optimizer.py 324.5 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
import six
19
import os
20
import logging
21
from collections import defaultdict
22

23
import paddle
Q
Qiao Longfei 已提交
24
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
25
from paddle.fluid.framework import Program, Variable, Parameter, name_scope, default_main_program, default_startup_program, device_guard
26

27 28
from . import framework
from . import layers
29
from . import unique_name
30
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
31
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops, ClipGradByGlobalNorm
32 33 34
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
35
from .layers import ops
36
from .dygraph import base as imperative_base
37
from .dygraph import no_grad
38
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
39 40 41
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
42
from functools import cmp_to_key
43
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
44
from .. import compat as cpt
45
import warnings
46
from paddle import _C_ops, _legacy_C_ops
47
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _current_expected_place
48

49
__all__ = [
50 51 52 53
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
54
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
55 56
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
57
]
Q
Qiao Longfei 已提交
58 59 60 61 62 63


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
64 65
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
66 67
    """

68
    @imperative_base.no_grad
69 70 71 72
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
73
                 grad_clip=None,
74 75
                 flatten_param_grads=False,
                 align_size=-1,
76
                 name=None):
77 78 79 80 81 82
        """
        Args:
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads. 
                If true, the parameters and gradients will be coalesce to contiguous mempry, 
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
83
        # Because of the loop import, so place it in the function body
84
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
85 86
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
87
        self._name = name
J
Jiabin Yang 已提交
88
        if framework._non_static_mode():
89
            if not isinstance(learning_rate,
90
                              (float, LearningRateDecay, LRScheduler)):
M
minqiyang 已提交
91
                raise TypeError(
92
                    "learning rate should be float or LRScheduler, got %s here"
M
minqiyang 已提交
93
                    % type(learning_rate))
94
            if self._parameter_list is None:
95 96 97
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
98 99 100 101 102 103 104 105
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
106
        else:
107
            if not isinstance(learning_rate,
108
                              (float, framework.Variable, LRScheduler)):
M
minqiyang 已提交
109
                raise TypeError(
110
                    "learning rate should be float or LRScheduler, got %s here"
111
                    % type(learning_rate))
M
minqiyang 已提交
112

113 114 115 116 117
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
118
        self.regularization = regularization
119
        self._grad_clip = grad_clip
120
        self._learning_rate = learning_rate
121 122
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
123

D
dzhwinter 已提交
124
        self._dtype = None
L
Leo Chen 已提交
125 126 127 128
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

129
        # each program should have a independent learning rate
130
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
131
        self._learning_rate_map = dict()
132
        if isinstance(self._learning_rate, framework.Variable):
133 134
            self._learning_rate_map[
                framework.default_main_program()] = self._learning_rate
135 136 137 138 139
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
140 141
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
142
        self.helper = LayerHelper(self.__class__.__name__)
143
        self._opti_name_list = []
H
hong 已提交
144
        self._accumulators_holder = {}
145
        self._param_device_map = dict()
146 147
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
148
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
149 150
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
151 152 153 154

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
155 156
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
157 158 159

        Args: None
        Return:
T
tianshuo78520a 已提交
160
            state_dict(dict) : dict contains all the variable used by optimizer
H
hong 已提交
161 162 163 164 165
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
166 167 168 169 170 171

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
172 173

        '''
174
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
175 176 177 178
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
179 180
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
181
        # global step if use lr decay
182
        if isinstance(self._learning_rate, LRScheduler):
183 184
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
185
        if isinstance(self._learning_rate, LearningRateDecay):
186 187 188 189
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
190 191 192
                var_temp = framework._varbase_creator(None,
                                                      name='global_step',
                                                      dtype='int32')
193

194 195 196 197
                tensor.fill_constant([1],
                                     "int32",
                                     self._learning_rate.step_num,
                                     out=var_temp)
H
hong 已提交
198

199
                state_dict['global_step'] = var_temp
H
hong 已提交
200 201 202
        return state_dict

    @framework.dygraph_only
203
    def set_state_dict(self, state_dict):
H
hong 已提交
204
        '''
T
tianshuo78520a 已提交
205
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
206 207 208 209 210 211 212 213

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
214

215 216
                import paddle
                import paddle.fluid as fluid
217 218 219

                paddle.disable_static()

220
                emb = paddle.nn.Embedding(10, 10)
221

222
                state_dict = emb.state_dict()
223
                fluid.save_dygraph(state_dict, "paddle_dy")
224

225
                scheduler = paddle.optimizer.lr.NoamDecay(	
226 227 228 229
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
230
                state_dict = adam.state_dict()
231
                fluid.save_dygraph(state_dict, "paddle_dy")
232

233
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
234
        '''
235 236
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
237
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
238 239

        if isinstance(self._learning_rate, LearningRateDecay):
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
                raise RuntimeError("State dict type {} not supprt".format(
                    str(type(load_para))))

            assert model_np.shape == load_para_np.shape,  \
                                        "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
280
                                                param.name, model_np.shape, load_para_np.shape)
281 282 283

            assert model_np.dtype == load_para_np.dtype, \
                                        "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
284
                                            param.name, model_np.dtype, load_para_np.dtype)
285 286 287

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
288 289 290 291 292
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
293
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
294

295 296 297 298
        for k, v in self._global_accumulators.items():
            assert v.name in state_dict, \
                        "optimizer variable {} not found".format( v.name )
            _load_state_para(state_dict, v)
299

300 301 302
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

303 304
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
305

306 307 308 309 310 311 312 313 314
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
315
    def _create_global_learning_rate(self):
316 317
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
318 319 320 321 322 323 324 325 326 327 328 329 330 331
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
332 333
                self._learning_rate_map[
                    framework.default_main_program()] = lr_var
334 335 336 337 338 339

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

340 341 342
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
343 344 345 346 347 348 349 350 351 352 353 354
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
355
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
356
            elif isinstance(self._learning_rate, LearningRateDecay):
357 358
                self._learning_rate_map[
                    framework.default_main_program()] = self._learning_rate()
359
            else:
Q
qiaolongfei 已提交
360
                raise TypeError(
361 362
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
363
        else:
364 365 366 367
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
368 369 370 371 372 373
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
374

375
            # create learning rate in the current main program
376 377 378 379 380 381 382
            self._learning_rate_map[
                framework.default_main_program()] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype='float32' if self._dtype is None else self._dtype,
                    persistable=True)
383

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
        
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
          
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                        
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
446 447
                if in_dygraph_mode():
                    place = _current_expected_place()
448 449
                    _C_ops.full_(current_lr, list(current_lr.shape),
                                 float(value), current_lr.dtype, place)
450 451

                elif _in_legacy_dygraph():
452 453 454 455
                    _legacy_C_ops.fill_constant(current_lr, 'value',
                                                float(value), 'dtype',
                                                current_lr.dtype, 'shape',
                                                list(current_lr.shape))
456 457 458
                else:
                    global_block = framework.default_main_program(
                    ).global_block()
459 460 461 462 463 464 465 466
                    global_block.append_op(type='fill_constant',
                                           outputs={'Out': [current_lr]},
                                           attrs={
                                               'dtype': current_lr.dtype,
                                               'shape': list(current_lr.shape),
                                               'value': float(value)
                                           },
                                           stop_gradient=True)
467 468 469 470 471
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

472 473 474
    @framework.dygraph_only
    def current_step_lr(self):
        """
475
        :api_attr: imperative
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
        
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
                    
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
521
        if isinstance(current_lr, framework.Variable):
522 523 524 525
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
526 527 528
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
529 530 531 532 533 534 535
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
536
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
537 538 539 540
        """
        get global decayed learning rate
        :return:
        """
541 542
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
543
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
544

Q
Qiao Longfei 已提交
545 546 547 548 549
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

550 551 552 553
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
554 555
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
556
        else:
W
Wu Yi 已提交
557
            if param_lr == 1.0:
Y
yuyang18 已提交
558
                return self._global_learning_rate()
W
Wu Yi 已提交
559
            else:
X
Xin Pan 已提交
560 561 562
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
563
                    return self._global_learning_rate() * param_lr
564 565 566 567 568 569 570

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
571
        """
572 573
        pass

574
    def _finish_update(self, block, parameters_and_grads):
575 576 577 578 579 580 581 582
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
583
            None
584 585 586
        """
        pass

587 588 589 590 591
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
592
                         shape=None,
593
                         type=None,
594
                         device=None):
595 596 597 598 599 600 601 602 603
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
604 605
        if self._name is not None:
            name = self._name + "_" + name
606 607
        if (name in self._accumulators
                and param.name in self._accumulators[name]):
J
Jiabin Yang 已提交
608
            if framework._non_static_mode():
X
polish  
Xin Pan 已提交
609
                return self._accumulators[name][param.name]
610 611 612
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
                    name, param.name))
613 614
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
615
        assert isinstance(self.helper, LayerHelper)
616 617 618 619 620

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
621
        var = self.helper.create_global_variable(
622
            name=var_name,
Q
Qiao Longfei 已提交
623
            persistable=True,
F
fengjiayi 已提交
624
            dtype=dtype or param.dtype,
625
            type=core.VarDesc.VarType.LOD_TENSOR
626 627
            if framework._non_static_mode() else
            (param.type if type is None else type),
H
hong 已提交
628 629
            shape=shape,
            belong_to_optimizer=True)
630 631 632 633 634
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
635

J
Jiabin Yang 已提交
636
        if framework._non_static_mode():
H
hong 已提交
637 638 639 640 641
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
642
        self._accumulators[name][param.name] = var
643
        return var
644

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    def _add_global_accumulator(self,
                                name,
                                dtype=None,
                                fill_value=0.0,
                                shape=None,
                                type=None,
                                device=None):
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name in self._global_accumulators):
J
Jiabin Yang 已提交
666
            if framework._non_static_mode():
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
        if shape == None:
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
            belong_to_optimizer=True)
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))

J
Jiabin Yang 已提交
690
        if framework._non_static_mode():
691 692 693 694 695 696 697 698
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

699 700 701 702 703 704 705 706
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
707
            accumulator variable
708
        """
W
whs 已提交
709 710
        if self._name is not None:
            name = self._name + "_" + name
711 712 713 714 715
        if (name not in self._accumulators
                or param.name not in self._accumulators[name]):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, param.name))
716 717
        return self._accumulators[name][param.name]

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name not in self._global_accumulators):
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

733 734 735 736 737 738 739 740 741 742 743 744
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
745
                        break
746 747 748 749 750 751 752

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

753
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
754 755 756
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
757
          parameters_and_grads(list(tuple(Variable, Variable))):
758
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
759 760

        Returns:
761
          return_op_list: a list of operators that will complete one step of
762 763 764
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
765
        """
766 767 768 769 770
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
771
        # for parameters and extend _finish_update method to add custom ops.
772

773
        # Allways called under program_guard use global block as loss block
774 775 776
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

777
        global_block = framework.default_main_program().global_block()
778 779 780 781 782 783 784 785 786
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
787

788
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
789
        self._create_accumulators(
790
            target_block,
C
chengduo 已提交
791
            [p[0] for p in parameters_and_grads if p[0].trainable])
792 793
        self._create_global_learning_rate()

J
Jiabin Yang 已提交
794
        if framework._non_static_mode():
795 796 797
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
798 799
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
800 801 802 803 804 805 806
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
807 808
                        device = self._get_device_for_param(
                            param_and_grad[0].name)
809 810 811
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
812 813 814

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
815
        self._finish_update(target_block, parameters_and_grads)
816

817 818
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
819 820

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
821 822 823 824 825 826 827 828 829
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
830 831
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
847 848 849 850 851 852 853 854 855 856 857 858 859
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
860 861
        return new_param_grads, (table_param, table_grad), sgd_op

862 863 864 865 866 867 868
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
869
        The first part of ``minimize``, do auto-diff to append backward operations for
870 871 872
        the current program.

        Args:
873 874 875 876
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
877
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
878 879
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
880
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
881 882 883
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
884

885
        Return:
886 887
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
888

889
        Examples:
890
            See examples in ``apply_gradients``.
891
        """
892
        act_no_grad_set = None
J
Jiabin Yang 已提交
893
        if framework._non_static_mode():
894
            pass
L
Leo Chen 已提交
895 896
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
897

L
Leo Chen 已提交
898 899 900 901
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
902
        if framework._non_static_mode():
903 904 905
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list

C
chengduo 已提交
906
            params_grads = []
907
            for param in parameter_list:
C
chengduo 已提交
908 909
                if not param.trainable:
                    continue
910
                if param._grad_ivar() is not None:
C
chengduo 已提交
911
                    # create gradient variable
912
                    grad_var = param._grad_ivar()
C
chengduo 已提交
913
                    params_grads.append((param, grad_var))
914
        else:
C
chengduo 已提交
915 916 917 918 919
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
920 921
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
922
                "Maybe that you should call paddle.mean to process the current loss.".format(
C
chengduo 已提交
923
                    loss.shape)
924 925
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
926 927
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
928
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
929
        return params_grads
930

931 932 933 934 935 936
    def _create_regularization_of_grad(self, param, grad, regularization=None):
        """ Create and add backward regularization Operators
    
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
937 938 939 940
        if grad is None or (
            (not hasattr(param, 'regularizer') or
             (hasattr(param, 'regularizer') and param.regularizer is None))
                and regularization is None):
941 942 943 944 945 946 947 948 949 950
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

J
Jiabin Yang 已提交
951
        if framework._non_static_mode():
952
            return _legacy_C_ops.sum([grad, regularization_term])
953

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
                type=core.VarDesc.VarType.LOD_TENSOR)

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
969
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996

        return new_grad

    def append_regularization_ops(self,
                                  parameters_and_grads,
                                  regularization=None):
        r"""Create and add backward regularization Operators
    
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
    
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
    
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
    
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
997
        if framework._non_static_mode():
998
            for param, grad in parameters_and_grads:
999 1000
                new_grad = self._create_regularization_of_grad(
                    param, grad, regularization)
1001 1002 1003 1004 1005
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1006 1007 1008
                    if not repeate_regularizer and getattr(
                            param, 'regularizer',
                            None) is not None and regularization is not None:
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
                            param, grad, regularization)
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
            if getattr(p, 'need_clip', True) is False or getattr(
                    p, 'regularizer', None) is not None:
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
                    "the regularizer is set".format(p.name))
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        with program_guard(default_main_program()):
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
            block.append_op(type="coalesce_tensor",
                            inputs={"Input": need_flatten_params},
                            outputs={
                                "Output": need_flatten_params,
                                "FusedOutput": flatten_param
                            },
                            attrs={
                                "copy_data": True,
                                "use_align": True,
                                "align_size": self._align_size,
                                "dtype": need_flatten_params[0].dtype
                            })
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
            block.append_op(type="coalesce_tensor",
                            inputs={"Input": need_flatten_grads},
                            outputs={
                                "Output": need_flatten_grads,
                                "FusedOutput": flatten_grad
                            },
                            attrs={
                                "copy_data": True,
                                "use_align": True,
                                "align_size": self._align_size,
                                "dtype": need_flatten_grads[0].dtype
                            })
1085 1086 1087

