to_use_multithread',
                1000,
                'beta1',
                _beta1,
                'beta2',
                _beta2,
                'use_global_beta_pow',
                self._use_global_beta_pow,
            )
2934 2935 2936

            return None

2937
        inputs = {
2938 2939
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2940
            "LearningRate": [lr],
2941 2942 2943
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
2944
            "Beta2Pow": [beta2_pow_acc],
2945
        }
2946 2947 2948 2949 2950 2951 2952

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2953
        outputs = {
2954 2955 2956 2957 2958
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2959 2960 2961
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2962
            "min_row_size_to_use_multithread": 1000,
2963
            'use_global_beta_pow': self._use_global_beta_pow,
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2974 2975 2976 2977
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2978

2979 2980 2981 2982 2983 2984 2985
        adam_op = block.append_op(
            type=self.type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
2986 2987 2988

        return adam_op

2989
    def _finish_update(self, block, parameters_and_grads):
2990
        r"""Update beta1_pow and beta2_pow accumulator"""
2991 2992 2993
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
2994 2995
                self._beta1_pow_acc_str
            )
2996
            beta2_pow_acc = self._get_global_accumulator(
2997 2998
                self._beta2_pow_acc_str
            )
2999 3000 3001

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
3002
                outputs = {"Out": beta1_pow_acc}
3003 3004
                attrs = {}
                if isinstance(self._beta1, Variable):
3005 3006
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
3007 3008 3009 3010 3011 3012 3013
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3014 3015
                else:
                    attrs['scale'] = self._beta1
3016 3017 3018 3019 3020 3021 3022
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3023 3024

                inputs = {"X": beta2_pow_acc}
3025
                outputs = {"Out": beta2_pow_acc}
3026 3027
                attrs = {}
                if isinstance(self._beta2, Variable):
3028 3029
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
3030 3031 3032 3033 3034 3035 3036
                    block.append_op(
                        type="elementwise_mul",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3037 3038
                else:
                    attrs['scale'] = self._beta2
3039 3040 3041 3042 3043 3044 3045
                    block.append_op(
                        type="scale",
                        inputs=inputs,
                        outputs=outputs,
                        attrs=attrs,
                        stop_gradient=True,
                    )
3046

3047 3048

class AdamaxOptimizer(Optimizer):
3049
    r"""
3050
    The Adamax optimizer is implemented based on the Adamax Optimization
3051 3052 3053
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
3054

3055
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

3069
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
3083
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3084 3085
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3086 3087 3088 3089 3090
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3091 3092 3093
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3094
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3095 3096 3097 3098 3099 3100
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
3101

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
3115
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3116 3117
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
3118
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
3119 3120 3121 3122 3123 3124 3125 3126 3127
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
3128 3129 3130
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
3131
    _beta1_pow_acc_str = "beta1_pow_acc"
3132

3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
    def __init__(
        self,
        learning_rate=0.001,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-8,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3144 3145 3146 3147
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3148 3149 3150 3151 3152 3153 3154
        super(AdamaxOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3155 3156 3157 3158 3159 3160 3161 3162
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
3163 3164
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
3165 3166 3167 3168 3169 3170
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1],
            )
3171 3172 3173 3174 3175

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
3176 3177 3178 3179 3180 3181
        inf_norm = self._get_accumulator(
            self._inf_norm_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
3182 3183

        if framework.in_dygraph_mode():
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
            _C_ops.adamax_(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                self._beta1,
                self._beta2,
                self._epsilon,
            )
3195
        elif framework._in_legacy_dygraph():
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
            _legacy_C_ops.adamax(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                moment,
                inf_norm,
                beta1_pow_acc,
                param_and_grad[0],
                moment,
                inf_norm,
                "beta1",
                self._beta1,
                "beta2",
                self._beta2,
                "epsilon",
                self._epsilon,
            )
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
3223
                    "Beta1Pow": beta1_pow_acc,
3224 3225 3226 3227
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
3228
                    "InfNormOut": inf_norm,
3229 3230 3231 3232
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
3233
                    "epsilon": self._epsilon,
3234
                },
3235 3236
                stop_gradient=True,
            )
3237

3238
            return adamax_op
3239

3240
    def _finish_update(self, block, parameters_and_grads):
3241
        """Update Beta1 Power accumulator"""
3242
        assert isinstance(block, framework.Block)
3243
        for param, grad in parameters_and_grads:
C
chengduo 已提交
3244
            if grad is None or param.trainable is False:
3245
                continue
3246 3247 3248 3249 3250 3251
            with param.block.program._optimized_guard(
                [param, grad]
            ), name_scope('adamx'):
                beta1_pow_acc = self._get_accumulator(
                    self._beta1_pow_acc_str, param
                )
J
Jiabin Yang 已提交
3252
                if framework._non_static_mode():
3253
                    if framework.in_dygraph_mode():
3254 3255 3256
                        tmp = _C_ops.scale(
                            beta1_pow_acc, self._beta1, 0.0, True
                        )
3257
                    else:
3258 3259 3260
                        tmp = _legacy_C_ops.scale(
                            beta1_pow_acc, "scale", self._beta1
                        )
3261 3262
                    beta1_pow_acc.copy_(tmp, False)
                else:
3263 3264 3265 3266 3267 3268 3269
                    block.append_op(
                        type="scale",
                        inputs={"X": beta1_pow_acc},
                        outputs={"Out": beta1_pow_acc},
                        attrs={"scale": self._beta1},
                        stop_gradient=True,
                    )
3270 3271


3272
class DpsgdOptimizer(Optimizer):
3273
    r"""
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
3310
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3311 3312
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3313 3314 3315 3316
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

3317 3318 3319 3320 3321 3322 3323 3324
    def __init__(
        self,
        learning_rate=0.001,
        clip=0.9,
        batch_size=0.999,
        sigma=1e-8,
        parameter_list=None,
    ):
3325 3326 3327 3328
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
3329 3330 3331
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list
        )
3332 3333 3334 3335
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
3336 3337 3338 3339 3340 3341 3342
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
3343 3344 3345 3346 3347

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
3348 3349 3350
        if self._seed == None:
            self._seed = 0

J
Jiabin Yang 已提交
3351
        if framework._non_static_mode():
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
            _legacy_C_ops.dpsgd(
                param_and_grad[0],
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                "clip",
                self._clip,
                "batch_size",
                self._batch_size,
                "sigma",
                self._sigma,
                "seed",
                self._seed,
            )
3366
        else:
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
            dpsgd_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={"ParamOut": param_and_grad[0]},
                attrs={
                    "clip": self._clip,
                    "batch_size": self._batch_size,
                    "sigma": self._sigma,
                    "seed": self._seed,
                },
                stop_gradient=True,
            )
3383

3384
            return dpsgd_op
3385 3386


3387
class DecayedAdagradOptimizer(Optimizer):
3388
    r"""
3389 3390 3391
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
3392

3393
    The parameter ``param_out`` update rule with gradient ``grad``:
3394 3395 3396 3397 3398 3399 3400

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

3401 3402 3403 3404
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
3405 3406 3407
    stability to avoid the division by zero error.

    Args:
3408 3409 3410 3411 3412
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
3413
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3414 3415
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3416 3417 3418 3419 3420
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3421 3422 3423
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3424
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3425 3426 3427 3428 3429 3430
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
3431 3432 3433 3434

    Examples:
        .. code-block:: python

3435 3436
            import paddle.fluid as fluid

3437 3438 3439 3440
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3441
            optimizer.minimize(cost)
3442 3443 3444
    """
    _moment_acc_str = "moment"

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
    def __init__(
        self,
        learning_rate,
        decay=0.95,
        epsilon=1.0e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3455 3456 3457 3458
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3459 3460 3461 3462 3463 3464 3465
        super(DecayedAdagradOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

3479 3480 3481
        moment_acc = self._get_accumulator(
            self._moment_acc_str, param_and_grad[0]
        )
3482

J
Jiabin Yang 已提交
3483
        if framework._non_static_mode():
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
            _legacy_C_ops.decayed_adagrad(
                param_and_grad[0],
                param_and_grad[1],
                moment_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                moment_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._decay,
            )
3496 3497 3498 3499 3500 3501 3502 3503
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
3504
                    "LearningRate": self._create_param_lr(param_and_grad),
3505 3506 3507
                },
                outputs={
                    "ParamOut": param_and_grad[0],
3508
                    "MomentOut": moment_acc,
3509
                },
3510 3511 3512
                attrs={"epsilon": self._epsilon, "decay": self._decay},
                stop_gradient=True,
            )
3513

3514
            return decayed_adagrad_op
3515 3516


3517
class AdadeltaOptimizer(Optimizer):
3518
    r"""
Z
Zeng Jinle 已提交
3519
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3520

Z
Zeng Jinle 已提交
3521
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3522 3523 3524
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3525

Z
Zeng Jinle 已提交
3526 3527
    .. math::

Z
Zeng Jinle 已提交
3528
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3529

Z
Zeng Jinle 已提交
3530
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3531

Z
Zeng Jinle 已提交
3532
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3533 3534

    Args:
Z
Zeng Jinle 已提交
3535 3536 3537
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3538
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3539 3540
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3541 3542 3543 3544 3545
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3546 3547 3548
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3549
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3550 3551 3552
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3553 3554 3555 3556

    Examples:
        .. code-block:: python

3557
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3558

3559
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3560 3561
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3562 3563
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3564

Z
Zeng Jinle 已提交
3565 3566 3567 3568
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3569
    """
3570

3571 3572 3573
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
    def __init__(
        self,
        learning_rate,
        epsilon=1.0e-6,
        rho=0.95,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
3584 3585 3586 3587 3588 3589
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3590 3591 3592 3593 3594 3595 3596
        super(AdadeltaOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
3597 3598 3599 3600 3601
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3602 3603
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3604 3605 3606 3607 3608 3609

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3610 3611
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3612 3613

        avg_squared_grad_acc = self._get_accumulator(
3614 3615
            self._avg_squared_grad_acc_str, param_and_grad[0]
        )
3616
        avg_squared_update_acc = self._get_accumulator(
3617 3618
            self._avg_squared_update_acc_str, param_and_grad[0]
        )
3619

3620
        if framework.in_dygraph_mode():
3621 3622 3623 3624 3625 3626 3627 3628
            _C_ops.adadelta_(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                self._rho,
                self._epsilon,
            )
3629
        elif framework._in_legacy_dygraph():
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
            _legacy_C_ops.adadelta(
                param_and_grad[0],
                param_and_grad[1],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                param_and_grad[0],
                avg_squared_grad_acc,
                avg_squared_update_acc,
                "epsilon",
                self._epsilon,
                "rho",
                self._rho,
            )
3643 3644
        else:
            # Create the adadelta optimizer op
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
            adadelta_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "AvgSquaredGrad": avg_squared_grad_acc,
                    "AvgSquaredUpdate": avg_squared_update_acc,
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "AvgSquaredGradOut": avg_squared_grad_acc,
                    "AvgSquaredUpdateOut": avg_squared_update_acc,
                },
                attrs={"epsilon": self._epsilon, "rho": self._rho},
                stop_gradient=True,
            )
3661

