optimizer.py 217.3 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import logging
20
from collections import defaultdict
21

Q
Qiao Longfei 已提交
22
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
23
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program, device_guard
24

25 26
from . import framework
from . import layers
27
from . import unique_name
28
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
29
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops
30 31 32
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
33
from .layers import ops
34
from .regularizer import append_regularization_ops
35
from .dygraph import base as imperative_base
36
from .dygraph import no_grad
37
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
38 39 40
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
41
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
42
from .. import compat as cpt
M
MRXLT 已提交
43
import paddle
44

45
__all__ = [
46 47 48 49
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
50
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
51 52
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
53
]
Q
Qiao Longfei 已提交
54 55 56 57 58 59


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
60 61
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
62 63
    """

64
    @imperative_base.no_grad
65 66 67 68
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
69
                 grad_clip=None,
70
                 name=None):
71 72
        # Because of the loop import, so place it in the function body
        from paddle.optimizer.lr_scheduler import _LRScheduler
H
hong 已提交
73 74
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
75
        self._name = name
L
lujun 已提交
76
        if framework.in_dygraph_mode():
77 78
            if not isinstance(learning_rate,
                              (float, LearningRateDecay, _LRScheduler)):
M
minqiyang 已提交
79
                raise TypeError(
80
                    "learning rate should be float or _LRScheduler, got %s here"
M
minqiyang 已提交
81
                    % type(learning_rate))
82
            if self._parameter_list is None:
83 84 85
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
86 87 88 89 90 91 92 93
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
94
        else:
95 96
            if not isinstance(learning_rate,
                              (float, framework.Variable, _LRScheduler)):
M
minqiyang 已提交
97
                raise TypeError(
98 99
                    "learning rate should be float or _LRScheduler, got %s here"
                    % type(learning_rate))
M
minqiyang 已提交
100

101 102 103 104 105
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
106
        self.regularization = regularization
107
        self._grad_clip = grad_clip
108
        self._learning_rate = learning_rate
D
dzhwinter 已提交
109 110
        # the learning rate type should be inferenced from loss
        self._dtype = None
111
        # each program should have a independent learning rate
112
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
113
        self._learning_rate_map = dict()
114
        if isinstance(self._learning_rate, framework.Variable):
115 116
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
117 118 119 120 121
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
122
        self.helper = None
123
        self._opti_name_list = []
H
hong 已提交
124
        self._accumulators_holder = {}
125
        self._param_device_map = dict()
H
hong 已提交
126 127 128 129

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
130 131
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
132 133 134

        Args: None
        Return:
T
tianshuo78520a 已提交
135
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
136 137 138 139 140
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
141 142 143 144 145 146

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
147 148

        '''
149
        from paddle.optimizer.lr_scheduler import _LRScheduler
H
hong 已提交
150 151 152 153 154
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
155 156 157
        if isinstance(self._learning_rate, _LRScheduler):
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
158
        if isinstance(self._learning_rate, LearningRateDecay):
159 160 161 162
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
163 164 165
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')

166 167
                tensor.fill_constant(
                    [1], "int32", self._learning_rate.step_num, out=var_temp)
H
hong 已提交
168

169
                state_dict['global_step'] = var_temp
H
hong 已提交
170 171 172
        return state_dict

    @framework.dygraph_only
173
    def set_state_dict(self, state_dict):
H
hong 已提交
174
        '''
T
tianshuo78520a 已提交
175
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
176 177 178 179 180 181 182 183

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
184

185 186
                import paddle
                import paddle.fluid as fluid
187 188 189

                paddle.disable_static()

190
                emb = paddle.nn.Embedding(10, 10)
191

192
                state_dict = emb.state_dict()
193
                fluid.save_dygraph(state_dict, "paddle_dy")
194

195 196 197 198 199
                scheduler = paddle.optimizer.lr_scheduler.NoamLR(	
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
200
                state_dict = adam.state_dict()
201
                fluid.save_dygraph(state_dict, "paddle_dy")
202

203
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
204
        '''
205 206 207
        from paddle.optimizer.lr_scheduler import _LRScheduler
        if isinstance(self._learning_rate, _LRScheduler):
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
208 209

        if isinstance(self._learning_rate, LearningRateDecay):
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
232 233 234 235 236 237

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
238
                var = var_tmp.value()
H
hong 已提交
239 240 241 242 243 244 245 246
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
247
                    load_para_np = load_para.numpy()
H
hong 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
263

264 265 266
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

267 268
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
269

Q
Qiao Longfei 已提交
270
    def _create_global_learning_rate(self):
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
        from paddle.optimizer.lr_scheduler import _LRScheduler
        if isinstance(self._learning_rate, _LRScheduler):
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
                self._learning_rate_map[framework.default_main_program(
                )] = lr_var

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

295 296 297
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
298 299 300 301 302 303 304 305 306 307 308 309
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
310
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
311
            elif isinstance(self._learning_rate, LearningRateDecay):
312 313 314
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
315
                raise TypeError(
316 317
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
318
        else:
319 320 321 322
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
323 324 325 326 327 328
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
329

330 331 332 333 334 335 336 337
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
                global_block = framework.default_main_program().global_block()
                global_block.append_op(
                    type='fill_constant',
                    outputs={'Out': [current_lr]},
                    attrs={
                        'dtype': current_lr.dtype,
                        'shape': list(current_lr.shape),
                        'value': float(value)
                    },
                    stop_gradient=True)
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

416 417 418
    @framework.dygraph_only
    def current_step_lr(self):
        """
419
        :api_attr: imperative
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
465
        if isinstance(current_lr, framework.Variable):
466 467 468 469
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
470 471 472
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
473 474 475 476 477 478 479
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
480
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
481 482 483 484
        """
        get global decayed learning rate
        :return:
        """
485 486
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
487
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
488

Q
Qiao Longfei 已提交
489 490 491 492 493
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

494 495 496 497
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
498 499
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
500
        else:
W
Wu Yi 已提交
501
            if param_lr == 1.0:
Y
yuyang18 已提交
502
                return self._global_learning_rate()
W
Wu Yi 已提交
503
            else:
X
Xin Pan 已提交
504 505 506
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
507
                    return self._global_learning_rate() * param_lr
508 509 510 511 512 513 514

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
515
        """
516 517
        pass

518
    def _finish_update(self, block, parameters_and_grads):
519 520 521 522 523 524 525 526
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
527
            None
528 529 530
        """
        pass

531 532 533 534 535
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
536
                         shape=None,
537
                         type=None,
538
                         device=None):
539 540 541 542 543 544 545 546 547
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
548 549
        if self._name is not None:
            name = self._name + "_" + name
550 551
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
552
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
553
                return self._accumulators[name][param.name]
554
            raise Exception("Accumulator {} already exists for parameter {}".
555
                            format(name, param.name))
556 557
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
558
        assert isinstance(self.helper, LayerHelper)
559 560 561 562 563

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
564
        var = self.helper.create_global_variable(
565
            name=var_name,
Q
Qiao Longfei 已提交
566
            persistable=True,
F
fengjiayi 已提交
567
            dtype=dtype or param.dtype,
568
            type=param.type if type is None else type,
H
hong 已提交
569 570
            shape=shape,
            belong_to_optimizer=True)
571 572 573 574 575
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
576 577 578 579 580 581 582

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
583
        self._accumulators[name][param.name] = var
584
        return var
585 586 587 588 589 590 591 592 593 594 595

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
596 597
        if self._name is not None:
            name = self._name + "_" + name
598 599 600 601 602 603
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

604 605 606 607 608 609 610 611 612 613 614 615
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
616
                        break
617 618 619 620 621 622 623

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

624
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
625 626 627
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
628
          parameters_and_grads(list(tuple(Variable, Variable))):
629
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
630 631

        Returns:
632
          return_op_list: a list of operators that will complete one step of
633 634 635
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
636
        """
637 638 639 640 641
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
642
        # for parameters and extend _finish_update method to add custom ops.
643

644
        # Allways called under program_guard use global block as loss block
645 646 647
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

648
        global_block = framework.default_main_program().global_block()
649 650 651 652 653 654 655 656 657
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
658
        self.helper = LayerHelper(self.__class__.__name__)
659
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
660
        self._create_accumulators(
661
            target_block,
C
chengduo 已提交
662
            [p[0] for p in parameters_and_grads if p[0].trainable])
663 664
        self._create_global_learning_rate()

M
minqiyang 已提交
665
        if framework.in_dygraph_mode():
666 667 668
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
669 670
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
671 672 673 674 675 676 677
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
678 679 680 681 682
                        device = self._get_device_for_param(param_and_grad[0]
                                                            .name)
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
683 684 685

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
686
        self._finish_update(target_block, parameters_and_grads)
687

688 689
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
690 691

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
692 693 694 695 696 697 698 699 700
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
701 702
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
718 719 720 721 722 723 724 725 726 727 728 729 730
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
731 732
        return new_param_grads, (table_param, table_grad), sgd_op

733 734 735
    def _append_dgc_ops(self, param_and_grad):
        pass

736 737 738 739 740 741 742
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
743
        The first part of ``minimize``, do auto-diff to append backward operations for
744 745 746
        the current program.

