Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4d7af372
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4d7af372
编写于
8月 11, 2021
作者:
W
WangXi
提交者:
GitHub
8月 11, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[hybrid] pp+dp support fp16 allreduce (#34762)
上级
3f962e77
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
295 addition
and
78 deletion
+295
-78
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
...addle/distributed/fleet/meta_optimizers/sharding/utils.py
+25
-22
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+32
-19
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+71
-35
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
...uid/tests/unittests/test_fleet_sharding_meta_optimizer.py
+167
-2
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
浏览文件 @
4d7af372
...
...
@@ -14,7 +14,7 @@
import
paddle
from
paddle.fluid
import
core
,
unique_name
from
functools
import
reduce
from
paddle.distributed.fleet.meta_optimizers.common
import
is_loss_grad_op
from
paddle.distributed.fleet.meta_optimizers.common
import
is_loss_grad_op
,
is_backward_op
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
,
OP_ROLE_KEY
,
OP_ROLE_VAR_KEY
import
re
...
...
@@ -431,15 +431,19 @@ def insert_reduce_ops(block,
reduce_vars
,
shard
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
):
use_calc_stream
=
False
,
rank
=
None
):
"""
_add_allreduce_ops
"""
grad_in_this_device
=
[]
for
var
in
reduce_vars
:
root_id
=
get_grad_device
(
var
,
shard
)
assert
root_id
>=
0
,
"root id should be a positive int, but now root id is {}"
.
format
(
root_id
)
if
rank
is
not
None
and
rank
==
root_id
:
grad_in_this_device
.
append
(
var
)
block
.
_insert_op_without_sync
(
insert_idx
,
type
=
'c_reduce_sum'
,
...
...
@@ -451,16 +455,23 @@ def insert_reduce_ops(block,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
return
return
grad_in_this_device
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
base_name
=
None
#
mind the traversal order
#
NOTE: mind the traversal order
possible_suffixes
=
[
'.cast_fp16@GRAD@MERGED'
,
'.cast_fp16@GRAD'
,
'@GRAD@MERGED'
,
'@GRAD'
# sharding gm
'.cast_fp16@GRAD@MERGED'
,
'.cast_fp16@GRAD'
,
# pipeline
'@GRAD@MERGED@FP16'
,
'@GRAD@MERGED'
,
'@GRAD'
,
]
for
suffix
in
possible_suffixes
:
if
suffix
in
grad_name
:
...
...
@@ -487,6 +498,15 @@ def get_first_check_finite_and_unscale_op_idx(block, raise_error=True):
return
-
1
def
get_first_optimize_op_idx
(
block
):
first_opt_op_idx
=
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
block
.
ops
))):
if
is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
break
return
first_opt_op_idx
def
insert_broadcast_ops
(
block
,
insert_idx
,
ring_id
,
broadcast2root
):
"""
_add_broadcast_ops
...
...
@@ -672,23 +692,6 @@ def save_persistables(exe, dirname, main_program, filename=None):
return
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
base_name
=
None
# mind the traversal order
possible_suffixes
=
[
'.cast_fp16@GRAD'
,
'@GRAD'
]
for
suffix
in
possible_suffixes
:
if
suffix
in
grad_name
:
base_name
=
re
.
sub
(
suffix
,
''
,
grad_name
)
break
assert
base_name
in
shard
.
global_param2device
,
"[{}] should be a param variable."
.
format
(
base_name
)
return
shard
.
global_param2device
[
base_name
]
def
append_naive_sync
(
block
,
sync_var
,
ring_id
):
# NOTE (JZ-LIANG) update this to use barrier sync for more elegent logic
# sync within global
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
4d7af372
...
...
@@ -294,6 +294,8 @@ class ShardingOptimizer(MetaOptimizerBase):
if
self
.
pp_degree
==
1
:
return
strategy
=
self
.
user_defined_strategy
fp16_allreduce
=
strategy
.
fp16_allreduce
main_block
=
self
.
_main_program
.
global_block
()
startup_block
=
self
.
_startup_program
.
global_block
()
...
...
@@ -317,33 +319,44 @@ class ShardingOptimizer(MetaOptimizerBase):
main_block
.