        #NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
        # so the shape of flatten_param and flatten_grad will be inferred.
1088 1089 1090 1091
        self.helper.set_variable_initializer(flatten_param,
                                             initializer=Constant(0.0))
        self.helper.set_variable_initializer(flatten_grad,
                                             initializer=Constant(0.0))
1092 1093 1094

        return [(flatten_param, flatten_grad)]

1095 1096 1097 1098 1099 1100 1101
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1102

1103 1104
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1105

1106 1107 1108
        Examples:
            .. code-block:: python

1109
                import paddle.fluid as fluid
1110 1111 1112 1113 1114 1115 1116 1117 1118
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1119 1120 1121 1122 1123 1124
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
            if self._grad_clip == None or isinstance(self._grad_clip,
                                                     ClipGradByGlobalNorm):
                params_grads = self.flatten_param_grads(params_grads)

1125
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1126 1127 1128 1129
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1130 1131

        # Add regularization if any
1132 1133
        params_grads = self.append_regularization_ops(params_grads,
                                                      self.regularization)
1134 1135 1136 1137

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1150
        if framework._non_static_mode():
C
chengduo 已提交
1151 1152
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
1153 1154
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1155 1156
                params_grads = self.append_regularization_ops(
                    params_grads, self.regularization)
C
chengduo 已提交
1157 1158 1159 1160 1161 1162 1163
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1164
    def _get_no_grad_set(self, loss, no_grad_set=None):
1165
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1166 1167 1168 1169 1170 1171 1172 1173
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1174 1175 1176 1177
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1178 1179

        If not, new gradient will accumulat on previous gradient.
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1207
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
1208 1209
    def minimize(self,
                 loss,
1210
                 startup_program=None,
Q
Qiao Longfei 已提交
1211
                 parameter_list=None,
1212
                 no_grad_set=None):
1213
        """
1214
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1215

1216
        Args:
1217 1218 1219 1220
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1221
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1222 1223
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1224
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1225
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1226

1227
        Returns:
1228 1229 1230
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1231 1232 1233
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to 
            indicate program pruning. If so, the program will be pruned by ``feed`` and 
            ``fetch_list`` before run, see details in ``Executor``.
1234 1235 1236

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1237
        """
C
chengduo 已提交
1238
        assert isinstance(loss, Variable), "The loss should be an Variable."
1239

1240 1241
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
1242

1243 1244 1245 1246
        params_grads = self.backward(loss,
                                     startup_program=startup_program,
                                     parameter_list=parameter_list,
                                     no_grad_set=no_grad_set)
1247

1248 1249 1250
        optimize_ops = self.apply_optimize(loss,
                                           startup_program=startup_program,
                                           params_grads=params_grads)
M
minqiyang 已提交
1251

Q
Qiao Longfei 已提交
1252
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1253 1254 1255


class SGDOptimizer(Optimizer):
1256
    r"""
Q
qiaolongfei 已提交
1257 1258 1259 1260 1261 1262
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1263 1264 1265
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1266
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1267 1268
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1269 1270 1271 1272 1273
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1274 1275 1276 1277
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1278 1279
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1280 1281 1282 1283

    Examples:
        .. code-block:: python

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1309 1310
    """

1311 1312 1313 1314
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1315
                 grad_clip=None,
1316
                 multi_precision=False,
1317
                 name=None):
Q
Qiao Longfei 已提交
1318
        assert learning_rate is not None
1319 1320 1321 1322 1323
        super(SGDOptimizer, self).__init__(learning_rate=learning_rate,
                                           parameter_list=parameter_list,
                                           regularization=regularization,
                                           grad_clip=grad_clip,
                                           name=name)
Q
Qiao Longfei 已提交
1324
        self.type = "sgd"
1325
        self._use_mkldnn = False
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1337 1338 1339 1340 1341
            var = layers.create_global_var(name=var_name,
                                           shape=param.shape,
                                           value=0,
                                           dtype='float32',
                                           persistable=True)
1342
            block = self.helper.startup_program.global_block()
1343 1344 1345 1346 1347 1348 1349
            block.append_op(type="cast",
                            inputs={"X": [param]},
                            outputs={"Out": [var]},
                            attrs={
                                "in_dtype": param.dtype,
                                "out_dtype": core.VarDesc.VarType.FP32
                            })
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1368

1369
    @no_grad
1370
    def _append_optimize_op(self, block, param_and_grad):
1371 1372 1373 1374 1375 1376

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

1377
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1378
        if in_dygraph_mode():
1379 1380
            _C_ops.sgd_(param_and_grad[0], lr, param_and_grad[1], master_weight,
                        find_master)
Z
zyfncg 已提交
1381 1382
            return None
        if _in_legacy_dygraph():
1383 1384
            _legacy_C_ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                              master_weight, param_and_grad[0], master_weight)
1385
            return None
1386

1387
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1388
        # create the optimize op
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1403 1404 1405 1406 1407
        sgd_op = block.append_op(type=self.type,
                                 inputs=inputs,
                                 outputs=outputs,
                                 attrs=attrs,
                                 stop_gradient=True)
Q
Qiao Longfei 已提交
1408 1409

        return sgd_op
1410 1411 1412


class MomentumOptimizer(Optimizer):
1413
    r"""
Q
qiaolongfei 已提交
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1427
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1428 1429 1430

        & else:

Q
qiaolongfei 已提交
1431
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1432

1433 1434 1435 1436
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1437
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1438 1439
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1440
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1441 1442 1443 1444 1445
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1446 1447 1448 1449
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1450 1451
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1452 1453 1454 1455

    Examples:
        .. code-block:: python

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1481 1482 1483
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1484 1485 1486
    def __init__(self,
                 learning_rate,
                 momentum,
1487
                 parameter_list=None,
X
Xin Pan 已提交
1488 1489
                 use_nesterov=False,
                 regularization=None,
1490
                 grad_clip=None,
X
Xin Pan 已提交
1491
                 name=None):
1492 1493
        assert learning_rate is not None
        assert momentum is not None
1494 1495 1496 1497 1498
        super(MomentumOptimizer, self).__init__(learning_rate=learning_rate,
                                                parameter_list=parameter_list,
                                                regularization=regularization,
                                                grad_clip=grad_clip,
                                                name=name)
1499 1500
        self.type = "momentum"
        self._momentum = momentum
1501
        self._use_nesterov = bool(use_nesterov)
1502 1503 1504 1505 1506

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1507
            self._add_accumulator(self._velocity_acc_str, p)
1508 1509 1510 1511 1512 1513

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1514
        lr = self._create_param_lr(param_and_grad)
1515
        master_weight = None
J
Jiabin Yang 已提交
1516
        if framework._non_static_mode():
1517 1518 1519 1520
            _, _, _ = _legacy_C_ops.momentum(
                param_and_grad[0], param_and_grad[1], velocity_acc, lr,
                master_weight, param_and_grad[0], velocity_acc, master_weight,
                'mu', self._momentum, 'use_nesterov', self._use_nesterov)
1521
            return None
1522

1523
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1524 1525 1526 1527
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1528
            "LearningRate": [lr]
1529 1530 1531 1532 1533 1534
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1535
        # create the momentum optimize op
1536 1537 1538 1539 1540
        momentum_op = block.append_op(type=self.type,
                                      inputs=inputs,
                                      outputs=outputs,
                                      attrs=attrs,
                                      stop_gradient=True)
1541 1542

        return momentum_op
1543 1544


1545
class DGCMomentumOptimizer(Optimizer):
1546
    r"""
1547
	:api_attr: Static Graph
S
swtkiwi 已提交
1548

1549
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1550

G
gongweibao 已提交
1551
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1552 1553
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1554
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1555 1556 1557

    Eventually, these gradients become large enough to be transmitted.

1558
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1559

G
gongweibao 已提交
1560
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1561 1562 1563 1564

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1565

1566 1567
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1568

1569
        2. Call momentum to optimize the cost.
1570 1571

    Args:
1572 1573
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1574
        momentum (float): Momentum factor.
G
gongweibao 已提交
1575
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1576 1577 1578 1579 1580 1581 1582
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1583
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1584 1585
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1586
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1587 1588 1589 1590 1591
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1592 1593 1594
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support 
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None, 
            meaning there is no gradient clipping.
1595 1596
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1597 1598 1599 1600

    Examples:
        .. code-block:: python

1601
            import paddle.fluid as fluid
1602
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1603 1604 1605 1606 1607
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1608 1609

    """
1610 1611
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1612 1613 1614 1615 1616 1617 1618

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1619
                 parameter_list=None,
1620 1621 1622
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1623
                 grad_clip=None,
1624
                 name=None):
J
Jiabin Yang 已提交
1625
        if framework._non_static_mode():
Z
zhongpu 已提交
1626
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1627 1628 1629 1630

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1631 1632
        assert learning_rate is not None
        assert momentum is not None
1633 1634 1635 1636 1637 1638
        super(DGCMomentumOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             name=name)
1639 1640 1641
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1642

1643
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1644
        self._rampup_begin_step = rampup_begin_step
1645 1646
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1647

1648
        self._rampup_begin_step_var = None
1649
        self._global_step_var = None
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
J
Jiangxinz 已提交
1660
                num_trainers)
1661
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1662 1663

            self._num_trainers = num_trainers
1664
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1665

1666 1667
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1668

1669 1670 1671
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1672

1673 1674
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1675
            from .regularizer import L1Decay, L2Decay
1676 1677 1678 1679
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1680 1681
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1682
        return regular_type, regular_coeff
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1710 1711

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1712 1713 1714
            type = "momentum"
        else:
            type = "dgc_momentum"
1715 1716 1717 1718 1719
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1720
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1721 1722

        # create the dgc momentum optimize op
1723 1724 1725 1726 1727
        dgc_momentum_op = block.append_op(type=type,
                                          inputs=inputs,
                                          outputs=outputs,
                                          attrs=attrs,
                                          stop_gradient=True)
1728 1729
        return dgc_momentum_op

1730 1731 1732 1733 1734
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
1735 1736 1737 1738
            helper.set_variable_initializer(counter,
                                            initializer=Constant(
                                                value=float(begin - 1),
                                                force_cpu=True))
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1749 1750 1751 1752 1753
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
1754 1755 1756 1757
            helper.set_variable_initializer(counter,
                                            initializer=Constant(
                                                value=float(value),
                                                force_cpu=True))
1758 1759 1760 1761
            counter.stop_gradient = True

        return counter

1762 1763 1764 1765 1766 1767
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1768
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1769

1770 1771
        self._nranks_var = self._add_nranks_var(name=core.dgc.kDGCNRanksName(),
                                                value=-1)
1772

1773 1774 1775 1776 1777
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1778
            name=core.dgc.kDGCRampUpBeginStepName(),
1779 1780 1781
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1782 1783
        self.helper = LayerHelper(self.__class__.__name__)

1784
        for param_var, grad_var in param_and_grads:
1785 1786 1787
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1788
            if not self._is_use_dgc(param_var, grad_var):
1789 1790
                continue

1791
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1792

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
            k_var = tensor.create_global_var(shape=[1],
                                             dtype=param_var.dtype,
                                             persistable=True,
                                             name=param_var.name +
                                             core.dgc.kDGCKName(),
                                             value=0.0,
                                             force_cpu=True)

            encoded_var = tensor.create_global_var(shape=[1],
                                                   dtype=param_var.dtype,
                                                   persistable=True,
                                                   name=param_var.name +
                                                   core.dgc.kDGCEncodedName(),
                                                   value=0.0,
                                                   force_cpu=False)

            gather_var = tensor.create_global_var(shape=[1],
                                                  dtype=param_var.dtype,
                                                  persistable=True,
                                                  name=param_var.name +
                                                  core.dgc.kDGCGatherName(),
                                                  value=0.0,
                                                  force_cpu=False)
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1836 1837
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1838
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1839
                         encoded_var, gather_var)
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1855 1856
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1857

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
        out = helper.create_variable(type=x.type,
                                     name=name,
                                     dtype=x.dtype,
                                     persistable=False)

        helper.append_op(type="dgc_clip_by_norm",
                         inputs={
                             "X": x,
                             "current_step": self._global_step_var
                         },
                         attrs={
                             "max_norm": max_norm,
                             "rampup_begin_step": float(self._rampup_begin_step)
                         },
                         outputs={"Out": out})
1873 1874 1875 1876
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
1877 1878 1879
            return self._clip_by_norm(x=grad_var,
                                      max_norm=clip_norm,
                                      name=grad_var.name)
1880 1881

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1882
                encoded_var, gather_var):
1883 1884
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1885

1886 1887 1888 1889 1890 1891 1892
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
        dgc_op = block.append_op(type="dgc",
                                 inputs={
                                     "U": u_var,
                                     "V": v_var,
                                     "Grad": clip_var,
                                     "Param": param_var,
                                     "current_step": self._global_step_var,
                                     "nranks": self._nranks_var,
                                 },
                                 outputs={
                                     "U_out": u_var,
                                     "V_out": v_var,
                                     "EncodeGrad": encoded_var,
                                     "k": k_var,
                                     "Grad_out": grad_var,
                                     "GatherBuff": gather_var,
                                 },
                                 attrs={
                                     "m":
                                     self._momentum,
                                     "sparsity":
                                     self._sparsity,
                                     "use_nesterov":
                                     self._use_nesterov,
                                     "rampup_begin_step":
                                     float(self._rampup_begin_step),
                                     "rampup_step":
                                     float(self._rampup_step),
                                     "regular_coeff":
                                     float(regular_coeff),
                                     "regular_type":
                                     int(regular_type),
                                 },
                                 stop_gradient=True)
1927 1928 1929 1930 1931 1932

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1933
    @imperative_base.no_grad
1934
    def apply_gradients(self, params_grads):
1935 1936 1937 1938 1939
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