        Args:
747 748 749 750
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
751
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
752 753
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
754
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
755 756 757
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
758

759
        Return:
760 761
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
762

763
        Examples:
764
            See examples in ``apply_gradients``.
765
        """
766
        act_no_grad_set = None
L
Leo Chen 已提交
767
        if framework.in_dygraph_mode():
768
            pass
L
Leo Chen 已提交
769 770
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
771

C
chengduo 已提交
772
        self._dtype = loss.dtype
L
lujun 已提交
773
        if framework.in_dygraph_mode():
C
chengduo 已提交
774
            params_grads = []
775
            for param in self._parameter_list:
C
chengduo 已提交
776 777
                if not param.trainable:
                    continue
778
                if param._grad_ivar() is not None:
C
chengduo 已提交
779
                    # create gradient variable
780
                    grad_var = param._grad_ivar()
C
chengduo 已提交
781
                    params_grads.append((param, grad_var))
782
        else:
C
chengduo 已提交
783 784 785 786 787
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
788 789 790 791
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
792 793
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
794 795
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
796
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
797
                # Note: since we can't use all_reduce_op now,
D
Dong Daxiang 已提交
798
                # dgc_op should be the last op of one grad.
C
chengduo 已提交
799 800
                self._append_dgc_ops(params_grads)
        return params_grads
801 802 803 804 805 806 807 808

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
809

810 811
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
812

813 814 815
        Examples:
            .. code-block:: python

816
                import paddle.fluid as fluid
817 818 819 820 821 822 823
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
824

825 826
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

827
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
828 829 830 831
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
832 833

        # Add regularization if any
834 835
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
836 837 838 839

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
840 841 842 843 844 845 846 847 848 849 850 851
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
852
        if framework.in_dygraph_mode():
C
chengduo 已提交
853 854
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
855 856
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
857 858
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
859 860 861 862 863 864 865
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
866
    def _get_no_grad_set(self, loss, no_grad_set=None):
867
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
868 869 870 871 872 873 874 875
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

907
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
908 909
    def minimize(self,
                 loss,
910
                 startup_program=None,
Q
Qiao Longfei 已提交
911
                 parameter_list=None,
912
                 no_grad_set=None):
913
        """
914
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
915

916
        Args:
917 918 919 920
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
921
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
922 923
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
924
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
925
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
926

927
        Returns:
928 929 930
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
931 932 933
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
934 935 936

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
937
        """
C
chengduo 已提交
938
        assert isinstance(loss, Variable), "The loss should be an Variable."
939

940 941
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
C
chengduo 已提交
942 943 944 945 946
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
947

C
chengduo 已提交
948 949
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
950

Q
Qiao Longfei 已提交
951
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
952 953 954


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
955 956 957 958 959 960 961
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

962 963 964
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
965
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
966 967
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
968 969 970 971 972
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
973 974 975 976
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
977 978
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
979 980 981 982

    Examples:
        .. code-block:: python

983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1008 1009
    """

1010 1011 1012 1013
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1014
                 grad_clip=None,
1015
                 name=None):
Q
Qiao Longfei 已提交
1016
        assert learning_rate is not None
Q
Qiao Longfei 已提交
1017
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
1018
            learning_rate=learning_rate,
1019
            parameter_list=parameter_list,
X
Xin Pan 已提交
1020
            regularization=regularization,
1021
            grad_clip=grad_clip,
X
Xin Pan 已提交
1022
            name=name)
Q
Qiao Longfei 已提交
1023 1024
        self.type = "sgd"

1025
    @no_grad
1026
    def _append_optimize_op(self, block, param_and_grad):
1027
        lr = self._create_param_lr(param_and_grad)
1028
        if framework.in_dygraph_mode():
1029 1030 1031
            core.ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                         param_and_grad[0])
            return None
1032

1033
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1034 1035 1036 1037 1038 1039
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1040
                "LearningRate": lr
Q
Qiao Longfei 已提交
1041
            },
M
minqiyang 已提交
1042 1043
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
1044 1045

        return sgd_op
1046 1047 1048


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1063
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1064 1065 1066

        & else:

Q
qiaolongfei 已提交
1067
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1068

1069 1070 1071 1072
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1073
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1074 1075
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1076
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1077 1078 1079 1080 1081
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1082 1083 1084 1085
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1086 1087
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1088 1089 1090 1091

    Examples:
        .. code-block:: python

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1117 1118 1119
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1120 1121 1122
    def __init__(self,
                 learning_rate,
                 momentum,
1123
                 parameter_list=None,
X
Xin Pan 已提交
1124 1125
                 use_nesterov=False,
                 regularization=None,
1126
                 grad_clip=None,
X
Xin Pan 已提交
1127
                 name=None):
1128 1129
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
1130
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
1131
            learning_rate=learning_rate,
1132
            parameter_list=parameter_list,
X
Xin Pan 已提交
1133
            regularization=regularization,
1134
            grad_clip=grad_clip,
X
Xin Pan 已提交
1135
            name=name)
1136 1137
        self.type = "momentum"
        self._momentum = momentum
1138
        self._use_nesterov = bool(use_nesterov)
1139 1140 1141 1142 1143

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1144
            self._add_accumulator(self._velocity_acc_str, p)
1145 1146 1147 1148 1149 1150

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1151 1152 1153 1154 1155 1156 1157 1158
        lr = self._create_param_lr(param_and_grad)

        if framework.in_dygraph_mode():
            _, _ = core.ops.momentum(param_and_grad[0], param_and_grad[1],
                                     velocity_acc, lr, param_and_grad[0],
                                     velocity_acc, 'mu', self._momentum,
                                     'use_nesterov', self._use_nesterov)
            return None
1159

1160
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1161 1162 1163 1164
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1165
            "LearningRate": [lr]
1166 1167 1168 1169 1170 1171
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1172 1173 1174
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
1175 1176 1177
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1178
            stop_gradient=True)
1179 1180

        return momentum_op
1181 1182


1183
class DGCMomentumOptimizer(Optimizer):
1184
    """
1185
	:api_attr: Static Graph
S
swtkiwi 已提交
1186

1187
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1188

G
gongweibao 已提交
1189
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1190 1191
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1192
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1193 1194 1195

    Eventually, these gradients become large enough to be transmitted.

1196
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1197

G
gongweibao 已提交
1198
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1199 1200 1201 1202

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1203

1204 1205
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1206

1207
        2. Call momentum to optimize the cost.
1208 1209

    Args:
1210 1211
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1212
        momentum (float): Momentum factor.
G
gongweibao 已提交
1213
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1214 1215 1216 1217 1218 1219 1220
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1221
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1222 1223
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1224
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1225 1226 1227 1228 1229
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1230 1231 1232
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1233 1234
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1235 1236 1237 1238

    Examples:
        .. code-block:: python

1239
            import paddle.fluid as fluid
1240
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1241 1242 1243 1244 1245
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1246 1247

    """
1248 1249
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1250 1251 1252 1253 1254 1255 1256

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1257
                 parameter_list=None,
1258 1259 1260
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1261
                 grad_clip=None,
1262
                 name=None):
Z
zhongpu 已提交
1263 1264
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1265 1266 1267 1268

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1269 1270 1271 1272
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1273
            parameter_list=parameter_list,
1274
            regularization=regularization,
1275
            grad_clip=grad_clip,
1276 1277 1278 1279
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1280

1281
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1282
        self._rampup_begin_step = rampup_begin_step
1283 1284
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1285

1286
        self._rampup_begin_step_var = None
1287
        self._global_step_var = None
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
                value)
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1300 1301

            self._num_trainers = num_trainers
1302
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1303

1304 1305
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1306

1307 1308 1309
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1310

1311 1312
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1313
            from .regularizer import L1Decay, L2Decay
1314 1315 1316 1317
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1318 1319
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1320
        return regular_type, regular_coeff
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1348 1349

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1350 1351 1352
            type = "momentum"
        else:
            type = "dgc_momentum"
1353 1354 1355 1356 1357
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1358
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1359 1360 1361

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1362 1363 1364 1365
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1366 1367 1368
            stop_gradient=True)
        return dgc_momentum_op

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1401 1402 1403 1404 1405 1406
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1407
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1408