_remove_op
(
idx
)
accumulated_grad_names
=
self
.
_pp_optimizer
.
_accumulate_gradients
(
main_block
)
# accumulated_grad_names = sorted(accumulated_grad_names)
main_block
,
fp16_allreduce
=
fp16_allreduce
)
len_of_ops
=
len
(
main_block
.
ops
)
first_optimize_op_index
=
get_first_optimize_op_idx
(
main_block
)
if
self
.
pp_allreduce_in_optimize
:
print
(
"persistable FP32 grad: "
)
print
(
accumulated_grad_names
)
first_optimize_op_index
=
get_first_check_finite_and_unscale_op_idx
(
main_block
,
raise_error
=
strategy
.
amp
)
insert_reduce_ops
(
logger
.
info
(
"Pipeline Persistable grad is {}"
.
format
(
accumulated_grad_names
))
# FIXME(wangxi): accumulated_grad get from pipeline is not
# include sharding's param@BroadCast grad when
# pp_allreduce_in_optimize
accumulated_grad_names
=
insert_reduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
sharding_ring_id
,
accumulated_grad_names
,
self
.
_shard
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
)
use_calc_stream
=
True
,
rank
=
self
.
sharding_rank
)
logger
.
info
(
"PP-Sharding grad is {}"
.
format
(
accumulated_grad_names
))
first_optimize_op_index
+=
(
len
(
main_block
.
ops
)
-
len_of_ops
)
len_of_ops
=
len
(
main_block
.
ops
)
if
self
.
hybrid_dp
and
self
.
hybrid_dp_mode
==
"pp_hybrid_dp"
:
first_optimize_op_index
=
get_first_check_finite_and_unscale_op_idx
(
main_block
,
raise_error
=
strategy
.
amp
)
if
first_optimize_op_index
>=
0
:
insert_allreduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
dp_ring_id
,
accumulated_grad_names
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
,
user_defined_strategy
=
strategy
)
insert_allreduce_ops
(
main_block
,
first_optimize_op_index
,
self
.
dp_ring_id
,
accumulated_grad_names
,
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
,
use_calc_stream
=
True
,
user_defined_strategy
=
strategy
)
first_optimize_op_index
+=
(
len
(
main_block
.
ops
)
-
len_of_ops
)
len_of_ops
=
len
(
main_block
.
ops
)
# FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
def
_adapt_amp_clip_without_sharding
(
self
):
if
self
.
sharding_degree
>
1
:
return
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
4d7af372
...
...
@@ -4528,7 +4528,7 @@ class PipelineOptimizer(object):
op
.
_rename_input
(
old_name
,
new_name
)
op
.
_rename_output
(
old_name
,
new_name
)
def
_create_var
(
self
,
block
,
ref_var
,
name
):
def
_create_var
(
self
,
block
,
ref_var
,
name
,
dtype
=
None
):
"""
Create a new var for block, which has the same type,
shape and dtype as ref_var, then rename it with the
...
...
@@ -4537,7 +4537,7 @@ class PipelineOptimizer(object):
new_var
=
block
.
create_var
(
name
=
name
,
shape
=
ref_var
.
shape
,
dtype
=
ref_var
.
dtype
,
dtype
=
ref_var
.
dtype
if
dtype
is
None
else
dtype
,
type
=
ref_var
.
type
,
lod_level
=
ref_var
.
lod_level
,
persistable
=
ref_var
.
persistable
,
...
...
@@ -5044,7 +5044,10 @@ class PipelineOptimizer(object):
new_grad_name
=
name
+
"@MERGED"
self
.
_rename_arg
(
op
,
name
,
new_grad_name
)
def
_accumulate_gradients
(
self
,
block
,
pp_allreduce_in_optimize
=
False
):
def
_accumulate_gradients
(
self
,
block
,
pp_allreduce_in_optimize
=
False
,
fp16_allreduce
=
False
):
"""
Create a new merged gradient for each parameter and accumulate the
corresponding gradient to it.
...
...