3662
            return adadelta_op
3663 3664


Q
qingqing01 已提交
3665
class RMSPropOptimizer(Optimizer):
3666
    r"""
Q
qingqing01 已提交
3667 3668 3669 3670 3671 3672 3673 3674
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3675
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3676 3677 3678 3679

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3680
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3681 3682 3683 3684 3685 3686

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3687
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3688

3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3703 3704 3705 3706
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3707
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3708 3709 3710 3711 3712
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3713 3714 3715
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3716
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3717
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3718
        momentum(float): :math:`\\beta` in equation is the momentum term,
3719
            default is 0.0.
3720 3721 3722 3723
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3724
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3725 3726
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3727 3728 3729 3730 3731
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3732 3733 3734
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3735
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3736 3737
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3738 3739 3740 3741 3742 3743 3744

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3770 3771 3772 3773
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3774
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3775

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
    def __init__(
        self,
        learning_rate,
        rho=0.95,
        epsilon=1.0e-6,
        momentum=0.0,
        centered=False,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
        super(RMSPropOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qingqing01 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3808
        self._centered = centered
Q
qingqing01 已提交
3809 3810 3811 3812 3813 3814 3815 3816

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3817
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3818 3819 3820 3821 3822

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

3823 3824 3825 3826 3827 3828 3829 3830 3831
        momentum_acc = self._get_accumulator(
            self._momentum_acc_str, param_and_grad[0]
        )
        mean_square_acc = self._get_accumulator(
            self._mean_square_acc_str, param_and_grad[0]
        )
        mean_grad_acc = self._get_accumulator(
            self._mean_grad_acc_str, param_and_grad[0]
        )
C
caozhou 已提交
3832
        if in_dygraph_mode():
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
            _C_ops.rmsprop_(
                param_and_grad[0],
                mean_square_acc,
                param_and_grad[1],
                momentum_acc,
                self._create_param_lr(param_and_grad),
                mean_grad_acc,
                self._epsilon,
                self._rho,
                self._momentum,
                self._centered,
            )
C
caozhou 已提交
3845 3846
            return None
        elif _in_legacy_dygraph():
3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
            _legacy_C_ops.rmsprop(
                param_and_grad[0],
                mean_square_acc,
                self._create_param_lr(param_and_grad),
                param_and_grad[1],
                momentum_acc,
                param_and_grad[0],
                momentum_acc,
                mean_square_acc,
                mean_grad_acc,
                "epsilon",
                self._epsilon,
                "decay",
                self._rho,
                "momentum",
                self._momentum,
                "centered",
                self._centered,
            )
C
caozhou 已提交
3866
            return None
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
3882
                    "MeanGradOut": mean_grad_acc,
3883 3884 3885 3886 3887
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
3888
                    "centered": self._centered,
3889
                },
3890 3891
                stop_gradient=True,
            )
Q
qingqing01 已提交
3892

3893
            return rmsprop_op
Q
qingqing01 已提交
3894 3895


Q
qiaolongfei 已提交
3896
class FtrlOptimizer(Optimizer):
3897
    r"""
Q
qiaolongfei 已提交
3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3936 3937 3938 3939 3940
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3941
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3942 3943
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3944 3945 3946 3947 3948
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3949 3950 3951
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3952
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3953 3954
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3955 3956 3957 3958 3959 3960 3961

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3986

3987
    NOTE:
C
chengduo 已提交
3988
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3989 3990 3991 3992 3993
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
    def __init__(
        self,
        learning_rate,
        l1=0.0,
        l2=0.0,
        lr_power=-0.5,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
        super(FtrlOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
Q
qiaolongfei 已提交
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

4032 4033 4034 4035 4036 4037
        squared_acc = self._get_accumulator(
            self._squared_acc_str, param_and_grad[0]
        )
        linear_acc = self._get_accumulator(
            self._linear_acc_str, param_and_grad[0]
        )
J
Jiabin Yang 已提交
4038
        if framework._non_static_mode():
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
            _legacy_C_ops.ftrl(
                param_and_grad[0],
                squared_acc,
                linear_acc,
                param_and_grad[1],
                self._create_param_lr(param_and_grad),
                param_and_grad[0],
                squared_acc,
                linear_acc,
                "l1",
                self._l1,
                "l2",
                self._l2,
                "lr_power",
                self._lr_power,
            )
4055 4056

        else:
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
            ftrl_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "SquaredAccumulator": squared_acc,
                    "LinearAccumulator": linear_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "SquaredAccumOut": squared_acc,
                    "LinearAccumOut": linear_acc,
                },
                attrs={
                    "l1": self._l1,
                    "l2": self._l2,
                    "lr_power": self._lr_power,
                },
                stop_gradient=True,
            )
Q
qiaolongfei 已提交
4078

4079
            return ftrl_op
Q
qiaolongfei 已提交
4080 4081


Y
Yibing Liu 已提交
4082
class LambOptimizer(AdamOptimizer):
4083
    r"""
Y
Yibing Liu 已提交
4084 4085
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

4086 4087 4088
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
4089
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
4090 4091 4092 4093 4094

    The updating of parameters follows:

    ..  math::

4095
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
4096

Y
Yibing Liu 已提交
4097
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
4098

4099 4100 4101 4102
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
4103
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
4104

Y
Yibing Liu 已提交
4105
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
4106 4107


4108
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
4109 4110 4111
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
4112 4113 4114 4115 4116 4117 4118 4119
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
4120
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
4121 4122
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
4123 4124 4125 4126 4127
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
4128 4129
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
4130 4131 4132
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
4133 4134
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
4135
            Default None.
4136
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
4137
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
4138 4139 4140

    Examples:
        .. code-block:: python
4141 4142

            import paddle.fluid as fluid
Y
Yibing Liu 已提交
4143

Y
Yibing Liu 已提交
4144
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
4145 4146 4147
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
4148 4149 4150 4151 4152
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
4153 4154 4155 4156 4157 4158 4159
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
    def __init__(
        self,
        learning_rate=0.001,
        lamb_weight_decay=0.01,
        beta1=0.9,
        beta2=0.999,
        epsilon=1e-6,
        parameter_list=None,
        regularization=None,
        grad_clip=None,
        exclude_from_weight_decay_fn=None,
        name=None,
    ):
Y
Yibing Liu 已提交
4173 4174 4175 4176 4177
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name,
        )
Y
Yibing Liu 已提交
4188 4189
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
4190
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
4191 4192 4193

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
4194
        block.program._use_lamb = True
Y
Yibing Liu 已提交
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
        moment1 = self._get_accumulator(
            self._moment1_acc_str, param_and_grad[0]
        )
        moment2 = self._get_accumulator(
            self._moment2_acc_str, param_and_grad[0]
        )
        beta1_pow_acc = self._get_accumulator(
            self._beta1_pow_acc_str, param_and_grad[0]
        )
        beta2_pow_acc = self._get_accumulator(
            self._beta2_pow_acc_str, param_and_grad[0]
        )

        if (
            self._exclude_from_weight_decay_fn is not None
            and self._exclude_from_weight_decay_fn(param_and_grad[0])
        ):
Y
Yibing Liu 已提交
4213 4214 4215
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
4216
        lr = self._create_param_lr(param_and_grad)
4217
        master_weight = None
J
Jiabin Yang 已提交
4218
        if framework._non_static_mode():
4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
            _legacy_C_ops.lamb(
                param_and_grad[0],
                param_and_grad[1],
                lr,
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                param_and_grad[0],
                moment1,
                moment2,
                beta1_pow_acc,
                beta2_pow_acc,
                master_weight,
                'beta1',
                self._beta1,
                'beta2',
                self._beta2,
                'epsilon',
                self._epsilon,
                'weight_decay',
                weight_decay,
            )
4243
            return None
Y
Yibing Liu 已提交
4244

Y
Yibing Liu 已提交
4245
        # create the lamb optimize op
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": lr,
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc,
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2,
                "Beta1PowOut": beta1_pow_acc,
                "Beta2PowOut": beta2_pow_acc,
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
                "weight_decay": weight_decay,
            },
            stop_gradient=True,
        )
Y
Yibing Liu 已提交
4272 4273 4274 4275

        return lamb_op


4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
4289
Dpsgd = DpsgdOptimizer
4290
DecayedAdagrad = DecayedAdagradOptimizer
4291
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
4292
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
4293
Ftrl = FtrlOptimizer
4294
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
4295
Lamb = LambOptimizer
4296 4297 4298


class ModelAverage(Optimizer):
4299
    r"""
4300
	:api_attr: Static Graph
S
swtkiwi 已提交
4301

4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
4320

4321 4322 4323 4324 4325 4326 4327 4328 4329
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
4330 4331

    Args:
4332 4333 4334
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
4335 4336 4337 4338 4339
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
4340 4341 4342
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
4343

4344
    Examples:
Q
qiaolongfei 已提交
4345 4346 4347

      .. code-block:: python

4348 4349 4350 4351 4352 4353
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
4354

4355 4356 4357 4358
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
4359
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
4360 4361 4362 4363 4364 4365 4366 4367
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
4368
                                                         max_average_window=12500)
4369 4370

            exe.run(startup_program)
4371 4372 4373 4374 4375
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
4376 4377

            # apply ModelAverage
4378
            with model_average.apply(exe):
4379 4380 4381 4382
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
4383 4384
    """

4385 4386 4387 4388 4389 4390 4391 4392
    def __init__(
        self,
        average_window_rate,
        min_average_window=10000,
        max_average_window=10000,
        regularization=None,
        name=None,
    ):
J
Jiabin Yang 已提交
4393
        if framework._non_static_mode():
Z
zhongpu 已提交
4394
            raise Exception("In dygraph, don't support ModelAverage.")
4395 4396 4397
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name
        )
4398 4399 4400
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
4401

4402
        self.params_grads = []
4403 4404 4405
        for param in (
            framework.default_main_program().global_block().all_parameters()
        ):
4406
            if param.do_model_average != False:
4407
                grad = param.block.create_var(
4408 4409 4410
                    name=unique_name.generate_with_ignorable_key(
                        ".".join([param.name, 'tmp'])
                    ),
4411 4412
                    dtype=param.dtype,
                    persistable=False,
4413 4414
                    stop_gradient=True,
                )
4415
                self.params_grads.append((param, grad))
4416

4417
        for param, grad in self.params_grads:
4418 4419
            if grad is None:
                continue
X
Xin Pan 已提交
4420
            with param.block.program._optimized_guard(
4421 4422
                [param, grad]
            ), name_scope('move_average'):
4423
                self._append_average_accumulate_op(param)
4424