1940 1941 1942 1943 1944 1945
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1946
        # DGC clip and regularization in optimizer.backward
1947 1948 1949 1950 1951 1952
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1953
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1954 1955 1956 1957 1958
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1959

1960 1961
        not_dgc_params_grads = self.append_regularization_ops(
            not_dgc_params_grads, self.regularization)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1973

1974
class LarsMomentumOptimizer(Optimizer):
1975
    r"""
1976 1977 1978 1979 1980 1981 1982 1983 1984
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1985
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1986 1987 1988

        & param = param - velocity

1989 1990 1991 1992 1993 1994
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1995
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1996 1997
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1998 1999 2000 2001 2002
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2003 2004 2005 2006
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2007 2008
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
2009 2010
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
2011 2012 2013
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
2014
        
2015 2016 2017
    Examples:
        .. code-block:: python

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2034 2035 2036 2037 2038 2039 2040 2041
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
2042
                 parameter_list=None,
2043
                 regularization=None,
2044
                 grad_clip=None,
2045 2046
                 name=None,
                 exclude_from_weight_decay=None,
2047 2048 2049
                 epsilon=0,
                 multi_precision=False,
                 rescale_grad=1.0):
2050 2051
        assert learning_rate is not None
        assert momentum is not None
2052 2053 2054 2055 2056 2057
        super(LarsMomentumOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             name=name)
2058 2059 2060 2061
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
2062 2063 2064 2065 2066
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
2067 2068 2069 2070 2071
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
2072 2073 2074 2075
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
2076

2077 2078
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
2079 2080 2081 2082 2083
            var = layers.create_global_var(name=var_name,
                                           shape=param.shape,
                                           value=0,
                                           dtype='float32',
                                           persistable=True)
2084
            block = self.helper.startup_program.global_block()
2085 2086 2087 2088 2089 2090 2091
            block.append_op(type="cast",
                            inputs={"X": [param]},
                            outputs={"Out": [var]},
                            attrs={
                                "in_dtype": param.dtype,
                                "out_dtype": core.VarDesc.VarType.FP32
                            })
2092
            self._master_weights[param.name] = var
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
2109 2110 2111 2112 2113
        if (name not in self._accumulators
                or target_name not in self._accumulators[name]):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name))
2114
        return self._accumulators[name][target_name]
2115 2116 2117 2118 2119

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2120 2121 2122 2123 2124 2125 2126 2127 2128
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2129 2130 2131 2132
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2133 2134 2135 2136 2137 2138 2139 2140
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

2141 2142
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
2143 2144 2145 2146 2147 2148 2149 2150 2151
        lr = self._create_param_lr(param_and_grad)

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

        attrs = {
            "mu": self._momentum,
2152
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
2153
            "lars_weight_decay": [_lars_weight_decay],
2154
            "multi_precision": find_master,
L
limingshu 已提交
2155
            "epsilon": self._epsilon,
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
            "rescale_grad": self._rescale_grad
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiabin Yang 已提交
2172
        if framework._non_static_mode():
2173
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
D
duanboqiang 已提交
2174 2175 2176 2177 2178
                [param_and_grad[0]], [param_and_grad[1]], [velocity_acc], [lr],
                [param_and_grad[0]], [velocity_acc], "mu", self._momentum,
                "lars_coeff", self._lars_coeff, "lars_weight_decay",
                [_lars_weight_decay], "multi_precision", find_master, "epsilon",
                self._epsilon, "rescale_grad", self._rescale_grad)
2179 2180
        else:
            # create the momentum optimize op
2181 2182 2183 2184 2185
            momentum_op = block.append_op(type=self.type,
                                          inputs=inputs,
                                          outputs=outputs,
                                          attrs=attrs,
                                          stop_gradient=True)
2186

2187
            return momentum_op
2188 2189


2190
class AdagradOptimizer(Optimizer):
2191
    r"""
2192 2193
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2194

2195
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2196 2197 2198 2199 2200 2201 2202

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2203 2204 2205 2206 2207 2208
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2209 2210 2211
    for numerical stability to avoid the division by zero error.

    Args:
2212 2213 2214 2215
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2216
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2217 2218
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2219 2220 2221 2222 2223
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2224 2225 2226 2227
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2228 2229 2230 2231 2232
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2233 2234 2235 2236

    Examples:
        .. code-block:: python

2237
            import numpy as np
2238
            import paddle.fluid as fluid
2239 2240

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2241
            inp = fluid.data(name="inp", shape=[2, 2])
2242 2243
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
2244
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2245 2246 2247 2248 2249 2250 2251
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2252 2253 2254
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2255 2256 2257
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
2258
                 parameter_list=None,
X
Xin Pan 已提交
2259
                 regularization=None,
2260
                 grad_clip=None,
2261
                 name=None,
X
xuezhong 已提交
2262
                 initial_accumulator_value=0.0):
2263 2264
        assert learning_rate is not None
        assert epsilon is not None
2265 2266 2267 2268 2269
        super(AdagradOptimizer, self).__init__(learning_rate=learning_rate,
                                               parameter_list=parameter_list,
                                               regularization=regularization,
                                               grad_clip=grad_clip,
                                               name=name)
2270 2271
        self.type = "adagrad"
        self._epsilon = epsilon
2272
        self.initial_accumulator_value = initial_accumulator_value
2273 2274 2275 2276 2277

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2278 2279 2280
            self._add_accumulator(self._moment_acc_str,
                                  p,
                                  fill_value=self.initial_accumulator_value)
2281 2282 2283 2284 2285 2286

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
C
caozhou 已提交
2287
        if in_dygraph_mode():
2288 2289 2290
            _C_ops.adagrad_(param_and_grad[0], param_and_grad[1], moment_acc,
                            self._create_param_lr(param_and_grad),
                            self._epsilon)
C
caozhou 已提交
2291 2292
            return None
        elif _in_legacy_dygraph():
2293 2294 2295 2296 2297
            _legacy_C_ops.adagrad(param_and_grad[0], param_and_grad[1],
                                  moment_acc,
                                  self._create_param_lr(param_and_grad),
                                  param_and_grad[0], moment_acc, "epsilon",
                                  self._epsilon)
C
caozhou 已提交
2298
            return None
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
                    "LearningRate": self._create_param_lr(param_and_grad)
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment_acc
                },
                attrs={"epsilon": self._epsilon},
                stop_gradient=True)
2315

2316
            return adagrad_op
2317 2318 2319


class AdamOptimizer(Optimizer):
2320
    r"""
T
tianshuo78520a 已提交
2321
    The Adam optimizer uses an optimization described at the end
2322 2323 2324 2325 2326
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2341 2342
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2343
    Args:
2344 2345
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2346 2347
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2348
            The default value is 0.9.
2349 2350
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2351
            The default value is 0.999.
2352 2353
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2354
            The default value is 1e-08.
H
hong 已提交
2355
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2356 2357
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2358 2359 2360 2361 2362
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2363 2364 2365 2366
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2377 2378
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow 
            for whole model instead of creating beta_pow for each parameter. Default is false.
2379 2380 2381
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
            use same align_size as allocator. 
Q
qiaolongfei 已提交
2382 2383 2384 2385

    Examples:
        .. code-block:: python

2386 2387 2388 2389 2390 2391
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2392 2393
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2409

2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2427
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2444 2445 2446 2447 2448 2449 2450
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2451 2452 2453 2454 2455 2456 2457

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2458
                    return beta1, beta2, epsilon
2459

2460
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2461 2462
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2463
                                                    beta1=beta1,
2464 2465
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2476 2477 2478
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2479 2480
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2481 2482 2483 2484 2485

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2486
                 epsilon=1e-8,
2487
                 parameter_list=None,
X
Xin Pan 已提交
2488
                 regularization=None,
2489
                 grad_clip=None,
Q
Qiao Longfei 已提交
2490
                 name=None,
2491
                 lazy_mode=False,
2492 2493 2494
                 use_global_beta_pow=False,
                 flatten_param_grads=False,
                 align_size=-1):
2495 2496 2497 2498
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2499 2500 2501 2502 2503 2504 2505 2506
        super(AdamOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             flatten_param_grads=flatten_param_grads,
                             align_size=align_size,
                             name=name)
2507 2508 2509 2510
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2511
        self._lazy_mode = lazy_mode
2512
        self._use_global_beta_pow = use_global_beta_pow
2513 2514 2515 2516 2517 2518

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2519 2520
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
                    fill_value=0.9 if isinstance(self._beta1, Variable) \
                            else self._beta1,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
                    fill_value=0.999 if isinstance(self._beta2, Variable) \
                            else self._beta2,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2538
                name=self._beta1_pow_acc_str,
2539 2540
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2541
                shape=[1],
2542
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2543
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2544
                name=self._beta2_pow_acc_str,
2545 2546
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2547
                shape=[1],
2548
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2549 2550 2551 2552 2553 2554 2555 2556

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)
        else:
            beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                  param_and_grad[0])
            beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                  param_and_grad[0])
2567
        lr = self._create_param_lr(param_and_grad)
2568
        # create the adam optimize op
2569

J
Jiabin Yang 已提交
2570
        if framework._non_static_mode():
2571 2572 2573 2574
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
2575
            master_weight = None
2576
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2577
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
2578 2579 2580 2581 2582
                beta1_pow_acc, beta2_pow_acc, master_weight, param_and_grad[0],
                moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight,
                'epsilon', self._epsilon, 'lazy_mode', self._lazy_mode,
                'min_row_size_to_use_multithread', 1000, 'beta1', _beta1,
                'beta2', _beta2, 'use_global_beta_pow',
2583
                self._use_global_beta_pow)
2584 2585 2586

            return None

2587
        inputs = {
2588 2589
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2590
            "LearningRate": [lr],
2591 2592 2593 2594
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2595
        }
2596 2597 2598 2599 2600 2601 2602

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2603
        outputs = {
2604 2605 2606 2607 2608
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2609 2610 2611
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2612 2613
            "min_row_size_to_use_multithread": 1000,
            'use_global_beta_pow': self._use_global_beta_pow
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2624 2625 2626 2627
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2628

2629 2630 2631 2632 2633
        adam_op = block.append_op(type=self.type,
                                  inputs=inputs,
                                  outputs=outputs,
                                  attrs=attrs,
                                  stop_gradient=True)
2634 2635 2636

        return adam_op

2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
    def _finish_update(self, block, parameters_and_grads):
        r"""Update beta1_pow and beta2_pow accumulator
        """
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2649
                outputs = {"Out": beta1_pow_acc}
2650 2651
                attrs = {}
                if isinstance(self._beta1, Variable):
2652 2653
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2654 2655 2656 2657 2658
                    block.append_op(type="elementwise_mul",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2659 2660
                else:
                    attrs['scale'] = self._beta1
2661 2662 2663 2664 2665
                    block.append_op(type="scale",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2666 2667

                inputs = {"X": beta2_pow_acc}
2668
                outputs = {"Out": beta2_pow_acc}
2669 2670
                attrs = {}
                if isinstance(self._beta2, Variable):
2671 2672
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2673 2674 2675 2676 2677
                    block.append_op(type="elementwise_mul",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2678 2679
                else:
                    attrs['scale'] = self._beta2
2680 2681 2682 2683 2684
                    block.append_op(type="scale",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2685

2686 2687

class AdamaxOptimizer(Optimizer):
2688
    r"""
2689 2690 2691 2692
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2693

2694
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2708
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2709

2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2722
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2723 2724
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2725 2726 2727 2728 2729
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2730 2731 2732 2733
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2734 2735 2736 2737 2738 2739
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2740

2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2754
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2755 2756
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2757
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2758 2759 2760 2761 2762 2763 2764 2765 2766
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2767 2768 2769
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2770
    _beta1_pow_acc_str = "beta1_pow_acc"
2771 2772 2773 2774 2775

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2776
                 epsilon=1e-8,
2777
                 parameter_list=None,
X
Xin Pan 已提交
2778
                 regularization=None,
2779
                 grad_clip=None,
X
Xin Pan 已提交
2780
                 name=None):
2781 2782 2783 2784
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2785 2786 2787 2788 2789
        super(AdamaxOptimizer, self).__init__(learning_rate=learning_rate,
                                              parameter_list=parameter_list,
                                              regularization=regularization,
                                              grad_clip=grad_clip,
                                              name=name)
2790 2791 2792 2793 2794 2795 2796 2797
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2798 2799
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2800 2801 2802 2803
            self._add_accumulator(name=self._beta1_pow_acc_str,
                                  param=p,
                                  fill_value=self._beta1,
                                  shape=[1])
2804 2805 2806 2807 2808 2809 2810

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2811 2812
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2813 2814

        if framework.in_dygraph_mode():
2815 2816 2817 2818
            _C_ops.adamax_(param_and_grad[0], param_and_grad[1],
                           self._create_param_lr(param_and_grad), moment,
                           inf_norm, beta1_pow_acc, self._beta1, self._beta2,
                           self._epsilon)
2819
        elif framework._in_legacy_dygraph():
2820 2821 2822 2823 2824
            _legacy_C_ops.adamax(param_and_grad[0], param_and_grad[1],
                                 self._create_param_lr(param_and_grad), moment,
                                 inf_norm, beta1_pow_acc, param_and_grad[0],
                                 moment, inf_norm, "beta1", self._beta1,
                                 "beta2", self._beta2, "epsilon", self._epsilon)
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
                    "Beta1Pow": beta1_pow_acc
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
                    "InfNormOut": inf_norm
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
                    "epsilon": self._epsilon
                },
                stop_gradient=True)
2848

2849
            return adamax_op
2850

2851
    def _finish_update(self, block, parameters_and_grads):
2852 2853 2854
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2855
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2856
            if grad is None or param.trainable is False:
2857
                continue
2858 2859
            with param.block.program._optimized_guard([param, grad
                                                       ]), name_scope('adamx'):
2860 2861
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
J
Jiabin Yang 已提交
2862
                if framework._non_static_mode():
2863
                    if framework.in_dygraph_mode():
2864 2865
                        tmp = _C_ops.scale(beta1_pow_acc, self._beta1, 0.0,
                                           True)
2866
                    else:
2867 2868
                        tmp = _legacy_C_ops.scale(beta1_pow_acc, "scale",
                                                  self._beta1)
2869 2870
                    beta1_pow_acc.copy_(tmp, False)
                else:
2871 2872 2873 2874 2875
                    block.append_op(type="scale",
                                    inputs={"X": beta1_pow_acc},
                                    outputs={"Out": beta1_pow_acc},
                                    attrs={"scale": self._beta1},
                                    stop_gradient=True)
2876 2877


2878
class DpsgdOptimizer(Optimizer):
2879
    r"""
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2916
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2917 2918
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2919 2920 2921 2922 2923 2924 2925 2926
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2927 2928
                 sigma=1e-8,
                 parameter_list=None):
2929 2930 2931 2932
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2933 2934
        super(DpsgdOptimizer, self).__init__(learning_rate=learning_rate,
                                             parameter_list=parameter_list)
2935 2936 2937 2938
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2939 2940 2941 2942 2943 2944 2945
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2946 2947 2948 2949 2950

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2951 2952 2953
        if self._seed == None:
            self._seed = 0

J
Jiabin Yang 已提交
2954
        if framework._non_static_mode():
2955 2956 2957 2958 2959
            _legacy_C_ops.dpsgd(param_and_grad[0], param_and_grad[1],
                                self._create_param_lr(param_and_grad),
                                param_and_grad[0], "clip", self._clip,
                                "batch_size", self._batch_size, "sigma",
                                self._sigma, "seed", self._seed)
2960
        else:
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
            dpsgd_op = block.append_op(type=self.type,
                                       inputs={
                                           "Param":
                                           param_and_grad[0],
                                           "Grad":
                                           param_and_grad[1],
                                           "LearningRate":
                                           self._create_param_lr(param_and_grad)
                                       },
                                       outputs={"ParamOut": param_and_grad[0]},
                                       attrs={
                                           "clip": self._clip,
                                           "batch_size": self._batch_size,
                                           "sigma": self._sigma,
                                           "seed": self._seed
                                       },
                                       stop_gradient=True)
2978

2979
            return dpsgd_op
2980 2981


2982
class DecayedAdagradOptimizer(Optimizer):
2983
    r"""
2984 2985 2986
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2987

2988
    The parameter ``param_out`` update rule with gradient ``grad``:
2989 2990 2991 2992 2993 2994 2995

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2996 2997 2998 2999
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
3000 3001 3002
    stability to avoid the division by zero error.

