Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1e60a0c4
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1e60a0c4
编写于
4月 07, 2021
作者:
J
JZ-LIANG
提交者:
GitHub
4月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[3D-parallelism] Hybrid Model Parallelism (#32074)
上级
363b25aa
变更
11
展开全部
隐藏空白更改
内联
并排
Showing
11 changed file
with
1023 addition
and
152 deletion
+1023
-152
paddle/fluid/framework/distributed_strategy.proto
paddle/fluid/framework/distributed_strategy.proto
+11
-7
python/paddle/distributed/fleet/meta_optimizers/pipeline_optimizer.py
...e/distributed/fleet/meta_optimizers/pipeline_optimizer.py
+5
-0
python/paddle/distributed/fleet/meta_optimizers/sharding/fp16_helper.py
...distributed/fleet/meta_optimizers/sharding/fp16_helper.py
+64
-2
python/paddle/distributed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
...ed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
+65
-16
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
...tributed/fleet/meta_optimizers/sharding/offload_helper.py
+281
-0
python/paddle/distributed/fleet/meta_optimizers/sharding/prune.py
...addle/distributed/fleet/meta_optimizers/sharding/prune.py
+4
-0
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
...addle/distributed/fleet/meta_optimizers/sharding/utils.py
+60
-6
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
...e/distributed/fleet/meta_optimizers/sharding_optimizer.py
+418
-99
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+15
-0
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+48
-8
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
...uid/tests/unittests/test_fleet_sharding_meta_optimizer.py
+52
-14
未找到文件。
paddle/fluid/framework/distributed_strategy.proto
浏览文件 @
1e60a0c4
...
...
@@ -29,14 +29,18 @@ message RecomputeConfig {
}
message
ShardingConfig
{
optional
float
segment_broadcast_MB
=
1
[
default
=
32.0
];
optional
bool
hybrid_dp
=
2
[
default
=
false
];
optional
int32
sharding_degree
=
3
[
default
=
8
];
optional
int32
mp_degree
=
4
[
default
=
1
];
optional
string
sharding_segment_strategy
=
5
optional
string
sharding_segment_strategy
=
1
[
default
=
'segment_broadcast_MB'
];
repeated
string
segment_anchors
=
6
;
optional
int32
gradient_merge_acc_step
=
7
[
default
=
1
];
optional
float
segment_broadcast_MB
=
2
[
default
=
32.0
];
repeated
string
segment_anchors
=
3
;
optional
int32
sharding_degree
=
4
[
default
=
8
];
optional
int32
mp_degree
=
5
[
default
=
1
];
optional
int32
dp_degree
=
6
[
default
=
1
];
optional
bool
hybrid_dp
=
7
[
default
=
false
];
optional
int32
gradient_merge_acc_step
=
8
[
default
=
1
];
optional
bool
optimize_offload
=
9
[
default
=
false
];
optional
bool
pp_allreduce_in_optimize
=
10
[
default
=
false
];
optional
int32
pp_degree
=
11
[
default
=
1
];
}
message
AMPConfig
{
...
...
python/paddle/distributed/fleet/meta_optimizers/pipeline_optimizer.py
100644 → 100755
浏览文件 @
1e60a0c4
...
...
@@ -45,11 +45,16 @@ class PipelineOptimizer(MetaOptimizerBase):
'accumulate_steps'
]
self
.
schedule_mode
=
user_defined_strategy
.
pipeline_configs
[
'schedule_mode'
]
self
.
use_sharding
=
user_defined_strategy
.
sharding
def
_can_apply
(
self
):
if
not
self
.
role_maker
.
_is_collective
:
return
False
# FIXME revise for hybrid parallelism
if
self
.
use_sharding
:
return
False
if
self
.
user_defined_strategy
.
pipeline
==
True
:
return
True
return
False
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/fp16_helper.py
浏览文件 @
1e60a0c4
...
...
@@ -81,7 +81,10 @@ class FP16Utils(object):
if
not
FP16Utils
.
is_fp32_cast_op
(
block
,
op
):
continue
output_name
=
op
.
desc
.
output_arg_names
()[
0
]
param_name
=
output_name
.
strip
(
"@GRAD"
)
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
param_name
=
output_name
.
strip
(
"@GRAD@MERGED"
)
if
"@MERGED"
in
output_name
else
output_name
.
strip
(
"@GRAD"
)
if
param_name
not
in
shard
.
global_params
:
raise
ValueError
(
"Output 'X' of cast_op must be a grad of"
"model param, but {} is not a grad"
.
format
(
...
...
@@ -105,7 +108,11 @@ class FP16Utils(object):
reversed_x
=
[]
reversed_x_paramname
=
[]
for
input_name
in
op
.
desc
.
input
(
'X'
):
param_name
=
input_name
.
strip
(
"@GRAD"
)
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
if
"@MERGED"
in
input_name
:
param_name
=
input_name
.
strip
(
"@GRAD@MERGED"
)
else
:
param_name
=
input_name
.
strip
(
"@GRAD"
)
if
param_name
not
in
shard
.
global_params
:
raise
ValueError
(
"Input 'X' of check_finite_and_unscale must"
...