1409 1410 1411
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1412 1413 1414 1415 1416
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1417
            name=core.dgc.kDGCRampUpBeginStepName(),
1418 1419 1420
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1421 1422
        self.helper = LayerHelper(self.__class__.__name__)

1423
        for param_var, grad_var in param_and_grads:
1424 1425 1426
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1427
            if not self._is_use_dgc(param_var, grad_var):
1428 1429
                continue

1430
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1431 1432 1433 1434 1435

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1436
                name=param_var.name + core.dgc.kDGCKName(),
1437 1438 1439 1440 1441 1442 1443
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1444
                name=param_var.name + core.dgc.kDGCEncodedName(),
1445 1446 1447
                value=0.0,
                force_cpu=False)

1448 1449 1450 1451 1452 1453 1454 1455
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1475 1476
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1477
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1478
                         encoded_var, gather_var)
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1494 1495
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1496 1497 1498 1499 1500

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1501
            type="dgc_clip_by_norm",
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1514
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1515 1516

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1517
                encoded_var, gather_var):
1518 1519
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1520

1521 1522 1523 1524 1525 1526 1527
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1528 1529 1530 1531 1532 1533
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1534
                "Param": param_var,
1535 1536
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1537 1538 1539 1540 1541 1542
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1543 1544
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1545 1546 1547 1548 1549 1550
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1551
                "rampup_step": float(self._rampup_step),
1552 1553
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
1554 1555 1556 1557 1558 1559 1560 1561
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1562
    @imperative_base.no_grad
1563 1564 1565 1566 1567 1568 1569
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1570
        # DGC clip and regularization in optimizer.backward
1571 1572 1573 1574 1575 1576
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1577
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1578 1579 1580 1581 1582
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1597

1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1609
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1610 1611 1612

        & param = param - velocity

1613 1614 1615 1616 1617 1618
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1619
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1620 1621
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1622 1623 1624 1625 1626
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1627 1628 1629 1630
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1631 1632
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1633 1634 1635
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
        
1636 1637 1638
    Examples:
        .. code-block:: python

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1655 1656 1657 1658 1659 1660 1661 1662
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1663
                 parameter_list=None,
1664
                 regularization=None,
1665
                 grad_clip=None,
1666 1667 1668
                 name=None,
                 exclude_from_weight_decay=None,
                 epsilon=0):
1669 1670 1671 1672
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1673
            parameter_list=parameter_list,
1674
            regularization=regularization,
1675
            grad_clip=grad_clip,
1676 1677 1678 1679 1680
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
1681 1682 1683 1684 1685
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

1696 1697 1698 1699 1700 1701 1702 1703
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
1722 1723
                "lars_weight_decay": _lars_weight_decay,
                "epsilon": self._epsilon
M
minqiyang 已提交
1724 1725
            },
            stop_gradient=True)
1726 1727 1728 1729

        return momentum_op


1730
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1731
    """
1732 1733
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1734

1735
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1736 1737 1738 1739 1740 1741 1742

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1743 1744 1745 1746 1747 1748
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1749 1750 1751
    for numerical stability to avoid the division by zero error.

    Args:
1752 1753 1754 1755
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
1756
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1757 1758
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1759 1760 1761 1762 1763
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1764 1765 1766 1767
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1768 1769 1770 1771 1772
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1773 1774 1775 1776

    Examples:
        .. code-block:: python

1777
            import numpy as np
1778
            import paddle.fluid as fluid
1779 1780

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1781
            inp = fluid.data(name="inp", shape=[2, 2])
1782 1783
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1784
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1785 1786 1787 1788 1789 1790 1791
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1792 1793 1794
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1795 1796 1797
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1798
                 parameter_list=None,
X
Xin Pan 已提交
1799
                 regularization=None,
1800
                 grad_clip=None,
1801
                 name=None,
X
xuezhong 已提交
1802
                 initial_accumulator_value=0.0):
1803 1804
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1805
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1806
            learning_rate=learning_rate,
1807
            parameter_list=parameter_list,
X
Xin Pan 已提交
1808
            regularization=regularization,
1809
            grad_clip=grad_clip,
X
Xin Pan 已提交
1810
            name=name)
1811 1812
        self.type = "adagrad"
        self._epsilon = epsilon
1813
        self.initial_accumulator_value = initial_accumulator_value
1814 1815 1816 1817 1818

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1819 1820 1821 1822
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1823 1824 1825 1826 1827 1828

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1829
        # Create the adagrad optimizer op
1830 1831 1832 1833 1834 1835
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1836
                "LearningRate": self._create_param_lr(param_and_grad)
1837 1838 1839
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1840 1841
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1842 1843

        return adagrad_op
1844 1845 1846


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1847
    """
T
tianshuo78520a 已提交
1848
    The Adam optimizer uses an optimization described at the end
1849 1850 1851 1852 1853
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1868 1869
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1870
    Args:
1871 1872
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1873 1874
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1875
            The default value is 0.9.
1876 1877
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1878 1879 1880
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
1881
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1882 1883
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1884 1885 1886 1887 1888
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1889 1890 1891 1892
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1903 1904 1905 1906

    Examples:
        .. code-block:: python

1907 1908 1909 1910 1911 1912
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1913 1914
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1948
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1977
                                                    beta1=beta1,
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1989 1990 1991
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1992 1993
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1994 1995 1996 1997 1998

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1999
                 epsilon=1e-8,
2000
                 parameter_list=None,
X
Xin Pan 已提交
2001
                 regularization=None,
2002
                 grad_clip=None,
Q
Qiao Longfei 已提交
2003
                 name=None,
Q
Qiao Longfei 已提交
2004
                 lazy_mode=False):
2005 2006 2007 2008
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2009
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
2010
            learning_rate=learning_rate,
2011
            parameter_list=parameter_list,
X
Xin Pan 已提交
2012
            regularization=regularization,
2013
            grad_clip=grad_clip,
X
Xin Pan 已提交
2014
            name=name)
2015 2016 2017 2018
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2019
        self._lazy_mode = lazy_mode
2020 2021 2022 2023 2024 2025

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2026 2027
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
2028 2029 2030
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
2031 2032
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2033
                shape=[1],
2034
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
Q
qiaolongfei 已提交
2035 2036 2037
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
2038 2039
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2040
                shape=[1],
2041
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2042 2043 2044 2045 2046 2047 2048 2049

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
2050 2051 2052 2053
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])
2054
        lr = self._create_param_lr(param_and_grad)
2055
        # create the adam optimize op
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

        if framework.in_dygraph_mode():
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
            _, _, _, _, _ = core.ops.adam(
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
                beta1_pow_acc, beta2_pow_acc, param_and_grad[0], moment1,
                moment2, beta1_pow_acc, beta2_pow_acc, 'epsilon', self._epsilon,
                'lazy_mode', self._lazy_mode, 'min_row_size_to_use_multithread',
                1000, 'beta1', _beta1, 'beta2', _beta2)

            return None

2071
        inputs = {
2072 2073
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2074
            "LearningRate": [lr],
2075 2076 2077 2078
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2079 2080
        }
        outputs = {
2081 2082 2083 2084 2085
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

2102 2103
        adam_op = block.append_op(
            type=self.type,
2104 2105 2106
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
2107
            stop_gradient=True)
2108 2109 2110

        return adam_op

2111 2112

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
2113
    """
2114 2115 2116 2117
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2118

2119
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2133
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2147
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2148 2149
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2150 2151 2152 2153 2154
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2155 2156 2157 2158
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2159 2160 2161 2162 2163 2164
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2165

2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2179
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2180 2181
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2182
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2183 2184 2185 2186 2187 2188 2189 2190 2191
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2192 2193 2194
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2195
    _beta1_pow_acc_str = "beta1_pow_acc"
2196 2197 2198 2199 2200

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2201
                 epsilon=1e-8,
2202
                 parameter_list=None,
X
Xin Pan 已提交
2203
                 regularization=None,
2204
                 grad_clip=None,
X
Xin Pan 已提交
2205
                 name=None):
2206 2207 2208 2209
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
2210
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
2211
            learning_rate=learning_rate,
2212
            parameter_list=parameter_list,
X
Xin Pan 已提交
2213
            regularization=regularization,
2214
            grad_clip=grad_clip,
X
Xin Pan 已提交
2215
            name=name)
2216 2217 2218 2219 2220 2221 2222 2223
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2224 2225
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
2226 2227 2228 2229 2230
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
2231 2232 2233 2234 2235 2236 2237

