optimizer.py 61.6 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
from collections import defaultdict
S
rename  
sneaxiy 已提交
18
from .wrapped_decorator import signature_safe_contextmanager
19

20
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
Q
Qiao Longfei 已提交
21
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
22

23 24
from . import framework
from . import layers
25
from . import unique_name
26
from .backward import append_backward
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
M
minqiyang 已提交
33
from .imperative import base as imperative_base
M
minqiyang 已提交
34
from .imperative.learning_rate_scheduler import LearningRateDecay
35

36
__all__ = [
Q
qiaolongfei 已提交
37
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad', 'Ftrl',
38
    'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
W
weixing02 已提交
39
    'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
40 41
    'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer'
42
]
Q
Qiao Longfei 已提交
43 44 45 46 47 48


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
49 50
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
51 52
    """

X
Xin Pan 已提交
53
    def __init__(self, learning_rate, regularization=None, name=None):
M
minqiyang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
        if framework._in_imperative_mode():
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))

W
whs 已提交
67
        self._name = name
D
dzhwinter 已提交
68
        self.regularization = regularization
69
        self._learning_rate = learning_rate
D
dzhwinter 已提交
70 71
        # the learning rate type should be inferenced from loss
        self._dtype = None
72
        # each program should have a independent learning rate
73
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
74
        self._learning_rate_map = dict()
75
        if isinstance(self._learning_rate, framework.Variable):
76 77
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
78 79 80 81 82
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
83
        self.helper = None
84 85 86 87
        self._opti_name_list = []

    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
88

Q
Qiao Longfei 已提交
89
    def _create_global_learning_rate(self):
90 91 92 93 94 95 96 97 98 99 100
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
                self._learning_rate_map[framework.default_main_program(
                )] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype='float32' if self._dtype is None else self._dtype,
                    persistable=True)
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
101
            elif isinstance(self._learning_rate, LearningRateDecay):
102 103 104 105 106 107
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
                raise TypeError(
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
108
        else:
109 110 111 112 113
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return

114
            if not isinstance(self._learning_rate, float):
Q
qiaolongfei 已提交
115
                raise TypeError(
116 117
                    "learning rate variable is create outside optimizer,"
                    "can not create new learning rate variable for new program")
Q
Qiao Longfei 已提交
118

119 120 121 122 123 124 125 126
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
127

Y
yuyang18 已提交
128
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
129 130 131 132
        """
        get global decayed learning rate
        :return:
        """
133 134
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
135
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
136

Q
Qiao Longfei 已提交
137 138 139 140 141
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

142 143 144 145
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
146 147
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
148
        else:
W
Wu Yi 已提交
149
            if param_lr == 1.0:
Y
yuyang18 已提交
150
                return self._global_learning_rate()
W
Wu Yi 已提交
151
            else:
X
Xin Pan 已提交
152 153 154
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
155
                    return self._global_learning_rate() * param_lr
156 157 158 159 160 161 162

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
163
        """
164 165
        pass

166
    def _finish_update(self, block, parameters_and_grads):
167 168 169 170 171 172 173 174
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
175
            None
176 177 178
        """
        pass

179 180 181 182 183 184
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
                         shape=None):
185 186 187 188 189 190 191 192 193
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
194 195
        if self._name is not None:
            name = self._name + "_" + name
196 197
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
M
minqiyang 已提交
198 199
            if framework._in_imperative_mode():
                return self._accumulators[name][param.name]
200
            raise Exception("Accumulator {} already exists for parameter {}".
201
                            format(name, param.name))
202 203
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
204
        assert isinstance(self.helper, LayerHelper)
205 206 207 208 209

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
210
        var = self.helper.create_global_variable(
211
            name=var_name,
Q
Qiao Longfei 已提交
212
            persistable=True,
F
fengjiayi 已提交
213
            dtype=dtype or param.dtype,
Q
Qiao Longfei 已提交
214
            type=param.type,
215
            shape=shape)
Q
Qiao Longfei 已提交
216
        self.helper.set_variable_initializer(
217
            var, initializer=Constant(value=float(fill_value)))
Q
Qiao Longfei 已提交
218
        self._accumulators[name][param.name] = var
219
        return var
220 221 222 223 224 225 226 227 228 229 230