    Args:
3003 3004 3005 3006 3007
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
3008
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3009 3010
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3011 3012 3013 3014 3015
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3016 3017 3018 3019
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3020 3021 3022 3023 3024 3025
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
3026 3027 3028 3029

    Examples:
        .. code-block:: python

3030 3031
            import paddle.fluid as fluid

3032 3033 3034 3035
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3036
            optimizer.minimize(cost)
3037 3038 3039
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
3040 3041 3042 3043
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
3044
                 parameter_list=None,
X
Xin Pan 已提交
3045
                 regularization=None,
3046
                 grad_clip=None,
X
Xin Pan 已提交
3047
                 name=None):
3048 3049 3050 3051
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3052 3053 3054 3055 3056 3057
        super(DecayedAdagradOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             name=name)
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

J
Jiabin Yang 已提交
3074
        if framework._non_static_mode():
3075 3076 3077 3078 3079 3080
            _legacy_C_ops.decayed_adagrad(param_and_grad[0], param_and_grad[1],
                                          moment_acc,
                                          self._create_param_lr(param_and_grad),
                                          param_and_grad[0], moment_acc,
                                          "epsilon", self._epsilon, "decay",
                                          self._decay)
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
                    "LearningRate": self._create_param_lr(param_and_grad)
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment_acc
                },
3095 3096 3097 3098
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._decay
                },
3099
                stop_gradient=True)
3100

3101
            return decayed_adagrad_op
3102 3103


3104
class AdadeltaOptimizer(Optimizer):
3105
    r"""
Z
Zeng Jinle 已提交
3106
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3107

Z
Zeng Jinle 已提交
3108
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3109 3110 3111
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3112

Z
Zeng Jinle 已提交
3113 3114
    .. math::

Z
Zeng Jinle 已提交
3115
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3116

Z
Zeng Jinle 已提交
3117
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3118

Z
Zeng Jinle 已提交
3119
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3120 3121

    Args:
Z
Zeng Jinle 已提交
3122 3123 3124
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3125
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3126 3127
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3128 3129 3130 3131 3132
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3133 3134 3135 3136
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3137 3138 3139
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3140 3141 3142 3143

    Examples:
        .. code-block:: python

3144
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3145

3146
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3147 3148
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3149 3150
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3151

Z
Zeng Jinle 已提交
3152 3153 3154 3155
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3156
    """
3157

3158 3159 3160
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
3161 3162 3163 3164
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
3165
                 parameter_list=None,
X
Xin Pan 已提交
3166
                 regularization=None,
3167
                 grad_clip=None,
X
Xin Pan 已提交
3168
                 name=None):
3169 3170 3171 3172 3173 3174
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3175 3176 3177 3178 3179
        super(AdadeltaOptimizer, self).__init__(learning_rate=learning_rate,
                                                parameter_list=parameter_list,
                                                regularization=regularization,
                                                grad_clip=grad_clip,
                                                name=name)
3180 3181 3182 3183 3184
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3185 3186
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3187 3188 3189 3190 3191 3192

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3193 3194
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3195 3196 3197 3198 3199 3200

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

3201
        if framework.in_dygraph_mode():
3202 3203 3204
            _C_ops.adadelta_(param_and_grad[0], param_and_grad[1],
                             avg_squared_grad_acc, avg_squared_update_acc,
                             self._rho, self._epsilon)
3205
        elif framework._in_legacy_dygraph():
3206 3207 3208 3209 3210
            _legacy_C_ops.adadelta(param_and_grad[0], param_and_grad[1],
                                   avg_squared_grad_acc, avg_squared_update_acc,
                                   param_and_grad[0], avg_squared_grad_acc,
                                   avg_squared_update_acc, "epsilon",
                                   self._epsilon, "rho", self._rho)
3211 3212
        else:
            # Create the adadelta optimizer op
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
            adadelta_op = block.append_op(type=self.type,
                                          inputs={
                                              "Param":
                                              param_and_grad[0],
                                              "Grad":
                                              param_and_grad[1],
                                              "AvgSquaredGrad":
                                              avg_squared_grad_acc,
                                              "AvgSquaredUpdate":
                                              avg_squared_update_acc
                                          },
                                          outputs={
                                              "ParamOut":
                                              param_and_grad[0],
                                              "AvgSquaredGradOut":
                                              avg_squared_grad_acc,
                                              "AvgSquaredUpdateOut":
                                              avg_squared_update_acc
                                          },
                                          attrs={
                                              "epsilon": self._epsilon,
                                              "rho": self._rho
                                          },
                                          stop_gradient=True)
3237

3238
            return adadelta_op
3239 3240


Q
qingqing01 已提交
3241
class RMSPropOptimizer(Optimizer):
3242
    r"""
Q
qingqing01 已提交
3243 3244 3245 3246 3247 3248 3249 3250
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3251
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3252 3253 3254 3255

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3256
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3257 3258 3259 3260 3261 3262

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3263
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3264

3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3279 3280 3281 3282
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3283
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3284 3285 3286 3287 3288
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3289 3290 3291
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3292
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3293
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3294
        momentum(float): :math:`\\beta` in equation is the momentum term,
3295
            default is 0.0.
3296 3297 3298 3299
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3300
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3301 3302
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3303 3304 3305 3306 3307
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3308 3309 3310 3311
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3312 3313
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3314 3315 3316 3317 3318 3319 3320

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3346 3347 3348 3349
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3350
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3351 3352 3353 3354 3355 3356

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
3357
                 centered=False,
3358
                 parameter_list=None,
X
Xin Pan 已提交
3359
                 regularization=None,
3360
                 grad_clip=None,
X
Xin Pan 已提交
3361
                 name=None):
3362 3363 3364 3365 3366
        super(RMSPropOptimizer, self).__init__(learning_rate=learning_rate,
                                               parameter_list=parameter_list,
                                               regularization=regularization,
                                               grad_clip=grad_clip,
                                               name=name)
Q
qingqing01 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3380
        self._centered = centered
Q
qingqing01 已提交
3381 3382 3383 3384 3385 3386 3387 3388

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3389
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
3399 3400
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
C
caozhou 已提交
3401
        if in_dygraph_mode():
3402 3403 3404 3405 3406
            _C_ops.rmsprop_(param_and_grad[0], mean_square_acc,
                            param_and_grad[1], momentum_acc,
                            self._create_param_lr(param_and_grad),
                            mean_grad_acc, self._epsilon, self._rho,
                            self._momentum, self._centered)
C
caozhou 已提交
3407 3408
            return None
        elif _in_legacy_dygraph():
3409 3410 3411 3412 3413 3414 3415
            _legacy_C_ops.rmsprop(param_and_grad[0], mean_square_acc,
                                  self._create_param_lr(param_and_grad),
                                  param_and_grad[1], momentum_acc,
                                  param_and_grad[0], momentum_acc,
                                  mean_square_acc, mean_grad_acc, "epsilon",
                                  self._epsilon, "decay", self._rho, "momentum",
                                  self._momentum, "centered", self._centered)
C
caozhou 已提交
3416
            return None
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
                    "MeanGradOut": mean_grad_acc
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
                    "centered": self._centered
                },
                stop_gradient=True)
Q
qingqing01 已提交
3441

3442
            return rmsprop_op
Q
qingqing01 已提交
3443 3444


Q
qiaolongfei 已提交
3445
class FtrlOptimizer(Optimizer):
3446
    r"""
Q
qiaolongfei 已提交
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3485 3486 3487 3488 3489
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3490
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3491 3492
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3493 3494 3495 3496 3497
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3498 3499 3500 3501
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` , 
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3502 3503
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3504 3505 3506 3507 3508 3509 3510

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3535

3536
    NOTE:
C
chengduo 已提交
3537
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3538 3539 3540 3541 3542
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
3543 3544 3545 3546 3547
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
3548
                 parameter_list=None,
X
Xin Pan 已提交
3549
                 regularization=None,
3550
                 grad_clip=None,
X
Xin Pan 已提交
3551
                 name=None):
3552 3553 3554 3555 3556
        super(FtrlOptimizer, self).__init__(learning_rate=learning_rate,
                                            parameter_list=parameter_list,
                                            regularization=regularization,
                                            grad_clip=grad_clip,
                                            name=name)
Q
qiaolongfei 已提交
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
J
Jiabin Yang 已提交
3581
        if framework._non_static_mode():
3582 3583 3584 3585 3586 3587
            _legacy_C_ops.ftrl(param_and_grad[0], squared_acc, linear_acc,
                               param_and_grad[1],
                               self._create_param_lr(param_and_grad),
                               param_and_grad[0], squared_acc, linear_acc, "l1",
                               self._l1, "l2", self._l2, "lr_power",
                               self._lr_power)
3588 3589

        else:
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613
            ftrl_op = block.append_op(type=self.type,
                                      inputs={
                                          "Param":
                                          param_and_grad[0],
                                          "Grad":
                                          param_and_grad[1],
                                          "SquaredAccumulator":
                                          squared_acc,
                                          "LinearAccumulator":
                                          linear_acc,
                                          "LearningRate":
                                          self._create_param_lr(param_and_grad),
                                      },
                                      outputs={
                                          "ParamOut": param_and_grad[0],
                                          "SquaredAccumOut": squared_acc,
                                          "LinearAccumOut": linear_acc
                                      },
                                      attrs={
                                          "l1": self._l1,
                                          "l2": self._l2,
                                          "lr_power": self._lr_power
                                      },
                                      stop_gradient=True)
Q
qiaolongfei 已提交
3614

3615
            return ftrl_op
Q
qiaolongfei 已提交
3616 3617


Y
Yibing Liu 已提交
3618
class LambOptimizer(AdamOptimizer):
3619
    r"""
Y
Yibing Liu 已提交
3620 3621 3622 3623
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
3624 3625
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3626 3627 3628 3629 3630

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
3631
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
3632

Y
Yibing Liu 已提交
3633
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3634

3635 3636 3637 3638
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3639
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3640

Y
Yibing Liu 已提交
3641
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3642 3643 3644 3645 3646 3647


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3648 3649 3650 3651 3652 3653 3654 3655
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3656
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3657 3658
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3659 3660 3661 3662 3663
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3664 3665
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of 
            some derived class of ``GradientClipBase`` . There are three cliping strategies 
3666 3667 3668
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
Y
Yibing Liu 已提交
3669 3670 3671 3672 3673
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3674 3675 3676 3677 3678 3679

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
3680
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3681 3682 3683
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3684 3685 3686 3687 3688
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3702
                 parameter_list=None,
Y
Yibing Liu 已提交
3703
                 regularization=None,
3704
                 grad_clip=None,
Y
Yibing Liu 已提交
3705
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3706 3707 3708 3709 3710 3711
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3712 3713 3714 3715 3716 3717 3718 3719
        super(LambOptimizer, self).__init__(learning_rate=learning_rate,
                                            parameter_list=parameter_list,
                                            regularization=regularization,
                                            grad_clip=grad_clip,
                                            beta1=beta1,
                                            beta2=beta2,
                                            epsilon=epsilon,
                                            name=name)
Y
Yibing Liu 已提交
3720 3721
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3722
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3723 3724 3725

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3726
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3727 3728 3729 3730 3731 3732 3733 3734 3735 3736

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3737 3738 3739 3740 3741
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3742
        lr = self._create_param_lr(param_and_grad)
3743
        master_weight = None
J
Jiabin Yang 已提交
3744
        if framework._non_static_mode():
3745 3746 3747 3748 3749 3750 3751
            _legacy_C_ops.lamb(param_and_grad[0], param_and_grad[1], lr,
                               moment1, moment2, beta1_pow_acc, beta2_pow_acc,
                               master_weight, param_and_grad[0], moment1,
                               moment2, beta1_pow_acc, beta2_pow_acc,
                               master_weight, 'beta1', self._beta1, 'beta2',
                               self._beta2, 'epsilon', self._epsilon,
                               'weight_decay', weight_decay)
3752
            return None
Y
Yibing Liu 已提交
3753