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2238 2239
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2240 2241 2242 2243 2244 2245
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
2246
                "LearningRate": self._create_param_lr(param_and_grad),
2247 2248
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
2249
                "Beta1Pow": beta1_pow_acc
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
2260 2261
            },
            stop_gradient=True)
2262 2263 2264

        return adamax_op

2265
    def _finish_update(self, block, parameters_and_grads):
2266 2267 2268
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2269
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2270
            if grad is None or param.trainable is False:
2271
                continue
X
Xin Pan 已提交
2272 2273
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
2274 2275
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
2276
                block.append_op(
2277 2278 2279
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
2280 2281
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
2282 2283


2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2322
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2323 2324
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2325 2326 2327 2328 2329 2330 2331 2332
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2333 2334
                 sigma=1e-8,
                 parameter_list=None):
2335 2336 2337 2338
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2339 2340
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2341 2342 2343 2344
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2345 2346 2347 2348 2349 2350 2351
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2352 2353 2354 2355 2356

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2357 2358 2359
        if self._seed == None:
            self._seed = 0

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2371 2372
                "sigma": self._sigma,
                "seed": self._seed
2373 2374 2375 2376 2377 2378
            },
            stop_gradient=True)

        return dpsgd_op


2379
class DecayedAdagradOptimizer(Optimizer):
2380
    """
2381 2382 2383
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2384

2385
    The parameter ``param_out`` update rule with gradient ``grad``:
2386 2387 2388 2389 2390 2391 2392

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2393 2394 2395 2396
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2397 2398 2399
    stability to avoid the division by zero error.

    Args:
2400 2401 2402 2403 2404
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2405
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2406 2407
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2408 2409 2410 2411 2412
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2413 2414 2415 2416
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2417 2418 2419 2420 2421 2422
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2423 2424 2425 2426

    Examples:
        .. code-block:: python

2427 2428
            import paddle.fluid as fluid

2429 2430 2431 2432
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2433
            optimizer.minimize(cost)
2434 2435 2436
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2437 2438 2439 2440
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2441
                 parameter_list=None,
X
Xin Pan 已提交
2442
                 regularization=None,
2443
                 grad_clip=None,
X
Xin Pan 已提交
2444
                 name=None):
2445 2446 2447 2448
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2449
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2450
            learning_rate=learning_rate,
2451
            parameter_list=parameter_list,
X
Xin Pan 已提交
2452
            regularization=regularization,
2453
            grad_clip=grad_clip,
X
Xin Pan 已提交
2454
            name=name)
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2482 2483
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2484
            stop_gradient=True)
2485 2486

        return decayed_adagrad_op
2487 2488


2489
class AdadeltaOptimizer(Optimizer):
2490
    """
Z
Zeng Jinle 已提交
2491
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2492

Z
Zeng Jinle 已提交
2493
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2494 2495 2496
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2497

Z
Zeng Jinle 已提交
2498 2499
    .. math::

Z
Zeng Jinle 已提交
2500
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2501

Z
Zeng Jinle 已提交
2502
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2503

Z
Zeng Jinle 已提交
2504
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2505 2506

    Args:
Z
Zeng Jinle 已提交
2507 2508 2509
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
2510
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2511 2512
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2513 2514 2515 2516 2517
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2518 2519 2520 2521
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2522 2523 2524
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2525 2526 2527 2528

    Examples:
        .. code-block:: python

2529
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2530

2531
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2532 2533
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2534 2535
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2536

Z
Zeng Jinle 已提交
2537 2538 2539 2540
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2541
    """
2542

2543 2544 2545
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2546 2547 2548 2549
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2550
                 parameter_list=None,
X
Xin Pan 已提交
2551
                 regularization=None,
2552
                 grad_clip=None,
X
Xin Pan 已提交
2553
                 name=None):
2554 2555 2556 2557 2558 2559
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2560
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2561
            learning_rate=learning_rate,
2562
            parameter_list=parameter_list,
X
Xin Pan 已提交
2563
            regularization=regularization,
2564
            grad_clip=grad_clip,
X
Xin Pan 已提交
2565
            name=name)
2566 2567 2568 2569 2570
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2571 2572
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2573 2574 2575 2576 2577 2578

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2579 2580
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2602 2603
                   "rho": self._rho},
            stop_gradient=True)
2604 2605 2606 2607

        return adadelta_op


Q
qingqing01 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2618
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2619 2620 2621 2622

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2623
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2624 2625 2626 2627 2628 2629

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2630
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2631

2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2646 2647 2648 2649
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2650
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2651 2652 2653 2654 2655
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2656 2657 2658
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2659
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2660
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2661
        momentum(float): :math:`\\beta` in equation is the momentum term,
2662
            default is 0.0.
2663 2664 2665 2666
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
2667
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2668 2669
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2670 2671 2672 2673 2674
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2675 2676 2677 2678
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2679 2680
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2681 2682 2683 2684 2685 2686 2687

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2713 2714 2715 2716
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2717
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2718 2719 2720 2721 2722 2723

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2724
                 centered=False,
2725
                 parameter_list=None,
X
Xin Pan 已提交
2726
                 regularization=None,
2727
                 grad_clip=None,
X
Xin Pan 已提交
2728
                 name=None):
Q
qingqing01 已提交
2729
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2730
            learning_rate=learning_rate,
2731
            parameter_list=parameter_list,
X
Xin Pan 已提交
2732
            regularization=regularization,
2733
            grad_clip=grad_clip,
X
Xin Pan 已提交
2734
            name=name)
Q
qingqing01 已提交
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2748
        self._centered = centered
Q
qingqing01 已提交
2749 2750 2751 2752 2753 2754 2755 2756

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2757
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2758 2759 2760 2761 2762 2763 2764 2765 2766

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2767 2768
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2769 2770 2771 2772 2773 2774 2775
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2776
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2777 2778 2779 2780 2781
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2782 2783
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2784 2785 2786 2787
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2788 2789
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2790 2791
            },
            stop_gradient=True)
Q
qingqing01 已提交
2792 2793 2794 2795

        return rmsprop_op


Q
qiaolongfei 已提交
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2836 2837 2838 2839 2840
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
2841
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2842 2843
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2844 2845 2846 2847 2848
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2849 2850 2851 2852
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2853 2854
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2855 2856 2857 2858 2859 2860 2861

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2886

2887
    NOTE:
C
chengduo 已提交
2888
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2889 2890 2891 2892 2893
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2894 2895 2896 2897 2898
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2899
                 parameter_list=None,
X
Xin Pan 已提交
2900
                 regularization=None,
2901
                 grad_clip=None,
X
Xin Pan 已提交
2902
                 name=None):
Q
qiaolongfei 已提交
2903
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2904
            learning_rate=learning_rate,
2905
            parameter_list=parameter_list,
X
Xin Pan 已提交
2906
            regularization=regularization,
2907
            grad_clip=grad_clip,
X
Xin Pan 已提交
2908
            name=name)
Q
qiaolongfei 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
2948
                   "l2": self._l2,
M
minqiyang 已提交
2949 2950
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2951 2952 2953 2954

        return ftrl_op


Y
Yibing Liu 已提交
2955 2956 2957 2958 2959 2960
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2961 2962
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2963 2964 2965 2966 2967

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2968
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2969

Y
Yibing Liu 已提交
2970
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2971

Y
Yibing Liu 已提交
2972
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2973

Y
Yibing Liu 已提交
2974
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2975 2976 2977 2978 2979 2980


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2981 2982 2983 2984 2985 2986 2987 2988
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
2989
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2990 2991
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2992 2993 2994 2995 2996
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2997 2998 2999 3000
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
3001 3002 3003 3004 3005
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3006 3007 3008 3009 3010 3011

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3012
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3013 3014 3015
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3016 3017 3018 3019 3020
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3021 3022 3023 3024
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
3025
    # these two not used in op temporarily
Y
Yibing Liu 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3035
                 parameter_list=None,
Y
Yibing Liu 已提交
3036
                 regularization=None,
3037
                 grad_clip=None,
Y
Yibing Liu 已提交
3038
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3039 3040 3041 3042 3043 3044 3045 3046
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
3047
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
3048
            regularization=regularization,
3049
            grad_clip=grad_clip,
Y
Yibing Liu 已提交
3050 3051 3052 3053 3054 3055
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3056
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3057 3058 3059

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3060
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3071 3072 3073 3074 3075 3076
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
3098
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
3099 3100 3101 3102 3103 3104
            },
            stop_gradient=True)

        return lamb_op


3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3118
Dpsgd = DpsgdOptimizer
3119
DecayedAdagrad = DecayedAdagradOptimizer
3120
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3121
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3122
Ftrl = FtrlOptimizer
3123
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3124
Lamb = LambOptimizer
3125 3126 3127


class ModelAverage(Optimizer):
3128
    """
3129
	:api_attr: Static Graph
S
swtkiwi 已提交
3130

