Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
45c9f2a6
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
45c9f2a6
编写于
3月 11, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix bugs in piecewise decay
test=develop
上级
a424ab49
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
184 addition
and
99 deletion
+184
-99
python/paddle/fluid/imperative/__init__.py
python/paddle/fluid/imperative/__init__.py
+4
-0
python/paddle/fluid/imperative/learning_rate_scheduler.py
python/paddle/fluid/imperative/learning_rate_scheduler.py
+14
-15
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+15
-4
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
+133
-69
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+18
-11
未找到文件。
python/paddle/fluid/imperative/__init__.py
浏览文件 @
45c9f2a6
...
...
@@ -26,8 +26,12 @@ from .nn import *
from
.
import
tracer
from
.tracer
import
*
from
.
import
learning_rate_scheduler
from
.learning_rate_scheduler
import
*
__all__
=
[]
__all__
+=
layers
.
__all__
__all__
+=
base
.
__all__
__all__
+=
nn
.
__all__
__all__
+=
tracer
.
__all__
__all__
+=
learning_rate_scheduler
.
__all__
python/paddle/fluid/imperative/learning_rate_scheduler.py
浏览文件 @
45c9f2a6
...
...
@@ -14,13 +14,9 @@
from
__future__
import
print_function
from
..
import
layers
from
..
import
unique_name
__all__
=
[
'ExponentialDecay'
,
'NaturalExpDecay'
,
'InverseTimeDecay'
,
'PolynomialDecay'
,
'PiecewiseDecay'
,
'NoamDecay'
]
__all__
=
[
'PiecewiseDecay'
]
class
LearningRateDecay
(
object
):
...
...
@@ -28,32 +24,35 @@ class LearningRateDecay(object):
Base class of learning rate decay
"""
def
__init__
(
self
,
step
,
dtype
=
'float32'
):
self
.
step
=
step
def
__init__
(
self
,
begin
=
0
,
step
=
1
,
dtype
=
'float32'
):
self
.
step_num
=
begin
self
.
step_size
=
step
self
.
dtype
=
dtype
def
__call__
(
self
):
lr
=
self
.
step
()
if
isinstance
(
lr
,
float
):
lr
=
self
.
_create_lr_var
(
lr
)
self
.
step
+=
1
self
.
step
_num
+=
self
.
step_size
return
lr
def
create_lr_var
(
lr
):
def
create_lr_var
(
self
,
lr
):
from
..
import
layers
lr
=
layers
.
create_global_var
(
name
=
unique_name
.
generate
(
"learning_rate"
),
shape
=
[
1
],
value
=
float
(
lr
),
dtype
=
self
.
dtype
,
persistable
=
True
)
return
lr
def
step
(
self
):
raise
NotImplementedError
()
class
PiecewiseDecay
(
object
):
def
__init__
(
self
,
boundaries
,
values
,
step
,
dtype
=
'float32'
):
super
(
PiecewiseDecay
,
self
).
__init__
(
step
,
dtype
)
class
PiecewiseDecay
(
LearningRateDecay
):
def
__init__
(
self
,
boundaries
,
values
,
begin
,
step
=
1
,
dtype
=
'float32'
):
super
(
PiecewiseDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
boundaries
=
boundaries
self
.
values
=
values
...
...
@@ -62,7 +61,7 @@ class PiecewiseDecay(object):
self
.
vars
.
append
(
self
.
create_lr_var
(
value
))
def
step
(
self
):
for
i
in
range
(
len
(
boundaries
)):
if
self
.
step
<=
boundaries
[
i
]:
for
i
in
range
(
len
(
self
.
boundaries
)):
if
self
.
step
_num
<
self
.
boundaries
[
i
]:
return
self
.
vars
[
i
]
return
self
.
vars
[
len
(
values
)
-
1
]
return
self
.
vars
[
len
(
self
.
values
)
-
1
]
python/paddle/fluid/optimizer.py
浏览文件 @
45c9f2a6
...
...
@@ -31,6 +31,7 @@ from .layer_helper import LayerHelper
from
.layers
import
ops
from
.regularizer
import
append_regularization_ops
from
.imperative
import
base
as
imperative_base
from
.imperative.learning_rate_scheduler
import
LearningRateDecay
__all__
=
[
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'Ftrl'
,
...