...
@@ -169,3 +176,58 @@ class FP16Utils(object):
OP_ROLE_KEY
:
OpRole
.
Optimize
})
block
.
_sync_with_cpp
()
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
@
staticmethod
def
sync_amp_check_nan_inf
(
block
,
ring_id
):
update_loss_scaling_op_idx
=
-
1
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
op
.
type
==
"update_loss_scaling"
:
update_loss_scaling_op_idx
=
idx
inf_var_name
=
op
.
desc
.
input
(
'FoundInfinite'
)[
0
]
op
.
_rename_input
(
inf_var_name
,
inf_var_name
+
"@GLOBAL_WORLD"
)
# not use amp
if
update_loss_scaling_op_idx
==
-
1
:
return
inf_var
=
block
.
var
(
inf_var_name
)
inf_var_int32
=
block
.
create_var
(
name
=
inf_var_name
+
"@cast_int32"
,
shape
=
inf_var
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
INT32
)
inf_var_global
=
block
.
create_var
(
name
=
inf_var_name
+
"@GLOBAL_WORLD"
,
shape
=
inf_var
.
shape
,
dtype
=
inf_var
.
dtype
)
block
.
_insert_op_without_sync
(
update_loss_scaling_op_idx
,
type
=
'cast'
,
inputs
=
{
'X'
:
inf_var
},
outputs
=
{
'Out'
:
inf_var_int32
},
attrs
=
{
"in_dtype"
:
inf_var
.
dtype
,
"out_dtype"
:
inf_var_int32
.
dtype
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
block
.
_insert_op_without_sync
(
update_loss_scaling_op_idx
+
1
,
type
=
'c_allreduce_max'
,
inputs
=
{
'X'
:
inf_var_int32
},
outputs
=
{
'Out'
:
inf_var_int32
},
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
block
.
_insert_op_without_sync
(
update_loss_scaling_op_idx
+
2
,
type
=
'cast'
,
inputs
=
{
'X'
:
inf_var_int32
},
outputs
=
{
'Out'
:
inf_var_global
},
attrs
=
{
"in_dtype"
:
inf_var_int32
.
dtype
,
"out_dtype"
:
inf_var_global
.
dtype
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
block
.
_sync_with_cpp
()
python/paddle/distributed/fleet/meta_optimizers/sharding/gradient_clip_helper.py
浏览文件 @
1e60a0c4
...
...
@@ -32,6 +32,7 @@ class GradientClipHelper(object):
deperated_vars
=
set
()
deperate_op_idx
=
set
()
reversed_x_paramname
=
[]
global_norm_sum_op_idx
=
-
1
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
not
self
.
_is_gradient_clip_op
(
op
):
continue
...
...
@@ -41,7 +42,11 @@ class GradientClipHelper(object):
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
deperated_vars
:
deperate_op
=
True
param_name
=
input_name
.
strip
(
"@GRAD"
)
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
if
"@MERGED"
in
input_name
:
param_name
=
input_name
.
strip
(
"@GRAD@MERGED"
)
else
:
param_name
=
input_name
.
strip
(
"@GRAD"
)
if
shard
.
is_param
(
param_name
)
and
\
not
shard
.
has_param
(
param_name
):
deperate_op
=
True
...
...
@@ -51,7 +56,8 @@ class GradientClipHelper(object):
if
deperate_op
:
deperate_op_idx
.
add
(
idx
)
for
output_name
in
op
.
desc
.
output_arg_names
():
deperated_vars
.
add
(
output_name
)
if
output_name
not
in
op
.
desc
.
input_arg_names
():
deperated_vars
.
add
(
output_name
)
if
not
deperated_vars
:
# got no gradient_clip op
...
...
@@ -65,6 +71,7 @@ class GradientClipHelper(object):
continue
reversed_inputs
=
[]
if
op
.
type
==
"sum"
:
global_norm_sum_op_idx
=
idx
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
not
in
deperated_vars
:
reversed_inputs
.
append
(
input_name
)
...
...
@@ -86,20 +93,20 @@ class GradientClipHelper(object):
OP_ROLE_KEY
:
OpRole
.
Optimize
,
})
# global norm should only be sum within each model parallelism word size when use global group
if
pure_dp_degree
>
1
:
block
.
_insert_op_without_sync
(
idx
+
2
,
type
=
'scale'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'scale'
:
1.0
/
float
(
pure_dp_degree
),
'op_namescope'
:
"/gradient_clip_model_parallelism"
,
'bias'
:
0.0
,
'bias_after_scale'
:
False
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
# global norm should only be sum within each model parallelism word size when use global group
if
pure_dp_degree
>
1
:
block
.
