optimizer.py 49.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
W
wanghaoshuang 已提交
16
import re
17
from collections import defaultdict
18
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
19 20 21 22 23 24 25 26 27
from . import framework
from . import layers
from .backward import append_backward
from .framework import program_guard
from . import unique_name
from .initializer import Constant
from .layer_helper import LayerHelper
from .regularizer import append_regularization_ops
from .clip import append_gradient_clip_ops, error_clip_callback
28
from contextlib import contextmanager
S
sneaxiy 已提交
29
from .layers import ops
30

31
__all__ = [
Q
qiaolongfei 已提交
32
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
33
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
34
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
Y
yuyang18 已提交
35
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'RMSPropOptimizer'
36
]
Q
Qiao Longfei 已提交
37 38 39 40 41 42


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
43 44
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
45 46
    """

X
Xin Pan 已提交
47
    def __init__(self, learning_rate, regularization=None, name=None):
48 49
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
50
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
51
        self._name = name
D
dzhwinter 已提交
52
        self.regularization = regularization
53
        self._learning_rate = learning_rate
D
dzhwinter 已提交
54 55
        # the learning rate type should be inferenced from loss
        self._dtype = None
56 57
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
58
        self._learning_rate_map = dict()
59 60 61
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
62 63 64 65 66
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
67
        self.helper = None
Q
Qiao Longfei 已提交
68

Q
Qiao Longfei 已提交
69
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
70
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
71

72 73 74 75
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
76
                raise TypeError(
77 78
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
79

80 81 82 83 84 85
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
86
            dtype='float32' if self._dtype == None else self._dtype,
87 88
            persistable=True)

Y
yuyang18 已提交
89
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
90 91 92 93
        """
        get global decayed learning rate
        :return:
        """
94 95
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
96
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
97

Q
Qiao Longfei 已提交
98 99 100 101 102
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

103 104 105 106
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
107
        if type(param_lr) == Variable:
108
            print("returns updated param lr ", param_lr)
W
Wu Yi 已提交
109
            return param_lr
Q
qiaolongfei 已提交
110
        else:
W
Wu Yi 已提交
111
            if param_lr == 1.0:
Y
yuyang18 已提交
112
                return self._global_learning_rate()
W
Wu Yi 已提交
113
            else:
X
Xin Pan 已提交
114 115 116
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
117
                    return self._global_learning_rate() * param_lr
118 119 120 121 122 123 124

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
125
        """
126 127
        pass

128
    def _finish_update(self, block, parameters_and_grads):
129 130 131 132 133 134 135 136
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
137
            None
138 139 140
        """
        pass

141 142 143 144 145 146
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
147 148 149 150 151 152 153 154 155
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
156 157
        if self._name is not None:
            name = self._name + "_" + name
158 159
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
160
            raise Exception("Accumulator {} already exists for parameter {}".
161
                            format(name, param.name))
162 163
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
164 165
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
166
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
167
            persistable=True,
F
fengjiayi 已提交
168
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
169
            type=param.type,
170
            shape=shape)
Q
Qiao Longfei 已提交
171
        self.helper.set_variable_initializer(
172
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
173
        self._accumulators[name][param.name] = var
174
        return var
175 176 177 178 179 180 181 182 183 184 185

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
186 187
        if self._name is not None:
            name = self._name + "_" + name
188 189 190 191 192 193
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
194 195 196 197
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
198 199 200
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
201 202 203
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
204 205

        Returns:
206 207 208 209
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
210
        """
211 212 213 214 215
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
216
        # for parameters and extend _finish_update method to add custom ops.
217 218

        # Create any accumulators
Q
Qiao Longfei 已提交
219
        program = loss.block.program
D
dzhwinter 已提交
220
        self._dtype = loss.dtype
221
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
222 223
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
224 225 226
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
227
            self._create_global_learning_rate()
228 229 230

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
231 232
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
233
                with param_and_grad[0].block.program._optimized_guard(
234
                        param_and_grad), name_scope("optimizer"):
235
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
236 237 238
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
239 240 241

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
242
            self._finish_update(loss.block, parameters_and_grads)
243