4425 4426 4427 4428
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
4429
                self._add_average_apply_op(block, param_grad)
4430 4431 4432 4433 4434

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
4435
                self._add_average_restore_op(block, param_grad)
4436

4437
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
4438 4439 4440 4441 4442 4443
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
4444 4445
            self._get_accumulator('num_accumulates', param)
        )
L
Luo Tao 已提交
4446
        old_num_accumulates = block._clone_variable(
4447 4448
            self._get_accumulator('old_num_accumulates', param)
        )
L
Luo Tao 已提交
4449
        num_updates = block._clone_variable(
4450 4451
            self._get_accumulator('num_updates', param)
        )
4452 4453 4454 4455 4456
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
4457
        tmp = layers.cast(
4458 4459
            x=tmp, dtype='float32' if self._dtype == None else self._dtype
        )
D
dzhwinter 已提交
4460
        sum = layers.cast(
4461 4462
            x=sum, dtype='float32' if self._dtype == None else self._dtype
        )
S
sneaxiy 已提交
4463
        ops._elementwise_div(x=sum, y=tmp, out=param)
4464 4465

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
4466 4467
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
4468 4469 4470 4471 4472 4473 4474
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1]
        )
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1]
        )
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1]
        )

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates,
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            },
            stop_gradient=True,
        )
4511

S
rename  
sneaxiy 已提交
4512
    @signature_safe_contextmanager
4513
    def apply(self, executor, need_restore=True):
4514 4515
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4516 4517

        Args:
4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4562
        """
4563 4564 4565 4566 4567 4568
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4569 4570

    def restore(self, executor):
4571 4572
        """
        Restore ``Parameter`` values of current model.
4573

4574
        Args:
4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4619
        """
4620
        executor.run(self.restore_program)
4621 4622 4623


class ExponentialMovingAverage(object):
4624
    r"""
4625
        :api_attr: Static Graph
S
swtkiwi 已提交
4626

4627 4628 4629 4630 4631 4632
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4633
        \\text{EMA}_0 & = 0
4634

4635
        \\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t
4636

4637 4638 4639
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4640
    the **restore()** method is used to restore the parameters.
4641

4642 4643 4644 4645
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters
    when calling **apply()** method would be
4646 4647

    ..  math::
4648

4649 4650
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

4651 4652
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4653
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4654
    allows users to pass a Variable to schedule the decay rate, in this case,
4655
    the actual decay rate becomes
4656

4657
    ..  math::
4658

4659 4660 4661
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
4662 4663 4664


    Args:
4665 4666 4667
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4668 4669 4670 4671


    Examples:

4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4700
                    feed={'x': data},
4701 4702 4703 4704 4705 4706
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4707
                        feed={'x': data},
4708 4709 4710 4711 4712 4713
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4714
                        feed={'x': data},
4715 4716 4717
                        fetch_list=[hidden.name])
                ema.restore(exe)

4718 4719
    """

4720
    def __init__(self, decay=0.999, thres_steps=None, name=None):
J
Jiabin Yang 已提交
4721
        if framework._non_static_mode():
Z
zhongpu 已提交
4722
            raise Exception(
4723 4724
                "In dygraph, don't support ExponentialMovingAverage."
            )
4725
        self._decay = decay
4726
        self._thres_steps = thres_steps
4727
        self._name = name if name is not None else ''
4728 4729
        self._decay_var = self._get_ema_decay()

4730
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4731
        self._params_tmps = []
4732
        for param in default_main_program().global_block().all_parameters():
4733
            if param.do_model_average != False:
4734 4735 4736 4737 4738 4739 4740 4741
                tmp = param.block.create_var(
                    name=unique_name.generate(
                        ".".join([self._name + param.name, 'ema_tmp'])
                    ),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True,
                )
Y
Yibing Liu 已提交
4742
                self._params_tmps.append((param, tmp))
4743

Y
Yibing Liu 已提交
4744 4745
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4746 4747 4748
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4749
                self._ema_vars[param.name] = self._create_ema_vars(param)
4750 4751 4752 4753

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4754
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4755
            for param, tmp in self._params_tmps:
4756 4757
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4758
                ema = block._clone_variable(self._ema_vars[param.name])
4759
                layers.assign(input=param, output=tmp)
4760
                # bias correction
4761 4762
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4763 4764 4765
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow)
                        )
4766 4767
                    with switch.default():
                        layers.assign(output=param, input=ema)
4768 4769 4770 4771

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4772
            for param, tmp in self._params_tmps:
4773 4774 4775 4776
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4777 4778 4779 4780 4781 4782 4783
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
4784 4785
                name="scheduled_ema_decay_rate",
            )
4786 4787 4788 4789 4790 4791 4792 4793

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4794 4795
                            np.array([self._decay], dtype=np.float32), decay_var
                        )
4796 4797 4798
        return decay_var

    def _get_decay_pow(self, block):
4799 4800 4801 4802 4803 4804 4805
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True,
        )
4806
        global_step = layers.cast(global_step, "float32")
4807
        decay_var = block._clone_variable(self._decay_var)
4808 4809
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
4810

Y
Yibing Liu 已提交
4811
    def _create_ema_vars(self, param):
4812 4813 4814 4815 4816
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
4817 4818
            persistable=True,
        )
4819 4820 4821

        return param_ema

Y
Yibing Liu 已提交
4822
    def update(self):
4823 4824
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4825 4826
        train program.
        """
4827
        global_step = layers.autoincreased_step_counter(
4828 4829
            counter_name=self._step_counter_name
        )
4830
        param_master_emas = []
Y
Yibing Liu 已提交
4831
        for param, tmp in self._params_tmps:
4832 4833 4834
            with param.block.program._optimized_guard([param, tmp]), name_scope(
                'moving_average'
            ):
Y
Yibing Liu 已提交
4835
                param_ema = self._ema_vars[param.name]
4836
                if param.name + '.master' in self._ema_vars:
4837 4838 4839 4840
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
4841 4842
                        1 - self._decay_var
                    )
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
4853 4854 4855
                    "out_dtype": param_ema.dtype,
                },
            )
Y
Yibing Liu 已提交
4856

4857 4858 4859 4860
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4861

4862 4863
        Args:
            executor (Executor): The Executor to execute applying.
4864
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4865
                applying. Default True.
4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4876

4877 4878 4879 4880
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4881 4882 4883


class PipelineOptimizer(object):
4884
    """
4885
        :api_attr: Static Graph
S
swtkiwi 已提交
4886

4887 4888 4889 4890
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4891

4892
    Args:
4893 4894 4895
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4896

4897 4898
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4899

4900
            import paddle.fluid as fluid
H
hutuxian 已提交
4901 4902
            import paddle.fluid.layers as layers

4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4919
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4920
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4921
            optimizer.minimize(loss)
4922 4923 4924 4925 4926 4927 4928 4929 4930

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4931 4932
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4933 4934
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4935
            exe.train_from_dataset(
4936
                    fluid.default_main_program())
4937
            data_loader.reset()
4938 4939
    """

4940
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4941 4942 4943 4944 4945
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
J
Jiabin Yang 已提交
4946
        if framework._non_static_mode():
Z
zhongpu 已提交
4947
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4948 4949 4950 4951 4952
        valid_optimizers = (
            Optimizer,
            paddle.optimizer.Optimizer,
            paddle.fluid.contrib.mixed_precision.decorator.OptimizerWithMixedPrecision,
        )
4953
        if not isinstance(optimizer, valid_optimizers):
4954 4955 4956 4957 4958 4959 4960
            raise ValueError(
                "The 'optimizer' parameter for "
                "PipelineOptimizer must be an instance of "
                "{}, but the given type is {}.".format(
                    valid_optimizers, type(optimizer)
                )
            )
H
hutuxian 已提交
4961
        self._optimizer = optimizer
4962 4963 4964 4965 4966 4967

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4968 4969 4970
        assert (
            num_microbatches >= 1
        ), "num_microbatches must be a positive value."
4971
        self._num_microbatches = num_microbatches
4972 4973 4974
        assert (
            start_cpu_core_id >= 0
        ), "start_cpu_core_id must be a non-negative integer."
H
hutuxian 已提交
4975
        self._start_cpu_core_id = start_cpu_core_id
4976 4977 4978 4979 4980 4981
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4982
        self._param_device_map = None
4983 4984
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4985 4986
        self.output_var_to_op = None
        self.input_var_to_op = None
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
            temp_var = block.create_var(
                name=temp_var_name, shape=[1], dtype="int32"
            )
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': out_var},
                outputs={'Out': temp_var},
                attrs={
                    'in_dtype': out_var.dtype,
                    'out_dtype': temp_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5016 5017 5018 5019
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
5020 5021
            if op.type == "reduce_any"
            else 'c_allreduce_sum',
5022 5023 5024
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
5025
                'ring_id': self.global_ring_id,
5026
                self._op_role_key: self._op_role.Optimize,
5027 5028 5029
                'use_calc_stream': True,
            },
        )
5030 5031
        offset += 1
        if op.type == "reduce_any":
5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042
            block._insert_op(
                op_idx + 1 + offset,
                type='cast',
                inputs={'X': temp_var},
                outputs={'Out': out_var},
                attrs={
                    'in_dtype': temp_var.dtype,
                    'out_dtype': out_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
5043
            offset += 1
5044
        return offset
H
hutuxian 已提交
5045

5046
    def _create_vars(self, block, ori_block):
5047
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
5048
        used_var_set = set()
5049 5050 5051 5052 5053 5054 5055 5056 5057
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
5058
            # For op process vars on all devices, remove its input
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
5084 5085 5086 5087 5088 5089 5090 5091
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
5092
            for var in vars:
5093 5094
                # a var whose name contains "blocking_queue"
                # only exists in startup program
5095
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
5096 5097
                    continue
                used_var_set.add(var)
5098 5099
                if block._find_var_recursive(str(var)):
                    continue
5100
                source_var = ori_block._var_recursive(str(var))
5101
                if source_var.type == core.VarDesc.VarType.READER:
5102
                    dest_var = block.create_var(
5103 5104
                        name=var,
                        type=core.VarDesc.VarType.READER,
5105 5106
                        persistable=source_var.persistable,
                    )
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
5118 5119
                        error_clip=source_var.error_clip,
                    )
5120
                else:
5121
                    dest_var = block._clone_variable(source_var, False)
5122
                self._clone_var_attr(dest_var, source_var)
5123 5124 5125
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
5126 5127
            if self.use_sharding or not should_insert:
                continue
5128 5129 5130 5131
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
5132

5133
    def _is_loss_grad_op(self, op):
5134 5135
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
5136
        return op_role & int(self._op_role.Backward) and op_role & int(
5137 5138
            self._op_role.Loss
        )
5139