...
@@ -50,9 +51,19 @@ class Optimizer(object):
"""
def
__init__
(
self
,
learning_rate
,
regularization
=
None
,
name
=
None
):
if
not
isinstance
(
learning_rate
,
float
)
and
\
not
isinstance
(
learning_rate
,
framework
.
Variable
):
raise
TypeError
(
"learning rate should be float or Variable"
)
if
framework
.
_in_imperative_mode
():
if
not
isinstance
(
learning_rate
,
float
)
and
\
not
isinstance
(
learning_rate
,
LearningRateDecay
):
raise
TypeError
(
"learning rate should be float or LearningRateDecay, got %s here"
%
type
(
learning_rate
))
else
:
if
not
isinstance
(
learning_rate
,
float
)
and
\
not
isinstance
(
learning_rate
,
framework
.
Variable
):
raise
TypeError
(
"learning rate should be float or Variable, got %s here"
%
type
(
learning_rate
))
self
.
_name
=
name
self
.
regularization
=
regularization
self
.
_learning_rate
=
learning_rate
...
...
@@ -83,7 +94,7 @@ class Optimizer(object):
dtype
=
'float32'
if
self
.
_dtype
is
None
else
self
.
_dtype
,
persistable
=
True
)
# get learning rate Variable from LearningRateDecay
elif
isinstance
(
self
.
_learning_rate
,
imperative
.
LearningRateDecay
):
elif
isinstance
(
self
.
_learning_rate
,
LearningRateDecay
):
self
.
_learning_rate_map
[
framework
.
default_main_program
(
)]
=
self
.
_learning_rate
()
else
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_mnist.py
浏览文件 @
45c9f2a6
...
...
@@ -23,70 +23,130 @@ import paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.imperative.nn
import
FC
from
paddle.fluid.imperative.nn
import
Conv2D
,
Pool2D
,
FC
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
self
.
_fc1
=
FC
(
10
)
self
.
_fc2
=
FC
(
10
)
class
SimpleImgConvPool
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
,
num_channels
,
num_filters
,
filter_size
,
pool_size
,
pool_stride
,
pool_padding
=
0
,
pool_type
=
'max'
,
global_pooling
=
False
,
conv_stride
=
1
,
conv_padding
=
0
,
conv_dilation
=
1
,
conv_groups
=
1
,
act
=
None
,
use_cudnn
=
False
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
SimpleImgConvPool
,
self
).
__init__
(
name_scope
)
self
.
_conv2d
=
Conv2D
(
self
.
full_name
(),
num_channels
=
num_channels
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
conv_stride
,
padding
=
conv_padding
,
dilation
=
conv_dilation
,
groups
=
conv_groups
,
param_attr
=
None
,
bias_attr
=
None
,
use_cudnn
=
use_cudnn
)
self
.
_pool2d
=
Pool2D
(
self
.
full_name
(),
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
)
def
forward
(
self
,
inputs
):
y
=
self
.
_fc1
(
inputs
)
y
=
self
.
_fc2
(
y
)
return
y
x
=
self
.
_conv2d
(
inputs
)
x
=
self
.
_pool2d
(
x
)
return
x
class
TestImperativeOptimizerBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
s
elf
.
batch_num
=
2
class
MNIST
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
name_scope
):
s
uper
(
MNIST
,
self
).
__init__
(
name_scope
)
def
get_optimizer
(
self
):
self
.
optimizer
=
SGDOptimizer
(
learning_rate
=
1e-3
)
self
.
_simple_img_conv_pool_1
=
SimpleImgConvPool
(
self
.
full_name
(),
1
,
20
,
5
,
2
,
2
,
act
=
"relu"
)
def
test_optimizer_float32
(
self
):
self
.
_simple_img_conv_pool_2
=
SimpleImgConvPool
(
self
.
full_name
(),
20
,
50
,
5
,
2
,
2
,
act
=
"relu"
)
pool_2_shape
=
50
*
4
*
4
SIZE
=
10
scale
=
(
2.0
/
(
pool_2_shape
**
2
*
SIZE
))
**
0.5
self
.