Y
Yancey1989 已提交
244
            end = len(global_block.ops)
W
Wu Yi 已提交
245
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
246

Q
Qiao Longfei 已提交
247 248
    def minimize(self,
                 loss,
249
                 startup_program=None,
Q
Qiao Longfei 已提交
250 251
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
252 253
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
254
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
255 256
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
257
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
258
                                       [error_clip_callback])
Y
Yu Yang 已提交
259

Y
Yu Yang 已提交
260 261
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

Y
Yu Yang 已提交
262 263
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
264
        # Add regularization if any
D
dzhwinter 已提交
265 266
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
267

Y
yuyang18 已提交
268 269
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
T
typhoonzero 已提交
270
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
271 272 273


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
274 275 276 277 278 279 280 281 282 283
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
284 285 286
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
287 288 289 290

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
291
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
292
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
293 294
    """

X
Xin Pan 已提交
295
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
296
        assert learning_rate is not None
Q
Qiao Longfei 已提交
297
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
298 299 300
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
301 302
        self.type = "sgd"

303 304
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
305

Q
Qiao Longfei 已提交
306 307 308 309 310 311
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
312
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
313
            },
314
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
315 316

        return sgd_op
317 318 319


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332 333
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

334
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
335 336 337

        & else:

Q
qiaolongfei 已提交
338
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
339 340 341 342 343 344

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
345 346 347
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
348 349 350 351

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
352
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
353
            optimizer.minimize(cost)
354 355 356
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
357 358 359 360 361 362
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
363 364
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
365
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
366 367 368
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
369 370
        self.type = "momentum"
        self._momentum = momentum
371
        self._use_nesterov = bool(use_nesterov)
372 373 374 375 376

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
377
            self._add_accumulator(self._velocity_acc_str, p)
378 379 380 381 382 383 384 385 386 387 388 389 390

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
391
                "LearningRate": self._create_param_lr(param_and_grad)
392 393 394 395 396
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
397
            attrs={"mu": self._momentum,
398
                   "use_nesterov": self._use_nesterov})
399 400

        return momentum_op
401 402 403


class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
424 425 426
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
427 428 429 430 431 432

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
433 434 435
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
436 437 438 439 440
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
441 442
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
443
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
444 445 446
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
447 448 449 450 451 452 453
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
454
            self._add_accumulator(self._moment_acc_str, p)
455 456 457 458 459 460 461

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

462
        # Create the adagrad optimizer op
463 464 465 466 467 468
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
469
                "LearningRate": self._create_param_lr(param_and_grad)
470 471 472 473 474 475
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
476 477 478


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
506 507 508
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
509 510 511 512 513 514 515

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

516 517 518
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
519 520
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
521 522 523 524 525

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
526
                 epsilon=1e-8,
X
Xin Pan 已提交
527 528
                 regularization=None,
                 name=None):
529 530 531 532
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
533
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
534 535 536
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
537 538 539 540 541 542 543 544 545 546
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
547 548
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
549 550 551 552 553 554 555 556 557 558 559 560
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
561 562 563 564 565 566 567 568

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
569 570 571 572 573
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

574
        # create the adam optimize op
575 576 577 578 579
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
580
                "LearningRate": self._create_param_lr(param_and_grad),
581 582
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
583 584
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
585 586 587 588 589 590 591 592 593 594 595 596 597 598
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

599
    def _finish_update(self, block, param_and_grads):
600 601 602
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
603
        main_block = block.program.global_block()
604 605 606
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
607 608
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
624 625 626


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
657 658 659
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
660 661 662 663 664 665

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
666 667 668

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
669 670 671
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
672
    _beta1_pow_acc_str = "beta1_pow_acc"
673 674 675 676 677

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
678
                 epsilon=1e-8,
X
Xin Pan 已提交
679 680
                 regularization=None,
                 name=None):
681 682 683 684
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
685
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
686 687 688
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
689 690 691 692 693 694 695 696
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
697 698
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
699 700 701 702 703 704
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
705 706 707 708 709 710 711

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
712 713
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
714 715 716 717 718 719
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
720
                "LearningRate": self._create_param_lr(param_and_grad),
721 722
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
723
                "Beta1Pow": beta1_pow_acc
724 725 726 727 728 729 730 731 732 733 734 735 736 737
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