_insert_op_without_sync
(
idx
+
2
,
type
=
'scale'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'scale'
:
1.0
/
float
(
pure_dp_degree
),
'op_namescope'
:
"/gradient_clip_model_parallelism"
,
'bias'
:
0.0
,
'bias_after_scale'
:
False
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
# the grad sum here should take the all and only param in the current shard
to_check_param
=
set
(
reversed_x_paramname
)
...
...
@@ -115,3 +122,45 @@ class GradientClipHelper(object):
block
.
_remove_var
(
var_name
,
sync
=
False
)
block
.
_sync_with_cpp
()
return
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
def
sync_global_norm
(
self
,
block
,
ring_id
,
pure_dp_degree
=
1
):
"""
prune gradient_clip related ops for params that not belong to cur shard
prune: square, reduce_sum, elementwise_mul
keep: sum, sqrt, elementwise_max, elementwise_div
"""
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
not
self
.
_is_gradient_clip_op
(
op
):
continue
if
op
.
type
==
"sum"
:
sum_res
=
op
.
desc
.
output_arg_names
()[
0
]
block
.
_insert_op_without_sync
(
idx
+
1
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'ring_id'
:
ring_id
,
'op_namescope'
:
"/gradient_clip_model_parallelism"
,
'use_calc_stream'
:
True
,
OP_ROLE_KEY
:
OpRole
.
Optimize
,
})
# global norm should only be sum within each model parallelism word size
if
pure_dp_degree
>
1
:
block
.
_insert_op_without_sync
(
idx
+
2
,
type
=
'scale'
,
inputs
=
{
'X'
:
sum_res
},
outputs
=
{
'Out'
:
sum_res
},
attrs
=
{
'scale'
:
1.0
/
float
(
pure_dp_degree
),
'op_namescope'
:
"/gradient_clip_model_parallelism"
,
'bias'
:
0.0
,
'bias_after_scale'
:
False
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
return
python/paddle/distributed/fleet/meta_optimizers/sharding/offload_helper.py
0 → 100755
浏览文件 @
1e60a0c4
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
..common
import
is_optimizer_op
,
OP_ROLE_KEY
,
OpRole
from
paddle.fluid
import
core
,
unique_name
class
OffloadHelper
(
object
):
cpu_place_type
=
0
cuda_place_type
=
1
cuda_pinned_place_type
=
2
def
__init__
(
self
):
pass
"0: dst is on CPUPlace. "
"1: dst is on CUDAPlace. "
"2: dst is on CUDAPinnedPlace. "
def
_insert_cast_op
(
self
,
block
,
idx
,
src_name
,
dst_name
):
src_var
=
block
.
var
(
src_name
)
if
not
block
.
has_var
(
dst_name
):
block
.
create_var
(
name
=
dst_name
,
shape
=
src_var
.
shape
,
dtype
=
core
.
VarDesc
.
VarType
.
FP16
,
persistable
=
True
)
dst_var
=
block
.
var
(
dst_name
)
assert
dst_var
.
dtype
==
core
.
VarDesc
.
VarType
.
FP16
block
.
_insert_op_without_sync
(
idx
,
type
=
'cast'
,
inputs
=
{
'X'
:
src_var
},
outputs
=
{
'Out'
:
dst_var
},
attrs
=
{
'in_dtype'
:
src_var
.
dtype
,
'out_dtype'
:
dst_var
.
dtype
,
OP_ROLE_KEY
:
OpRole
.
Optimize
})
def
_insert_memcpy_op
(
self
,
block
,
idx
,
src_name
,
dst_name
,
dst_place_type
):
src_var
=
block
.
var
(
src_name
)
dst_var
=
block
.
var
(
dst_name
)
block
.
_insert_op_without_sync
(
idx
,
type
=
'memcpy'
,
inputs
=
{
'X'
:
src_var
},
outputs
=
{
'Out'
:
dst_var
},
attrs
=
{
'dst_place_type'
:
dst_place_type
,
OP_ROLE_KEY
:
OpRole
.
Optimize
,
})
def
_insert_fetch_op
(
self
,
block
,
idx
,
src_name
,
dst_name
):
self
.
_insert_memcpy_op
(
block
,
idx
,
src_name
,
dst_name
,
OffloadHelper
.
cuda_place_type
)
def
_insert_offload_op
(
self
,
block
,
idx
,
src_name
,
dst_name
):
self
.