Y
Yibing Liu 已提交
3754
        # create the lamb optimize op
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
        lamb_op = block.append_op(type=self.type,
                                  inputs={
                                      "Param": param_and_grad[0],
                                      "Grad": param_and_grad[1],
                                      "LearningRate": lr,
                                      "Moment1": moment1,
                                      "Moment2": moment2,
                                      "Beta1Pow": beta1_pow_acc,
                                      "Beta2Pow": beta2_pow_acc
                                  },
                                  outputs={
                                      "ParamOut": param_and_grad[0],
                                      "Moment1Out": moment1,
                                      "Moment2Out": moment2,
                                      "Beta1PowOut": beta1_pow_acc,
                                      "Beta2PowOut": beta2_pow_acc
                                  },
                                  attrs={
                                      "beta1": self._beta1,
                                      "beta2": self._beta2,
                                      "epsilon": self._epsilon,
                                      "weight_decay": weight_decay
                                  },
                                  stop_gradient=True)
Y
Yibing Liu 已提交
3779 3780 3781 3782

        return lamb_op


3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3796
Dpsgd = DpsgdOptimizer
3797
DecayedAdagrad = DecayedAdagradOptimizer
3798
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3799
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3800
Ftrl = FtrlOptimizer
3801
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3802
Lamb = LambOptimizer
3803 3804 3805


class ModelAverage(Optimizer):
3806
    r"""
3807
	:api_attr: Static Graph
S
swtkiwi 已提交
3808

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3827

3828 3829 3830 3831 3832 3833 3834 3835 3836
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3837 3838

    Args:
3839 3840 3841
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3842 3843 3844 3845 3846
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3847 3848 3849
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3850

3851
    Examples:
Q
qiaolongfei 已提交
3852 3853 3854

      .. code-block:: python

3855 3856 3857 3858 3859 3860
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3861

3862 3863 3864 3865
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3866
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3867 3868 3869 3870 3871 3872 3873 3874
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3875
                                                         max_average_window=12500)
3876 3877

            exe.run(startup_program)
3878 3879 3880 3881 3882
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3883 3884

            # apply ModelAverage
3885
            with model_average.apply(exe):
3886 3887 3888 3889
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3890 3891 3892
    """

    def __init__(self,
W
wanghaoshuang 已提交
3893
                 average_window_rate,
3894 3895
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3896 3897
                 regularization=None,
                 name=None):
J
Jiabin Yang 已提交
3898
        if framework._non_static_mode():
Z
zhongpu 已提交
3899
            raise Exception("In dygraph, don't support ModelAverage.")
3900 3901 3902
        super(ModelAverage, self).__init__(0.0,
                                           regularization=regularization,
                                           name=name)
3903 3904 3905
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3906

3907
        self.params_grads = []
3908 3909
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3910
            if param.do_model_average != False:
3911
                grad = param.block.create_var(
3912 3913
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3914 3915
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3916
                    stop_gradient=True)
3917
                self.params_grads.append((param, grad))
3918

3919
        for param, grad in self.params_grads:
3920 3921
            if grad is None:
                continue
X
Xin Pan 已提交
3922 3923
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3924
                self._append_average_accumulate_op(param)
3925

3926 3927 3928 3929
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3930
                self._add_average_apply_op(block, param_grad)
3931 3932 3933 3934 3935

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3936
                self._add_average_restore_op(block, param_grad)
3937

3938
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3939 3940 3941 3942 3943 3944
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3945
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3946
        old_num_accumulates = block._clone_variable(
3947
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3948
        num_updates = block._clone_variable(
3949 3950 3951 3952 3953 3954
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3955 3956 3957 3958
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3959
        ops._elementwise_div(x=sum, y=tmp, out=param)
3960 3961

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3962 3963
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3964 3965 3966 3967 3968 3969 3970
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
        num_accumulates = self._add_accumulator('num_accumulates',
                                                param,
                                                dtype='int64',
                                                shape=[1])
        old_num_accumulates = self._add_accumulator('old_num_accumulates',
                                                    param,
                                                    dtype='int64',
                                                    shape=[1])
        num_updates = self._add_accumulator('num_updates',
                                            param,
                                            dtype='int64',
                                            shape=[1])

        self.helper.append_op(type='average_accumulates',
                              inputs={
                                  "param": param,
                                  "in_sum_1": sum_1,
                                  "in_sum_2": sum_2,
                                  "in_sum_3": sum_3,
                                  "in_num_accumulates": num_accumulates,
                                  "in_old_num_accumulates": old_num_accumulates,
                                  "in_num_updates": num_updates
                              },
                              outputs={
                                  "out_sum_1": sum_1,
                                  "out_sum_2": sum_2,
                                  "out_sum_3": sum_3,
                                  "out_num_accumulates": num_accumulates,
                                  "out_old_num_accumulates":
                                  old_num_accumulates,
                                  "out_num_updates": num_updates,
                              },
                              attrs={
                                  "average_window": self.average_window,
                                  "min_average_window": self.min_average_window,
                                  "max_average_window": self.max_average_window,
                              },
                              stop_gradient=True)
4009

S
rename  
sneaxiy 已提交
4010
    @signature_safe_contextmanager
4011
    def apply(self, executor, need_restore=True):
4012 4013
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4014 4015

        Args:
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4060
        """
4061 4062 4063 4064 4065 4066
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4067 4068

    def restore(self, executor):
4069 4070
        """
        Restore ``Parameter`` values of current model.
4071 4072
        
        Args:
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4117
        """
4118
        executor.run(self.restore_program)
4119 4120 4121


class ExponentialMovingAverage(object):
4122
    r"""
4123
	:api_attr: Static Graph
S
swtkiwi 已提交
4124

4125 4126 4127 4128 4129 4130
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4131
        \\text{EMA}_0 & = 0
4132

4133 4134
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
4135 4136 4137 4138
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
4160 4161 4162


    Args:
4163 4164 4165
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4166 4167 4168 4169


    Examples:

4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
                    feed={'x': data}, 
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
                        feed={'x': data}, 
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
                        feed={'x': data}, 
                        fetch_list=[hidden.name])
                ema.restore(exe)

4216 4217
    """

4218
    def __init__(self, decay=0.999, thres_steps=None, name=None):
J
Jiabin Yang 已提交
4219
        if framework._non_static_mode():
Z
zhongpu 已提交
4220 4221
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
4222
        self._decay = decay
4223
        self._thres_steps = thres_steps
4224
        self._name = name if name is not None else ''
4225 4226
        self._decay_var = self._get_ema_decay()

4227
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4228
        self._params_tmps = []
4229
        for param in default_main_program().global_block().all_parameters():
4230
            if param.do_model_average != False:
4231 4232 4233 4234 4235
                tmp = param.block.create_var(name=unique_name.generate(".".join(
                    [self._name + param.name, 'ema_tmp'])),
                                             dtype=param.dtype,
                                             persistable=False,
                                             stop_gradient=True)
Y
Yibing Liu 已提交
4236
                self._params_tmps.append((param, tmp))
4237

Y
Yibing Liu 已提交
4238 4239
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4240 4241
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
4242
                self._ema_vars[param.name] = self._create_ema_vars(param)
4243 4244 4245 4246

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4247
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4248
            for param, tmp in self._params_tmps:
4249 4250
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4251
                ema = block._clone_variable(self._ema_vars[param.name])
4252
                layers.assign(input=param, output=tmp)
4253
                # bias correction
4254 4255
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4256 4257
                        layers.assign(output=param,
                                      input=ema / (1.0 - decay_pow))
4258 4259
                    with switch.default():
                        layers.assign(output=param, input=ema)
4260 4261 4262 4263

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4264
            for param, tmp in self._params_tmps:
4265 4266 4267 4268
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4285
                            np.array([self._decay], dtype=np.float32),
4286 4287 4288 4289
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
4290 4291 4292 4293 4294
        global_step = layers.create_global_var(name=self._step_counter_name,
                                               shape=[1],
                                               value=0,
                                               dtype='int64',
                                               persistable=True)
4295
        global_step = layers.cast(global_step, "float32")
4296
        decay_var = block._clone_variable(self._decay_var)
4297 4298
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
4299

Y
Yibing Liu 已提交
4300
    def _create_ema_vars(self, param):
4301 4302 4303 4304 4305 4306 4307 4308 4309
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
4310 4311 4312 4313 4314
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
4315 4316
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
4317
        param_master_emas = []
Y
Yibing Liu 已提交
4318 4319 4320 4321
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
4322
                if param.name + '.master' in self._ema_vars:
4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
4340

4341 4342 4343 4344 4345 4346 4347
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
4348 4349
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4365 4366 4367


class PipelineOptimizer(object):
4368
    """
4369
	:api_attr: Static Graph
S
swtkiwi 已提交
4370

4371 4372 4373 4374
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4375

4376
    Args:
4377 4378 4379 4380
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
    
4381 4382
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4383

4384
            import paddle.fluid as fluid
H
hutuxian 已提交
4385 4386
            import paddle.fluid.layers as layers

4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4403
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4404
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4405
            optimizer.minimize(loss)
4406 4407 4408 4409 4410 4411 4412 4413 4414

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4415 4416
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4417 4418
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4419
            exe.train_from_dataset(
4420
                    fluid.default_main_program())
4421
            data_loader.reset()
4422 4423
    """

4424
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4425 4426 4427 4428 4429
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
J
Jiabin Yang 已提交
4430
        if framework._non_static_mode():
Z
zhongpu 已提交
4431
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4432 4433 4434 4435
        valid_optimizers = (Optimizer, paddle.optimizer.Optimizer,
                            paddle.fluid.contrib.mixed_precision.decorator.
                            OptimizerWithMixedPrecision)
        if not isinstance(optimizer, valid_optimizers):
4436 4437
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
4438 4439
                             "{}, but the given type is {}.".format(
                                 valid_optimizers, type(optimizer)))
H
hutuxian 已提交
4440
        self._optimizer = optimizer
4441 4442 4443 4444 4445 4446

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4447 4448 4449 4450
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
4451
            "start_cpu_core_id must be a non-negative integer.")
H
hutuxian 已提交
4452
        self._start_cpu_core_id = start_cpu_core_id
4453 4454 4455 4456 4457 4458
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4459
        self._param_device_map = None
4460 4461
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4462 4463
        self.output_var_to_op = None
        self.input_var_to_op = None
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
            temp_var = block.create_var(name=temp_var_name,
                                        shape=[1],
                                        dtype="int32")
            block._insert_op(op_idx + 1 + offset,
                             type='cast',
                             inputs={'X': out_var},
                             outputs={'Out': temp_var},
                             attrs={
                                 'in_dtype': out_var.dtype,
                                 'out_dtype': temp_var.dtype,
                                 self._op_role_key: self._op_role.Optimize
                             })
4491 4492 4493 4494 4495 4496 4497 4498
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
            if op.type == "reduce_any" else 'c_allreduce_sum',
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4499
                'ring_id': self.global_ring_id,
4500 4501 4502 4503 4504
                self._op_role_key: self._op_role.Optimize,
                'use_calc_stream': True
            })
        offset += 1
        if op.type == "reduce_any":
4505 4506 4507 4508 4509 4510 4511 4512 4513
            block._insert_op(op_idx + 1 + offset,
                             type='cast',
                             inputs={'X': temp_var},
                             outputs={'Out': out_var},
                             attrs={
                                 'in_dtype': temp_var.dtype,
                                 'out_dtype': out_var.dtype,
                                 self._op_role_key: self._op_role.Optimize
                             })
4514
            offset += 1
4515
        return offset
H
hutuxian 已提交
4516

4517
    def _create_vars(self, block, ori_block):
4518
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4519
        used_var_set = set()
4520 4521 4522 4523 4524 4525 4526 4527 4528
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4529
            # For op process vars on all devices, remove its input
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4555 4556 4557 4558 4559 4560 4561 4562
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4563
            for var in vars:
4564 4565
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4566
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4567 4568
                    continue
                used_var_set.add(var)
4569 4570
                if block._find_var_recursive(str(var)): continue
                source_var = ori_block._var_recursive(str(var))
4571
                if source_var.type == core.VarDesc.VarType.READER:
4572
                    dest_var = block.create_var(
4573 4574 4575
                        name=var,
                        type=core.VarDesc.VarType.READER,
                        persistable=source_var.persistable)
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
                        error_clip=source_var.error_clip)
4588
                else:
4589
                    dest_var = block._clone_variable(source_var, False)
4590
                self._clone_var_attr(dest_var, source_var)
4591 4592 4593 4594 4595 4596 4597 4598
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
            if self.use_sharding or not should_insert: continue
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4599

4600
    def _is_loss_grad_op(self, op):
4601 4602
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4603 4604 4605
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

4606
    def _is_forward_op(self, op):
4607 4608
        return self._op_role_key in op.attr_names and (int(
            op.attr(self._op_role_key)) == int(self._op_role.Forward))
4609

4610
    def _is_backward_op(self, op):
4611 4612 4613 4614 4615 4616
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward))

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4617 4618

    def _is_optimize_op(self, op):
4619 4620
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize))
4621 4622 4623 4624 4625

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

4626
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4627
        """
4628
        Split a program into sections according to devices that ops run on.
4629
        The op whose op_device attr is "gpu:all" is copied to all sections.
4630 4631 4632

        Args:
            main_program (Program): the main program
4633
            devices: all used devices
H
hutuxian 已提交
4634
        """
4635
        # Map from device to its corresponding section program info
4636
        device_program_map = defaultdict(Program)
4637

4638
        block = main_program.block(0)
4639 4640
        for op in block.ops:
            device = op.attr(self._op_device_key)
4641
            # Copy ops whose op_device set to "gpu:all" to all sections.
4642
            if device == f"{self._device}:all":
4643
                for device in devices:
4644 4645
                    program = device_program_map[device]
                    op_desc = op.desc
4646
                    ap_op = program.global_block().desc.append_op()
4647
                    ap_op.copy_from(op_desc)
4648
                    ap_op._set_attr(self._op_device_key, "")
4649 4650 4651
            else:
                program = device_program_map[device]
                op_desc = op.desc
4652
                ap_op = program.global_block().desc.append_op()
4653
                ap_op.copy_from(op_desc)
4654
                ap_op._set_attr(self._op_device_key, "")
4655

4656
        program_list = []
4657
        for key in devices:
4658
            program = device_program_map[key]
4659 4660
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4661

4662
        return program_list
H
hutuxian 已提交
4663

4664 4665 4666 4667 4668 4669 4670
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4671 4672 4673
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, \
            'For accumulators for Adam, the name must contain beta1_pow_acc ' \
            'or beta2_pow_acc.'
4674 4675 4676 4677
        param_name = var_name[0:var_name.index('_beta')]
        device = self._param_device_map[param_name]
        return device