5140
    def _is_forward_op(self, op):
5141 5142 5143
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) == int(self._op_role.Forward)
        )
5144

5145
    def _is_backward_op(self, op):
5146
        return self._op_role_key in op.attr_names and (
5147 5148
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward)
        )
5149 5150 5151 5152

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
5153 5154

    def _is_optimize_op(self, op):
5155
        return self._op_role_key in op.attr_names and (
5156 5157
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize)
        )
5158 5159

    def _is_update_op(self, op):
5160 5161 5162 5163 5164
        return (
            'Param' in op.input_names
            and 'Grad' in op.input_names
            and ("LearningRate" in op.input_names)
        )
5165

5166
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
5167
        """
5168
        Split a program into sections according to devices that ops run on.
5169
        The op whose op_device attr is "gpu:all" is copied to all sections.
5170 5171 5172

        Args:
            main_program (Program): the main program
5173
            devices: all used devices
H
hutuxian 已提交
5174
        """
5175
        # Map from device to its corresponding section program info
5176
        device_program_map = defaultdict(Program)
5177

5178
        block = main_program.block(0)
5179 5180
        for op in block.ops:
            device = op.attr(self._op_device_key)
5181
            # Copy ops whose op_device set to "gpu:all" to all sections.
5182
            if device == f"{self._device}:all":
5183
                for device in devices:
5184 5185
                    program = device_program_map[device]
                    op_desc = op.desc
5186
                    ap_op = program.global_block().desc.append_op()
5187
                    ap_op.copy_from(op_desc)
5188
                    ap_op._set_attr(self._op_device_key, "")
5189 5190 5191
            else:
                program = device_program_map[device]
                op_desc = op.desc
5192
                ap_op = program.global_block().desc.append_op()
5193
                ap_op.copy_from(op_desc)
5194
                ap_op._set_attr(self._op_device_key, "")
5195

5196
        program_list = []
5197
        for key in devices:
5198
            program = device_program_map[key]
5199 5200
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
5201

5202
        return program_list
H
hutuxian 已提交
5203

5204 5205 5206 5207 5208 5209 5210
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
5211 5212
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, (
            'For accumulators for Adam, the name must contain beta1_pow_acc '
5213
            'or beta2_pow_acc.'
5214 5215
        )
        param_name = var_name[0 : var_name.index('_beta')]
5216 5217 5218
        device = self._param_device_map[param_name]
        return device

5219 5220
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
5221 5222 5223
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
5224 5225
            if device == "cpu":
                assert op.type == "fill_constant", (
5226
                    "For ops in startup program with the op_device attribute "
5227 5228
                    "of cpu, they must be of type fill_constant."
                )
5229 5230 5231
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

5232
            if device:
5233
                device_index = int(device.split(':')[1])
5234
            else:
5235 5236
                # LR related ops
                device = None
5237 5238
            if device and device_index != device_id:
                continue
5239
            op_desc = op.desc
5240
            ap_op = new_startup_program.global_block().desc.append_op()
5241 5242 5243
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
5244
        self._create_vars(new_startup_program.global_block(), block)
5245 5246
        return new_startup_program

5247
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
5248
        """
5249
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
5250
        """
5251 5252 5253 5254 5255 5256
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

5257
        post_ops = self.input_var_to_op[var_name]
5258 5259
        if post_ops == None:
            return None
5260 5261 5262 5263 5264 5265
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
5266

5267
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
5268
        """
5269 5270
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
5271
        """
5272
        prev_ops = self.output_var_to_op[var_name]
5273 5274
        if prev_ops == None:
            return None
5275 5276 5277 5278
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
5279
                break
5280
        return result_op
5281 5282

    def _rename_arg(self, op, old_name, new_name):
5283 5284
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
5285

5286
    def _create_var(self, block, ref_var, name, dtype=None):
5287 5288 5289 5290 5291 5292 5293 5294
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
5295
            dtype=ref_var.dtype if dtype is None else dtype,
5296 5297
            type=ref_var.type,
            lod_level=ref_var.lod_level,
5298 5299
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
5300 5301
            need_check_feed=ref_var.desc.need_check_feed(),
        )
5302
        self._clone_var_attr(new_var, ref_var)
5303 5304
        return new_var

5305 5306 5307 5308 5309
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

5310 5311 5312 5313 5314 5315
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
5316

5317 5318 5319 5320 5321 5322
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

5323
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
5324
        """
5325
        Get the op_device attribute of a op.
H
hutuxian 已提交
5326
        """
5327 5328 5329 5330 5331
        device = (
            op.attr(self._op_device_key)
            if op.has_attr(self._op_device_key)
            else None
        )
5332
        if device:
5333 5334
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', (
                "Now, only gpu and npu devices are "
5335
                "supported in pipeline parallemism."
5336
            )
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
5350
            op._set_attr(self._op_device_key, f"{self._device}:all")
5351 5352 5353 5354
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
5355 5356 5357
                assert (
                    '@RENAME@' in name
                ), "The op must be sum used to accumulate renamed vars."
5358 5359 5360 5361
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
5362 5363 5364 5365
                'op_device'
            ), "{} has no op_device attr for var {}".format(
                post_op.type, out_name
            )
5366 5367 5368
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
5369 5370 5371
        elif (op.type == "cast" or op.type == "scale") and self._is_backward_op(
            op
        ):
5372
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5373 5374
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
5375
            # for checkpoint offloading
5376 5377 5378
            assert (
                len(op.input_arg_names) == 1 and len(op.output_arg_names) == 1
            )
5379 5380 5381
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
5382
                post_op = self._find_post_op(idx, output_name)
5383 5384 5385
                op._set_attr(
                    self._op_device_key, post_op.attr(self._op_device_key)
                )
5386
            else:
5387
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
5388 5389 5390
                op._set_attr(
                    self._op_device_key, prev_op.attr(self._op_device_key)
                )
5391 5392 5393
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
5394 5395 5396
            while not block.ops[idx + offset].has_attr(
                self._op_device_key
            ) or not block.ops[idx + offset].attr(self._op_device_key):
5397 5398 5399 5400 5401 5402 5403 5404 5405
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
5406
            param_name = self._strip_grad_suffix(grad_name[0])
5407 5408 5409 5410 5411
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
5412 5413
            assert self._op_role_var_key in op.attr_names, (
                "gradient_clip "
5414
                "and regularization ops must have op_role_var attribute."
5415
            )
5416
            op_role_var = op.attr(self._op_role_var_key)
5417 5418
            assert len(op_role_var) == 2, (
                "op_role_var for gradient_clip "
5419
                "regularization ops must have two elements."
5420
            )
5421 5422
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
5423
            # For sum op added by global gradient clip, it must be
5424
            # put on all devices
5425 5426 5427 5428 5429 5430 5431
            if (
                op.type == 'sum'
                or op.type == 'sqrt'
                or op.type == 'fill_constant'
                or op.type == 'elementwise_max'
                or op.type == 'elementwise_div'
            ):
5432
                device = f"{self._device}:all"
5433
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
5434
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
5435
            op._set_attr(self._op_device_key, f"{self._device}:all")
5436 5437 5438 5439 5440 5441 5442 5443 5444 5445
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
5446 5447
        else:
            other_known_ops = [
5448 5449 5450 5451 5452 5453
                'update_loss_scaling',
                'reduce_any',
                'concat',
                'sum',
                'check_finite_and_unscale',
                'memcpy',
5454
            ]
5455 5456 5457
            assert op.type in other_known_ops, (
                "For other ops without "
                "op_device set, they must be one of {}, but it "
5458
                "is {}".format(other_known_ops, op.type)
5459
            )
5460
            assert self._is_optimize_op(op)
5461
            op._set_attr(self._op_device_key, f"{self._device}:all")
5462 5463

    def _add_op_device_attr(self, block):
5464
        """
5465
        Add op_device attrribute for ops in block that have
5466
        not that attribute set.
5467
        """
5468
        for idx, op in enumerate(list(block.ops)):
5469 5470 5471 5472 5473
            if (
                op.type == "create_py_reader"
                or op.type == "read"
                or op.type == "create_double_buffer_reader"
            ):
5474
                # Copy read related ops to all section to make them exit
5475 5476 5477 5478
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
5479
                op._set_attr(self._op_device_key, f"{self._device}:all")
5480 5481
                continue
            # op_device attribute has been set
5482 5483
            if self._get_op_device_attr(op):
                continue
5484
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
5485

5486 5487
    def _check_validation(self, block):
        """
5488
        Check whether ops in a block have both the op_device and the
5489 5490
        op_role attributes set.
        Then, return all devices in order.
5491
        """
5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
5502
        for op in block.ops:
5503
            if not op._has_kernel(op.type):
5504 5505 5506 5507 5508 5509
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)
                ), (
                    "Now, the only supported op without kernel is "
                    "conditional_block, and its op role must be LRSched."
                )
5510
            assert op.has_attr(
5511 5512
                self._op_role_key
            ), "op ({}) has no {} attribute.".format(op.type, self._op_role_key)
5513
            op_role = op.attr(self._op_role_key)
5514 5515 5516 5517 5518
            assert (
                int(op_role) in valid_op_role_value
            ), "op_role {} for op {} must be one of {}".format(
                op_role, op.type, valid_op_role_value
            )
5519

5520
            assert op.has_attr(
5521 5522 5523 5524
                self._op_device_key
            ), "op ({}) has no {} attribute.".format(
                op.type, self._op_device_key
            )
5525 5526

            device = op.attr(self._op_device_key)
5527 5528 5529 5530 5531 5532 5533
            assert (
                device
            ), "op_device attribute for op " "{} has not been set.".format(
                op.type
            )
            if device == f"{self._device}:all":
                continue
5534

5535
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
5536 5537
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
5538 5539
                "for pipeline parallelism."
            )
5540 5541

            if device not in device_list:
5542
                device_list.append(device)
5543

5544
        return device_list
5545

5546
    def _insert_sendrecv_ops_for_boundaries(self, block):
5547
        """
5548
        Insert a pair of send and recv ops for every two
5549 5550
        consecutive ops on different devices.
        """
5551
        # A map from var to device where op takes it as input,
5552
        # avoiding multiple send and recv ops.
5553
        input_var_to_device = dict()
5554 5555 5556 5557 5558 5559 5560 5561
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
5562
            'first_optimize_index': first_optimize_index,
5563
        }
5564

5565
        for index, op in enumerate(list(block.ops)):
5566
            cur_device = op.attr(self._op_device_key)
5567 5568
            if cur_device == f"{self._device}:all":
                continue
5569 5570
            for var_name in op.input_arg_names:
                var = block.var(var_name)
5571
                # skip data var
5572 5573
                if var.is_data:
                    continue
5574
                prev_device = None
5575 5576 5577