_insert_memcpy_op
(
block
,
idx
,
src_name
,
dst_name
,
OffloadHelper
.
cuda_pinned_place_type
)
def
_get_offload_var_name
(
self
,
name
):
return
unique_name
.
generate
(
name
+
'@offload'
)
def
_create_offload_var
(
self
,
var_name
,
offload_var_name
,
blocks
):
for
block
in
blocks
:
var
=
block
.
var
(
var_name
)
var
.
persistable
=
False
offload_var
=
block
.
create_var
(
name
=
offload_var_name
,
shape
=
var
.
shape
,
dtype
=
var
.
dtype
,
persistable
=
True
)
def
offload_fp32param
(
self
,
block
,
startup_block
):
"""
(p_fp16) = cast(p)
(p_fp16_recompute) = cast(p)
(pout,) = adam(p)
===========================>
rename(p_fp16_recompute, p_fp16)
(p,) = prefetch(p@offload)
(pout,) = adam(p)
(p_fp16) = cast(p)
(p@offload) = memcpy(p)
"""
param_to_idx
=
dict
()
param_to_fp16
=
dict
()
# recompute_var which need rename to fp16_param
fp16_param_to_recompute
=
dict
()
recompute_to_fp16
=
dict
()
def
remove_param
(
input_name
):
param_to_idx
.
pop
(
input_name
)
if
input_name
in
param_to_fp16
:
fp16_param
=
param_to_fp16
.
pop
(
input_name
)
if
fp16_param
in
fp16_param_to_recompute
:
recompute
=
fp16_param_to_recompute
.
pop
(
fp16_param
)
recompute_to_fp16
.
pop
(
recompute
)
# step1: record param
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
op
.
type
in
(
'adam'
,
'momentum'
,
'lars'
,
'lamb'
):
param
=
op
.
desc
.
input
(
"Param"
)[
0
]
param_to_idx
[
param
]
=
idx
# step2: remove param which can't offload
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
is_optimizer_op
(
op
):
break
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
not
in
param_to_idx
:
continue
# param is real used by fp32 op
if
op
.
type
!=
'cast'
:
remove_param
(
input_name
)
continue
# param is only used by cast op,
# which to cast fp32_param to fp16_param
output_name
=
op
.
output_arg_names
[
0
]
if
'cast_fp16'
not
in
output_name
:
remove_param
(
input_name
)
continue
if
'subprog'
not
in
output_name
:
assert
output_name
==
input_name
+
'.cast_fp16'
assert
input_name
not
in
param_to_fp16
,
\
"There must be only one cast op from fp32 param to fp16 param."
param_to_fp16
[
input_name
]
=
output_name
else
:
# fp16-->recompute_var
assert
input_name
in
param_to_fp16
,
\
"param must first be cast to fp16"
fp16_param
=
param_to_fp16
[
input_name
]
fp16_param_to_recompute
[
fp16_param
]
=
output_name
recompute_to_fp16
[
output_name
]
=
fp16_param
param_name_to_offload_name
=
dict
()
# step3: main_block add offload, cast op
# change recompute to fp16, remove cast(param) to fp16
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
op
.
type
in
(
'adam'
,
'momentum'
,
'lars'
,
'lamb'
):
param
=
op
.
desc
.
input
(
"Param"
)[
0
]
if
param
not
in
param_to_idx
:
continue
# step3.1: create offload_var
offload_var_name
=
self
.
_get_offload_var_name
(
param
)
param_name_to_offload_name
[
param
]
=
offload_var_name
self
.
_create_offload_var
(
param
,
offload_var_name
,
[
block
,
startup_block
])
# step3.2: insert cast op and offload op
self
.
_insert_offload_op
(
block
,
idx
+
1
,
param
,
offload_var_name
)
assert
param
in
param_to_fp16
fp16_param_name
=
param_to_fp16
[
param
]
fp16_param_var
=
block
.
var
(
fp16_param_name
)
fp16_param_var
.
persistable
=
True
self
.
_insert_cast_op
(
block
,
idx
+
1
,
param
,
param_to_fp16
[
param
])
# step3.3: insert fetch op
self
.
_insert_fetch_op
(
block
,
idx
,
offload_var_name
,
param
)
continue
# step3.4: remove cast op
if
op
.
type
==
'cast'
:
input_name
=
op
.
desc
.
input_arg_names
()[
0
]
if
input_name
in
param_to_idx
:
block
.
_remove_op
(
idx
,
sync
=
False
)
continue
# step3.5: change recompute_param to fp16_param
for
input_name
in
op
.
desc
.
input_arg_names
():
if
input_name
in
recompute_to_fp16
:
op
.
_rename_input
(
input_name
,
recompute_to_fp16
[
input_name
])
for
output_name
in
op
.
desc
.
output_arg_names
():
if
output_name
in
recompute_to_fp16
:
op
.
_rename_output
(
output_name
,
recompute_to_fp16
[
output_name
])
# step4: remove recompute_param
for
name
in
recompute_to_fp16
.
keys
():
block
.
_remove_var
(
name
,
sync
=
False
)
# step5: startup_block add offload
visited_vars
=
set
()
for
idx
,
op
in
reversed
(
list
(
enumerate
(
startup_block
.
ops
))):
for
out_name
in
op
.
output_arg_names
:
if
out_name
in
visited_vars
:
continue
if
out_name
in
param_name_to_offload_name
:
var_name
=
out_name
offload_var_name
=
param_name_to_offload_name
[
var_name
]
self
.
_insert_offload_op
(
startup_block
,
idx
+
1
,
var_name
,
offload_var_name
)
self
.