@@ -5052,6 +5055,9 @@ class PipelineOptimizer(object):
merged_gradient_names
=
[]
first_opt_op_idx
=
None
merged_suffix
=
'@MERGED@FP16'
if
fp16_allreduce
else
'@MERGED'
dtype
=
paddle
.
float16
if
fp16_allreduce
else
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
# remove the cast op of fp16 grad to fp32 grad
if
self
.
_is_optimize_op
(
op
)
and
op
.
type
==
'cast'
:
...
...
@@ -5062,12 +5068,10 @@ class PipelineOptimizer(object):
block
.
_remove_op
(
index
)
continue
if
self
.
_is_backward_op
(
op
)
and
not
first_opt_op_idx
:
if
self
.
_is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
# no optimize phase
if
first_opt_op_idx
==
len
(
block
.
ops
):
return
if
block
.
ops
[
first_opt_op_idx
].
type
==
"c_sync_comm_stream"
:
first_opt_op_idx
+=
1
if
self
.
_is_backward_op
(
op
)
and
(
self
.
_op_role_var_key
in
op
.
attr_names
):
...
...
@@ -5079,12 +5083,14 @@ class PipelineOptimizer(object):
param_name
=
op_role_var
[
i
]
if
not
block
.
has_var
(
param_name
):
continue
if
'@BroadCast'
in
param_name
:
continue
param_grad_name
=
param_name
+
core
.
grad_var_suffix
()
merged_param_grad_name
=
param_grad_name
+
'@MERGED'
merged_param_grad_name
=
param_grad_name
+
merged_suffix
if
not
block
.
has_var
(
merged_param_grad_name
):
self
.
_create_var
(
block
,
block
.
vars
[
param_name
],
merged_param_grad_name
)
merged_param_grad_name
,
dtype
)
assert
block
.
has_var
(
merged_param_grad_name
)
param_grad_var
=
block
.
var
(
param_grad_name
)
merged_param_grad_var
=
block
.
var
(
merged_param_grad_name
)
merged_param_grad_var
.
persistable
=
True
...
...
@@ -5103,22 +5109,18 @@ class PipelineOptimizer(object):
offset
+=
1
grad_name
=
op_role_var
[
i
+
1
]
grad_var
=
block
.
vars
[
grad_name
]
if
not
'cast_fp16'
in
grad_name
:
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
grad_var
,
merged_param_grad_var
]},
outputs
=
{
'Out'
:
merged_param_grad_var
},
attrs
=
{
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
merged_gradient_names
.
append
(
merged_param_grad_name
)
else
:
# cast gradient to fp32 to accumulate to merged gradient
is_fp16_grad
=
'cast_fp16'
in
grad_name
need_cast
=
(
is_fp16_grad
is
not
fp16_allreduce
)
if
need_cast
:
# if fp16_allreduce:
# cast grad to fp16 to accumulate to merged gradient
# else:
# cast grad to fp32 to accumulate to merged gradient
cast_grad_var_name
=
param_grad_name
+
'@TMP'
cast_grad_var
=
self
.
_create_var
(
block
,
param_grad_var
,
cast_grad_var_nam
e
)
cast_grad_var
=
self
.
_create_var
(
block
,
param_grad_var
,
cast_grad_var_name
,
dtyp
e
)
cast_grad_var
.
persistable
=
False
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
...
...
@@ -5131,18 +5133,52 @@ class PipelineOptimizer(object):
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
merged_param_grad_var
,
cast_grad_var
]
},
outputs
=
{
'Out'
:
merged_param_grad_var
},
attrs
=
{
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
merged_gradient_names
.
append
(
merged_param_grad_name
)
grad_var
=
cast_grad_var
block
.
_insert_op
(
index
=
first_opt_op_idx
+
offset
,
type
=
'sum'
,
inputs
=
{
'X'
:
[
merged_param_grad_var
,
grad_var
]},
outputs
=
{
'Out'
:
merged_param_grad_var
},
attrs
=
{
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
})
offset
+=
1
merged_gradient_names
.
append
(
merged_param_grad_name
)
if
not
fp16_allreduce
:
return
merged_gradient_names
first_opt_op_idx
=
None
for
index
,
op
in
reversed
(
tuple
(
enumerate
(
list
(
block
.
ops
)))):
if
self
.