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
231 232
        if self._name is not None:
            name = self._name + "_" + name
233 234 235 236 237 238
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

239
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
240 241 242
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
243
          parameters_and_grads(list(tuple(Variable, Variable))):
244
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
245 246

        Returns:
247
          return_op_list: a list of operators that will complete one step of
248 249 250
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
251
        """
252 253 254 255 256
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
257
        # for parameters and extend _finish_update method to add custom ops.
258

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        # Allways called under program_guard use global block as loss block
        global_block = framework.default_main_program().global_block()
        start = len(global_block.ops)
        self.helper = LayerHelper(self.__class__.__name__)
        self._create_accumulators(global_block,
                                  [p[0] for p in parameters_and_grads])
        self._create_global_learning_rate()

        optimize_ops = []
        for param_and_grad in parameters_and_grads:
            if param_and_grad[1] is None:
                continue
            with param_and_grad[0].block.program._optimized_guard(
                    param_and_grad), name_scope("optimizer"):
                if param_and_grad[0].trainable is True:
                    optimize_op = self._append_optimize_op(global_block,
                                                           param_and_grad)
                    optimize_ops.append(optimize_op)

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
        self._finish_update(global_block, parameters_and_grads)

        end = len(global_block.ops)
        return global_block._slice_ops(start, end)

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
286 287 288 289 290 291 292 293 294
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
295 296
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
312 313 314 315 316 317 318 319 320 321 322 323 324
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
325 326
        return new_param_grads, (table_param, table_grad), sgd_op

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
        First part of `minimize`, do auto-diff to append backward ops for
        the current program.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
M
minqiyang 已提交
345

346 347
        Return:
            list: list of (param, grad) pair, grad is the output of backward.
M
minqiyang 已提交
348

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
        Examples:
            See examples in `apply_gradients`.
        """
        if callbacks is None:
            callbacks = [error_clip_callback]
        else:
            assert (isinstance(callbacks, list))
            callbacks.append(error_clip_callback)
        return append_backward(loss, parameter_list, no_grad_set, callbacks)

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
366

367 368
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        Examples:
            .. code-block:: python

                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

Q
Qiao Longfei 已提交
398 399
    def minimize(self,
                 loss,
400
                 startup_program=None,
Q
Qiao Longfei 已提交
401 402
                 parameter_list=None,
                 no_grad_set=None):
403 404 405 406 407
        """
        Add operations to minimize `loss` by updating `parameter_list`.

        This method combines interface `backward()` and
        `apply_gradients()` into one.
M
minqiyang 已提交
408

409 410 411 412 413 414
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
Q
Qiao Longfei 已提交
415

416 417 418
        Returns:
            tuple: (optimize_ops, params_grads) which are, list of operators appended;
            and list of (param, grad) Variables pair for optimization.
Q
Qiao Longfei 已提交
419
        """
420 421
        self._dtype = loss.dtype
        optimize_ops = []
422
        if framework._in_imperative_mode():
M
minqiyang 已提交
423
            if parameter_list is not None:
M
minqiyang 已提交
424
                parameters = parameter_list
M
minqiyang 已提交
425
            else:
426
                parameters = framework._imperative_tracer().all_parameters()
M
minqiyang 已提交
427 428 429

            params_grads = []
            for param in parameters:
430
                if not param.trainable:
431
                    continue
432 433 434 435 436 437 438 439
                if param._ivar._grad_ivar() is not None:
                    # create gradient variable
                    grad_var = Variable(
                        block=loss.block,
                        name=param._ivar._grad_name(),
                        stop_gradient=True,
                        ivar=param._ivar._grad_ivar())
                    params_grads.append((param, grad_var))
440 441
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
442
                optimize_ops = self._create_optimization_pass(params_grads)
M
minqiyang 已提交
443
        else:
444
            program = loss.block.program
445 446 447 448
            with program_guard(program, startup_program):
                params_grads = self.backward(loss, startup_program,
                                             parameter_list, no_grad_set)
                optimize_ops = self.apply_gradients(params_grads)
M
minqiyang 已提交
449

Q
Qiao Longfei 已提交
450
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
451 452 453


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
454 455 456 457 458 459 460 461 462 463
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
X
Xin Pan 已提交
464 465 466
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
467 468 469 470