_insert_cast_op
(
startup_block
,
idx
+
1
,
var_name
,
param_to_fp16
[
var_name
])
visited_vars
.
add
(
out_name
)
block
.
_sync_with_cpp
()
startup_block
.
_sync_with_cpp
()
def
offload
(
self
,
block
,
startup_block
):
"""
(m1, m2) = prefetch(m1@offload, m2@offload)
(m1out, m2out, pout) = adam(m1, m2, p)
(m1@offload, m2@offload) = memcpy(m1, m2)
"""
vars_name_to_offload_name
=
dict
()
# main_block add offload
for
idx
,
op
in
reversed
(
list
(
enumerate
(
block
.
ops
))):
if
not
is_optimizer_op
(
op
):
break
vars_name
=
[]
if
op
.
type
==
"adam"
:
# {Moment1Out = [''], Moment2Out = [''], ParamOut = ['']} =
# adam(inputs={Moment1 = [''], Moment2 = [''], Param = ['']})
vars_name
.
append
(
op
.
desc
.
input
(
"Moment1"
)[
0
])
vars_name
.
append
(
op
.
desc
.
input
(
"Moment2"
)[
0
])
elif
op
.
type
==
'momentum'
:
pass
elif
op
.
type
==
'lars'
:
pass
elif
op
.
type
==
'lamb'
:
pass
# step1: create and init offload_var
for
var_name
in
vars_name
:
assert
var_name
not
in
vars_name_to_offload_name
offload_var_name
=
self
.
_get_offload_var_name
(
var_name
)
vars_name_to_offload_name
[
var_name
]
=
offload_var_name
self
.
_create_offload_var
(
var_name
,
offload_var_name
,
[
block
,
startup_block
])
# step2: insert offload op
for
var_name
in
vars_name
:
offload_var_name
=
vars_name_to_offload_name
[
var_name
]
self
.
_insert_offload_op
(
block
,
idx
+
1
,
var_name
,
offload_var_name
)
# step3: insert fetch op
for
var_name
in
vars_name
:
offload_var_name
=
vars_name_to_offload_name
[
var_name
]
self
.
_insert_fetch_op
(
block
,
idx
,
offload_var_name
,
var_name
)
# startup_block add offload
visited_vars
=
set
()
for
idx
,
op
in
reversed
(
list
(
enumerate
(
startup_block
.
ops
))):
for
out_name
in
op
.
output_arg_names
:
if
out_name
in
visited_vars
:
continue
if
out_name
in
vars_name_to_offload_name
:
var_name
=
out_name
offload_var_name
=
vars_name_to_offload_name
[
var_name
]
# insert offload op after var is generated
self
.
_insert_offload_op
(
startup_block
,
idx
+
1
,
var_name
,
offload_var_name
)
visited_vars
.
add
(
out_name
)
block
.
_sync_with_cpp
()
startup_block
.
_sync_with_cpp
()
python/paddle/distributed/fleet/meta_optimizers/sharding/prune.py
100644 → 100755
浏览文件 @
1e60a0c4
...
...
@@ -126,6 +126,10 @@ class ProgramDeps(object):
def
should_remove_op
(
self
,
op_idx
):
op
=
self
.
_block
.
ops
[
op_idx
]
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
# remove check_finite_and_unscale op if its input 'X' is empty
if
op
.
type
==
'check_finite_and_unscale'
and
len
(
op
.
input
(
'X'
))
==
0
:
return
True
for
output_name
in
op
.
desc
.
output_arg_names
():
if
output_name
not
in
self
.
_should_removed_var
:
return
False
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding/utils.py
浏览文件 @
1e60a0c4
...
...
@@ -274,6 +274,10 @@ def insert_sync_comm_ops(block, insert_idx, ring_id, comm_dep_vars):
"""
insert sync_comm_op for vars
"""
# NOTE (JZ-LIANG) to be check, may result undefined case
if
len
(
comm_dep_vars
)
==
0
:
return
0
op_role
=
get_valid_op_role
(
block
,
insert_idx
)
block
.
_insert_op_without_sync
(
insert_idx
,
...
...
@@ -324,27 +328,45 @@ def insert_cast_ops(block, insert_idx, cast_ops):
return
def
insert_allreduce_ops
(
block
,
insert_idx
,
ring_id
,
allreduce_vars
):
def
insert_allreduce_ops
(
block
,
insert_idx
,
ring_id
,
allreduce_vars
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
):
"""
_add_allreduce_ops
"""
if
len
(
allreduce_vars
)
==
0
:
return
for
var
in
allreduce_vars
:
block
.
_insert_op_without_sync
(
insert_idx
,
type
=
'c_allreduce_sum'
,
inputs
=
{
'X'
:
var
},
outputs
=
{
'Out'
:
var
},
attrs
=
{
'ring_id'
:
ring_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
attrs
=
{
'ring_id'
:
ring_id
,
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
return
def
insert_reduce_ops
(
block
,
insert_idx
,
ring_id
,
reduce_vars
,
shard
):
def
insert_reduce_ops
(
block
,
insert_idx
,
ring_id
,
reduce_vars
,
shard
,
op_role
=
OpRole
.