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3159 3160

    Args:
3161 3162 3163
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3164 3165 3166 3167 3168
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3169 3170 3171
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3172

3173
    Examples:
Q
qiaolongfei 已提交
3174 3175 3176

      .. code-block:: python

3177 3178 3179 3180 3181 3182
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3183

3184 3185 3186 3187
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3188
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3189 3190 3191 3192 3193 3194 3195 3196
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3197
                                                         max_average_window=12500)
3198 3199

            exe.run(startup_program)
3200 3201 3202 3203 3204
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3205 3206

            # apply ModelAverage
3207
            with model_average.apply(exe):
3208 3209 3210 3211
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3212 3213 3214
    """

    def __init__(self,
W
wanghaoshuang 已提交
3215
                 average_window_rate,
3216 3217
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3218 3219
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
3220 3221
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
3222 3223
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
3224 3225 3226
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3227

3228
        self.params_grads = []
3229 3230
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3231
            if param.do_model_average != False:
3232
                grad = param.block.create_var(
3233 3234
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3235 3236
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3237
                    stop_gradient=True)
3238
                self.params_grads.append((param, grad))
3239

3240
        for param, grad in self.params_grads:
3241 3242
            if grad is None:
                continue
X
Xin Pan 已提交
3243 3244
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3245
                self._append_average_accumulate_op(param)
3246

3247 3248 3249 3250
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3251
                self._add_average_apply_op(block, param_grad)
3252 3253 3254 3255 3256

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3257
                self._add_average_restore_op(block, param_grad)
3258

3259
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3260 3261 3262 3263 3264 3265
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3266
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3267
        old_num_accumulates = block._clone_variable(
3268
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3269
        num_updates = block._clone_variable(
3270 3271 3272 3273 3274 3275
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3276 3277 3278 3279
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3280
        ops._elementwise_div(x=sum, y=tmp, out=param)
3281 3282

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3283 3284
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
3322 3323
            },
            stop_gradient=True)
3324

S
rename  
sneaxiy 已提交
3325
    @signature_safe_contextmanager
3326
    def apply(self, executor, need_restore=True):
3327 3328
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
3329 3330

        Args:
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3375
        """
3376 3377 3378 3379 3380 3381
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3382 3383

    def restore(self, executor):
3384 3385
        """
        Restore ``Parameter`` values of current model.
3386 3387
        
        Args:
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3432
        """
3433
        executor.run(self.restore_program)
3434 3435 3436 3437


class ExponentialMovingAverage(object):
    """
3438
	:api_attr: Static Graph
S
swtkiwi 已提交
3439

3440 3441 3442 3443 3444 3445
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3446
        \\text{EMA}_0 & = 0
3447

3448 3449
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3450 3451 3452 3453
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3475 3476 3477


    Args:
Y
Yibing Liu 已提交
3478 3479 3480 3481 3482 3483 3484
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3485 3486 3487 3488 3489


    Examples:

	.. code-block:: python
3490 3491 3492 3493 3494

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3495
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3496 3497 3498 3499 3500 3501 3502 3503
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3504
	    global_steps = fluid.layers.autoincreased_step_counter()
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3534 3535
    """

3536
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3537 3538 3539
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3540
        self._decay = decay
3541
        self._thres_steps = thres_steps
3542
        self._name = name if name is not None else ''
3543 3544
        self._decay_var = self._get_ema_decay()

3545
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3546
        self._params_tmps = []
3547
        for param in default_main_program().global_block().all_parameters():
3548 3549 3550 3551 3552 3553 3554
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3555
                self._params_tmps.append((param, tmp))
3556

Y
Yibing Liu 已提交
3557 3558
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3559 3560
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3561
                self._ema_vars[param.name] = self._create_ema_vars(param)
3562 3563 3564 3565

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3566
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3567
            for param, tmp in self._params_tmps:
3568 3569
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3570
                ema = block._clone_variable(self._ema_vars[param.name])
3571
                layers.assign(input=param, output=tmp)
3572
                # bias correction
3573 3574
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
3575 3576 3577 3578
                        layers.assign(
                            output=param, input=ema / (1.0 - decay_pow))
                    with switch.default():
                        layers.assign(output=param, input=ema)
3579 3580 3581 3582

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3583
            for param, tmp in self._params_tmps:
3584 3585 3586 3587
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3610 3611 3612 3613 3614 3615 3616
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3617
        decay_var = block._clone_variable(self._decay_var)
3618 3619
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3620

Y
Yibing Liu 已提交
3621
    def _create_ema_vars(self, param):
3622 3623 3624 3625 3626 3627 3628 3629 3630
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3631 3632 3633 3634 3635
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3636 3637
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3638
        param_master_emas = []
Y
Yibing Liu 已提交
3639 3640 3641 3642
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3643
                if param.name + '.master' in self._ema_vars:
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3661

3662 3663 3664 3665 3666 3667 3668
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3669 3670
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3686 3687 3688


class PipelineOptimizer(object):
3689
    """
3690
	:api_attr: Static Graph
S
swtkiwi 已提交
3691

3692 3693 3694 3695
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
3696

3697
    Args:
3698 3699 3700 3701
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
3702 3703
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3704

3705
            import paddle.fluid as fluid
H
hutuxian 已提交
3706 3707
            import paddle.fluid.layers as layers

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
3724
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
3725
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
3726
            optimizer.minimize(loss)
3727 3728 3729 3730 3731 3732 3733 3734 3735

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
3736 3737
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3738
            batch_size = 1
H
hutuxian 已提交
3739 3740 3741 3742 3743
            filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
            dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
            dataset.set_use_var([x,y])
            dataset.set_batch_size(batch_size)
            dataset.set_filelist(filelist)
3744
            data_loader.start()
H
hutuxian 已提交
3745
            exe.train_from_dataset(
3746 3747 3748
                    fluid.default_main_program(),
                    dataset)
            data_loader.reset()
3749 3750
    """

3751
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
Z
zhongpu 已提交
3752 3753
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
M
MRXLT 已提交
3754 3755
        if not isinstance(optimizer, Optimizer) and not isinstance(
                optimizer, paddle.optimizer.Optimizer):
3756 3757 3758 3759
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
                             "Optimizer, but the given type is {}.".format(
                                 type(optimizer)))
H
hutuxian 已提交
3760
        self._optimizer = optimizer
3761 3762 3763 3764 3765
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
            "start_cpu_core_id must be greater than or equal to 0.")
H
hutuxian 已提交
3766
        self._start_cpu_core_id = start_cpu_core_id
3767 3768 3769 3770 3771 3772 3773
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
        self._param_device_map = dict()
H
hutuxian 已提交
3774

H
hutuxian 已提交
3775
    def _create_vars(self, block, main_program):
3776
        # Create vars for block, copied from main_program's global block
H
hutuxian 已提交
3777 3778 3779 3780 3781
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
3782 3783 3784
                # a var whose name contains "blocking_queue" 
                # only exists in startup program 
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
3785 3786 3787
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
3788 3789 3790 3791
                if source_var.type == core.VarDesc.VarType.READER:
                    block.create_var(name=var, type=core.VarDesc.VarType.READER)
                else:
                    block._clone_variable(source_var, False)
H
hutuxian 已提交
3792

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
    def _is_loss_grad_op(self, op):
        if self._op_role_key not in op.attr_names:
            return False
        op_role = int(op.all_attrs()[self._op_role_key])
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

    def _is_backward_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Backward)

    def _is_optimize_op(self, op):
        return self._op_role_key in op.attr_names and int(op.all_attrs()[
            self._op_role_key]) & int(self._op_role.Optimize)

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

    def _split_program(self, main_program):
H
hutuxian 已提交
3813
        """
3814 3815 3816 3817
        Split a program into sections according to devices that ops run on.

        Args:
            main_program (Program): the main program
H
hutuxian 已提交
3818
        """
3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
        programs = []
        # Map from device to its corresponding section program info
        device_program_map = dict()
        block = main_program.block(0)

        for op in block.ops:
            device = op.attr(self._op_device_key)

            if device not in device_program_map:
                program = {"program": Program()}
                device_program_map[device] = program
            program = device_program_map[device]
            op_desc = op.desc
            ap_op = program["program"].block(0).desc.append_op()
            ap_op.copy_from(op_desc)

        for key in sorted(device_program_map.keys()):
            program = device_program_map[key]
            program['program']._sync_with_cpp()
            programs.append(program)
H
hutuxian 已提交
3839

3840
        return programs
H
hutuxian 已提交
3841

3842
    def _find_post_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3843
        """
3844 3845 3846 3847 3848 3849 3850
        Find the real post op that has variable named var_name as input.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as output.
            var_name (string): Variable name.
H
hutuxian 已提交
3851
        """
3852 3853
        post_op = []
        before = True
H
hutuxian 已提交
3854
        for op in ops:
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
            if op == cur_op:
                before = False
                continue
            if before:
                continue
            for in_var_name in op.input_arg_names:
                if in_var_name == var_name:
                    post_op.append(op)
        if post_op:
            if not len(post_op) == 1:
                raise ValueError("Each op can only have one post op.")
            return post_op[0]
        return None

    def _find_real_prev_op(self, ops, cur_op, var_name):
H
hutuxian 已提交
3870
        """
3871 3872 3873 3874 3875 3876 3877
        Find the real previous op that outputs variable named var_name.

