optimizer.py 53.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
18 19
from contextlib import contextmanager

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.transpiler.details.distribute_lookuptable_utils import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
33

34
__all__ = [
Q
qiaolongfei 已提交
35
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
36
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
37
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
38 39
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
40
]
Q
Qiao Longfei 已提交
41 42


Q
Qiao Longfei 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
def _process_distribute_lookuptable(program, param_grads, learning_rate):
    table_name = find_distributed_lookup_table(program)
    table_param = None
    table_grad = None
    new_param_grads = []
    for p, g in param_grads:
        if p.name == table_name:
            if table_param is not None:
                raise RuntimeError(
                    "multi dist table var found, only support one now!")
            table_param = p
            table_grad = g
        else:
            new_param_grads.append((p, g))
    sgd_op = None
    if table_param is not None:
        with table_param.block.program._optimized_guard(
            [table_param, table_grad]), framework.name_scope("optimizer"):
            sgd_optimizer = SGD(learning_rate)
            sgd_op = sgd_optimizer._append_optimize_op(table_param.block, (
                table_param, table_grad))
    return new_param_grads, (table_param, table_grad), sgd_op


Q
Qiao Longfei 已提交
67 68 69 70
class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
71 72
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
73 74
    """

X
Xin Pan 已提交
75
    def __init__(self, learning_rate, regularization=None, name=None):
76 77
        if not isinstance(learning_rate, float) and \
                not isinstance(learning_rate, framework.Variable):
Q
qiaolongfei 已提交
78
            raise TypeError("learning rate should be float or Variable")
W
whs 已提交
79
        self._name = name
D
dzhwinter 已提交
80
        self.regularization = regularization
81
        self._learning_rate = learning_rate
D
dzhwinter 已提交
82 83
        # the learning rate type should be inferenced from loss
        self._dtype = None
84 85
        # each program should have a independent learning rate
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
86
        self._learning_rate_map = dict()
87 88 89
        if isinstance(self._learning_rate, framework.Variable):
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
90 91 92 93 94
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
95
        self.helper = None
Q
Qiao Longfei 已提交
96

Q
Qiao Longfei 已提交
97
    def _create_global_learning_rate(self):
Y
yuyang18 已提交
98
        lr = self._global_learning_rate()
Q
Qiao Longfei 已提交
99

100 101 102 103
        if isinstance(lr, framework.Variable):
            return
        else:
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
104
                raise TypeError(
105 106
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
107

108 109 110 111 112 113
        # create learning rate in the current main program
        self._learning_rate_map[framework.default_main_program(
        )] = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(self._learning_rate),
D
dzhwinter 已提交
114
            dtype='float32' if self._dtype == None else self._dtype,
115 116
            persistable=True)

Y
yuyang18 已提交
117
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
118 119 120 121
        """
        get global decayed learning rate
        :return:
        """
122 123
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
124
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
125

Q
Qiao Longfei 已提交
126 127 128 129 130
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

131 132 133 134
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
135 136
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
137
        else:
W
Wu Yi 已提交
138
            if param_lr == 1.0:
Y
yuyang18 已提交
139
                return self._global_learning_rate()
W
Wu Yi 已提交
140
            else:
X
Xin Pan 已提交
141 142 143
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
144
                    return self._global_learning_rate() * param_lr
145 146 147 148 149 150 151

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
152
        """
153 154
        pass

155
    def _finish_update(self, block, parameters_and_grads):
156 157 158 159 160 161 162 163
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
164
            None
165 166 167
        """
        pass

168 169 170 171 172 173
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
174 175 176 177 178 179 180 181 182
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
183 184
        if self._name is not None:
            name = self._name + "_" + name
185 186
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
187
            raise Exception("Accumulator {} already exists for parameter {}".
188
                            format(name, param.name))
189 190
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
191 192
        assert isinstance(self.helper, LayerHelper)
        var = self.helper.create_global_variable(
Y
Yu Yang 已提交
193
            name=unique_name.generate(name),
Q
Qiao Longfei 已提交
194
            persistable=True,
F
fengjiayi 已提交
195
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
196
            type=param.type,
197
            shape=shape)
Q
Qiao Longfei 已提交
198
        self.helper.set_variable_initializer(
199
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
200
        self._accumulators[name][param.name] = var
201
        return var
202 203 204 205 206 207 208 209 210 211 212