738
    def _finish_update(self, block, parameters_and_grads):
739 740 741
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
742
        main_block = block.program.global_block()
743 744 745
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
746 747
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
748 749 750 751 752 753 754
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
755 756 757


class DecayedAdagradOptimizer(Optimizer):
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
780 781 782
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
783 784 785 786 787 788

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
789 790 791

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
792 793 794
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
795 796 797 798 799 800
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
801 802 803 804
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
805
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
806 807 808
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
839 840


841
class AdadeltaOptimizer(Optimizer):
842 843
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
844

845
    Simple Adadelta optimizer with average squared grad state and
846
    average squared update state.
847 848 849 850 851 852 853 854 855 856 857 858
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
859
        learning_rate(float): global learning rate
860 861
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
862 863 864
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
865 866 867 868 869 870 871

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
872 873 874

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
875
    """
876

877 878 879
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
880 881 882 883 884 885
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
886 887 888 889 890 891
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
892
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
893 894 895
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
896 897 898 899 900
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
901 902
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
903 904 905 906 907 908

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
909 910
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
937 938 939 940 941 942 943 944 945 946
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
947
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
948 949 950 951

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
952
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
953 954 955 956 957 958

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
959
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
960

961 962 963 964 965 966 967 968 969 970 971 972 973 974
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
975 976 977 978
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
979
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
980 981 982 983 984 985
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
986
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
987 988 989
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
990
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
991
            set 0.0 by default.
992 993 994 995
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
996 997 998
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1012
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1013 1014 1015 1016 1017 1018

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1019
                 centered=False,
X
Xin Pan 已提交
1020 1021
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1022
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1023 1024 1025
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1039
        self._centered = centered
Q
qingqing01 已提交
1040 1041 1042 1043 1044 1045 1046 1047

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1048
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1058 1059
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1060 1061 1062 1063 1064 1065 1066
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1067
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1068 1069 1070 1071 1072
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1073 1074
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1075 1076 1077 1078
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1079 1080
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1081 1082 1083 1084 1085
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1131 1132 1133
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1143 1144 1145

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1146 1147 1148 1149 1150
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1151 1152 1153 1154 1155 1156 1157
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1158
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1159 1160 1161
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1221
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1222
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1223
Ftrl = FtrlOptimizer
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1239 1240 1241
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1242
    Examples:
Q
qiaolongfei 已提交
1243 1244 1245

      .. code-block:: python

1246
        optimizer = fluid.optimizer.Momentum()
1247 1248
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1249 1250 1251 1252 1253
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1254 1255 1256 1257

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1258 1259 1260
    """

    def __init__(self,
W
wanghaoshuang 已提交
1261
                 average_window_rate,
1262 1263
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1264 1265 1266 1267
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1268 1269 1270
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1271

1272
        self.params_grads = []
1273 1274
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1275
            if param.do_model_average != False:
1276 1277 1278 1279
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1280
                    stop_gradient=True)
1281
                self.params_grads.append((param, grad))
1282

1283
        for param, grad in self.params_grads:
1284 1285
            if grad is None:
                continue
X
Xin Pan 已提交
1286 1287
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1288
                self._append_average_accumulate_op(param)
1289

1290 1291 1292 1293
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1294
                self._add_average_apply_op(block, param_grad)
1295 1296 1297 1298 1299

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1300
                self._add_average_restore_op(block, param_grad)
1301

1302
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1303 1304 1305 1306 1307 1308
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1309
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1310
        old_num_accumulates = block._clone_variable(
1311
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1312
        num_updates = block._clone_variable(
1313 1314 1315 1316 1317 1318
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1319 1320 1321 1322
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1323
        ops._elementwise_div(x=sum, y=tmp, out=param)
1324 1325

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1326 1327
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1367 1368
    @contextmanager
    def apply(self, executor, need_restore=True):
1369 1370
        """Apply average values to parameters of current model.
        """
1371 1372 1373 1374 1375 1376
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1377 1378 1379 1380

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1381
        executor.run(self.restore_program)