Backward
,
use_calc_stream
=
False
):
"""
_add_allreduce_ops
"""
for
var
in
reduce_vars
:
root_id
=
get_grad_device
(
var
,
shard
)
assert
root_id
>=
0
,
"root id should be a positive int"
.
format
(
var
)
block
.
_insert_op_without_sync
(
...
...
@@ -355,12 +377,40 @@ def insert_reduce_ops(block, insert_idx, ring_id, reduce_vars, shard):
attrs
=
{
'ring_id'
:
ring_id
,
'root_id'
:
root_id
,
OP_ROLE_KEY
:
OpRole
.
Backward
'use_calc_stream'
:
use_calc_stream
,
OP_ROLE_KEY
:
op_role
})
return
def
get_grad_device
(
grad_name
,
shard
):
assert
"@GRAD"
in
grad_name
,
"[{}] should be a grad variable."
.
format
(
grad_name
)
base_name
=
None
# mind the traversal order
possible_suffixes
=
[
'.cast_fp16@GRAD@MERGED'
,
'.cast_fp16@GRAD'
,
'@GRAD@MERGED'
,
'@GRAD'
]
for
suffix
in
possible_suffixes
:
if
suffix
in
grad_name
:
base_name
=
re
.
sub
(
suffix
,
''
,
grad_name
)
break
assert
base_name
in
shard
.
global_param2device
,
"[{}] should be a param variable."
.
format
(
base_name
)
return
shard
.
global_param2device
[
base_name
]
def
get_first_check_finite_and_unscale_op_idx
(
block
):
for
idx
,
op
in
enumerate
(
block
.
ops
):
if
op
.
type
==
"check_finite_and_unscale"
:
return
idx
raise
ValueError
(
"check_finite_and_unscale does not exist in block"
)
def
insert_broadcast_ops
(
block
,
insert_idx
,
ring_id
,
broadcast2root
):
"""
_add_broadcast_ops
...
...
@@ -420,6 +470,7 @@ def insert_scale_loss_grad_ops(block, scale=1.0):
outputs
=
{
'Out'
:
loss_grad_var
},
attrs
=
{
'scale'
:
scale
,
OP_ROLE_KEY
:
OpRole
.
Backward
})
break
def
comm_analyse
(
main_program
):
...
...
@@ -502,6 +553,9 @@ def save_persistables(exe, dirname, main_program, filename=None):
and part of persistable vars are duplicated and exist in all the ranks with different values.
This function handles the model saving for sharding training.
"""
# TODO (JZ-LIANG) revise this for uniform mixed parallelism
if
main_program
.
_pipeline_opt
:
main_program
=
main_program
.
_pipeline_opt
[
'section_program'
][
'program'
]
def
is_opt_vars
(
var
):
# NOTE(JZ-LIANG): The checks should be updated when add new compatible optimizer
...
...
python/paddle/distributed/fleet/meta_optimizers/sharding_optimizer.py
浏览文件 @
1e60a0c4
此差异已折叠。
点击以展开。
python/paddle/fluid/backward.py
浏览文件 @
1e60a0c4
...
...
@@ -233,6 +233,8 @@ def _add_needed_descs_to_block(descs, block, main_block, in_memory_vars):
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
desc
)
new_op_desc
.
_set_attr
(
op_role_attr_name
,
backward
)
if
desc
.
has_attr
(
'op_device'
):
new_op_desc
.
_set_attr
(
'op_device'
,
desc
.
attr
(
'op_device'
))
result_descs
.
append
(
new_op_desc
)
return
result_descs
...
...
@@ -252,6 +254,8 @@ def _add_descs_to_block(descs, block):
new_op_desc
=
block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
desc
)
new_op_desc
.
_set_attr
(
op_role_attr_name
,
backward
)
if
desc
.
has_attr
(
'op_device'
):
new_op_desc
.
_set_attr
(
'op_device'
,
desc
.
attr
(
'op_device'
))
result_descs
.
append
(
new_op_desc
)
return
result_descs
...
...
@@ -843,6 +847,7 @@ def _append_backward_ops_with_checkpoints_(
vars_in_memory
=
vars_should_be_hold
+
checkpoints_name
max_calculated_op_position
=
len
(
ops
)
device_attr_name
=
core
.
op_proto_and_checker_maker
.
kOpDeviceAttrName
()
if
recompute_segments
==
[]:
gap_ops
=
ops
[
0
:
max_calculated_op_position
]
for
op
in
reversed
(
gap_ops
):
...
...