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
213 214
        if self._name is not None:
            name = self._name + "_" + name
215 216 217 218 219 220
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

Y
yuyang18 已提交
221 222 223 224
    def _create_optimization_pass(self,
                                  parameters_and_grads,
                                  loss,
                                  startup_program=None):
Q
Qiao Longfei 已提交
225 226 227
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
228 229 230
          loss(Variable): the target that this optimization is for.
          parameters_and_grads(list(tuple(Variable, Variable))):
          a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
231 232

        Returns:
233 234 235 236
          return_op_list: a list of operators that will complete one step of
          optimization. This will include parameter update ops, global step
          update ops and any other custom ops required by subclasses to manage
          their internal state.
Q
Qiao Longfei 已提交
237
        """
238 239 240 241 242
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
243
        # for parameters and extend _finish_update method to add custom ops.
244 245

        # Create any accumulators
Q
Qiao Longfei 已提交
246
        program = loss.block.program
D
dzhwinter 已提交
247
        self._dtype = loss.dtype
248
        with program_guard(program, startup_program):
Y
Yancey1989 已提交
249 250
            global_block = framework.default_main_program().global_block()
            start = len(global_block.ops)
251 252 253
            self.helper = LayerHelper(self.__class__.__name__)
            self._create_accumulators(loss.block,
                                      [p[0] for p in parameters_and_grads])
Q
Qiao Longfei 已提交
254
            self._create_global_learning_rate()
255 256 257

            optimize_ops = []
            for param_and_grad in parameters_and_grads:
258 259
                if param_and_grad[1] is None:
                    continue
W
Wu Yi 已提交
260
                with param_and_grad[0].block.program._optimized_guard(
261
                        param_and_grad), name_scope("optimizer"):
262
                    if param_and_grad[0].trainable is True:
Y
yuyang18 已提交
263 264 265
                        optimize_op = self._append_optimize_op(loss.block,
                                                               param_and_grad)
                        optimize_ops.append(optimize_op)
266 267 268

            # Get custom finish ops for subclasses
            # FIXME: Need to fix this once we figure out how to handle dependencies
269
            self._finish_update(loss.block, parameters_and_grads)
270

Y
Yancey1989 已提交
271
            end = len(global_block.ops)
W
Wu Yi 已提交
272
            return global_block._slice_ops(start, end)
Q
Qiao Longfei 已提交
273

Q
Qiao Longfei 已提交
274 275
    def minimize(self,
                 loss,
276
                 startup_program=None,
Q
Qiao Longfei 已提交
277 278
                 parameter_list=None,
                 no_grad_set=None):
Q
Qiao Longfei 已提交
279 280
        """Add operations to minimize `loss` by updating `parameter_list`.

F
fengjiayi 已提交
281
        This method combines interface `append_backward()` and
Q
Qiao Longfei 已提交
282 283
        `create_optimization_pass()` into one.
        """
F
fengjiayi 已提交
284
        params_grads = append_backward(loss, parameter_list, no_grad_set,
Y
Yang Yang 已提交
285
                                       [error_clip_callback])
Y
Yu Yang 已提交
286

Y
Yu Yang 已提交
287 288
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

289
        params_grads, table_param_and_grad, table_optimize_op = \
Q
Qiao Longfei 已提交
290
            _process_distribute_lookuptable(loss.block.program, params_grads, self._learning_rate)
291

Y
Yu Yang 已提交
292 293
        params_grads = append_gradient_clip_ops(params_grads)

F
fengjiayi 已提交
294
        # Add regularization if any
D
dzhwinter 已提交
295 296
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)
Y
Yu Yang 已提交
297

Y
yuyang18 已提交
298 299
        optimize_ops = self._create_optimization_pass(params_grads, loss,
                                                      startup_program)
Q
Qiao Longfei 已提交
300 301 302
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)
T
typhoonzero 已提交
303
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
304 305 306


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
307 308 309 310 311 312 313 314 315 316
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
317 318 319
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
320 321 322 323