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
5578 5579
                    if var_name not in self._param_device_map:
                        continue
5580
                    prev_device = self._param_device_map[var_name]
5581

5582
                if not prev_device:
5583 5584 5585
                    prev_device = (
                        prev_op.attr(self._op_device_key) if prev_op else None
                    )
5586

5587 5588
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5589

5590 5591
                if prev_device == cur_device:
                    continue
5592

5593 5594 5595 5596 5597 5598 5599
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5600 5601 5602 5603
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
5604 5605
                    assert is_forward or is_backward, (
                        'send/recv in pipeline should only be inserted in forward or backward,'
5606
                        'please check the op_role of op={}'.format(op)
5607
                    )
5608 5609

                    if is_forward:
5610 5611
                        assert prev_id < cur_id, (
                            "In forward, send/recv can only be passed forward, but now "
5612
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
5613 5614 5615
                                prev_id, cur_id, op
                            )
                        )
5616
                    elif is_backward:
5617 5618
                        assert prev_id > cur_id, (
                            "In backward, send/recv can only be passed backward, but now "
5619
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
5620 5621 5622
                                prev_id, cur_id, op
                            )
                        )
5623

5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
5634 5635
                            (cur_dev, prev_dev)
                        )
5636 5637 5638 5639 5640
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
5641 5642
                            (cur_dev, prev_dev)
                        )
5643 5644 5645 5646 5647 5648
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5649
                    var = block.vars[var_name]
5650 5651 5652
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5653 5654 5655 5656 5657 5658 5659
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5660

5661
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5662
                        block._insert_op_without_sync(
5663
                            index=index + extra_index_info['index'],
5664 5665 5666
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5667
                                self._op_device_key: prev_dev,
5668 5669 5670
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
5671 5672 5673
                                'ring_id': ring_id,
                            },
                        )
5674
                        extra_index_info['index'] += 1
5675
                        var_shape = list(var.shape)
5676 5677 5678 5679 5680
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
F
fangshuixun007 已提交
5681
                        block._insert_op_without_sync(
5682
                            index=index + extra_index_info['index'],
5683 5684 5685
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5686
                                'out_shape': var_shape,
5687
                                'dtype': var.dtype,
5688
                                self._op_device_key: cur_dev,
5689 5690 5691
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5692 5693 5694
                                'ring_id': ring_id,
                            },
                        )
5695
                        extra_index_info['index'] += 1
5696
                    elif self.schedule_mode == '1F1B':  # 1F1B
5697
                        var_shape = list(var.shape)
5698 5699 5700 5701 5702
                        var_shape[0] = (
                            self.micro_batch_size
                            if var_shape[0] < 0
                            else var_shape[0]
                        )
5703

5704
                        numel = np.prod(var_shape)
5705 5706 5707
                        use_mp = (self.mp_degree > 1) and (
                            numel % self.mp_degree == 0
                        )
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
5730 5731
                                },
                            )
5732 5733 5734
                            extra_index_info['index'] += 1
                            return

5735 5736
                        _check_stage(cur_id, prev_id)

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746
                        block._insert_op_without_sync(
                            index=index + extra_index_info['index'],
                            type='c_sync_calc_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
                                self._op_device_key: prev_dev,
                                self._op_role_key: op_role,
                            },
                        )
5747
                        extra_index_info['index'] += 1
5748 5749
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
5750 5751 5752
                        is_param = (
                            True if isinstance(prefix_var, Parameter) else False
                        )
F
fangshuixun007 已提交
5753
                        block._insert_op_without_sync(
5754
                            index=index + extra_index_info['index'],
5755
                            type='send_v2'
5756 5757
                            if not use_mp or is_param
                            else 'partial_send',
5758 5759
                            inputs={'X': var},
                            attrs={
5760
                                self._op_device_key: prev_dev,
5761 5762 5763 5764
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5765 5766 5767
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5768 5769
                            },
                        )
5770
                        extra_index_info['index'] += 1
5771 5772 5773
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
5774 5775
                                'first_optimize_index'
                            ]
5776 5777 5778 5779
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5780
                        sync_comm_op = block._insert_op_without_sync(
5781
                            index=insert_index + extra_index_info['index'],
5782 5783 5784 5785
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5786
                                self._op_device_key: prev_dev,
5787
                                self._op_role_key: new_op_role,
5788
                                'ring_id': ring_id,
5789 5790
                            },
                        )
5791
                        if int(op_role) == int(self._op_role.Forward):
5792
                            sync_comm_op._set_attr('pipeline_flag', '')
5793
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5794
                        block._insert_op_without_sync(
5795
                            index=index + extra_index_info['index'],
5796
                            type='recv_v2'
5797 5798
                            if not use_mp or is_param
                            else 'partial_recv',
5799 5800 5801 5802
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5803
                                self._op_device_key: cur_dev,
5804 5805 5806
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5807 5808 5809 5810
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5811 5812
                            },
                        )
5813
                        extra_index_info['index'] += 1
5814
                        if use_mp and not is_param:
5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
5828 5829
                                },
                            )
5830
                            extra_index_info['index'] += 1
5831 5832 5833
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
5834 5835
                            "The given value is {}.".format(self.schedule_mode)
                        )
5836

5837 5838 5839 5840
                _insert_send_recv(
                    int(cur_device.split(':')[1]),
                    int(prev_device.split(':')[1]),
                )
5841 5842
        block._sync_with_cpp()

5843
    def _insert_loss_scale(self, block):
5844
        """
5845
        Scale the loss corresponding to number of micro-batches.
5846
        """
5847 5848
        if self._num_microbatches == 1:
            return
5849
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5850
            if self._is_loss_grad_op(op):
5851 5852
                assert op.type == 'fill_constant', (
                    "loss_grad_op must be fill_constant op, "
5853
                    "but this op is {}".format(op.type)
5854
                )
5855 5856 5857 5858
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5859 5860
                break

5861 5862
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
5863 5864
            if not self._is_optimize_op(op):
                continue
5865 5866 5867
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
5868 5869
            if op.type == 'cast' or op.type == "c_sync_comm_stream":
                continue
5870 5871 5872
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
5873 5874
                if not core.grad_var_suffix() in name:
                    continue
5875 5876 5877 5878
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5879 5880 5881
    def _accumulate_gradients(
        self, block, pp_allreduce_in_optimize=False, strategy=None, shard=None
    ):
5882 5883 5884 5885
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5886 5887
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5888
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5889 5890
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard
            )
5891 5892
            return fused_gradient_names

5893 5894 5895
        merged_gradient_names = []
        first_opt_op_idx = None

5896 5897 5898
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5899 5900 5901 5902 5903 5904 5905 5906
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5907
                    continue
5908

5909
            if self._is_backward_op(op) and first_opt_op_idx is None:
5910
                first_opt_op_idx = index + 1
5911 5912
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5913

5914 5915 5916
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
5917
                op_role_var = op.attr(self._op_role_var_key)
5918 5919
                if len(op_role_var) == 0:
                    continue
5920 5921
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5922 5923
                    offset = 0
                    param_name = op_role_var[i]
5924 5925 5926 5927
                    if not block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
5928

5929
                    param_grad_name = param_name + core.grad_var_suffix()
5930
                    merged_param_grad_name = param_grad_name + merged_suffix
5931
                    if not block.has_var(merged_param_grad_name):
5932 5933 5934 5935 5936 5937
                        self._create_var(
                            block,
                            block.vars[param_name],
                            merged_param_grad_name,
                            dtype,
                        )
5938
                    assert block.has_var(merged_param_grad_name)
5939

5940 5941 5942
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5943
                    block._insert_op(
5944 5945 5946 5947
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5948
                        attrs={
5949 5950 5951
                            'shape': merged_param_grad_var.shape,
                            'dtype': merged_param_grad_var.dtype,
                            'value': float(0),
5952
                            # a trick to run this op once per mini-batch
5953 5954 5955
                            self._op_role_key: self._op_role.Optimize.LRSched,
                        },
                    )
5956
                    offset += 1
5957 5958
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5959 5960

                    is_fp16_grad = 'cast_fp16' in grad_name
5961
                    need_cast = is_fp16_grad is not fp16_allreduce
5962 5963 5964 5965 5966 5967

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5968
                        cast_grad_var_name = param_grad_name + '@TMP'
5969
                        cast_grad_var = self._create_var(
5970 5971
                            block, param_grad_var, cast_grad_var_name, dtype
                        )
5972
                        cast_grad_var.persistable = False
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
                        block._insert_op(
                            index=first_opt_op_idx + offset,
                            type='cast',
                            inputs={'X': grad_var},
                            outputs={'Out': cast_grad_var},
                            attrs={
                                'in_dtype': grad_var.dtype,
                                'out_dtype': cast_grad_var.dtype,
                                self._op_role_key: self._op_role.Backward,
                            },
                        )
5984
                        offset += 1
5985 5986 5987 5988 5989 5990 5991
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5992 5993
                        attrs={
                            self._op_role_key: self._op_role.Backward,
5994 5995
                        },
                    )
5996 5997 5998
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

5999 6000
        if not fp16_allreduce:
            return merged_gradient_names
6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034
            block._insert_op(
                index=first_opt_op_idx,
                type='cast',
                inputs={'X': fp16_grad_var},
                outputs={'Out': grad_var},
                attrs={
                    'in_dtype': fp16_grad_var.dtype,
                    'out_dtype': grad_var.dtype,
                    self._op_role_key: self._op_role.Optimize,
                },
            )
6035

6036
        return merged_gradient_names
6037

6038 6039 6040
    def _insert_accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, grad_param_pairs, first_opt_op_idx
    ):
6041
        grad_param_pairs = self._sort_grad_param_by_dtype(
6042 6043
            main_block, grad_param_pairs
        )
6044