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
471
            sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.2)
Q
qiaolongfei 已提交
472
            sgd_optimizer.minimize(cost)
Q
Qiao Longfei 已提交
473 474
    """

X
Xin Pan 已提交
475
    def __init__(self, learning_rate, regularization=None, name=None):
Q
Qiao Longfei 已提交
476
        assert learning_rate is not None
Q
Qiao Longfei 已提交
477
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
478 479 480
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
481 482
        self.type = "sgd"

483 484
    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
485

Q
Qiao Longfei 已提交
486 487 488 489 490 491
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
492
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
493
            },
M
minqiyang 已提交
494 495
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
496 497

        return sgd_op
498 499 500


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

515
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
516 517 518

        & else:

Q
qiaolongfei 已提交
519
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
520 521 522 523 524 525

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        use_nesterov (bool): enables Nesterov momentum
X
Xin Pan 已提交
526 527 528
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
529 530 531 532

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
533
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
Q
qiaolongfei 已提交
534
            optimizer.minimize(cost)
535 536 537
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
538 539 540 541 542 543
    def __init__(self,
                 learning_rate,
                 momentum,
                 use_nesterov=False,
                 regularization=None,
                 name=None):
544 545
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
546
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
547 548 549
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
550 551
        self.type = "momentum"
        self._momentum = momentum
552
        self._use_nesterov = bool(use_nesterov)
553 554 555 556 557

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
558
            self._add_accumulator(self._velocity_acc_str, p)
559 560 561 562 563 564 565 566 567 568 569 570 571

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
572
                "LearningRate": self._create_param_lr(param_and_grad)
573 574 575 576 577
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
578
            attrs={"mu": self._momentum,
M
minqiyang 已提交
579 580
                   "use_nesterov": self._use_nesterov},
            stop_gradient=True)
581 582

        return momentum_op
583 584


585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        momentum (float): momentum factor
        lars_coeff (float): defines how much we trust the layer to change its weights.
        lars_weight_decay (float): weight decay coefficient for decaying using LARS.
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
M
minqiyang 已提交
609

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.LarsMomentum(learning_rate=0.2, momentum=0.1, lars_weight_decay=0.001)
            optimizer.minimize(cost)
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
665 666
            },
            stop_gradient=True)
667 668 669 670

        return momentum_op


671
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
    """
    **Adaptive Gradient Algorithm (Adagrad)**

    The update is done as follows:

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have the epsilon attribute. It is added here in our implementation
    as also proposed here: http://cs231n.github.io/neural-networks-3/#ada
    for numerical stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
692 693 694
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
X
xuezhong 已提交
695
        initial_accumulator_value (float): Initial value for moment accumulator.
Q
qiaolongfei 已提交
696 697 698 699 700 701

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adagrad(learning_rate=0.2)
            optimizer.minimize(cost)
702 703 704
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
705 706 707 708
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 regularization=None,
709
                 name=None,
X
xuezhong 已提交
710
                 initial_accumulator_value=0.0):
711 712
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
713
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
714 715 716
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
717 718
        self.type = "adagrad"
        self._epsilon = epsilon
719
        self.initial_accumulator_value = initial_accumulator_value
720 721 722 723 724

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
725
            self._add_accumulator(self._moment_acc_str, p)
726 727 728 729 730 731

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
732 733 734 735 736 737 738 739 740 741
        startup_block = framework.default_startup_program().global_block()
        startup_block.append_op(
            type='fill_constant',
            inputs={},
            outputs={'Out': [moment_acc]},
            attrs={
                'dtype': moment_acc.dtype,
                'value': self.initial_accumulator_value,
                'shape': moment_acc.shape,
            })
742

743
        # Create the adagrad optimizer op
744 745 746 747 748 749
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
750
                "LearningRate": self._create_param_lr(param_and_grad)
751 752 753
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
754 755
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
756 757

        return adagrad_op
758 759 760


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
    """
    This implements the Adam optimizer from Section 2 of the Adam
    paper : https://arxiv.org/abs/1412.6980.
    Adam is a first-order gradient-based optimization method based on
    adaptive estimates of lower-order moments.