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
324
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
325
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
326 327
    """

X
Xin Pan 已提交
328
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
329
        assert learning_rate is not None
Q
Qiao Longfei 已提交
330
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
331 332 333
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
334 335
        self.type = "sgd"

336 337
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
338

Q
Qiao Longfei 已提交
339 340 341 342 343 344
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
345
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
346
            },
347
            outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
348 349

        return sgd_op
350 351 352


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

367
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
368 369 370

        & else:

Q
qiaolongfei 已提交
371
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
372 373 374 375 376 377

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
378 379 380
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
381 382 383 384

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
385
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
386
            optimizer.minimize(cost)
387 388 389
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
390 391 392 393 394 395
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
396 397
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
398
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
399 400 401
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
402 403
        self.type = "momentum"
        self._momentum = momentum
404
        self._use_nesterov = bool(use_nesterov)
405 406 407 408 409

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
410
            self._add_accumulator(self._velocity_acc_str, p)
411 412 413 414 415 416 417 418 419 420 421 422 423

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
424
                "LearningRate": self._create_param_lr(param_and_grad)
425 426 427 428 429
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
430
            attrs={"mu": self._momentum,
431
                   "use_nesterov": self._use_nesterov})
432 433

        return momentum_op
434 435


436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
        

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
            })

        return momentum_op


521
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
542 543 544
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
545 546 547 548 549 550

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
551 552 553
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
554 555 556 557 558
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
559 560
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
561
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
562 563 564
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
565 566 567 568 569 570 571
        self.type = "adagrad"
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
572
            self._add_accumulator(self._moment_acc_str, p)
573 574 575 576 577 578 579

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

580
        # Create the adagrad optimizer op
581 582 583 584 585 586
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
587
                "LearningRate": self._create_param_lr(param_and_grad)
588 589 590 591 592 593
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return adagrad_op
594 595 596


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
624 625 626
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
627 628 629 630 631 632 633

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

634 635 636
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
637 638
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
639 640 641 642 643

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
644
                 epsilon=1e-8,
X
Xin Pan 已提交
645 646
                 regularization=None,
                 name=None):
647 648 649 650
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
651
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
652 653 654
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
655 656 657 658 659 660 661 662 663 664
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
665 666
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
667 668 669 670 671 672 673 674 675 676 677 678
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
679 680 681 682 683 684 685 686

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
687 688 689 690 691
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

692
        # create the adam optimize op
693 694 695 696 697
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
698
                "LearningRate": self._create_param_lr(param_and_grad),
699 700
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
701 702
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
703 704 705 706 707 708 709 710 711 712 713 714 715 716
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adam_op

717
    def _finish_update(self, block, param_and_grads):
718 719 720
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
721
        main_block = block.program.global_block()
722 723 724
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
725 726
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
                    attrs={"scale": self._beta2})
742 743 744


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
775 776 777
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
778 779 780 781 782 783

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
784 785 786

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
787 788 789
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
790
    _beta1_pow_acc_str = "beta1_pow_acc"
791 792 793 794 795

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
796
                 epsilon=1e-8,
X
Xin Pan 已提交
797 798
                 regularization=None,
                 name=None):
799 800 801 802
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
803
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
804 805 806
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
807 808 809 810 811 812 813 814
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
815 816
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
817 818 819 820 821 822
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
823 824 825 826 827 828 829

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
830 831
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
832 833 834 835 836 837
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
838
                "LearningRate": self._create_param_lr(param_and_grad),
839 840
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
841
                "Beta1Pow": beta1_pow_acc
842 843 844 845 846 847 848 849 850 851 852 853 854 855
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
            })

        return adamax_op

856
    def _finish_update(self, block, parameters_and_grads):
857 858 859
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
860
        main_block = block.program.global_block()
861 862 863
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
864 865
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
866 867 868 869 870 871 872
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
                    attrs={"scale": self._beta1})
873 874 875


class DecayedAdagradOptimizer(Optimizer):
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
898 899 900
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
901 902 903 904 905 906