        Args:
            ops (list): A list of ops.
            cur_op (Operator): Current operator which has variable named
                               var_name as input.
            var_name (string): Variable name.
H
hutuxian 已提交
3878
        """
3879
        prev_op = []
H
hutuxian 已提交
3880
        for op in ops:
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
            if op == cur_op:
                break
            for out_var_name in op.output_arg_names:
                if out_var_name == var_name:
                    prev_op.append(op)
        if prev_op:
            # A op may have more than one prev op,
            # e.g., for 'learning_rate', there may be multiple ops have it as
            # output.
            return prev_op[-1]
        return None

    def _rename_arg(self, op, old_name, new_name):
        op_desc = op.desc
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)

    def _create_var(self, block, ref_var, name):
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
            dtype=ref_var.dtype,
            type=ref_var.type,
            lod_level=ref_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=ref_var.desc.need_check_feed())
        return new_var

    def _get_data_var_info(self, block):
        """
        Get all vars whose is_data attribute are true and then rename them.
H
hutuxian 已提交
3920

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
        For PipelineTrainer, all data vars are binded to
        minibatch scope, so we have to feed them to the microbatch
        to avoid conflicts. The vars feeded to microbatch have to
        be renamed.
        """
        # A map from var name to the renamed name.
        raw_name_new_name_map = dict()
        # Because we will create vars in block, it is more safe
        # to get all var_names before iteration.
        var_names = list(block.vars.keys())
        for var_name in var_names:
            var = block.var(var_name)
            if not var.is_data:
                continue
            assert var_name not in raw_name_new_name_map, (
                "{} has already been processed.".format(var_name))
            new_name = unique_name.generate(var_name)
            raw_name_new_name_map[var_name] = new_name
            new_var = self._create_var(block, var, new_name)
            new_var.is_data = False

        # map of data to devices that that data on
        data_devices_map = dict()
        for op in block.ops:
            dev_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                if var_name not in raw_name_new_name_map:
                    continue
                if not var_name in data_devices_map:
                    data_devices_map[var_name] = []
                if not dev_spec in data_devices_map[var_name]:
                    data_devices_map[var_name].append(dev_spec)
                new_name = raw_name_new_name_map[var_name]
                #self._rename_arg(op, var_name, new_name)
        return data_devices_map, raw_name_new_name_map

    def _rename_var_in_block(self, block, raw_name_new_name_map):
        """
        Rename vars whose names in raw_name_new_name_map to the corresponding
        new names.
        """
        for op in block.ops:
            if op.type == "enqueue" or op.type == "dequeue":
                continue
            for var_name in op.input_arg_names:
                if var_name in raw_name_new_name_map:
                    new_name = raw_name_new_name_map[var_name]
                    self._rename_arg(op, var_name, new_name)
H
hutuxian 已提交
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
    def _insert_enq_deq_for_data_var(self, main_block, programs, startup,
                                     devices):
        """
        Insert enqueue and dequeue ops for data var

        Args:
            main_block (Block): Global block for main program
            programs (dict): Dictionary for section params
            startup (Program): Startup program
            devices (list): List of devices in the format (dev:dev_index)
        """
        main_program = main_block.program
        data_devices_map, raw_name_new_name_map = self._get_data_var_info(
            main_block)

        first_prog = programs[0]['program']
        first_block = first_prog.block(0)
        enqueue_index = 0
        if first_block.ops[0].type == "create_py_reader" or (
                first_block.ops[1].type == "create_py_reader"):
            for op in first_block.ops:
                if op.type == "read":
                    enqueue_index += 1
                    break
                enqueue_index += 1
        first_dev_spec = devices[0]
        for var_name in data_devices_map.keys():
            for device in data_devices_map[var_name]:
                # step1: generate queue for each pair of data var and device
                # that that data on
                queue_name = var_name + "_blocking_queue"
                queue_name = unique_name.generate(queue_name)
                queue_var = startup.block(0).create_var(
                    name=queue_name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup.block(0).append_op(
                    type='queue_generator',
                    attrs={
                        'names': [queue_name],
                        'capacity': self._num_microbatches
                    })
                main_var = main_block.var(var_name)
                assert main_var.is_data
                if not var_name in first_block.vars:
                    self._create_var(first_block, main_var, var_name)
                first_block._insert_op(
                    index=enqueue_index,
                    type='enqueue',
                    inputs={'X': first_block.var(var_name)},
                    attrs={
                        'queue_name': queue_name,
                        self._op_device_key: first_dev_spec,
                        self._op_role_key: self._op_role.Forward
                    })
                # Get the device that that data on
                assert device in devices
                prog_index = devices.index(device)
                prog = programs[prog_index]['program']
                block = prog.block(0)
                index = 0
                if device == first_dev_spec:
                    index = enqueue_index + 1
                new_name = raw_name_new_name_map[var_name]
                source_var = main_program.block(0).var(var_name)
                new_var = self._create_var(block, source_var, new_name)
                block._insert_op(
                    index=index,
                    type='dequeue',
                    outputs={'Out': [new_var]},
                    attrs={
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Forward,
                        'queue_name': queue_name,
                    })
                self._rename_var_in_block(block, raw_name_new_name_map)

    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4053

4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

    def _update_param_device_map(self, params_grads, block):
        for param_grad in params_grads:
            if not param_grad[0].trainable: continue
            param_name = param_grad[0].name
            ops = block.ops
            for op in ops:
                input_arg_names = op.input_arg_names
                if param_name in input_arg_names:
                    self._param_device_map[param_name] = op.attr(
                        self._op_device_key)
                    break

    def _add_opdevice_attr_for_regularization_clip(self, block):
H
hutuxian 已提交
4073
        """
4074
        Add op_device attribute for regulization and clip ops.
H
hutuxian 已提交
4075
        """
4076 4077 4078
        for op in block.ops:
            # role for regularization and clip ops is optimize
            if int(op.attr(self._op_role_key)) != int(self._op_role.Optimize):
H
hutuxian 已提交
4079
                continue
4080 4081 4082 4083 4084 4085 4086 4087 4088
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
            param_name = block.vars[op_role_var[0]].name
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
H
hutuxian 已提交
4089

4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
    def _add_default_opdevice_attr(self, block):
        """
        1. Add default op_device attribute for lr-related ops.
           The default value is the one that of the first place.
        2. Add default op_device attribute for sum ops added during
           backward. For these ops, we set the op_device attribute
           as the one of its post op, i.e, which op has the output of the
           sum op as an input.
        """
        first_devcie = ""

        # Get the device spec of the first place.
        # device_spec: 'cpu' for cpu device and 'gpu:id' for gpu device,
        # e.g. 'gpu:0', 'gpu:1', etc.
        for op in block.ops:
            if op.has_attr(self._op_device_key) and (
                    op.attr(self._op_device_key) != ""):
                first_device = op.attr(self._op_device_key)
                break
        assert first_device

        # set op_device attr for lr-related ops
        lrsched_role = int(self._op_role.LRSched)
        for op in block.ops:
            if not op.has_attr(self._op_device_key) or (
                    op.attr(self._op_device_key) == ""):
                if op.type == "sum":
                    # For sum ops that compute the sum of @RENAMED@ vars
                    for name in op.desc.input_arg_names():
                        assert '@RENAME@' in name
                    assert len(op.desc.output_arg_names()) == 1
                    out_name = op.desc.output_arg_names()[0]
                    post_op = self._find_post_op(block.ops, op, out_name)
                    device = post_op.attr(self._op_device_key)
                    assert device
                    op._set_attr(self._op_device_key, device)
                    continue
H
hutuxian 已提交
4127

4128 4129 4130 4131
                assert op.attr(self._op_role_key) == lrsched_role, (
                    "Op whose op_device attr has not been set for pipeline"
                    " must be of the role LRSched.")
                op._set_attr(self._op_device_key, first_device)
H
hutuxian 已提交
4132