    Adam updates:

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
788
        regularization: A Regularizer, such as fluid.regularizer.L2DecayRegularizer.
X
Xin Pan 已提交
789
        name: A optional name prefix.
790 791 792 793 794 795
        lazy_mode(bool: false): The official Adam algorithm has two moving-average accumulators
        the accumulators are updated at every step. Every element of the two moving-average is updated
        in both dense mode and sparse mode. If the size of parameter is very large, then the update
        may be very slow. The lazy mode only update the element that has gradient is the current
        mini-batch, so it will be much more faster. But this mode has different semantics with the
        original Adam algorithm and may lead to different result.
Q
qiaolongfei 已提交
796 797 798 799 800 801 802

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adam(learning_rate=0.2)
            optimizer.minimize(cost)

803 804 805
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
806 807
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
808 809 810 811 812

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
813
                 epsilon=1e-8,
X
Xin Pan 已提交
814
                 regularization=None,
Q
Qiao Longfei 已提交
815
                 name=None,
Q
Qiao Longfei 已提交
816
                 lazy_mode=False):
817 818 819 820
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
821
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
822 823 824
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
825 826 827 828
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
829
        self._lazy_mode = lazy_mode
830 831 832 833 834 835

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
836 837
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
838 839 840 841 842 843 844 845 846 847 848 849
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta2,
                shape=[1])
850 851 852 853 854 855 856 857

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
858 859 860 861 862
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

863
        # create the adam optimize op
864 865 866 867 868
        adam_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
869
                "LearningRate": self._create_param_lr(param_and_grad),
870 871
                "Moment1": moment1,
                "Moment2": moment2,
Q
qiaolongfei 已提交
872 873
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
874 875 876 877 878 879 880 881 882
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
Q
Qiao Longfei 已提交
883
                "epsilon": self._epsilon,
884 885
                "lazy_mode": self._lazy_mode,
                "min_row_size_to_use_multithread": 1000
M
minqiyang 已提交
886 887
            },
            stop_gradient=True)
888 889 890

        return adam_op

891
    def _finish_update(self, block, param_and_grads):
892 893 894
        """Update Beta1 and Beta2 Power accumulators
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
895
        main_block = block.program.global_block()
896 897 898
        for param, grad in param_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
899 900
            with param.block.program._optimized_guard(
                [param, grad]), name_scope("optimizer"):
901 902 903 904 905 906 907 908
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
909 910
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
911 912 913 914 915

                main_block.append_op(
                    type="scale",
                    inputs={"X": beta2_pow_acc},
                    outputs={"Out": beta2_pow_acc},
M
minqiyang 已提交
916 917
                    attrs={"scale": self._beta2},
                    stop_gradient=True)
918 919 920


class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
    """
    We implement the Adamax optimizer from Section 7 of the Adam
    paper: https://arxiv.org/abs/1412.6980. Adamax is a variant of the
    Adam algorithm based on the infinity norm.

    Adamax updates:

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}


    The original paper does not have an epsilon attribute.
    However, it is added here for numerical stability to prevent the
    division by 0 error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        beta1 (float): The exponential decay rate for the 1st moment estimates.
        beta2 (float): The exponential decay rate for the 2nd moment estimates.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
951 952 953
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
954 955 956 957 958 959

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adamax(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
960 961 962

    Notes:
       Currently, AdamaxOptimizer doesn't support sparse parameter optimization.
963 964 965
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
966
    _beta1_pow_acc_str = "beta1_pow_acc"
967 968 969 970 971

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
972
                 epsilon=1e-8,
X
Xin Pan 已提交
973 974
                 regularization=None,
                 name=None):
975 976 977 978
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
979
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
980 981 982
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
983 984 985 986 987 988 989 990
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
991 992
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
993 994 995 996 997 998
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                dtype='float32',
                fill_value=self._beta1,
                shape=[1])
999 1000 1001 1002 1003 1004 1005

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
1006 1007
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
1008 1009 1010 1011 1012 1013
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1014
                "LearningRate": self._create_param_lr(param_and_grad),
1015 1016
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
1017
                "Beta1Pow": beta1_pow_acc
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
1028 1029
            },
            stop_gradient=True)
1030 1031 1032

        return adamax_op

1033
    def _finish_update(self, block, parameters_and_grads):
1034 1035 1036
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1037
        main_block = block.program.global_block()
1038 1039 1040
        for param, grad in parameters_and_grads:
            if grad is None:
                continue
X
Xin Pan 已提交
1041 1042
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1043 1044 1045 1046 1047 1048
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
                main_block.append_op(
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1049 1050
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1051 1052 1053


class DecayedAdagradOptimizer(Optimizer):
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    """
    **Decayed Adagrad Optimizer**

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)

    The update is done as follows:

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

    The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
    does not have an epsilon attribute. It is added here for numerical
    stability to avoid the division by zero error.