6045 6046 6047
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
6048
        cur_size = 0.0
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
6059 6060
                stop_gradient=False,
            )
6061
            real_param = main_block.var(param)
6062 6063
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
6064 6065 6066 6067
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
6068 6069 6070 6071 6072
            if (
                len(grad_param_segments) == 0
                or cur_size + tmp_size > fused_size
                or real_grad.dtype != last_dtype
            ):
6073
                grad_param_segments.append(
6074 6075
                    ([real_grad], [real_param], [merged_grad_var])
                )
6076
                last_dtype = real_grad.dtype
6077
                cur_size = 0.0
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
6090 6091 6092 6093 6094 6095
            fused_grad = main_block.create_var(
                name='FusedGrad_{}'.format(grad_segment[0].name),
                dtype=grad_segment[0].dtype,
                persistable=False,
                stop_gradient=False,
            )
6096
            # keep the '.cast_fp16' info in the fuse var name
6097 6098 6099 6100 6101 6102 6103 6104 6105
            fused_merged_grad_name_prefix = (
                'FusedMergedGrad.cast_fp16.'
                if merged_grad_segment[0].dtype == paddle.float16
                else 'FusedMergedGrad'
            )
            fused_merged_grad_name = (
                fused_merged_grad_name_prefix
                + '_{}'.format(merged_grad_segment[0].name)
            )
6106 6107 6108 6109
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
6110 6111
                stop_gradient=False,
            )
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
6137
                outputs={"Output": grads, "FusedOutput": fused_grad},
6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
6154 6155 6156 6157 6158 6159 6160
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
6161 6162
                },
            )
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
6173
                    "FusedOutput": fused_merged_grad,
6174 6175 6176 6177 6178 6179 6180 6181
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
6182 6183 6184
                    self._op_role_key: self._op_role.Optimize.LRSched,
                },
            )
6185 6186 6187 6188 6189 6190 6191 6192 6193
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
6194
            need_cast = is_fp16_grad is not fp16
6195 6196 6197 6198
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
                cast_grad_var = main_block.create_var(
                    name=cast_grad_var_name,
                    dtype=dtype,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fused_grad},
                    outputs={'Out': cast_grad_var},
                    attrs={
                        'in_dtype': fused_grad.dtype,
                        'out_dtype': cast_grad_var.dtype,
                        self._op_role_key: self._op_role.Backward,
                    },
                )
6216 6217 6218 6219 6220 6221 6222
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
6223 6224
                attrs={self._op_role_key: self._op_role.Backward},
            )
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
                fp32_grad = main_block.create_var(
                    name=fp32_grad_name,
                    dtype=paddle.float32,
                    shape=real_grad.shape,
                    persistable=False,
                    stop_gradient=False,
                )
                main_block._insert_op(
                    index=first_opt_op_idx + offset,
                    type='cast',
                    inputs={'X': fp16_grad},
                    outputs={'Out': fp32_grad},
                    attrs={
                        'in_dtype': paddle.float16,
                        'out_dtype': paddle.float32,
                        self._op_role_key: self._op_role.Optimize,
                    },
                )
6253 6254 6255 6256 6257 6258
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

6259
        return fused_merged_gradients, first_opt_op_idx
6260

6261 6262 6263
    def _accumulate_gradients_with_fuse(
        self, main_block, fp16, fused_size, shard=None
    ):
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

6283 6284 6285
            if self._is_backward_op(op) and (
                self._op_role_var_key in op.attr_names
            ):
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
6297 6298
                        (op_role_var[i + 1], op_role_var[i])
                    )
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
6312 6313 6314 6315 6316 6317
            (
                fused_merged_gradients,
                first_opt_op_idx,
            ) = self._insert_accumulate_gradients_with_fuse(
                main_block, fp16, fused_size, pairs, first_opt_op_idx
            )
6318 6319 6320 6321
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
6322

6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
6353 6354 6355 6356 6357 6358
        return (
            reduce(lambda x, y: x * y, var.shape)
            * dtype_to_size[var.dtype]
            / 1024.0
            / 1024.0
        )
6359

6360 6361
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
6362
        for prog in program_list:
6363 6364 6365 6366 6367 6368
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
6369 6370
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
6371 6372 6373
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
6374
                self._create_vars(new_sub_block, origin_sub_block)
6375
                op._set_attr('sub_block', new_sub_block)
6376 6377 6378

    def _get_device_info(self, block):
        for op in block.ops:
6379 6380
            if not op._has_kernel(op.type):
                continue
6381 6382 6383
            op_device = op.attr(self._op_device_key)
            return op_device

6384 6385 6386
    def _process_persistable_vars_in_multi_sections(
        self, main_program, startup_prog, program_list
    ):
6387 6388 6389 6390 6391 6392 6393
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
6394
        for prog in program_list:
6395 6396
            block = prog.block(0)
            for var_name in block.vars:
6397 6398
                if var_name == "double_buffer_0":
                    continue
6399
                var = block.var(var_name)
6400 6401
                if not var.persistable:
                    continue
6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
6417 6418 6419 6420 6421 6422
                    if (
                        op.type == "recv_v2"
                        or op.type == "create_py_reader"
                        or op.type == "read"
                        or op.type == "update_loss_scaling"
                    ):
6423
                        continue
6424 6425
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
6426 6427
                        self._op_role.Optimize.LRSched
                    ):
6428 6429 6430 6431
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
6432 6433
                            "op {}.".format(var_name, op)
                        )
6434 6435 6436 6437 6438
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
6439 6440
            if not var_name in write_info:
                continue
6441 6442 6443 6444 6445

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
6446
            write_dev_index = int(write_device.split(':')[1])
6447 6448
            all_progs = var_info[var_name]
            for prog in all_progs:
6449 6450
                if prog == write_prog:
                    continue
6451 6452 6453
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
6454 6455 6456 6457 6458 6459 6460 6461 6462
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
6463 6464 6465

                write_block._insert_op(
                    index=0,
6466
                    type='send_v2',
6467 6468 6469
                    inputs={
                        'X': write_block.var(var_name),
                    },
6470
                    attrs={
6471 6472
                        self._op_device_key: write_device,
                        'use_calc_stream': False,
6473 6474
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6475 6476 6477 6478 6479
                        self._op_role_key: self._op_role.LRSched,
                        'peer': read_dev_index,
                        'ring_id': ring_id,
                    },
                )
6480 6481
                read_block._insert_op(
                    index=0,
6482
                    type='recv_v2',
6483 6484
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6485 6486 6487 6488
                        'out_shape': read_block.var(var_name).shape,
                        'dtype': read_block.var(var_name).dtype,
                        self._op_device_key: read_device,
                        'use_calc_stream': False,
6489 6490
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6491 6492 6493 6494 6495
                        self._op_role_key: self._op_role.LRSched,
                        'peer': write_dev_index,
                        'ring_id': ring_id,
                    },
                )
6496 6497 6498 6499 6500 6501
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
6502
                        self._op_device_key: read_device,
6503 6504
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
6505 6506 6507 6508
                        self._op_role_key: self._op_role.LRSched,
                        'ring_id': ring_id,
                    },
                )
6509 6510

    def _is_gradient_clip_op(self, op):
6511 6512 6513
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/gradient_clip")
6514 6515

    def _is_regularization_op(self, op):
6516 6517 6518
        return op.desc.has_attr("op_namescope") and op.desc.attr(
            "op_namescope"
        ).startswith("/regularization")
H
hutuxian 已提交
6519

6520 6521
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
6522 6523 6524
        return op.desc.has_attr(
            "op_namescope"
        ) and 'weight decay' in op.desc.attr("op_namescope")
6525

6526 6527 6528 6529 6530
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
6531
        output_var_to_op = defaultdict(list)
6532
        # A map from var to op which takes it as input.
6533
        input_var_to_op = defaultdict(list)
6534

6535
        for index, op in enumerate(block.ops):
6536
            for var_name in op.input_arg_names:
6537
                input_var_to_op[var_name].append([op, index])
6538
            for var_name in op.output_arg_names:
6539 6540 6541 6542 6543 6544 6545 6546
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
6547 6548
        if self.schedule_mode != '1F1B':
            return
6549 6550 6551

        block = program.block(0)

6552
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
6553 6554
        backward_recv_index = None
        for index, op in enumerate(block.ops):
6555
            if op.type == recv_type and self._is_backward_op(op):
6556 6557 6558
                backward_recv_index = index
                break

6559
        # last pipeline stage
6560 6561
        if backward_recv_index is None:
            return
6562 6563 6564

        offset = 0
        for index, op in enumerate(list(block.ops)):
6565 6566
            if index >= backward_recv_index:
                break
6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
6583 6584
                    attrs={self._op_role_key: self._op_role.Backward},
                )
6585
        block._sync_with_cpp()
6586

6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
6600 6601 6602 6603
            if (
                op_role == int(self._op_role.Backward)
                and backward_insert_index is None
            ):
6604
                backward_insert_index = i
6605 6606 6607 6608 6609 6610
            if (
                op.type != "partial_recv"
                and op.type != "partial_allgather"
                and op.type != "nop"
                and op.type != "recv_v2"
            ):
6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
6630 6631 6632 6633 6634 6635 6636
            block._insert_op_without_sync(
                index=insert_index,
                type=op.type,
                inputs=op_inputs,
                outputs=op_outputs,
                attrs=op.all_attrs(),
            )
6637 6638 6639 6640 6641 6642 6643
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
6671 6672
            "forward and used in backward:\n{}".format(used_in_backward)
        )
6673

6674 6675 6676
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
6677
        main_block = loss.block
6678
        self.origin_main_block = main_block
6679
        main_program = main_block.program
6680 6681
        if startup_program is None:
            startup_program = default_startup_program()
6682

6683 6684
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6685 6686 6687 6688 6689 6690 6691
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6692 6693
            'mp_degree',
            'mp_rank',
6694 6695
        ]
        for key in required_keys:
6696 6697 6698
            assert (
                key in pipeline_opt
            ), 'Please use pipeline with fleet to use {}.'.format(key)
6699 6700 6701 6702 6703 6704 6705 6706
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6707
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6708 6709
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6710 6711

        optimize_ops, params_grads = self._optimizer.minimize(
6712 6713
            loss, startup_program, parameter_list, no_grad_set
        )
6714
        self._param_device_map = self._origin_optimizer._param_device_map
6715

6716 6717 6718 6719
        (
            self.output_var_to_op,
            self.input_var_to_op,
        ) = self._get_input_output_info(main_block)
6720 6721 6722
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6734 6735 6736
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
6737 6738
            "another in the order of their ids."
        )
6739
        # Step2: add send and recv ops between section boundaries
6740
        self._insert_sendrecv_ops_for_boundaries(main_block)
6741

6742
        # Step3: split program into sections and add pairs of
6743 6744
        # send and recv ops for data var.
        main_program = main_block.program
6745
        program_list = self._split_program(main_program, device_list)
6746
        for p in program_list:
6747
            self._create_vars(p.global_block(), main_block)
6748

L
lilong12 已提交
6749 6750 6751 6752 6753
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
6754 6755
                "stages."
            )
L
lilong12 已提交
6756 6757
        else:
            self.local_rank %= len(device_list)
6758 6759 6760
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6761
        # Step4: Special Case: process persistable vars that exist in
6762
        # multiple sections
6763
        # FIXME
6764 6765
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6766

6767
        # Step5: Add sub blocks for section programs
6768 6769
        self._add_sub_blocks(main_block, program_list)

6770
        place_list = []
6771 6772
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6773 6774 6775 6776
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6777

6778
        # Step6: Split startup program
6779
        new_startup_program = self._split_startup_program(
6780 6781
            startup_program, self.local_rank
        )
6782 6783 6784 6785

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6786
        real_block = program_list[self.local_rank].global_block()
6787 6788
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6789
        if not self.use_sharding:
6790
            # Step7: clear gradients before each mini-batch and
6791 6792 6793 6794 6795
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6796