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
    def _check_validation(self, block):
        """
        Check whether ops in a block are all validate (i.e., the 
        op_device attribute has been set).
        Then, return all device specifications in order.
        """
        device_specs = []
        for op in block.ops:
            type = op.type
            if not op._has_kernel(type):
                assert op.type == "conditional_block" and (
                    op.attr(self._op_role_key) == int(self._op_role.LRSched)), (
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
            assert op.has_attr(self._op_device_key), (
                "op ({}) has no {} attribute.".format(op.type,
                                                      self._op_device_key))
            dev_spec = op.attr(self._op_device_key)
            assert dev_spec, ("op_device attribute for op "
                              "{} has not been set.".format(op.type))
            if not dev_spec in device_specs:
                device_specs.append(dev_spec)
        return device_specs

    def _insert_enq_deq_ops_for_boundaries(self, block, origin_block,
                                           startup_program):
        """
        Insert a pair of enqueue and dequeue ops for every two
        consecutive ops on different devices.
        """
        startup_block = startup_program.global_block()
        extra_index = 0

        # A map from var to device spec where op takes it as input,
        # avoiding multiple enqueue and dequeue ops.
        var_devspec = dict()

        for index, op in list(enumerate(origin_block.ops)):
            cur_device_spec = op.attr(self._op_device_key)
            for var_name in op.input_arg_names:
                # i.e., lod_tensor_blocking_queue created by DataLoader,
                # which only exists in startup program.
                if not var_name in origin_block.vars: continue
                var = block.var(var_name)
                # skip data, because we will process it later
                if var.is_data: continue
                prev_op = self._find_real_prev_op(origin_block.ops, op,
                                                  var_name)
                if prev_op is None:
                    continue
                prev_device_spec = prev_op.attr(self._op_device_key)

                if prev_device_spec != cur_device_spec:
                    if var_name not in var_devspec:
                        var_devspec[var_name] = []
                    if cur_device_spec in var_devspec[var_name]: continue
                    var_devspec[var_name].append(cur_device_spec)

                    queue_name = var_name + "_blocking_queue"
                    queue_name = unique_name.generate(queue_name)
                    queue_var = startup_block.create_var(
                        name=queue_name,
                        persistable=True,
                        type=core.VarDesc.VarType.RAW)
                    startup_block.append_op(
                        type='queue_generator',
                        attrs={
                            'names': [queue_name],
                            'capacity': self._num_microbatches
                        })
                    op_role = op.all_attrs()[self._op_role_key]
                    var = block.vars[var_name]
                    block._insert_op(
                        index=index + extra_index,
                        type='enqueue',
                        inputs={'X': var},
                        attrs={
                            'queue_name': queue_name,
                            self._op_device_key: prev_device_spec,
                            self._op_role_key: op_role
                        })
                    extra_index += 1
                    block._insert_op(
                        index=index + extra_index,
                        type='dequeue',
                        outputs={'Out': [var]},
                        attrs={
                            self._op_device_key: cur_device_spec,
                            'queue_name': queue_name,
                            self._op_role_key: op_role
                        })
                    extra_index += 1

    def _add_dequeue_ops_for_optimize(self, block, startup_program):
        startup_block = startup_program.global_block()
        grad_queue_map = dict()
        grad_device_map = dict()
        optimize_index = None
        grad_names_to_dequeue = []

        for index, op in reversed(list(enumerate(block.ops))):
            device = op.attr(self._op_device_key)
            # Optimizer pass
            if not self._is_optimize_op(op):
                optimize_index = index + 1
                break
            if not self._is_update_op(op): continue
            assert self._op_role_var_key in op.attr_names
            op_role_var = op.all_attrs()[self._op_role_var_key]
            assert len(op_role_var) == 2
            grad_name = op_role_var[1]
            assert grad_name not in grad_device_map
            assert grad_name not in grad_names_to_dequeue
            grad_device_map[grad_name] = device
            grad_names_to_dequeue.append(grad_name)

        for grad_name in grad_names_to_dequeue:
            device = grad_device_map[grad_name]
            grad_names = []
            grads = []
            queue_name = grad_name + "_blocking_queue"
            queue_name = unique_name.generate(queue_name)
            grad_queue_map[grad_name] = queue_name
            ref_var = block.vars[grad_name]
            queue_var = startup_block.create_var(
                name=queue_name,
                persistable=True,
                type=core.VarDesc.VarType.RAW)
            startup_block.append_op(
                type='queue_generator',
                attrs={
                    'names': [queue_name],
                    'capacity': self._num_microbatches
                })
            orig_var_name = self._strip_grad_suffix(grad_name)
            for _ in range(self._num_microbatches):
                u_name = unique_name.generate(orig_var_name)
                u_grad_name = self._append_grad_suffix(u_name)
                grad_var = self._create_var(block, ref_var, u_grad_name)
                grad_names.append(u_grad_name)
                grads.append(grad_var)
            block._insert_op(
                index=optimize_index,
                type='dequeue',
                outputs={'Out': grads},
                attrs={
                    self._op_device_key: device,
                    'queue_name': queue_name,
                    self._op_role_key: self._op_role.Optimize
                })
            block._insert_op(
                index=optimize_index + 1,
                type='sum',
                inputs={'X': grad_names},
                outputs={'Out': ref_var},
                attrs={
                    self._op_device_key: device,
                    self._op_role_key: self._op_role.Optimize
                })
        return grad_queue_map

    def _insert_enq_deq_ops_for_update(self, block, startup_program):
        """
        Insert enqueue and dequeue ops for gradients of parameters.
        """
        startup_block = startup_program.global_block()
        grad_queue_map = self._add_dequeue_ops_for_optimize(block,
                                                            startup_program)

        for index, op in reversed(list(enumerate(block.ops))):
            offset = index
            device = op.attr(self._op_device_key)

            # Backward pass
            if self._is_loss_grad_op(op):
                loss_grad_var = block.vars[op.output_arg_names[0]]
                scale_factor = self._num_microbatches
                block._insert_op(
                    index=index + 1,
                    type='scale',
                    inputs={'X': loss_grad_var},
                    outputs={'Out': loss_grad_var},
                    attrs={
                        'scale': 1.0 / scale_factor,
                        self._op_device_key: device,
                        self._op_role_key: self._op_role.Backward
                    })
                break
            if self._is_backward_op(op) and (
                    self._op_role_var_key in op.attr_names):
                op_role_var = op.all_attrs()[self._op_role_var_key]

                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
                    assert grad_name in grad_queue_map
                    queue_name = grad_queue_map[grad_name]
                    block._insert_op(
                        index=offset + 1,
                        type='enqueue',
                        inputs={'X': block.vars[grad_name]},
                        attrs={
                            'queue_name': queue_name,
                            self._op_device_key: device,
                            self._op_role_key: self._op_role.Backward
                        })
                    offset += 1

    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
        for prog_info in program_list:
            prog = prog_info['program']
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
                for op in origin_sub_block.ops:
                    op_desc = op.desc
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
                op._set_attr('sub_block:', new_sub_block)

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
        for prog_info in program_list:
            prog = prog_info['program']
            block = prog.block(0)
            for var_name in block.vars:
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
                    if op.type == "dequeue": continue
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue

                queue_name = var_name + "_blocking_queue"
                queue_name = unique_name.generate(queue_name)
                queue_var = startup_prog.block(0).create_var(
                    name=queue_name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW)
                startup_prog.block(0).append_op(
                    type='queue_generator',
                    attrs={
                        'names': [queue_name],
                        'capacity': self._num_microbatches
                    })
                write_block._insert_op(
                    index=0,
                    type='enqueue',
                    inputs={'X': write_block.var(var_name), },
                    attrs={
                        'queue_name': queue_name,
                        self._op_device_key: write_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched
                    })
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_block._insert_op(
                    index=0,
                    type='dequeue',
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
                        self._op_device_key: read_device,
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
                        self._op_role_key: self._op_role.LRSched,
                        'queue_name': queue_name,
                    })
H
hutuxian 已提交
4457 4458 4459 4460 4461 4462

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504
        main_block = loss.block
        if startup_program is None:
            startup_program = default_startup_program()
        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._update_param_device_map(params_grads, main_block)

        # Step1: add default op_device attribute for regulization and clip ops
        self._add_opdevice_attr_for_regularization_clip(main_block)

        # Step2: add default op_device attribute for ops whose op_device
        # attribute have not been set yet.
        self._add_default_opdevice_attr(main_block)
        device_specs = self._check_validation(main_block)

        # Step3: add enqueue and dequeue ops between section boundaries
        origin_prog = main_block.program.clone(for_test=False)
        origin_main_block = origin_prog.global_block()
        self._insert_enq_deq_ops_for_boundaries(main_block, origin_main_block,
                                                startup_program)