4678 4679
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4680 4681 4682
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4683 4684
            if device == "cpu":
                assert op.type == "fill_constant", (
4685 4686
                    "For ops in startup program with the op_device attribute "
                    "of cpu, they must be of type fill_constant.")
4687 4688 4689
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4690
            if device:
4691
                device_index = int(device.split(':')[1])
4692
            else:
4693 4694
                # LR related ops
                device = None
4695
            if device and device_index != device_id: continue
4696
            op_desc = op.desc
4697
            ap_op = new_startup_program.global_block().desc.append_op()
4698 4699 4700
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4701
        self._create_vars(new_startup_program.global_block(), block)
4702 4703
        return new_startup_program

4704
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4705
        """
4706
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4707
        """
4708 4709 4710 4711 4712 4713
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4714 4715 4716 4717 4718 4719 4720 4721
        post_ops = self.input_var_to_op[var_name]
        if post_ops == None: return None
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4722

4723
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4724
        """
4725 4726
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4727
        """
4728 4729 4730 4731 4732 4733
        prev_ops = self.output_var_to_op[var_name]
        if prev_ops == None: return None
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4734
                break
4735
        return result_op
4736 4737

    def _rename_arg(self, op, old_name, new_name):
4738 4739
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4740

4741
    def _create_var(self, block, ref_var, name, dtype=None):
4742 4743 4744 4745 4746 4747 4748 4749
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4750
            dtype=ref_var.dtype if dtype is None else dtype,
4751 4752
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4753 4754
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4755
            need_check_feed=ref_var.desc.need_check_feed())
4756
        self._clone_var_attr(new_var, ref_var)
4757 4758
        return new_var

4759 4760 4761 4762 4763
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4764 4765 4766 4767 4768 4769
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4770

4771 4772 4773 4774 4775 4776
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4777
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4778
        """
4779
        Get the op_device attribute of a op.
H
hutuxian 已提交
4780
        """
4781 4782 4783
        device = op.attr(self._op_device_key) \
            if op.has_attr(self._op_device_key) else None
        if device:
B
Baibaifan 已提交
4784
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', "Now, only gpu and npu devices are " \
4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
                "supported in pipeline parallemism."
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4799
            op._set_attr(self._op_device_key, f"{self._device}:all")
4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
                assert '@RENAME@' in name, \
                    "The op must be sum used to accumulate renamed vars."
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
                'op_device'), "{} has no op_device attr for var {}".format(
                    post_op.type, out_name)
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4815 4816
        elif (op.type == "cast"
              or op.type == "scale") and self._is_backward_op(op):
4817
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4818 4819
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4820
            # for checkpoint offloading
4821 4822 4823 4824 4825
            assert len(op.input_arg_names) == 1 and len(
                op.output_arg_names) == 1
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4826
                post_op = self._find_post_op(idx, output_name)
4827 4828 4829
                op._set_attr(self._op_device_key,
                             post_op.attr(self._op_device_key))
            else:
4830
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4831 4832 4833 4834 4835
                op._set_attr(self._op_device_key,
                             prev_op.attr(self._op_device_key))
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
4836 4837
            while (not block.ops[idx + offset].has_attr(self._op_device_key)
                   or not block.ops[idx + offset].attr(self._op_device_key)):
4838 4839 4840 4841 4842 4843 4844 4845 4846
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4847
            param_name = self._strip_grad_suffix(grad_name[0])
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
            assert self._op_role_var_key in op.attr_names, "gradient_clip " \
                "and regularization ops must have op_role_var attribute."
            op_role_var = op.attr(self._op_role_var_key)
            assert len(op_role_var) == 2, "op_role_var for gradient_clip " \
                "regularization ops must have two elements."
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
4860
            # For sum op added by global gradient clip, it must be
4861
            # put on all devices
4862 4863 4864 4865
            if (op.type == 'sum' or op.type == 'sqrt'
                    or op.type == 'fill_constant'
                    or op.type == 'elementwise_max'
                    or op.type == 'elementwise_div'):
4866
                device = f"{self._device}:all"
4867
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
4868
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
4869
            op._set_attr(self._op_device_key, f"{self._device}:all")
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
4880 4881
        else:
            other_known_ops = [
R
Roc 已提交
4882
                'update_loss_scaling', 'reduce_any', 'concat', 'sum',
4883
                'check_finite_and_unscale', 'memcpy'
4884 4885 4886 4887 4888
            ]
            assert op.type in other_known_ops, "For other ops without " \
                "op_device set, they must be one of {}, but it " \
                "is {}".format(other_known_ops, op.type)
            assert self._is_optimize_op(op)
4889
            op._set_attr(self._op_device_key, f"{self._device}:all")
4890 4891

    def _add_op_device_attr(self, block):
4892
        """
4893 4894
        Add op_device attrribute for ops in block that have 
        not that attribute set.
4895
        """
4896
        for idx, op in enumerate(list(block.ops)):
4897 4898 4899
            if (op.type == "create_py_reader" or op.type == "read"
                    or op.type == "create_double_buffer_reader"):
                # Copy read related ops to all section to make them exit
4900 4901 4902 4903
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
4904
                op._set_attr(self._op_device_key, f"{self._device}:all")
4905 4906 4907 4908
                continue
            # op_device attribute has been set
            if self._get_op_device_attr(op): continue
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
4909

4910 4911
    def _check_validation(self, block):
        """
4912 4913 4914
        Check whether ops in a block have both the op_device and the 
        op_role attributes set.
        Then, return all devices in order.
4915
        """
4916 4917 4918 4919 4920 4921 4922 4923 4924 4925
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
4926
        for op in block.ops:
4927
            if not op._has_kernel(op.type):
4928 4929
                assert op.type == "conditional_block" and (op.attr(
                    self._op_role_key) == int(self._op_role.LRSched)), (
4930 4931
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
4932 4933 4934
            assert op.has_attr(
                self._op_role_key), ("op ({}) has no {} attribute.".format(
                    op.type, self._op_role_key))
4935 4936
            op_role = op.attr(self._op_role_key)
            assert int(op_role) in valid_op_role_value, \
4937
                "op_role {} for op {} must be one of {}".format(
4938
                    op_role,
4939 4940
                    op.type,
                    valid_op_role_value)
4941

4942 4943 4944
            assert op.has_attr(
                self._op_device_key), ("op ({}) has no {} attribute.".format(
                    op.type, self._op_device_key))
4945 4946 4947 4948

            device = op.attr(self._op_device_key)
            assert device, ("op_device attribute for op "
                            "{} has not been set.".format(op.type))
4949
            if device == f"{self._device}:all": continue
4950

4951
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
4952 4953 4954
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
                "for pipeline parallelism.")
4955 4956

            if device not in device_list:
4957
                device_list.append(device)
4958

4959
        return device_list
4960

4961
    def _insert_sendrecv_ops_for_boundaries(self, block):
4962
        """
4963
        Insert a pair of send and recv ops for every two
4964 4965
        consecutive ops on different devices.
        """
4966
        # A map from var to device where op takes it as input,
4967
        # avoiding multiple send and recv ops.
4968
        input_var_to_device = dict()
4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
            'first_optimize_index': first_optimize_index
        }
4979

4980
        for index, op in enumerate(list(block.ops)):
4981
            cur_device = op.attr(self._op_device_key)
4982
            if cur_device == f"{self._device}:all": continue
4983 4984
            for var_name in op.input_arg_names:
                var = block.var(var_name)
4985
                # skip data var
4986
                if var.is_data: continue
4987
                prev_device = None
4988 4989 4990

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
4991 4992
                    if var_name not in self._param_device_map:
                        continue
4993
                    prev_device = self._param_device_map[var_name]
4994

4995 4996 4997
                if not prev_device:
                    prev_device = prev_op.attr(self._op_device_key) \
                        if prev_op else None
4998

4999 5000
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
5001 5002

                if prev_device == cur_device: continue
5003

5004 5005 5006 5007 5008 5009 5010
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
                    assert is_forward or is_backward, \
                        'send/recv in pipeline should only be inserted in forward or backward,' \
                        'please check the op_role of op={}'.format(op)

                    if is_forward:
                        assert prev_id < cur_id, \
                            "In forward, send/recv can only be passed forward, but now " \
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
                                prev_id, cur_id, op)
                    elif is_backward:
                        assert prev_id > cur_id, \
                            "In backward, send/recv can only be passed backward, but now " \
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
                                prev_id, cur_id, op)

5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5053
                    var = block.vars[var_name]
5054 5055 5056
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5057 5058 5059 5060 5061 5062 5063
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5064

5065
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5066
                        block._insert_op_without_sync(
5067
                            index=index + extra_index_info['index'],
5068 5069 5070
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5071
                                self._op_device_key: prev_dev,
5072 5073 5074 5075 5076
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
                                'ring_id': ring_id
                            })
5077
                        extra_index_info['index'] += 1
5078 5079 5080
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]
F
fangshuixun007 已提交
5081
                        block._insert_op_without_sync(
5082
                            index=index + extra_index_info['index'],
5083 5084 5085
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5086
                                'out_shape': var_shape,
5087
                                'dtype': var.dtype,
5088
                                self._op_device_key: cur_dev,
5089 5090 5091 5092 5093
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
                                'ring_id': ring_id
                            })
5094
                        extra_index_info['index'] += 1
5095
                    elif self.schedule_mode == '1F1B':  # 1F1B
5096 5097 5098 5099
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]

5100
                        numel = np.prod(var_shape)
5101 5102
                        use_mp = (self.mp_degree > 1) and (numel %
                                                           self.mp_degree == 0)
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                })
                            extra_index_info['index'] += 1
                            return

5129 5130
                        _check_stage(cur_id, prev_id)

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
                        block._insert_op_without_sync(index=index +
                                                      extra_index_info['index'],
                                                      type='c_sync_calc_stream',
                                                      inputs={'X': [var]},
                                                      outputs={'Out': [var]},
                                                      attrs={
                                                          self._op_device_key:
                                                          prev_dev,
                                                          self._op_role_key:
                                                          op_role,
                                                      })
5142
                        extra_index_info['index'] += 1
5143 5144 5145 5146
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
                        is_param = True if isinstance(prefix_var,
                                                      Parameter) else False
F
fangshuixun007 已提交
5147
                        block._insert_op_without_sync(
5148
                            index=index + extra_index_info['index'],
5149 5150
                            type='send_v2'
                            if not use_mp or is_param else 'partial_send',
5151 5152
                            inputs={'X': var},
                            attrs={
5153
                                self._op_device_key: prev_dev,
5154 5155 5156 5157
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5158 5159 5160
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5161
                            })
5162
                        extra_index_info['index'] += 1
5163 5164 5165 5166 5167 5168 5169 5170
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
                                'first_optimize_index']
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5171
                        sync_comm_op = block._insert_op_without_sync(
5172
                            index=insert_index + extra_index_info['index'],
5173 5174 5175 5176
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5177
                                self._op_device_key: prev_dev,
5178
                                self._op_role_key: new_op_role,
5179 5180
                                'ring_id': ring_id,
                            })
5181
                        if int(op_role) == int(self._op_role.Forward):
5182
                            sync_comm_op._set_attr('pipeline_flag', '')
5183
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5184
                        block._insert_op_without_sync(
5185
                            index=index + extra_index_info['index'],
5186 5187
                            type='recv_v2'
                            if not use_mp or is_param else 'partial_recv',
5188 5189 5190 5191
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5192
                                self._op_device_key: cur_dev,
5193 5194 5195
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5196 5197 5198 5199
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5200
                            })
5201
                        extra_index_info['index'] += 1
5202
                        if use_mp and not is_param:
5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
                                })
                            extra_index_info['index'] += 1
5218 5219 5220 5221 5222
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
                            "The given value is {}.".format(self.schedule_mode))

5223 5224
                _insert_send_recv(int(cur_device.split(':')[1]),
                                  int(prev_device.split(':')[1]))
5225 5226
        block._sync_with_cpp()

5227
    def _insert_loss_scale(self, block):
5228
        """
5229
        Scale the loss corresponding to number of micro-batches.
5230
        """
5231
        if self._num_microbatches == 1: return
5232
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5233
            if self._is_loss_grad_op(op):
5234 5235 5236 5237 5238 5239 5240
                assert op.type == 'fill_constant', \
                    "loss_grad_op must be fill_constant op, " \
                    "but this op is {}".format(op.type)
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5241 5242
                break

5243 5244 5245 5246 5247 5248
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
            if not self._is_optimize_op(op): continue
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
L
lilong12 已提交
5249
            if op.type == 'cast' or op.type == "c_sync_comm_stream": continue
5250 5251 5252 5253 5254 5255 5256 5257
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
                if not core.grad_var_suffix() in name: continue
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5258 5259 5260
    def _accumulate_gradients(self,
                              block,
                              pp_allreduce_in_optimize=False,
5261 5262
                              strategy=None,
                              shard=None):
5263 5264 5265 5266
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5267 5268
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5269
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5270
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard)
5271 5272
            return fused_gradient_names

5273 5274 5275
        merged_gradient_names = []
        first_opt_op_idx = None

5276 5277 5278
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5279 5280 5281 5282 5283 5284 5285 5286
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5287
                    continue
5288

5289
            if self._is_backward_op(op) and first_opt_op_idx is None:
5290
                first_opt_op_idx = index + 1
5291 5292
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5293

5294 5295
            if self._is_backward_op(op) and (self._op_role_var_key
                                             in op.attr_names):
5296 5297
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0: continue
5298 5299
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5300 5301 5302 5303
                    offset = 0
                    param_name = op_role_var[i]
                    if not block.has_var(param_name): continue
                    if '@BroadCast' in param_name: continue
5304

5305
                    param_grad_name = param_name + core.grad_var_suffix()
5306
                    merged_param_grad_name = param_grad_name + merged_suffix
5307 5308
                    if not block.has_var(merged_param_grad_name):
                        self._create_var(block, block.vars[param_name],
5309
                                         merged_param_grad_name, dtype)
5310
                    assert block.has_var(merged_param_grad_name)
5311

5312 5313 5314
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5315
                    block._insert_op(
5316 5317 5318 5319
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5320
                        attrs={
5321 5322 5323 5324 5325 5326
                            'shape':
                            merged_param_grad_var.shape,
                            'dtype':
                            merged_param_grad_var.dtype,
                            'value':
                            float(0),
5327
                            # a trick to run this op once per mini-batch
5328 5329
                            self._op_role_key:
                            self._op_role.Optimize.LRSched,
5330 5331
                        })
                    offset += 1
5332 5333
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5334 5335 5336 5337 5338 5339 5340 5341 5342

                    is_fp16_grad = 'cast_fp16' in grad_name
                    need_cast = (is_fp16_grad is not fp16_allreduce)