_is_backward_op
(
op
)
and
first_opt_op_idx
is
None
:
first_opt_op_idx
=
index
+
1
break
assert
first_opt_op_idx
is
not
None
# insert cast op from fp16->fp32
# FIXME(wangxi): maybe put in sharding is better, for some grad
# is not in sharding device.
for
fp16_grad_name
in
merged_gradient_names
:
grad_name
=
fp16_grad_name
.
replace
(
'@FP16'
,
''
)
param_name
=
fp16_grad_name
.
replace
(
'@GRAD@MERGED@FP16'
,
''
)
if
not
block
.
has_var
(
grad_name
):
self
.
_create_var
(
block
,
block
.
vars
[
param_name
],
grad_name
)
assert
block
.
has_var
(
grad_name
)
fp16_grad_var
=
block
.
var
(
fp16_grad_name
)
grad_var
=
block
.
var
(
grad_name
)
grad_var
.
persistable
=
False
block
.
_insert_op
(
index
=
first_opt_op_idx
,
type
=
'cast'
,
inputs
=
{
'X'
:
fp16_grad_var
},
outputs
=
{
'Out'
:
grad_var
},
attrs
=
{
'in_dtype'
:
fp16_grad_var
.
dtype
,
'out_dtype'
:
grad_var
.
dtype
,
self
.
_op_role_key
:
self
.
_op_role
.
Optimize
,
})
return
merged_gradient_names
def
_add_sub_blocks
(
self
,
main_block
,
program_list
):
...
...
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
浏览文件 @
4d7af372
...
...
@@ -552,9 +552,9 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
'c_sync_calc_stream'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_sync_comm_stream'
,
'
c_sync_comm_strea
m'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'
fill_constant'
,
'su
m'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'
fill_constant'
,
'su
m'
,
'momentum'
,
'momentum'
,
'momentum'
,
'
c_sync_comm_strea
m'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
])
...
...
@@ -694,6 +694,171 @@ class TestFleetShardingHybridOptimizer(TestFleetMetaOptimizer):
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
def
test_hybrid_with_pp_dp_amp_fp16allreduce
(
self
):
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
)
avg_cost
,
strategy
=
self
.
pp_net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
strategy
.
amp_configs
=
{
'custom_black_varnames'
:
[
'fc_6.b_0'
],
}
strategy
.
sharding
=
True
strategy
.
sharding_configs
=
{
"sharding_degree"
:
1
,
"mp_degree"
:
1
,
"pp_degree"
:
2
,
"dp_degree"
:
2
,
}
strategy
.
pipeline
=
True
strategy
.
pipeline_configs
=
{
"schedule_mode"
:
"1F1B"
,
"micro_batch_size"
:
2
,
"accumulate_steps"
:
4
,
}
strategy
.
fp16_allreduce
=
True
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
train_prog
=
train_prog
.
_pipeline_opt
[
'section_program'
]
startup_prog
=
startup_prog
.
_pipeline_opt
[
'startup_program'
]
startup_prog_ops
=
startup_prog
.
global_block
().
ops
main_prog_ops
=
train_prog
.
global_block
().
ops
# check program
startup_prog_op_types
=
[
op
.
type
for
op
in
startup_prog_ops
]
main_prog_op_types
=
[
op
.
type
for
op
in
main_prog_ops
]
# ring: mp, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_sync_comm_stream'
])
self
.
assertEqual
(
main_prog_op_types
,
[
'recv_v2'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'tanh'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'tanh'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'tanh'
,
'cast'
,
'mul'
,
'cast'
,
'elementwise_add'
,
'softmax'
,
'cross_entropy2'
,
'mean'
,
'elementwise_mul'
,
'fill_constant'
,
'scale'
,
'scale'
,
'elementwise_mul_grad'
,
'mean_grad'
,
'cross_entropy_grad2'
,
'softmax_grad'
,
'elementwise_add_grad'
,
'cast'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'c_sync_calc_stream'
,
'send_v2'
,
'fill_constant'
,
'cast'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'fill_constant'
,
'sum'
,
'coalesce_tensor'
,
'c_allreduce_sum'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'cast'
,
'c_sync_comm_stream'
,
'check_finite_and_unscale'
,
'cast'
,
'c_allreduce_max'
,
'cast'
,
'update_loss_scaling'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
,
'momentum'
])
# amp check_finite_and_unscale, allreduce(pp)
self
.