        # Step4: add a pair of enqueue and dequeueN for parameter gradients
        self._insert_enq_deq_ops_for_update(main_block, startup_program)

        main_program = main_block.program

        place_list = []
        place_id_list = []
        for dev_spec in device_specs:
            if dev_spec == "cpu":
                place_list.append(core.CPUPlace())
                place_id_list.append(-1)
            elif "gpu" in dev_spec and ":" in dev_spec:
                dev_index = dev_spec.split(":")[1]
                place_list.append(core.CUDAPlace(int(dev_index)))
                place_id_list.append(int(dev_index))
            else:
                raise ValueError("Unknown device type: %s", dev_spec)

        # Step5: split program into sections and add pairs of
        # enqueue and dequeue ops for data var.
        if len(place_list) == 0:
H
hutuxian 已提交
4505
            program_list = []
4506 4507 4508 4509 4510
            ptmp = {
                "program": main_program,
                "input_set": set(),
                "output_set": set()
            }
H
hutuxian 已提交
4511 4512
            program_list.append(ptmp)
        else:
4513
            program_list = self._split_program(main_program)
H
hutuxian 已提交
4514
            for p in program_list:
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
                self._create_vars(p["program"].block(0), main_program)
        self._insert_enq_deq_for_data_var(main_block, program_list,
                                          startup_program, device_specs)

        # Step6: Special Case: process persistable vars that exist in
        # multiple sections
        self._process_persistable_vars_in_multi_sections(
            main_program, startup_program, program_list)

        # Step7: Add sub blocks for section programs
        self._add_sub_blocks(main_block, program_list)

        main_program._pipeline_opt = {
H
hutuxian 已提交
4528 4529 4530
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
            "section_program_list": program_list,
4531 4532 4533
            "place_list": place_list,
            "place_id_list": place_id_list,
            "sync_steps": -1,
L
lilong12 已提交
4534
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
4535 4536
            "start_cpu_core_id": self._start_cpu_core_id,
        }
4537
        return optimize_ops, params_grads, program_list
M
mapingshuo 已提交
4538 4539


M
mapingshuo 已提交
4540 4541
class RecomputeOptimizer(Optimizer):
    """
4542
	:api_attr: Static Graph
S
swtkiwi 已提交
4543

M
mapingshuo 已提交
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
4604 4605
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
4606 4607
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
4608 4609
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
M
mapingshuo 已提交
4610 4611

    def _set_checkpoints(self, checkpoints):
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
                isinstance(ckpt, six.string_types) or isinstance(ckpt, Variable)
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
4623 4624
        self._checkpoints = checkpoints

4625 4626
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
4627
        """
4628
	    :api_attr: Static Graph
S
swtkiwi 已提交
4629

M
mapingshuo 已提交
4630 4631 4632 4633
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
4634
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
4658 4659
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4697
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4698 4699 4700 4701
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4702
                    no_grad_set=None)
M
mapingshuo 已提交
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
4718
                 callbacks=None):
M
mapingshuo 已提交
4719 4720 4721 4722 4723 4724 4725
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
4726 4727
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4752
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4753 4754 4755 4756
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4757
                    no_grad_set=None)
M
mapingshuo 已提交
4758 4759
                print("Finished backward")
        """
4760 4761
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
M
mapingshuo 已提交
4762 4763 4764 4765 4766 4767 4768 4769

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
4770 4771 4772 4773 4774 4775 4776
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

M
mapingshuo 已提交
4777
            params_grads = append_backward(
4778
                loss, parameter_list, no_grad_set, checkpoints=checkpoint_vars)
4779 4780
            # Note: since we can't use all_reduce_op now,
            #  dgc_op should be the last op of one grad.
M
mapingshuo 已提交
4781 4782
            if hasattr(self._optimizer, "_append_dgc_ops"):
                self._optimizer._append_dgc_ops(params_grads)
M
mapingshuo 已提交
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
4802
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
4803 4804 4805 4806 4807 4808 4809 4810
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
4811
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
4812 4813 4814 4815
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
4816
                    no_grad_set=None)
M
mapingshuo 已提交
4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
4831
                 no_grad_set=None):
4832
        assert isinstance(loss, Variable), "The loss should be an Variable."
M
mapingshuo 已提交
4833 4834 4835 4836 4837 4838 4839 4840 4841
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
4842
            no_grad_set=no_grad_set)
M
mapingshuo 已提交
4843 4844 4845 4846 4847 4848 4849

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
4850 4851
class LookaheadOptimizer(object):
    """
4852
	:api_attr: Static Graph
S
swtkiwi 已提交
4853

M
mapingshuo 已提交
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
4907 4908
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

4960 4961 4962 4963 4964 4965 4966 4967
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            k = layers.create_global_var(
                name="lookahead_k",
                shape=[1],
                value=int(self.k),
                dtype='int32',
                persistable=True)
M
mapingshuo 已提交
4968

4969 4970 4971 4972 4973 4974 4975
            # Add Var alpha to main prog and startup prog
            alpha = layers.create_global_var(
                name="lookahead_alpha",
                shape=[1],
                value=float(self.alpha),
                dtype='float32',
                persistable=True)
M
mapingshuo 已提交
4976

4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
            # Add Var step
            step = layers.create_global_var(
                name="lookahead_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)

            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
4995 4996 4997 4998 4999
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
5013
        return mini_out
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

    def __init__(self, inner_optimizer, k_steps=1, avg=True):
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (isinstance(k_steps, int) and
                k_steps > 0), "k_steps should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg

5087 5088 5089 5090 5091 5092
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):

        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)

        #TODO(mapingshuo) support sparse embedding
        for k, v in params_grads:
            assert (
                v.type != core.VarDesc.VarType.SELECTED_ROWS
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

        param_to_grad = {k.name: v for (k, v) in params_grads}

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program and startup_program
        startup_block = startup_program.global_block()
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

        for param_name in param_names:
            param_var = main_block.var(param_name)
            assert (param_var is not None)
            gradient_merge_var = main_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            param_to_gradient_merge[param_name] = gradient_merge_var
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": param_var.shape,
                    "dtype": param_var.dtype,
                    "value": float(0),
                })

        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
            gradient_merge_k = layers.create_global_var(
                name="gradient_merge_k",
                shape=[1],
                value=int(self.k_steps),
                dtype='int32',
                persistable=True)

            # Add Var step
            gradient_merge_step = layers.create_global_var(
                name="gradient_merge_step",
                shape=[1],
                value=int(0),
                dtype='int32',
                persistable=True)
            layers.increment(x=gradient_merge_step, value=1.0, in_place=True)

            # gradient merge
            zero_var = layers.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = layers.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            mod = layers.elementwise_mod(gradient_merge_step, gradient_merge_k)
            with layers.control_flow.Switch() as switch:
                with switch.case(mod != zero_var):
                    # 1. update the gradient_merge_vars
                    #  gradient_merge_vars += gradient_vars
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        cur_block.append_op(
                            type="elementwise_add",
                            inputs={'X': grad,
                                    'Y': grad_merge},
                            outputs={'Out': grad_merge},
                            attrs={'axis': -1,
                                   'use_mkldnn': False})

                with switch.default():
                    # 1. update the graient_vars
                    #     gradient_vars += gradient_merge_vars
                    cur_block_idx = main_block.program.current_block_idx
                    cur_block = main_block.program.current_block()
                    for param_name in param_names:
                        grad = param_to_grad[param_name]
                        grad_merge = param_to_gradient_merge[param_name]
                        if self.avg:
                            tmp_var = layers.elementwise_add(grad, grad_merge)
                            cur_block.append_op(
                                type='scale',
                                inputs={'X': tmp_var},
                                outputs={'Out': grad},
                                attrs={
                                    'scale': 1.0 / self.k_steps,
                                    'bias': 0.0,
                                    'bias_after_scale': False
                                })
                        else:
                            cur_block.append_op(
                                type="elementwise_add",
                                inputs={'X': grad,
                                        'Y': grad_merge},
                                outputs={'Out': grad},
                                attrs={'axis': -1,
                                       'use_mkldnn': False})

                    # 2. apply_optimize
                    target_grad_block = main_block.program._create_block(
                        parent_idx=cur_block.parent_idx)
                    target_grad_block._set_forward_block_idx(cur_block_idx)
                    main_block.program.current_block_idx = cur_block_idx

                    optimize_ops = self.inner_optimizer.apply_optimize(
                        loss,
                        startup_program=startup_program,
                        params_grads=params_grads)

                    # 3. clear gradient_merge_vars
                    for param_name in param_names:
                        grad_merge = param_to_gradient_merge[param_name]
                        layers.fill_constant(
                            shape=grad_merge.shape,
                            dtype=grad_merge.dtype,
                            value=0.0,
                            out=grad_merge)
        return optimize_ops, params_grads