_fc
=
FC
(
self
.
full_name
(),
10
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)),
act
=
"softmax"
)
def
forward
(
self
,
inputs
):
x
=
self
.
_simple_img_conv_pool_1
(
inputs
)
x
=
self
.
_simple_img_conv_pool_2
(
x
)
x
=
self
.
_fc
(
x
)
return
x
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_float32
(
self
):
seed
=
90
epoch_num
=
1
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
m
lp
=
MLP
(
)
s
elf
.
get_optimizer
(
)
m
nist
=
MNIST
(
"mnist"
)
s
gd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
dy_param_init_value
=
{}
for
batch_id
,
data
in
enumerate
(
train_reader
()
):
if
batch_id
>=
self
.
batch_num
:
break
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
dy_x
_data
)
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
cost
=
mlp
(
img
)
avg_loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
dy_out
=
avg_loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_
parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
self
.
optimizer
.
minimize
(
avg_loss
)
mlp
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
())
:
dy_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
128
,
1
)
img
=
to_variable
(
dy_x_data
)
label
=
to_variable
(
y
_data
)
label
.
_stop_gradient
=
True
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
dy_out
=
avg_loss
.
_numpy
()
if
epoch
==
0
and
batch_id
==
0
:
for
param
in
mnist
.
parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
sgd
.
minimize
(
avg_loss
)
mnist
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
mnist
.
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
...
...
@@ -95,8 +155,8 @@ class TestImperativeOptimizerBase(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
MNIST
()
s
elf
.
get_optimizer
(
)
mnist
=
MNIST
(
"mnist"
)
s
gd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
...
...
@@ -104,8 +164,9 @@ class TestImperativeOptimizerBase(unittest.TestCase):
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
avg_loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
optimizer
.
minimize
(
avg_loss
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
sgd
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
...
...
@@ -119,26 +180,29 @@ class TestImperativeOptimizerBase(unittest.TestCase):
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
self
.
batch_num
:
break
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
for
epoch
in
range
(
epoch_num
):
for
batch_id
,
data
in
enumerate
(
train_reader
()):
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
([
128
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
self
.
assertTrue
(
np
.
allclose
(
dy_x_data
.
all
(),
static_x_data
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
45c9f2a6
...
...
@@ -29,9 +29,11 @@ from test_imperative_base import new_program_scope
class
MLP
(
fluid
.
imperative
.
Layer
):
def
__init__
(
self
,
param_attr
=
None
,
bias_attr
=
None
):
self
.
_fc1
=
FC
(
10
)
self
.
_fc2
=
FC
(
10
)
def
__init__
(
self
,
name_scope
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MLP
,
self
).
__init__
(
name_scope
)
self
.
_fc1
=
FC
(
self
.
full_name
(),
10
)
self
.
_fc2
=
FC
(
self
.
full_name
(),
10
)
def
forward
(
self
,
inputs
):
y
=
self
.
_fc1
(
inputs
)
...
...
@@ -41,10 +43,15 @@ class MLP(fluid.imperative.Layer):
class
TestImperativeOptimizerBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
batch_num
=
2
self
.
batch_num
=
10
def
get_optimizer
(
self
):
self
.
optimizer
=
SGDOptimizer
(
learning_rate
=
1e-3
)
bd
=
[
3
,
6
,
9
]
self
.
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
[
0.1
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]))
return
self
.
optimizer
def
test_optimizer_float32
(
self
):
seed
=
90
...
...
@@ -52,8 +59,8 @@ class TestImperativeOptimizerBase(unittest.TestCase):
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
mlp
=
MLP
()
self
.
get_optimizer
()
mlp
=
MLP
(
'mlp'
)
optimizer
=
self
.
get_optimizer
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
...
...
@@ -81,7 +88,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
self
.
optimizer
.
minimize
(
avg_loss
)
optimizer
.
minimize
(
avg_loss
)
mlp
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
...
...
@@ -95,8 +102,8 @@ class TestImperativeOptimizerBase(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
M
NIST
(
)
self
.
get_optimizer
()
mnist
=
M
LP
(
'mlp'
)
optimizer
=
self
.
get_optimizer
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
...
...
@@ -105,7 +112,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
avg_loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
self
.
optimizer
.
minimize
(
avg_loss
)
optimizer
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录