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        decay (float): decay rate.
        epsilon (float): a small float value for numerical stability.
X
Xin Pan 已提交
1076 1077 1078
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1079 1080 1081 1082 1083 1084

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
            optimizer.minimize(cost)
C
chengduo 已提交
1085 1086 1087

    Notes:
       Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.
1088 1089 1090
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1091 1092 1093 1094 1095 1096
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
                 regularization=None,
                 name=None):
1097 1098 1099 1100
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
1101
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1102 1103 1104
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1132 1133
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1134 1135

        return decayed_adagrad_op
1136 1137


1138
class AdadeltaOptimizer(Optimizer):
1139 1140
    """
    **Adadelta Optimizer**
Q
qiaolongfei 已提交
1141

1142
    Simple Adadelta optimizer with average squared grad state and
1143
    average squared update state.
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    The details of adadelta please refer to this
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD
    <http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf>`_.

    ..  math::

        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2 \\\\
        learning\\_rate &= sqrt( ( E(dx_{t-1}^2) + \\epsilon ) / ( \\
                          E(g_t^2) + \\epsilon ) ) \\\\
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\\_rate)^2

    Args:
Q
qiaolongfei 已提交
1156
        learning_rate(float): global learning rate
1157 1158
        rho(float): rho in equation
        epsilon(float): epsilon in equation
X
Xin Pan 已提交
1159 1160 1161
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1162 1163 1164 1165 1166 1167 1168

    Examples:
        .. code-block:: python

            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
            _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1169 1170 1171

    Notes:
       Currently, AdadeltaOptimizer doesn't support sparse parameter optimization.
1172
    """
1173

1174 1175 1176
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
1177 1178 1179 1180 1181 1182
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
                 regularization=None,
                 name=None):
1183 1184 1185 1186 1187 1188
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
1189
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
1190 1191 1192
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
1193 1194 1195 1196 1197
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
1198 1199
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1200 1201 1202 1203 1204 1205

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
1206 1207
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
1229 1230
                   "rho": self._rho},
            stop_gradient=True)
1231 1232 1233 1234

        return adadelta_op


Q
qingqing01 已提交
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
1245
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1246 1247 1248 1249

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
1250
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
1251 1252 1253 1254 1255 1256

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
1257
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
1258

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
1273 1274 1275 1276
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
1277
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
1278 1279 1280 1281 1282 1283
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


    Args:
Q
qiaolongfei 已提交
1284
        learning_rate(float): global learning rate.
Q
qingqing01 已提交
1285 1286 1287
        rho(float): rho is :math: `\\rho` in equation, set 0.95 by default.
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
            avoid division by zero, set 1e-6 by default.
Q
qiaolongfei 已提交
1288
        momentum(float): :math:`\\beta` in equation is the momentum term,
Q
qingqing01 已提交
1289
            set 0.0 by default.
1290 1291 1292 1293
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
X
Xin Pan 已提交
1294 1295 1296
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qingqing01 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.RMSProp(0.0001)
              _, params_grads = optimizer.minimize(cost)
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
1310
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
1311 1312 1313 1314 1315 1316

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
1317
                 centered=False,
X
Xin Pan 已提交
1318 1319
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
1320
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
1321 1322 1323
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
1337
        self._centered = centered
Q
qingqing01 已提交
1338 1339 1340 1341 1342 1343 1344 1345

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
1346
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
1347 1348 1349 1350 1351 1352 1353 1354 1355

