Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6c2bc29c
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6c2bc29c
编写于
9月 10, 2019
作者:
G
gongweibao
提交者:
GitHub
9月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix float16 optimizer. (#19682)
Fix float16 optimizer
上级
713c05dd
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
47 addition
and
21 deletion
+47
-21
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
python/paddle/fluid/contrib/mixed_precision/decorator.py
python/paddle/fluid/contrib/mixed_precision/decorator.py
+18
-4
python/paddle/fluid/contrib/tests/test_image_classification_fp16.py
...dle/fluid/contrib/tests/test_image_classification_fp16.py
+2
-1
python/paddle/fluid/incubate/fleet/base/fleet_base.py
python/paddle/fluid/incubate/fleet/base/fleet_base.py
+3
-1
python/paddle/fluid/incubate/fleet/collective/__init__.py
python/paddle/fluid/incubate/fleet/collective/__init__.py
+4
-1
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+19
-13
未找到文件。
paddle/fluid/API.spec
浏览文件 @
6c2bc29c
...
...
@@ -505,7 +505,7 @@ paddle.fluid.contrib.HDFSClient.upload (ArgSpec(args=['self', 'hdfs_path', 'loca
paddle.fluid.contrib.multi_download (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'trainer_id', 'trainers', 'multi_processes'], varargs=None, keywords=None, defaults=(5,)), ('document', '100927be598ed8f9eaa1f3ef1b23568a'))
paddle.fluid.contrib.multi_upload (ArgSpec(args=['client', 'hdfs_path', 'local_path', 'multi_processes', 'overwrite', 'sync'], varargs=None, keywords=None, defaults=(5, False, True)), ('document', '183f34c83d30dbe16e09e8716c41958a'))
paddle.fluid.contrib.extend_with_decoupled_weight_decay (ArgSpec(args=['base_optimizer'], varargs=None, keywords=None, defaults=None), ('document', 'a1095dfd4ec725747f662d69cd7659d4'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'amp_lists', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(None, 1.0, 1000, 2, 2.0, 0.8, False)), ('document', '
d05e71f5b0bd6d92bb94e70e00b3f9cf
'))
paddle.fluid.contrib.mixed_precision.decorate (ArgSpec(args=['optimizer', 'amp_lists', 'init_loss_scaling', 'incr_every_n_steps', 'decr_every_n_nan_or_inf', 'incr_ratio', 'decr_ratio', 'use_dynamic_loss_scaling'], varargs=None, keywords=None, defaults=(None, 1.0, 1000, 2, 2.0, 0.8, False)), ('document', '
5f118631fc8632afb981b3a26daae731
'))
paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists ('paddle.fluid.contrib.mixed_precision.fp16_lists.AutoMixedPrecisionLists', ('document', 'c116ec6bb5d30998792daea8db21ee40'))
paddle.fluid.contrib.mixed_precision.AutoMixedPrecisionLists.__init__ (ArgSpec(args=['self', 'custom_white_list', 'custom_black_list'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.contrib.fused_elemwise_activation (ArgSpec(args=['x', 'y', 'functor_list', 'axis', 'scale', 'save_intermediate_out'], varargs=None, keywords=None, defaults=(-1, 0.0, True)), ('document', '1c4b247a2858cea8d9d8750693688270'))
...
...
python/paddle/fluid/contrib/mixed_precision/decorator.py
浏览文件 @
6c2bc29c
...
...
@@ -172,21 +172,34 @@ class OptimizerWithMixedPrecison(object):
return
optimize_ops
def
minimize
(
self
,
loss
):
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
):
"""
Perform optimization by minimizing the given loss.
Args:
loss (Variable): The loss Variable.
startup_program (Program): startup_program for initializing parameters
in `parameter_list`.
parameter_list (list): list of Variables to update.
no_grad_set (set|None): set of Variables should be ignored.
Returns:
The scaled loss by scaling factor, the list of optimize ops, and a
list of scaled parameters and gradients.
"""
scaled_params_grads
,
scaled_loss
=
self
.
backward
(
loss
)
scaled_params_grads
,
scaled_loss
=
self
.
backward
(
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
optimize_ops
=
self
.
apply_gradients
(
scaled_params_grads
)
return
scaled_loss
,
optimize_ops
,
scaled_params_grads
return
optimize_ops
,
scaled_params_grads
def
decorate
(
optimizer
,
...
...
@@ -228,7 +241,8 @@ def decorate(optimizer,
mp_optimizer = fluid.contrib.mixed_precision.decorate(
optimizer=optimizer, init_loss_scaling=8.0)
scaled_loss, _, _ = mp_optimizer.minimize(loss)
ops, param_grads = mp_optimizer.minimize(loss)
scaled_loss = mp_optimizer.get_loss_scaling()
"""
if
amp_lists
is
None
:
amp_lists
=
AutoMixedPrecisionLists
()
...
...
python/paddle/fluid/contrib/tests/test_image_classification_fp16.py
浏览文件 @
6c2bc29c
...