@@ -852,6 +857,11 @@ def _append_backward_ops_with_checkpoints_(
_pretty_op_desc_
(
op
.
desc
,
"with_sub_block"
))
grad_op_desc
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
op
.
desc
,
cpt
.
to_text
(
no_grad_dict
[
block
.
idx
]),
[])
# Set device for grad_op according to forward Op
if
op
.
desc
.
has_attr
(
device_attr_name
):
op_device
=
op
.
desc
.
attr
(
device_attr_name
)
for
op_desc
in
grad_op_desc
:
op_desc
.
_set_attr
(
device_attr_name
,
op_device
)
added_descs
=
_add_descs_to_block
(
grad_op_desc
,
local_block
)
grad_op_descs
.
extend
(
added_descs
)
grad_to_var
.
update
(
op_grad_to_var
)
...
...
@@ -866,6 +876,11 @@ def _append_backward_ops_with_checkpoints_(
_pretty_op_desc_
(
op
.
desc
,
"with_sub_block"
))
grad_op_desc
,
op_grad_to_var
=
core
.
get_grad_op_desc
(
op
.
desc
,
cpt
.
to_text
(
no_grad_dict
[
block
.
idx
]),
[])
# Set device for grad_op according to forward Op
if
op
.
desc
.
has_attr
(
device_attr_name
):
op_device
=
op
.
desc
.
attr
(
device_attr_name
)
for
op_desc
in
grad_op_desc
:
op_desc
.
_set_attr
(
device_attr_name
,
op_device
)
added_descs
=
_add_descs_to_block
(
grad_op_desc
,
local_block
)
grad_op_descs
.
extend
(
added_descs
)
grad_to_var
.
update
(
op_grad_to_var
)
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
1e60a0c4
...
...
@@ -4033,6 +4033,12 @@ class PipelineOptimizer(object):
"""
Find the post op that has variable named var_name as input.
"""
# bugfix for uniform hybrid parallelism
if
'.cast_fp32'
in
var_name
:
var_name
=
var_name
.
replace
(
'.cast_fp32'
,
''
)
if
'.cast_fp16'
in
var_name
:
var_name
=
var_name
.
replace
(
'.cast_fp16'
,
''
)
post_ops
=
self
.
input_var_to_op
[
var_name
]
if
post_ops
==
None
:
return
None
result_op
=
None
...
...
@@ -4114,7 +4120,23 @@ class PipelineOptimizer(object):
# For LRSched ops, we should put them on all sub-programs to
# make sure each sub-program update the lr correctly
op
.
_set_attr
(
self
.
_op_device_key
,
"gpu:all"
)
elif
op
.
type
==
"scale"
and
self
.
_is_backward_op
(
op
):
# bugfix in hybrid parallelism
elif
op
.
type
==
"sum"
and
self
.
_is_backward_op
(
op
):
# For sum ops that compute the sum of @RENAMED@ vars
for
name
in
op
.
desc
.
input_arg_names
():
assert
'@RENAME@'
in
name
,
\
"The op must be sum used to accumulate renamed vars."
assert
len
(
op
.
desc
.
output_arg_names
())
==
1
out_name
=
op
.
desc
.
output_arg_names
()[
0
]
post_op
=
self
.
_find_post_op
(
idx
,
out_name
)
assert
post_op
.
has_attr
(
'op_device'
),
"{} has no op_device attr for var {}"
.
format
(
post_op
.
type
,
out_name
)
device
=
post_op
.
attr
(
self
.
_op_device_key
)
assert
device
,
"The post op must have op_device set."
op
.
_set_attr
(
self
.
_op_device_key
,
device
)
elif
(
op
.
type
==
"cast"
or
op
.
type
==
"scale"
)
and
self
.
_is_backward_op
(
op
):
prev_op
=
self
.
_find_prev_op
(
idx
,
op
.
desc
.
input
(
"X"
)[
0
])
op
.
_set_attr
(
self
.
_op_device_key
,
prev_op
.
attr
(
self
.
_op_device_key
))
elif
op
.
type
==
"memcpy"
and
not
self
.
_is_optimize_op
(
op
):
...
...
@@ -4249,11 +4271,19 @@ class PipelineOptimizer(object):
Insert a pair of send and recv ops for every two
consecutive ops on different devices.
"""
extra_index_info
=
{
'index'
:
0
}
# A map from var to device where op takes it as input,
# avoiding multiple send and recv ops.
input_var_to_device
=
dict
()
# bugfix hybrid parallelism
first_optimize_index
=
None
for
index
,
op
in
enumerate
(
list
(
block
.
ops
)):
if
self
.
_is_optimize_op
(
op
):
first_optimize_index
=
index
break
extra_index_info
=
{
'index'
:
0
,
'first_optimize_index'
:
first_optimize_index
}
for
index
,
op
in
enumerate
(
list
(
block
.
ops
)):
cur_device
=
op
.
attr
(
self
.
_op_device_key
)
...
...
@@ -4371,17 +4401,26 @@ class PipelineOptimizer(object):
'peer'
:
1
,
})
extra_index_info
[
'index'
]
+=
1
insert_index
=
None
if
int
(
op_role
)
==
int
(
self
.