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5343
                        cast_grad_var_name = param_grad_name + '@TMP'
5344 5345
                        cast_grad_var = self._create_var(
                            block, param_grad_var, cast_grad_var_name, dtype)
5346
                        cast_grad_var.persistable = False
5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358
                        block._insert_op(index=first_opt_op_idx + offset,
                                         type='cast',
                                         inputs={'X': grad_var},
                                         outputs={'Out': cast_grad_var},
                                         attrs={
                                             'in_dtype':
                                             grad_var.dtype,
                                             'out_dtype':
                                             cast_grad_var.dtype,
                                             self._op_role_key:
                                             self._op_role.Backward,
                                         })
5359
                        offset += 1
5360 5361 5362 5363 5364 5365 5366
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5367 5368 5369
                        attrs={
                            self._op_role_key: self._op_role.Backward,
                        })
5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

        if not fp16_allreduce: return merged_gradient_names

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5397 5398 5399 5400 5401 5402 5403 5404 5405
            block._insert_op(index=first_opt_op_idx,
                             type='cast',
                             inputs={'X': fp16_grad_var},
                             outputs={'Out': grad_var},
                             attrs={
                                 'in_dtype': fp16_grad_var.dtype,
                                 'out_dtype': grad_var.dtype,
                                 self._op_role_key: self._op_role.Optimize,
                             })
5406

5407
        return merged_gradient_names
5408

5409 5410 5411
    def _insert_accumulate_gradients_with_fuse(self, main_block, fp16,
                                               fused_size, grad_param_pairs,
                                               first_opt_op_idx):
5412 5413
        grad_param_pairs = self._sort_grad_param_by_dtype(
            main_block, grad_param_pairs)
5414

5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
        cur_size = 0.
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
                stop_gradient=False)
            real_param = main_block.var(param)
5431 5432
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
            if len(grad_param_segments) == 0 \
                    or cur_size + tmp_size > fused_size \
                    or real_grad.dtype != last_dtype:
                grad_param_segments.append(
                    ([real_grad], [real_param], [merged_grad_var]))
                last_dtype = real_grad.dtype
                cur_size = 0.
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5456 5457 5458 5459 5460
            fused_grad = main_block.create_var(name='FusedGrad_{}'.format(
                grad_segment[0].name),
                                               dtype=grad_segment[0].dtype,
                                               persistable=False,
                                               stop_gradient=False)
5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
            # keep the '.cast_fp16' info in the fuse var name
            fused_merged_grad_name_prefix = 'FusedMergedGrad.cast_fp16.' if \
                merged_grad_segment[0].dtype == paddle.float16 else 'FusedMergedGrad'
            fused_merged_grad_name = fused_merged_grad_name_prefix + '_{}'.format(
                merged_grad_segment[0].name)
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
                stop_gradient=False)
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5496 5497 5498 5499
                outputs={
                    "Output": grads,
                    "FusedOutput": fused_grad
                },
5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5516 5517 5518 5519 5520 5521 5522
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
                })
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
                    "FusedOutput": fused_merged_grad
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
                    self._op_role_key: self._op_role.Optimize.LRSched
                })
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
            need_cast = (is_fp16_grad is not fp16)
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572
                cast_grad_var = main_block.create_var(name=cast_grad_var_name,
                                                      dtype=dtype,
                                                      persistable=False,
                                                      stop_gradient=False)
                main_block._insert_op(index=first_opt_op_idx + offset,
                                      type='cast',
                                      inputs={'X': fused_grad},
                                      outputs={'Out': cast_grad_var},
                                      attrs={
                                          'in_dtype': fused_grad.dtype,
                                          'out_dtype': cast_grad_var.dtype,
                                          self._op_role_key:
                                          self._op_role.Backward,
                                      })
5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
                attrs={self._op_role_key: self._op_role.Backward})
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
                fp32_grad = main_block.create_var(name=fp32_grad_name,
                                                  dtype=paddle.float32,
                                                  shape=real_grad.shape,
                                                  persistable=False,
                                                  stop_gradient=False)
                main_block._insert_op(index=first_opt_op_idx + offset,
                                      type='cast',
                                      inputs={'X': fp16_grad},
                                      outputs={'Out': fp32_grad},
                                      attrs={
                                          'in_dtype': paddle.float16,
                                          'out_dtype': paddle.float32,
                                          self._op_role_key:
                                          self._op_role.Optimize,
                                      })
5606 5607 5608 5609 5610 5611
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5612
        return fused_merged_gradients, first_opt_op_idx
5613

5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
    def _accumulate_gradients_with_fuse(self,
                                        main_block,
                                        fp16,
                                        fused_size,
                                        shard=None):
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5638 5639
            if self._is_backward_op(op) and (self._op_role_var_key
                                             in op.attr_names):
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
                        (op_role_var[i + 1], op_role_var[i]))

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
            fused_merged_gradients, first_opt_op_idx = \
                self._insert_accumulate_gradients_with_fuse(
                    main_block, fp16, fused_size, pairs, first_opt_op_idx)
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5672

5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
        return reduce(lambda x, y: x * y,
                      var.shape) * dtype_to_size[var.dtype] / 1024.0 / 1024.0

5706 5707
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5708
        for prog in program_list:
5709 5710 5711 5712 5713 5714
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5715 5716
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5717 5718 5719
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5720
                self._create_vars(new_sub_block, origin_sub_block)
5721
                op._set_attr('sub_block', new_sub_block)
5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5738
        for prog in program_list:
5739 5740
            block = prog.block(0)
            for var_name in block.vars:
5741
                if var_name == "double_buffer_0": continue
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5759
                    if op.type == "recv_v2" or op.type == "create_py_reader" or \
5760
                        op.type == "read" or op.type == "update_loss_scaling":
5761
                        continue
5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5781
            write_dev_index = int(write_device.split(':')[1])
5782 5783 5784
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
5785 5786 5787
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
5788 5789 5790 5791 5792 5793 5794 5795 5796
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
5797 5798 5799

                write_block._insert_op(
                    index=0,
5800
                    type='send_v2',
5801 5802 5803
                    inputs={
                        'X': write_block.var(var_name),
                    },
5804
                    attrs={
5805 5806 5807 5808
                        self._op_device_key:
                        write_device,
                        'use_calc_stream':
                        False,
5809 5810
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5811 5812 5813 5814 5815 5816
                        self._op_role_key:
                        self._op_role.LRSched,
                        'peer':
                        read_dev_index,
                        'ring_id':
                        ring_id
5817 5818 5819
                    })
                read_block._insert_op(
                    index=0,
5820
                    type='recv_v2',
5821 5822
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5823 5824 5825 5826 5827 5828 5829 5830
                        'out_shape':
                        read_block.var(var_name).shape,
                        'dtype':
                        read_block.var(var_name).dtype,
                        self._op_device_key:
                        read_device,
                        'use_calc_stream':
                        False,
5831 5832
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5833 5834 5835 5836 5837 5838
                        self._op_role_key:
                        self._op_role.LRSched,
                        'peer':
                        write_dev_index,
                        'ring_id':
                        ring_id
5839
                    })
5840 5841 5842 5843 5844 5845
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5846 5847
                        self._op_device_key:
                        read_device,
5848 5849
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5850 5851 5852 5853
                        self._op_role_key:
                        self._op_role.LRSched,
                        'ring_id':
                        ring_id
5854 5855 5856 5857 5858 5859 5860 5861 5862
                    })

    def _is_gradient_clip_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/gradient_clip")

    def _is_regularization_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/regularization")
H
hutuxian 已提交
5863

5864 5865 5866 5867 5868
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
        return op.desc.has_attr("op_namescope") \
            and 'weight decay' in op.desc.attr("op_namescope")

5869 5870 5871 5872 5873
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
5874
        output_var_to_op = defaultdict(list)
5875
        # A map from var to op which takes it as input.
5876
        input_var_to_op = defaultdict(list)
5877

5878
        for index, op in enumerate(block.ops):
5879
            for var_name in op.input_arg_names:
5880
                input_var_to_op[var_name].append([op, index])
5881
            for var_name in op.output_arg_names:
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
        if self.schedule_mode != '1F1B': return

        block = program.block(0)

5894
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
5895 5896
        backward_recv_index = None
        for index, op in enumerate(block.ops):
5897
            if op.type == recv_type and self._is_backward_op(op):
5898 5899 5900
                backward_recv_index = index
                break

5901
        # last pipeline stage
5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
        if backward_recv_index is None: return

        offset = 0
        for index, op in enumerate(list(block.ops)):
            if index >= backward_recv_index: break
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
                    attrs={self._op_role_key: self._op_role.Backward})
        block._sync_with_cpp()
5925

5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
            if op_role == int(
                    self._op_role.Backward) and backward_insert_index is None:
                backward_insert_index = i
            if op.type != "partial_recv" and op.type != "partial_allgather" and op.type != "nop" and op.type != "recv_v2":
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
5962 5963 5964 5965 5966
            block._insert_op_without_sync(index=insert_index,
                                          type=op.type,
                                          inputs=op_inputs,
                                          outputs=op_outputs,
                                          attrs=op.all_attrs())
5967 5968 5969 5970 5971 5972 5973
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
            "forward and used in backward:\n{}".format(used_in_backward))

H
hutuxian 已提交
6003 6004 6005 6006 6007
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
6008
        main_block = loss.block
6009
        self.origin_main_block = main_block
6010
        main_program = main_block.program
6011 6012
        if startup_program is None:
            startup_program = default_startup_program()
6013

6014 6015
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6016 6017 6018 6019 6020 6021 6022
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6023 6024
            'mp_degree',
            'mp_rank',
6025 6026
        ]
        for key in required_keys:
6027
            assert key in pipeline_opt, \
6028
                'Please use pipeline with fleet to use {}.'.format(key)
6029 6030 6031 6032 6033 6034 6035 6036
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6037
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6038 6039
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6040 6041 6042 6043

        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._param_device_map = self._origin_optimizer._param_device_map
6044

6045 6046
        self.output_var_to_op, self.input_var_to_op = \
            self._get_input_output_info(main_block)
6047 6048 6049
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6061 6062 6063 6064 6065
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
            "another in the order of their ids.")
        # Step2: add send and recv ops between section boundaries
6066
        self._insert_sendrecv_ops_for_boundaries(main_block)
6067

6068
        # Step3: split program into sections and add pairs of
6069 6070
        # send and recv ops for data var.
        main_program = main_block.program
6071
        program_list = self._split_program(main_program, device_list)
6072
        for p in program_list:
6073
            self._create_vars(p.global_block(), main_block)
6074

L
lilong12 已提交
6075 6076 6077 6078 6079 6080 6081 6082
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
                "stages.")
        else:
            self.local_rank %= len(device_list)
6083 6084 6085
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6086
        # Step4: Special Case: process persistable vars that exist in
6087
        # multiple sections
6088
        # FIXME
6089 6090
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6091

6092
        # Step5: Add sub blocks for section programs
6093 6094
        self._add_sub_blocks(main_block, program_list)

6095
        place_list = []
6096 6097
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6098 6099 6100 6101
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6102

6103
        # Step6: Split startup program
6104 6105
        new_startup_program = self._split_startup_program(
            startup_program, self.local_rank)
6106 6107 6108 6109

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6110
        real_block = program_list[self.local_rank].global_block()
6111 6112
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6113
        if not self.use_sharding:
6114
            # Step7: clear gradients before each mini-batch and
6115 6116 6117 6118 6119
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6120

6121 6122 6123 6124
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6125 6126 6127
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6128 6129 6130 6131 6132

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6133
        main_program._pipeline_opt = {
H
hutuxian 已提交
6134 6135
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6136
            "pipeline_stage": self.local_rank,
6137
            "num_pipeline_stages": len(device_list),
6138
            "schedule_mode": self.schedule_mode,
6139
            "inner_parallelism": len(device_list),
6140 6141
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6142
            "place_id": place_id,
6143
            "sync_steps": -1,
L
lilong12 已提交
6144
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6145 6146
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6147
        return optimize_ops, params_grads, program_list, self._pipeline_pair, self._pp_ring_map
M
mapingshuo 已提交
6148 6149


M
mapingshuo 已提交
6150 6151
class RecomputeOptimizer(Optimizer):
    """
6152
	:api_attr: Static Graph
S
swtkiwi 已提交
6153

M
mapingshuo 已提交
6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
J
Jiabin Yang 已提交
6214
        if framework._non_static_mode():
Z
zhongpu 已提交
6215
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6216 6217
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6218 6219
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6220
        self.enable_offload = False
M
mapingshuo 已提交
6221 6222

    def _set_checkpoints(self, checkpoints):
6223 6224 6225 6226 6227 6228 6229 6230 6231
        """
        Args:
            checkpoints (list): List of Variable or string    
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
6232 6233
                isinstance(ckpt, six.string_types)
                or isinstance(ckpt, Variable)
6234
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6235 6236
        self._checkpoints = checkpoints

6237
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6238 6239 6240
    def _enable_offload(self):
        self.enable_offload = True

6241 6242
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6243
        """
6244
	    :api_attr: Static Graph
S
swtkiwi 已提交
6245

M
mapingshuo 已提交
6246 6247 6248 6249
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6250
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6274 6275
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6313
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6314 6315 6316 6317
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6318
                    no_grad_set=None)
M
mapingshuo 已提交
6319 6320 6321 6322 6323 6324 6325 6326 6327 6328

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=True)

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=False)

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
        to instantiate their tensor hold_, which could tell us whether 
        the host memory could hold all the checkpoints from all the 
        GPU devices in this node. 
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
                stop_gradient=True)
6371 6372 6373 6374 6375 6376 6377 6378 6379
            block.append_op(type='fill_constant',
                            outputs={'Out': varname},
                            attrs={
                                "shape": var.shape,
                                "dtype": var.dtype,
                                "value": 0.0,
                                "place_type": 2,
                                OP_ROLE_KEY: op_role,
                            })
J
JZ-LIANG 已提交
6380 6381 6382 6383

        return

    def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname,
6384
                                op_role, dst_place_type):
J
JZ-LIANG 已提交
6385 6386 6387 6388 6389 6390 6391 6392
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6393 6394 6395 6396
            attrs={
                "dst_place_type": int(dst_place_type),
                OP_ROLE_KEY: op_role
            })
J
JZ-LIANG 已提交
6397 6398 6399 6400 6401 6402 6403

    def _insert_fetch_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname)