6797 6798 6799 6800
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6801 6802 6803
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6804 6805 6806 6807 6808

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6809
        main_program._pipeline_opt = {
H
hutuxian 已提交
6810 6811
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6812
            "pipeline_stage": self.local_rank,
6813
            "num_pipeline_stages": len(device_list),
6814
            "schedule_mode": self.schedule_mode,
6815
            "inner_parallelism": len(device_list),
6816 6817
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6818
            "place_id": place_id,
6819
            "sync_steps": -1,
L
lilong12 已提交
6820
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6821 6822
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6823 6824 6825 6826 6827 6828 6829
        return (
            optimize_ops,
            params_grads,
            program_list,
            self._pipeline_pair,
            self._pp_ring_map,
        )
M
mapingshuo 已提交
6830 6831


M
mapingshuo 已提交
6832 6833
class RecomputeOptimizer(Optimizer):
    """
6834
        :api_attr: Static Graph
S
swtkiwi 已提交
6835

M
mapingshuo 已提交
6836 6837 6838
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6839
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6840 6841 6842
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6843
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6844 6845 6846
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6847
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6848 6849
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6850

M
mapingshuo 已提交
6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
J
Jiabin Yang 已提交
6896
        if framework._non_static_mode():
Z
zhongpu 已提交
6897
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6898 6899
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6900 6901
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6902
        self.enable_offload = False
M
mapingshuo 已提交
6903 6904

    def _set_checkpoints(self, checkpoints):
6905 6906
        """
        Args:
6907
            checkpoints (list): List of Variable or string
6908 6909 6910 6911 6912
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
6913 6914
            assert isinstance(ckpt, str) or isinstance(
                ckpt, Variable
6915
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6916 6917
        self._checkpoints = checkpoints

6918
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6919 6920 6921
    def _enable_offload(self):
        self.enable_offload = True

6922 6923
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6924
        """
6925
            :api_attr: Static Graph
S
swtkiwi 已提交
6926

M
mapingshuo 已提交
6927 6928 6929 6930
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6931
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6932 6933 6934 6935 6936 6937

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
6938

M
mapingshuo 已提交
6939 6940 6941 6942 6943 6944
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6945

M
mapingshuo 已提交
6946 6947 6948 6949
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6950

M
mapingshuo 已提交
6951 6952 6953 6954
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6955 6956
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6957 6958 6959 6960
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
6961 6962
            "load function is not supported by Recompute Optimizer for now"
        )
M
mapingshuo 已提交
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6995
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6996 6997 6998 6999
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7000
                    no_grad_set=None)
M
mapingshuo 已提交
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
7011 7012 7013 7014 7015 7016 7017 7018 7019
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
7020 7021
            stop_gradient=True,
        )
J
JZ-LIANG 已提交
7022 7023 7024 7025 7026 7027

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
7028 7029
            stop_gradient=False,
        )
J
JZ-LIANG 已提交
7030 7031 7032 7033 7034 7035 7036 7037

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
7038 7039 7040
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066
                stop_gradient=True,
            )
            block.append_op(
                type='fill_constant',
                outputs={'Out': varname},
                attrs={
                    "shape": var.shape,
                    "dtype": var.dtype,
                    "value": 0.0,
                    "place_type": 2,
                    OP_ROLE_KEY: op_role,
                },
            )
J
JZ-LIANG 已提交
7067 7068 7069

        return

7070 7071 7072
    def _insert_async_memcpy_op(
        self, insert_idx, src_varname, dst_varname, op_role, dst_place_type
    ):
J
JZ-LIANG 已提交
7073 7074 7075 7076 7077 7078 7079 7080
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
7081 7082
            attrs={"dst_place_type": int(dst_place_type), OP_ROLE_KEY: op_role},
        )
J
JZ-LIANG 已提交
7083 7084

    def _insert_fetch_op(self, idx, varname):
7085 7086 7087 7088 7089
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
7090 7091 7092

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
7093
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
7094 7095

    def _insert_offload_op(self, idx, varname):
7096 7097 7098 7099 7100
        assert (
            varname in self.checkpoint_name2pinned_name
        ), "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname
        )
J
JZ-LIANG 已提交
7101
        pinned_varname = self.checkpoint_name2pinned_name[varname]
7102
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
7103 7104

    def _insert_sync_op(self, op_idx, checkpoint_name):
7105
        # single stream offload no need sync
J
JZ-LIANG 已提交
7106 7107 7108
        pass

    def _record_fetch_op(self, idx):
7109 7110 7111
        assert (
            len(self.un_fetch_checkpoint_names) > 0
        ), "Could NOT found checkpoint to fetch"
J
JZ-LIANG 已提交
7112 7113 7114 7115 7116 7117 7118 7119
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
7120 7121 7122 7123 7124
        assert (
            checkpoint_name == expected_checkpoint_name
        ), "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name
        )
J
JZ-LIANG 已提交
7125 7126 7127 7128
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
7129 7130 7131
        assert (
            checkpoint_name not in self.synced_checkpoints
        ), "Try to sync the checkpoint [{}] twice".format(checkpoint_name)
J
JZ-LIANG 已提交
7132 7133 7134 7135 7136 7137 7138
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
7139
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
7154 7155
            self.block.ops
        ), "Could NOT found backword op in prog"
J
JZ-LIANG 已提交
7156 7157 7158

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
7159 7160
            self.bw_strart_op_idx
        )
J
JZ-LIANG 已提交
7161 7162
        last_last_fetch_checkpoint = None

7163
        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx :]):
J
JZ-LIANG 已提交
7164 7165 7166 7167 7168 7169 7170 7171 7172
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
7173 7174 7175
                            second_to_last_fetch_checkpoint = (
                                fetched_checkpoint_varname
                            )
7176
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
7177
                            if input_var != self.sorted_checkpoint_names[0]:
7178 7179 7180
                                fetched_checkpoint_varname = (
                                    self._record_fetch_op(idx)
                                )
J
JZ-LIANG 已提交
7181

7182
                        # should check the current used checkpoint is ths last fetch one
7183 7184 7185 7186 7187
                        assert (
                            second_to_last_fetch_checkpoint == input_var
                        ), "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var
                        )
J
JZ-LIANG 已提交
7188 7189 7190
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
7191 7192
                            self.checkpoint_name2fetch_name[input_var],
                        )
J
JZ-LIANG 已提交
7193 7194 7195 7196
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
7197 7198 7199
                                input_var
                            )
                        )
J
JZ-LIANG 已提交
7200

7201 7202 7203 7204 7205
        assert (
            len(self.un_fetch_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
7216
                    logging.debug(
7217 7218
                        "Insert [{}] fetch op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7219 7220 7221 7222 7223
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
7224 7225 7226 7227 7228
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Fecthed".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7229 7230 7231 7232

    def _parse_forward(self):

        self.idx2insertions = {}
7233
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
7234 7235 7236 7237 7238 7239 7240
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
7241
                'idx': -1,
J
JZ-LIANG 已提交
7242 7243 7244 7245 7246 7247 7248 7249 7250
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
7251 7252
            self.block.ops
        ), "Could NOT found Forward op in prog"
J
JZ-LIANG 已提交
7253 7254
        last_offload_checkpoint = None

7255
        for i, op in enumerate(
7256 7257
            self.block.ops[self.fw_strart_op_idx : self.bw_strart_op_idx]
        ):
J
JZ-LIANG 已提交
7258 7259 7260 7261 7262 7263 7264

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
7265 7266 7267 7268 7269
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
J
JZ-LIANG 已提交
7270 7271 7272 7273

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
7274 7275 7276 7277 7278 7279 7280 7281 7282
                            if (
                                self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint
                                ]['count']
                                == 0
                            ):
                                self._record_sync_op(
                                    idx, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
7283
                            else:
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
                                last_usage_idx = (
                                    self.checkpoint_usage_count_and_idx[
                                        last_offload_checkpoint
                                    ]['idx']
                                )
                                assert (
                                    last_usage_idx > 0
                                ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint
                                )
                                self._record_sync_op(
                                    last_usage_idx + 1, last_offload_checkpoint
                                )
J
JZ-LIANG 已提交
7297 7298 7299 7300 7301
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
7302 7303 7304 7305
                            "There should be just ONE op that output checkpoint [{}]".format(
                                output_var
                            )
                        )
J
JZ-LIANG 已提交
7306 7307
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
                    assert (
                        len(output_vars) == 1
                    ), "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op
                    )
                    assert (
                        last_offload_checkpoint
                        == self.sorted_checkpoint_names[-2]
                    ), "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                        last_checkpoint,
                        self.sorted_checkpoint_names[-2],
                        last_offload_checkpoint,
                    )
J
JZ-LIANG 已提交
7321
                    # sync if last checkpoint has not been sync
7322 7323 7324 7325 7326 7327
                    if (
                        self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint
                        ]['idx']
                        == 0
                    ):
J
JZ-LIANG 已提交
7328 7329 7330
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
                            last_offload_checkpoint
                        ]['idx']
                        assert (
                            last_usage_idx > 0
                        ), "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint
                        )
                        self._record_sync_op(
                            last_usage_idx + 1, last_offload_checkpoint
                        )
7341
            # record checkpoint usage
J
JZ-LIANG 已提交
7342 7343
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
7344 7345 7346
                    assert (
                        input_var not in self.synced_checkpoints
                    ), "checkpoint [{}] used after sync".format(input_var)
J
JZ-LIANG 已提交
7347 7348 7349
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

7350 7351 7352 7353 7354
        assert (
            len(self.un_offload_checkpoint_names) == 0
        ), "{} checkpoints have NOT been Recorded".format(
            self.un_fetch_checkpoint_names
        )
J
JZ-LIANG 已提交
7355 7356 7357
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
7358 7359
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints)
        )
J
JZ-LIANG 已提交
7360 7361 7362 7363 7364

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
7365 7366
            range(self.fw_strart_op_idx, self.bw_strart_op_idx)
        ):
J
JZ-LIANG 已提交
7367 7368 7369 7370
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
7371
                    logging.debug(
7372 7373
                        "Insert [{}] offload op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7374 7375 7376
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
7377
                    logging.debug(
7378 7379
                        "Insert [{}] offload_sync op.".format(checkpoint_name)
                    )
J
JZ-LIANG 已提交
7380 7381 7382
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
7383 7384 7385 7386 7387
        assert (
            len(self.idx2insertions) == 0
        ), "{} checkpoints left un-Offloaded".format(
            [ele[1] for ele in self.idx2insertions.values()]
        )
J
JZ-LIANG 已提交
7388 7389 7390 7391 7392 7393 7394 7395