_op_role
.
Backward
):
insert_index
=
extra_index_info
[
'first_optimize_index'
]
new_op_role
=
self
.
_op_role
.
Optimize
else
:
insert_index
=
index
new_op_role
=
self
.
_op_role
.
Backward
block
.
_insert_op
(
index
=
index
+
extra_index_info
[
'index'
],
index
=
in
sert_in
dex
+
extra_index_info
[
'index'
],
type
=
'c_sync_comm_stream'
,
inputs
=
{
'X'
:
[
var
]},
outputs
=
{
'Out'
:
[
var
]},
attrs
=
{
self
.
_op_device_key
:
prev_dev
,
self
.
_op_role_key
:
self
.
_op_role
.
Backward
,
self
.
_op_role_key
:
new_op_role
,
'ring_id'
:
ring_id
,
})
extra_index_info
[
'index'
]
+=
1
if
int
(
op_role
)
==
int
(
self
.
_op_role
.
Forward
):
extra_index_info
[
'index'
]
+=
1
var_shape
=
list
(
var
.
shape
)
var_shape
[
0
]
=
self
.
micro_batch_size
if
var_shape
[
0
]
<
0
else
var_shape
[
0
]
...
...
@@ -4768,8 +4807,9 @@ class PipelineOptimizer(object):
# Step4: Special Case: process persistable vars that exist in
# multiple sections
self
.
_process_persistable_vars_in_multi_sections
(
main_program
,
startup_program
,
program_list
)
# FIXME
# self._process_persistable_vars_in_multi_sections(
# main_program, startup_program, program_list)
# Step5: Add sub blocks for section programs
self
.
_add_sub_blocks
(
main_block
,
program_list
)
...
...
python/paddle/fluid/tests/unittests/test_fleet_sharding_meta_optimizer.py
浏览文件 @
1e60a0c4
...
...
@@ -354,6 +354,7 @@ class TestFleetMetaOptimizer(TestFleetMetaOptimizer):
"segment_broadcast_MB"
:
0.2
,
"segment_anchors"
:
None
,
"sharding_degree"
:
2
,
"dp_degree"
:
2
,
"hybrid_dp"
:
True
,
"gradient_merge_acc_step"
:
1
,
"mp_degree"
:
1
...
...
@@ -422,6 +423,7 @@ class TestFleetMetaOptimizer(TestFleetMetaOptimizer):
"segment_broadcast_MB"
:
0.2
,
"segment_anchors"
:
None
,
"sharding_degree"
:
2
,
"dp_degree"
:
2
,
"hybrid_dp"
:
True
,
"gradient_merge_acc_step"
:
4
,
"mp_degree"
:
1
...
...
@@ -458,20 +460,56 @@ class TestFleetMetaOptimizer(TestFleetMetaOptimizer):
fw_bw_ops
=
[
op
.
type
for
op
in
train_prog
.
blocks
[
0
].
ops
]
opt_ops
=
[
op
.
type
for
op
in
train_prog
.
blocks
[
2
].
ops
]
self
.
assertEqual
(
fw_bw_ops
,
[
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_sync_calc_stream'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_sync_comm_stream'
,
'c_sync_comm_stream'
,
'mul'
,
'elementwise_add'
,
'tanh'
,
'mul'
,
'elementwise_add'
,
'tanh'
,
'mul'
,
'elementwise_add'
,
'softmax'
,
'cross_entropy2'
,
'mean'
,
'fill_constant'
,
'scale'
,
'mean_grad'
,
'cross_entropy_grad2'
,
'softmax_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'c_sync_calc_stream'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_sync_comm_stream'
,
'elementwise_add'
,
'elementwise_add'
,
'elementwise_add'
,
'increment'
,
'elementwise_mod'
,
'equal'
,
'conditional_block'
'fill_constant'
,
'fill_constant'
,
'fill_constant'
,
'c_sync_calc_stream'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_broadcast'
,
'c_sync_comm_stream'
,
'mul'
,
'elementwise_add'
,
'tanh'
,
'mul'
,
'elementwise_add'
,
'tanh'
,
'mul'
,
'elementwise_add'
,
'softmax'
,
'cross_entropy2'
,
'mean'
,
'fill_constant'
,
'scale'
,
'mean_grad'
,
'cross_entropy_grad2'
,
'softmax_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'tanh_grad'
,
'elementwise_add_grad'
,
'mul_grad'
,
'c_sync_calc_stream'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_reduce_sum'
,
'c_sync_comm_stream'
,
'elementwise_add'
,
'elementwise_add'
,
'elementwise_add'
,
'increment'
,
'elementwise_mod'
,
'equal'
,
'conditional_block'
,
])
self
.
assertEqual
(
opt_ops
,
[
'c_allreduce_sum'
,
'c_allreduce_sum'
,
'c_allreduce_sum'
,
'scale'
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录