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6404
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6405 6406 6407 6408 6409

    def _insert_offload_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname)
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6410
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6411 6412

    def _insert_sync_op(self, op_idx, checkpoint_name):
6413
        # single stream offload no need sync
J
JZ-LIANG 已提交
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441
        pass

    def _record_fetch_op(self, idx):
        assert len(self.un_fetch_checkpoint_names
                   ) > 0, "Could NOT found checkpoint to fetch"
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
        assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name)
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
        assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format(
            checkpoint_name)
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6442
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
            self.block.ops), "Could NOT found backword op in prog"

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
            self.bw_strart_op_idx)
        last_last_fetch_checkpoint = None

        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]):
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
                            second_to_last_fetch_checkpoint = fetched_checkpoint_varname
6475
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6476 6477 6478 6479
                            if input_var != self.sorted_checkpoint_names[0]:
                                fetched_checkpoint_varname = self._record_fetch_op(
                                    idx)

6480
                        # should check the current used checkpoint is ths last fetch one
J
JZ-LIANG 已提交
6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
                        assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var)
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
                            self.checkpoint_name2fetch_name[input_var])
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
                                input_var))

        assert len(self.un_fetch_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6506 6507
                    logging.debug(
                        "Insert [{}] fetch op.".format(checkpoint_name))
J
JZ-LIANG 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
        assert len(
            self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format(
                [ele[1] for ele in self.idx2insertions.values()])

    def _parse_forward(self):

        self.idx2insertions = {}
6520
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
                'idx': -1
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
            self.block.ops), "Could NOT found Forward op in prog"
        last_offload_checkpoint = None

6541 6542
        for i, op in enumerate(
                self.block.ops[self.fw_strart_op_idx:self.bw_strart_op_idx]):
J
JZ-LIANG 已提交
6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
                            if self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['count'] == 0:
                                self._record_sync_op(idx,
                                                     last_offload_checkpoint)
                            else:
                                last_usage_idx = self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['idx']
                                assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint)
                                self._record_sync_op(last_usage_idx + 1,
                                                     last_offload_checkpoint)
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6574 6575
                            "There should be just ONE op that output checkpoint [{}]"
                            .format(output_var))
J
JZ-LIANG 已提交
6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)
                    assert last_offload_checkpoint == self.sorted_checkpoint_names[
                        -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                            last_checkpoint, self.sorted_checkpoint_names[-2],
                            last_offload_checkpoint)
                    # sync if last checkpoint has not been sync
                    if self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx'] == 0:
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx']
                        assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint)
                        self._record_sync_op(last_usage_idx + 1,
                                             last_offload_checkpoint)
6597
            # record checkpoint usage
J
JZ-LIANG 已提交
6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
                    assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format(
                        input_var)
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

        assert len(self.un_offload_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints))

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
                range(self.fw_strart_op_idx, self.bw_strart_op_idx)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6622 6623
                    logging.debug(
                        "Insert [{}] offload op.".format(checkpoint_name))
J
JZ-LIANG 已提交
6624 6625 6626
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
6627 6628
                    logging.debug(
                        "Insert [{}] offload_sync op.".format(checkpoint_name))
J
JZ-LIANG 已提交
6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
        assert len(self.idx2insertions
                   ) == 0, "{} checkpoints left un-Offloaded".format(
                       [ele[1] for ele in self.idx2insertions.values()])

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
        1. create pinned vars and temp vars 
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
J
JZ-LIANG 已提交
6651
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
6652 6653 6654

        with program_guard(self._main_program, startup_program):
            assert len(self.checkpoint_shape) > 0, (
6655 6656
                "checkpoints shape {} should be an non empty list like: [12, 512, 1024]"
                .format(self.checkpoint_shape))
J
JZ-LIANG 已提交
6657
            assert all([ele > 0 for ele in self.checkpoint_shape]), (
6658 6659
                "all ele in checkpoints shape {} should be a determined integer larger than 0"
                .format(self.checkpoint_shape))
J
JZ-LIANG 已提交
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
                    checkpoint_varname)
                self.checkpoint_name2pinned_name[
                    checkpoint_varname] = pinned_var_name
                self.checkpoint_name2fetch_name[
                    checkpoint_varname] = fetch_var_name
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

M
mapingshuo 已提交
6682 6683 6684 6685 6686
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
6687
                 callbacks=None):
M
mapingshuo 已提交
6688 6689 6690 6691 6692 6693 6694
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
6695 6696
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6721
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6722 6723 6724 6725
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6726
                    no_grad_set=None)
M
mapingshuo 已提交
6727 6728
                print("Finished backward")
        """
6729 6730
        assert (self._checkpoints
                is not None), "You should call _set_checkpoints first"
M
mapingshuo 已提交
6731

J
Jiabin Yang 已提交
6732
        if framework._non_static_mode():
M
mapingshuo 已提交
6733 6734 6735 6736 6737 6738
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
6739 6740 6741 6742 6743 6744 6745
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
6746 6747 6748 6749 6750 6751 6752 6753
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)
            else:
6754 6755 6756 6757
                params_grads = append_backward(loss,
                                               parameter_list,
                                               no_grad_set,
                                               checkpoints=checkpoint_vars)
J
JZ-LIANG 已提交
6758 6759 6760 6761 6762

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
6782
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
6783 6784 6785 6786 6787 6788 6789 6790
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6791
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6792 6793 6794 6795
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6796
                    no_grad_set=None)
M
mapingshuo 已提交
6797 6798 6799 6800 6801 6802 6803
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
        """

Y
Yuang Liu 已提交
6804 6805 6806
        func = self._optimizer.apply_optimize if hasattr(
            self._optimizer,
            'apply_optimize') else self._optimizer._apply_optimize
6807 6808 6809
        return func(loss,
                    startup_program=startup_program,
                    params_grads=params_grads)
M
mapingshuo 已提交
6810 6811 6812 6813 6814

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
6815
                 no_grad_set=None):
6816
        assert isinstance(loss, Variable), "The loss should be an Variable."
6817 6818
        assert (self._checkpoints
                is not None), "You should call _set_checkpoints first"
J
Jiabin Yang 已提交
6819
        if framework._non_static_mode():
M
mapingshuo 已提交
6820 6821
            raise NotImplementedError(
                "DyGraph current does not support recompute")
6822 6823 6824 6825
        params_grads = self.backward(loss,
                                     startup_program=startup_program,
                                     parameter_list=parameter_list,
                                     no_grad_set=no_grad_set)
M
mapingshuo 已提交
6826

6827 6828 6829
        optimize_ops = self.apply_optimize(loss,
                                           startup_program=startup_program,
                                           params_grads=params_grads)
M
mapingshuo 已提交
6830 6831 6832 6833

        return optimize_ops, params_grads


M
mapingshuo 已提交
6834
class LookaheadOptimizer(object):
6835
    r"""
6836
	:api_attr: Static Graph
S
swtkiwi 已提交
6837

M
mapingshuo 已提交
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
6863
            import numpy.random as random
M
mapingshuo 已提交
6864

6865 6866 6867 6868 6869 6870
            paddle.enable_static()
        
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
6871
            loss = paddle.mean(x=loss)
6872 6873 6874 6875 6876 6877 6878 6879 6880
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
6881

6882 6883 6884 6885 6886 6887 6888 6889 6890 6891
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
            
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
            
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
6892 6893 6894 6895 6896

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

J
Jiabin Yang 已提交
6897
        if framework._non_static_mode():
Z
zhongpu 已提交
6898
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
6927 6928 6929 6930
            slow_var = main_block.create_var(name=param + "@SLOW",
                                             shape=fast_var.shape,
                                             dtype=fast_var.dtype,
                                             persistable=True)
M
mapingshuo 已提交
6931 6932 6933 6934 6935 6936 6937
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
6938 6939 6940 6941
            slow_var = startup_block.create_var(name=param + "@SLOW",
                                                shape=fast_var.shape,
                                                dtype=fast_var.dtype,
                                                persistable=True)
M
mapingshuo 已提交
6942

6943 6944 6945
            startup_block.append_op(type="assign",
                                    inputs={"X": fast_var},
                                    outputs={"Out": slow_var})
M
mapingshuo 已提交
6946

6947 6948
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
6949 6950 6951 6952 6953
            k = layers.create_global_var(name="lookahead_k",
                                         shape=[1],
                                         value=int(self.k),
                                         dtype='int32',
                                         persistable=True)
M
mapingshuo 已提交
6954

6955
            # Add Var alpha to main prog and startup prog
6956 6957 6958 6959 6960
            alpha = layers.create_global_var(name="lookahead_alpha",
                                             shape=[1],
                                             value=float(self.alpha),
                                             dtype='float32',
                                             persistable=True)
M
mapingshuo 已提交
6961

6962
            # Add Var step
6963 6964 6965 6966 6967
            step = layers.create_global_var(name="lookahead_step",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True)
6968 6969 6970
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
6971 6972 6973
            zero_var = layers.fill_constant(shape=[1],
                                            dtype='float32',
                                            value=0.0)
6974

6975 6976 6977
            one_var = layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.0)
6978 6979 6980

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
6981 6982 6983 6984 6985
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
6999
        return mini_out
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7057 7058
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7059
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
J
Jiabin Yang 已提交
7060
        if framework._non_static_mode():
7061 7062 7063 7064 7065 7066
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
7067 7068
        assert (isinstance(k_steps, int)
                and k_steps > 0), "k_steps should be a positive integer"
7069 7070 7071 7072 7073

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7074
        self._optimize_ops = None
7075

7076 7077 7078 7079 7080 7081
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7082
    def backward(self,
7083 7084 7085
                 loss,
                 startup_program=None,
                 parameter_list=None,
7086 7087
                 no_grad_set=None,
                 callbacks=None):
7088 7089 7090 7091 7092 7093 7094 7095 7096 7097
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
        assert self._is_the_backward_op(op), \
            'grad.op={} is not the backward op which produces the grad={}' \
            .format(op, grad.name)

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
        assert param.name in var_attr, \
            'when using GradientMergeOptimizer, param={} must be in var_attr={}' \
            .format(param.name, var_attr)
        assert grad.name in var_attr, \
            'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \
            .format(param.name, var_attr)

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167
        k_step_var = layers.create_global_var(name="gradient_merge_k",
                                              shape=[1],
                                              value=int(self.k_steps),
                                              dtype='int32',
                                              persistable=True,
                                              force_cpu=True)

        zero_var = layers.create_global_var(name="gradient_merge_zero",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True,
                                            force_cpu=True)
7168 7169

        # Add step var & cond var
7170 7171 7172 7173 7174 7175
        step_var = layers.create_global_var(name="gradient_merge_step",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True,
                                            force_cpu=True)
7176

7177 7178 7179
        cond_var = main_block.create_var(name="gradient_merge_cond",
                                         shape=[1],
                                         dtype='bool')
7180 7181 7182 7183

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
            main_block.append_op(type='elementwise_mod',
                                 inputs={
                                     'X': step_var,
                                     'Y': k_step_var
                                 },
                                 outputs={'Out': step_var},
                                 attrs={
                                     'axis': -1,
                                     'use_mkldnn': False
                                 })
7194 7195

            # cond_var = (step_var == 0)
7196 7197 7198 7199 7200 7201
            main_block.append_op(type='equal',
                                 inputs={
                                     'X': step_var,
                                     'Y': zero_var
                                 },
                                 outputs={'Out': cond_var})
7202 7203 7204 7205 7206 7207 7208 7209 7210 7211

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7212 7213

        #TODO(mapingshuo) support sparse embedding
7214 7215
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7216
            assert (
7217
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7218 7219
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7220
            self._remove_op_role_var(param, grad)
7221

7222
        param_to_grad = {k.name: v for (k, v) in params_grads}
7223 7224 7225
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7226 7227 7228 7229 7230
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7231 7232
            param_var = main_block.var(param_name)
            assert (param_var is not None)
7233 7234 7235 7236 7237
            gradient_merge_var = main_block.create_var(name=param_name +
                                                       "@GRAD@GradientMerge",
                                                       shape=param_var.shape,
                                                       dtype=param_var.dtype,
                                                       persistable=True)
7238
            param_to_gradient_merge[param_name] = gradient_merge_var
7239

7240 7241 7242 7243 7244
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
7245 7246 7247 7248 7249 7250 7251
            startup_block.append_op(type="fill_constant",
                                    outputs={"Out": startup_gradient_merge_var},
                                    attrs={
                                        "shape": param_var.shape,
                                        "dtype": param_var.dtype,
                                        "value": float(0),
                                    })
7252

7253 7254 7255
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7256 7257 7258 7259
                inputs={
                    'X': grad,
                    'Y': gradient_merge_var
                },
7260
                outputs={'Out': gradient_merge_var},
7261 7262 7263 7264
                attrs={
                    'axis': -1,
                    'use_mkldnn': False
                })
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274
            self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var,
                                     cond)
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7275
            op_maker = core.op_proto_and_checker_maker
7276 7277 7278 7279

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7280 7281 7282 7283 7284 7285 7286 7287
                    cur_block.append_op(type='scale',
                                        inputs={'X': new_grad},
                                        outputs={'Out': new_grad},
                                        attrs={
                                            'scale': 1.0 / self.k_steps,
                                            'bias': 0.0,
                                            'bias_after_scale': False
                                        })
7288 7289
                    new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                          op_maker.OpRole.Backward)
7290

7291 7292 7293 7294 7295 7296
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7297

7298 7299
            self._optimize_ops = self.inner_optimizer.apply_gradients(
                new_params_grads)
7300

7301 7302
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7303 7304 7305 7306
                layers.fill_constant(shape=new_grad.shape,
                                     dtype=new_grad.dtype,
                                     value=0.0,
                                     out=new_grad)
7307 7308
                new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                      op_maker.OpRole.Optimize)
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        assert isinstance(loss, Variable), "The loss should be an Variable."

7322 7323 7324 7325
        params_grads = self.backward(loss,
                                     startup_program=startup_program,
                                     parameter_list=parameter_list,
                                     no_grad_set=no_grad_set)
7326

7327 7328 7329
        optimize_ops = self.apply_optimize(loss,
                                           startup_program=startup_program,
                                           params_grads=params_grads)
7330 7331

        return optimize_ops, params_grads