...
@@ -138,7 +138,8 @@ def train(net_type, use_cuda, save_dirname, is_local):
init_loss_scaling
=
8.0
,
use_dynamic_loss_scaling
=
True
)
scaled_loss
,
_
,
_
=
mp_optimizer
.
minimize
(
avg_cost
)
mp_optimizer
.
minimize
(
avg_cost
)
scaled_loss
=
mp_optimizer
.
get_loss_scaling
()
BATCH_SIZE
=
128
PASS_NUM
=
1
...
...
python/paddle/fluid/incubate/fleet/base/fleet_base.py
浏览文件 @
6c2bc29c
...
...
@@ -23,6 +23,7 @@ from paddle.fluid.optimizer import SGD
from
paddle.fluid.incubate.fleet.base.role_maker
import
MPISymetricRoleMaker
from
paddle.fluid.incubate.fleet.base.role_maker
import
RoleMakerBase
from
paddle.fluid.incubate.fleet.base.role_maker
import
UserDefinedRoleMaker
from
paddle.fluid.contrib.mixed_precision.decorator
import
OptimizerWithMixedPrecison
class
Mode
:
...
...
@@ -257,7 +258,8 @@ class DistributedOptimizer(object):
__metaclass__
=
abc
.
ABCMeta
def
__init__
(
self
,
optimizer
,
strategy
=
None
):
if
not
isinstance
(
optimizer
,
SGD
.
__bases__
):
if
not
isinstance
(
optimizer
,
SGD
.
__bases__
)
\
and
not
isinstance
(
optimizer
,
OptimizerWithMixedPrecison
):
raise
TypeError
(
"optimizer must be an instance of Optimizer"
)
self
.
_optimizer
=
optimizer
...
...
python/paddle/fluid/incubate/fleet/collective/__init__.py
浏览文件 @
6c2bc29c
...
...
@@ -347,7 +347,10 @@ class CollectiveOptimizer(DistributedOptimizer):
self
.
_strategy
)
optimize_ops
,
param_grads
=
self
.
_optimizer
.
minimize
(
loss
,
startup_program
,
parameter_list
,
no_grad_set
)
loss
,
startup_program
=
startup_program
,
parameter_list
=
parameter_list
,
no_grad_set
=
no_grad_set
)
fleet
.
_origin_program
=
main_program
fleet
.
main_program
=
self
.
_try_to_compile
(
startup_program
,
main_program
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
6c2bc29c
...
...
@@ -464,6 +464,8 @@ class Optimizer(object):
Examples:
See examples in `apply_gradients`.
"""
no_grad_set
=
self
.
_get_no_grad_set
(
loss
,
no_grad_set
)
self
.
_dtype
=
loss
.
dtype
if
framework
.
in_dygraph_mode
():
if
parameter_list
is
not
None
:
...
...
@@ -563,6 +565,23 @@ class Optimizer(object):
optimize_ops
=
self
.
apply_gradients
(
params_grads
)
return
optimize_ops
def
_get_no_grad_set
(
self
,
loss
,
no_grad_set
=
None
):
if
no_grad_set
is
None
:
no_grad_set
=
set
()
elif
isinstance
(
no_grad_set
,
set
)
or
isinstance
(
no_grad_set
,
list
)
or
isinstance
(
no_grad_set
,
tuple
):
no_grad_set
=
set
(
no_grad_set
)
else
:
assert
"no_grad_set should be a set, but the passed type is {}"
.
format
(
type
(
no_grad_set
))
parameters
=
loss
.
block
.
program
.
global_block
().
all_parameters
()
param_no_trainable
=
set
(
[
param
.
name
for
param
in
parameters
if
param
.
trainable
is
False
])
# If the parameter is no trainable, it should not have a gradient.
no_grad_set
.
update
(
param_no_trainable
)
return
no_grad_set
@
imperative_base
.
no_grad
def
minimize
(
self
,
loss
,
...
...
@@ -589,19 +608,6 @@ class Optimizer(object):
and list of (param, grad) Variables pair for optimization.
"""
assert
isinstance
(
loss
,
Variable
),
"The loss should be an Variable."
if
no_grad_set
is
None
:
no_grad_set
=
set
()
elif
isinstance
(
no_grad_set
,
set
)
or
isinstance
(
no_grad_set
,
list
)
or
isinstance
(
no_grad_set
,
tuple
):
no_grad_set
=
set
(
no_grad_set
)
else
:
assert
"no_grad_set should be a set, but the passed type is {}"
.
format
(
type
(
no_grad_set
))
parameters
=
loss
.
block
.
program
.
global_block
().
all_parameters
()
param_no_trainable
=
set
(
[
param
.
name
for
param
in
parameters
if
param
.
trainable
is
False
])
# If the parameter is no trainable, it should not have a gradient.
no_grad_set
.
update
(
param_no_trainable
)
params_grads
=
self
.
backward
(
loss
,
startup_program
=
startup_program
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录