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
907 908 909

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
910 911 912
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
913 914 915 916 917 918
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
919 920 921 922
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
923
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
924 925 926
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
            attrs={"epsilon": self._epsilon})

        return decayed_adagrad_op
957 958


959
class AdadeltaOptimizer(Optimizer):
960 961
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
962

963
    Simple Adadelta optimizer with average squared grad state and
964
    average squared update state.
965 966 967 968 969 970 971 972 973 974 975 976
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
977
        learning_rate(float): global learning rate
978 979
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
980 981 982
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
983 984 985 986 987 988 989

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
990 991 992

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
993
    """
994

995 996 997
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
998 999 1000 1001 1002 1003
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1004 1005 1006 1007 1008 1009
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1010
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1011 1012 1013
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1014 1015 1016 1017 1018
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1019 1020
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1021 1022 1023 1024 1025 1026

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1027 1028
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
                   "rho": self._rho})

        return adadelta_op


Q
qingqing01 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1065
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1066 1067 1068 1069

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1070
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1071 1072 1073 1074 1075 1076

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1077
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1078

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1093 1094 1095 1096
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1097
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1098 1099 1100 1101 1102 1103
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1104
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1105 1106 1107
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1108
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1109
            set 0.0 by default.
1110 1111 1112 1113
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1114 1115 1116
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1130
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1131 1132 1133 1134 1135 1136

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1137
                 centered=False,
X
Xin Pan 已提交
1138 1139
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1140
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1141 1142 1143
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1157
        self._centered = centered
Q
qingqing01 已提交
1158 1159 1160 1161 1162 1163 1164 1165

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1166
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1176 1177
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1178 1179 1180 1181 1182 1183 1184
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1185
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1186 1187 1188 1189 1190
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1191 1192
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1193 1194 1195 1196
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1197 1198
                "momentum": self._momentum,
                "centered": self._centered
Q
qingqing01 已提交
1199 1200 1201 1202 1203
            })

        return rmsprop_op


Q
qiaolongfei 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
        l1 (float):
        l2 (float):
        lr_power (float):
X
Xin Pan 已提交
1249 1250 1251
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1252 1253 1254 1255 1256 1257 1258 1259 1260

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1261 1262 1263

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1264 1265 1266 1267 1268
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1269 1270 1271 1272 1273 1274 1275
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1276
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1277 1278 1279
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
                   "lr_power": self._lr_power})

        return ftrl_op


1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1339
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1340
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1341
Ftrl = FtrlOptimizer
1342
LarsMomentum = LarsMomentumOptimizer
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1358 1359 1360
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1361
    Examples:
Q
qiaolongfei 已提交
1362 1363 1364

      .. code-block:: python

1365
        optimizer = fluid.optimizer.Momentum()
1366 1367
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1368 1369 1370 1371 1372
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1373 1374 1375 1376

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1377 1378 1379
    """

    def __init__(self,
W
wanghaoshuang 已提交
1380
                 average_window_rate,
1381 1382
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1383 1384 1385 1386
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1387 1388 1389
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1390

1391
        self.params_grads = []
1392 1393
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1394
            if param.do_model_average != False:
1395 1396 1397 1398
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1399
                    stop_gradient=True)
1400
                self.params_grads.append((param, grad))
1401

1402
        for param, grad in self.params_grads:
1403 1404
            if grad is None:
                continue
X
Xin Pan 已提交
1405 1406
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1407
                self._append_average_accumulate_op(param)
1408

1409 1410 1411 1412
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1413
                self._add_average_apply_op(block, param_grad)
1414 1415 1416 1417 1418

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1419
                self._add_average_restore_op(block, param_grad)
1420

1421
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1422 1423 1424 1425 1426 1427
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1428
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1429
        old_num_accumulates = block._clone_variable(
1430
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1431
        num_updates = block._clone_variable(
1432 1433 1434 1435 1436 1437
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1438 1439 1440 1441
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1442
        ops._elementwise_div(x=sum, y=tmp, out=param)
1443 1444

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1445 1446
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
            })

1486 1487
    @contextmanager
    def apply(self, executor, need_restore=True):
1488 1489
        """Apply average values to parameters of current model.
        """
1490 1491 1492 1493 1494 1495
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1496 1497 1498 1499

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1500
        executor.run(self.restore_program)