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
7396
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
7397 7398 7399 7400 7401 7402 7403
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
J
JZ-LIANG 已提交
7404
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
7405 7406

        with program_guard(self._main_program, startup_program):
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416
            assert (
                len(self.checkpoint_shape) > 0
            ), "checkpoints shape {} should be an non empty list like: [12, 512, 1024]".format(
                self.checkpoint_shape
            )
            assert all(
                [ele > 0 for ele in self.checkpoint_shape]
            ), "all ele in checkpoints shape {} should be a determined integer larger than 0".format(
                self.checkpoint_shape
            )
J
JZ-LIANG 已提交
7417 7418 7419 7420
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
7421 7422
                    checkpoint_varname
                )
J
JZ-LIANG 已提交
7423
                self.checkpoint_name2pinned_name[
7424 7425
                    checkpoint_varname
                ] = pinned_var_name
J
JZ-LIANG 已提交
7426
                self.checkpoint_name2fetch_name[
7427 7428
                    checkpoint_varname
                ] = fetch_var_name
J
JZ-LIANG 已提交
7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

7442 7443 7444 7445 7446 7447 7448 7449
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
M
mapingshuo 已提交
7450 7451 7452 7453 7454 7455 7456
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
7457 7458
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
7459 7460 7461 7462 7463 7464 7465 7466
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
7467

M
mapingshuo 已提交
7468 7469 7470 7471 7472 7473
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
7474 7475


M
mapingshuo 已提交
7476 7477 7478 7479
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7480

M
mapingshuo 已提交
7481 7482
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7483
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7484 7485 7486 7487
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7488
                    no_grad_set=None)
M
mapingshuo 已提交
7489 7490
                print("Finished backward")
        """
7491 7492 7493
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
7494

J
Jiabin Yang 已提交
7495
        if framework._non_static_mode():
M
mapingshuo 已提交
7496
            raise NotImplementedError(
7497 7498
                "DyGraph current does not support recompute"
            )
M
mapingshuo 已提交
7499 7500 7501 7502

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
7503 7504 7505 7506 7507 7508 7509
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
7510 7511 7512 7513 7514 7515
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
7516 7517
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7518
            else:
7519 7520 7521 7522 7523 7524
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars,
                )
J
JZ-LIANG 已提交
7525 7526 7527 7528 7529

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
7543

M
mapingshuo 已提交
7544 7545 7546 7547 7548
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
7549 7550
                    return sum_cost, fc_1, prediction

M
mapingshuo 已提交
7551 7552 7553 7554
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
7555

M
mapingshuo 已提交
7556 7557
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
7558
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
7559 7560 7561 7562
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
7563
                    no_grad_set=None)
7564

M
mapingshuo 已提交
7565 7566
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
7567

M
mapingshuo 已提交
7568 7569 7570
                print("Finished apply_optimize")
        """

7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582
        func = (
            self._optimizer.apply_optimize
            if hasattr(self._optimizer, 'apply_optimize')
            else self._optimizer._apply_optimize
        )
        return func(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
7583
        assert isinstance(loss, Variable), "The loss should be an Variable."
7584 7585 7586
        assert (
            self._checkpoints is not None
        ), "You should call _set_checkpoints first"
J
Jiabin Yang 已提交
7587
        if framework._non_static_mode():
M
mapingshuo 已提交
7588
            raise NotImplementedError(
7589 7590 7591 7592 7593 7594 7595 7596
                "DyGraph current does not support recompute"
            )
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
M
mapingshuo 已提交
7597

7598 7599 7600
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
M
mapingshuo 已提交
7601 7602 7603 7604

        return optimize_ops, params_grads


M
mapingshuo 已提交
7605
class LookaheadOptimizer(object):
7606
    r"""
7607
        :api_attr: Static Graph
S
swtkiwi 已提交
7608

M
mapingshuo 已提交
7609 7610 7611 7612
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
7613 7614
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
7615 7616 7617
    every k training steps as follows:

    .. math::
7618

M
mapingshuo 已提交
7619
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
7620

7621
        fast\_param_t &=  slow\_param_t
M
mapingshuo 已提交
7622 7623

    Args:
7624
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
7625 7626 7627 7628 7629 7630 7631 7632 7633
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
7634
            import numpy.random as random
M
mapingshuo 已提交
7635

7636
            paddle.enable_static()
7637

7638 7639 7640 7641
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
7642
            loss = paddle.mean(x=loss)
7643 7644 7645 7646 7647 7648 7649 7650 7651
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
7652

7653 7654 7655
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
7656

7657 7658
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
7659

7660 7661 7662
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
7663 7664 7665 7666 7667

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

J
Jiabin Yang 已提交
7668
        if framework._non_static_mode():
Z
zhongpu 已提交
7669
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
7670
        assert inner_optimizer is not None, "inner optimizer can not be None"
M
mapingshuo 已提交
7671 7672 7673
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
7674
        assert isinstance(k, int) and k > 0, "k should be a positive integer"
M
mapingshuo 已提交
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
7685 7686
            loss, startup_program=startup_program
        )
M
mapingshuo 已提交
7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
7698 7699 7700 7701 7702 7703 7704
            assert fast_var is not None
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7705 7706 7707 7708 7709 7710
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
7711 7712 7713 7714 7715 7716 7717
            assert fast_var is not None
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True,
            )
M
mapingshuo 已提交
7718

7719 7720 7721
            startup_block.append_op(
                type="assign", inputs={"X": fast_var}, outputs={"Out": slow_var}
            )
M
mapingshuo 已提交
7722

7723 7724
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
7725 7726 7727 7728 7729 7730 7731
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True,
            )
M
mapingshuo 已提交
7732

7733
            # Add Var alpha to main prog and startup prog
7734 7735 7736 7737 7738 7739 7740
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True,
            )
M
mapingshuo 已提交
7741

7742
            # Add Var step
7743 7744 7745 7746 7747 7748 7749
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True,
            )
7750 7751 7752
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
7753 7754 7755
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0
            )
7756

7757 7758 7759
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0
            )
7760 7761 7762

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
7763 7764 7765 7766 7767
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
7768 7769 7770 7771 7772 7773 7774
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
7775 7776 7777
                                slow_var, layers.elementwise_sub(one_var, alpha)
                            ),
                        )
7778 7779 7780 7781
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
7782
        return mini_out
7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7840 7841
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7842
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
J
Jiabin Yang 已提交
7843
        if framework._non_static_mode():
7844 7845 7846
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
7847 7848
                "and one-time optimizer.minimize()"
            )
7849

7850 7851 7852 7853
        assert inner_optimizer is not None, "inner optimizer can not be None"
        assert (
            isinstance(k_steps, int) and k_steps > 0
        ), "k_steps should be a positive integer"
7854 7855 7856 7857 7858

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7859
        self._optimize_ops = None
7860

7861 7862 7863 7864 7865 7866
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7867 7868 7869 7870 7871 7872 7873 7874
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
7875 7876 7877 7878 7879 7880 7881 7882 7883
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
7884 7885
            loss, startup_program=startup_program
        )
7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
7897 7898 7899
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
7900 7901 7902 7903 7904 7905
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
7906 7907 7908 7909 7910
        assert self._is_the_backward_op(
            op
        ), 'grad.op={} is not the backward op which produces the grad={}'.format(
            op, grad.name
        )
7911 7912 7913

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923
        assert (
            param.name in var_attr
        ), 'when using GradientMergeOptimizer, param={} must be in var_attr={}'.format(
            param.name, var_attr
        )
        assert (
            grad.name in var_attr
        ), 'when using GradientMergeOptimizer, grad={} must be in var_attr={}'.format(
            param.name, var_attr
        )
7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
        k_step_var = layers.create_global_var(
            name="gradient_merge_k",
            shape=[1],
            value=int(self.k_steps),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )

        zero_var = layers.create_global_var(
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7967 7968

        # Add step var & cond var
7969 7970 7971 7972 7973 7974 7975 7976
        step_var = layers.create_global_var(
            name="gradient_merge_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
7977

7978 7979 7980
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
7981 7982 7983 7984

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
7985 7986 7987 7988 7989 7990
            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': step_var, 'Y': k_step_var},
                outputs={'Out': step_var},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
7991 7992

            # cond_var = (step_var == 0)
7993 7994 7995 7996 7997
            main_block.append_op(
                type='equal',
                inputs={'X': step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
            )
7998 7999 8000 8001 8002 8003 8004 8005 8006 8007

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
8008

8009
        # TODO(mapingshuo) support sparse embedding
8010 8011
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
8012
            assert (
8013
                param.type != core.VarDesc.VarType.SELECTED_ROWS
8014 8015
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

8016
            self._remove_op_role_var(param, grad)
8017

8018
        param_to_grad = {k.name: v for (k, v) in params_grads}
8019 8020 8021
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

8022 8023 8024 8025 8026
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
8027
            param_var = main_block.var(param_name)
8028 8029 8030 8031 8032 8033 8034
            assert param_var is not None
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True,
            )
8035
            param_to_gradient_merge[param_name] = gradient_merge_var
8036

8037 8038 8039 8040
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051
                persistable=True,
            )
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                },
            )
8052

8053 8054 8055
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
8056
                inputs={'X': grad, 'Y': gradient_merge_var},
8057
                outputs={'Out': gradient_merge_var},
8058 8059 8060 8061 8062
                attrs={'axis': -1, 'use_mkldnn': False},
            )
            self._add_gm_op_role_var(
                new_grad_op, param, gradient_merge_var, cond
            )
8063 8064 8065 8066 8067 8068 8069 8070
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
8071
            op_maker = core.op_proto_and_checker_maker
8072 8073 8074 8075

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088
                    cur_block.append_op(
                        type='scale',
                        inputs={'X': new_grad},
                        outputs={'Out': new_grad},
                        attrs={
                            'scale': 1.0 / self.k_steps,
                            'bias': 0.0,
                            'bias_after_scale': False,
                        },
                    )
                    new_grad.op._set_attr(
                        op_maker.kOpRoleAttrName(), op_maker.OpRole.Backward
                    )
8089

8090 8091 8092 8093 8094 8095
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
8096

8097
            self._optimize_ops = self.inner_optimizer.apply_gradients(
8098 8099
                new_params_grads
            )
8100

8101 8102
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
8103 8104 8105 8106 8107 8108 8109 8110 8111
                layers.fill_constant(
                    shape=new_grad.shape,
                    dtype=new_grad.dtype,
                    value=0.0,
                    out=new_grad,
                )
                new_grad.op._set_attr(
                    op_maker.kOpRoleAttrName(), op_maker.OpRole.Optimize
                )
8112 8113 8114 8115 8116 8117

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

8118 8119 8120
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
8121 8122
        assert isinstance(loss, Variable), "The loss should be an Variable."

8123 8124 8125 8126 8127 8128
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
        )
8129

8130 8131 8132
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )
8133 8134

        return optimize_ops, params_grads