assertEqual
(
main_prog_op_types
.
count
(
'c_allreduce_max'
),
1
)
# should has ring id for pp
created_ring_ids
=
[
op
.
desc
.
attr
(
"ring_id"
)
for
op
in
startup_prog_ops
if
op
.
type
==
"c_comm_init"
]
self
.
assertIn
(
self
.
pp_pair_ring_id
,
created_ring_ids
)
self
.
assertIn
(
self
.
dp_ring_id
,
created_ring_ids
)
# check correctness of pp group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_0"
:
pp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36003'
])
# check correctness of dp group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_3"
:
dp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
dp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
def
test_hybrid_with_sharding_pp_amp_fp16allreduce_in_optimize
(
self
):
train_prog
,
startup_prog
=
paddle
.
fluid
.
Program
(),
paddle
.
fluid
.
Program
(
)
avg_cost
,
strategy
=
self
.
pp_net
(
train_prog
,
startup_prog
)
strategy
.
amp
=
True
strategy
.
amp_configs
=
{
'custom_black_varnames'
:
[
'fc_6.b_0'
],
}
strategy
.
sharding
=
True
strategy
.
sharding_configs
=
{
"segment_broadcast_MB"
:
0.1
,
"sharding_degree"
:
2
,
"mp_degree"
:
1
,
"pp_degree"
:
2
,
"dp_degree"
:
1
,
'pp_allreduce_in_optimize'
:
True
,
}
strategy
.
pipeline
=
True
strategy
.
pipeline_configs
=
{
"schedule_mode"
:
"1F1B"
,
"micro_batch_size"
:
2
,
"accumulate_steps"
:
4
,
}
strategy
.
fp16_allreduce
=
True
self
.
optimizer
(
avg_cost
,
strategy
,
train_prog
,
startup_prog
)
train_prog
=
train_prog
.
_pipeline_opt
[
'section_program'
]
startup_prog
=
startup_prog
.
_pipeline_opt
[
'startup_program'
]
startup_prog_ops
=
startup_prog
.
global_block
().
ops
main_prog_ops
=
train_prog
.
global_block
().
ops
# check program
startup_prog_op_types
=
[
op
.
type
for
op
in
startup_prog_ops
]
main_prog_op_types
=
[
op
.
type
for
op
in
main_prog_ops
]
# ring: sharding, pp_group, pp_pair, pp_pair
self
.
assertEqual
(
startup_prog_op_types
,
[
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'uniform_random'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
,
'c_gen_nccl_id'
,
'c_comm_init'
])
# FIXME(wangxi): some bug in sharding+pp with pp_allreduce_in_optimize
# self.assertEqual(main_prog_op_types, [])
# amp check_finite_and_unscale, allreduce(pp)
self
.
assertEqual
(
main_prog_op_types
.
count
(
'c_allreduce_max'
),
2
)
# should has ring id for pp
created_ring_ids
=
[
op
.
desc
.
attr
(
"ring_id"
)
for
op
in
startup_prog_ops
if
op
.
type
==
"c_comm_init"
]
self
.
assertIn
(
self
.
sharding_ring_id
,
created_ring_ids
)
self
.
assertIn
(
self
.
pp_pair_ring_id
,
created_ring_ids
)
# check correctness of sharding group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_0"
:
sharding_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
sharding_group_waiting_ports
,
[
'127.0.0.1:36003'
])
# check correctness of pp group
for
op
in
startup_prog_ops
:
if
op
.
type
==
"c_gen_nccl_id"
and
op
.
desc
.
output_arg_names
()[
0
]
==
"comm_id_1"
:
pp_group_waiting_ports
=
op
.
desc
.
attr
(
"other_endpoints"
)
self
.
assertEqual
(
pp_group_waiting_ports
,
[
'127.0.0.1:36002'
])
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录