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
1356 1357
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
1358 1359 1360 1361 1362 1363 1364
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
1365
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
1366 1367 1368 1369 1370
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
1371 1372
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
1373 1374 1375 1376
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
1377 1378
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
1379 1380
            },
            stop_gradient=True)
Q
qingqing01 已提交
1381 1382 1383 1384

        return rmsprop_op


Q
qiaolongfei 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

    Args:
        learning_rate (float|Variable): global learning rate.
M
minqiyang 已提交
1427 1428 1429
        l1 (float): L1 regularization strength.
        l2 (float): L2 regularization strength.
        lr_power (float): Learning Rate Power.
X
Xin Pan 已提交
1430 1431 1432
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
Q
qiaolongfei 已提交
1433 1434 1435 1436 1437 1438 1439 1440 1441

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

              optimizer = fluid.optimizer.Ftrl(0.0001)
              _, params_grads = optimizer.minimize(cost)
C
chengduo 已提交
1442 1443 1444

    Notes:
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
1445 1446 1447 1448 1449
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
1450 1451 1452 1453 1454 1455 1456
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
1457
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
1458 1459 1460
            learning_rate=learning_rate,
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
1501 1502
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
1503 1504 1505 1506

        return ftrl_op


1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
DecayedAdagrad = DecayedAdagradOptimizer
1521
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
1522
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
1523
Ftrl = FtrlOptimizer
1524
LarsMomentum = LarsMomentumOptimizer
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539


class ModelAverage(Optimizer):
    """Accumulate the average of parameters whtin sliding window. The average
    result will be saved in temporary variables which can be applied to
    parameter variables of current model by calling 'apply()' method. And the
    'restore()' method is used to restored the parameter values of current model.

    The size of average window is determined by average_window_rate,
    min_average_window, max_average_window and current update times.

    Args:
        average_window_rate: The rate of average window.
        min_average_window: The minimum size of average window.
        max_average_window: The maximum size of average window.
X
Xin Pan 已提交
1540 1541 1542
        regularization: A Regularizer, such as
                        fluid.regularizer.L2DecayRegularizer.
        name: A optional name prefix.
1543
    Examples:
Q
qiaolongfei 已提交
1544 1545 1546

      .. code-block:: python

1547
        optimizer = fluid.optimizer.Momentum()
1548 1549
        optimizer.minimize(cost)
        model_average = fluid.optimizer.ModelAverage(0.15,
1550 1551 1552 1553 1554
                                                min_average_window=10000,
                                                max_average_window=20000)
        for pass_id in range(args.pass_num):
            for data in train_reader():
                exe.run(fluid.default_main_program()...)
1555 1556 1557 1558

            with model_average.apply(exe):
                for data in test_reader():
                    exe.run(inference_program...)
1559 1560 1561
    """

    def __init__(self,
W
wanghaoshuang 已提交
1562
                 average_window_rate,
1563 1564
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
1565 1566 1567 1568
                 regularization=None,
                 name=None):
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
1569 1570 1571
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
1572

1573
        self.params_grads = []
1574 1575
        for param in framework.default_main_program().global_block(
        ).all_parameters():
1576
            if param.do_model_average != False:
1577 1578 1579 1580
                grad = param.block.create_var(
                    name=unique_name.generate(".".join([param.name, 'tmp'])),
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
1581
                    stop_gradient=True)
1582
                self.params_grads.append((param, grad))
1583

1584
        for param, grad in self.params_grads:
1585 1586
            if grad is None:
                continue
X
Xin Pan 已提交
1587 1588
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
1589
                self._append_average_accumulate_op(param)
1590

1591 1592 1593 1594
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
1595
                self._add_average_apply_op(block, param_grad)
1596 1597 1598 1599 1600

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
1601
                self._add_average_restore_op(block, param_grad)
1602

1603
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
1604 1605 1606 1607 1608 1609
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
1610
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
1611
        old_num_accumulates = block._clone_variable(
1612
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
1613
        num_updates = block._clone_variable(
1614 1615 1616 1617 1618 1619
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
1620 1621 1622 1623
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
1624
        ops._elementwise_div(x=sum, y=tmp, out=param)
1625 1626

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
1627 1628
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
1666 1667
            },
            stop_gradient=True)
1668

S
rename  
sneaxiy 已提交
1669
    @signature_safe_contextmanager
1670
    def apply(self, executor, need_restore=True):
1671 1672
        """Apply average values to parameters of current model.
        """
1673 1674 1675 1676 1677 1678
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
1679 1680 1681 1682

    def restore(self, executor):
        """Restore parameter values of current model.
        """
1683
        executor.run(self.restore_program)