optimizer.py 161.2 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import numpy as np
18
from collections import defaultdict
19

Q
Qiao Longfei 已提交
20
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
21
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program, default_startup_program
22

23 24
from . import framework
from . import layers
25
from . import unique_name
H
hutuxian 已提交
26
from .backward import append_backward, _some_in_set_, _append_grad_suffix_
27
from .clip import append_gradient_clip_ops, error_clip_callback
28 29 30
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
31
from .layers import ops
32
from .regularizer import append_regularization_ops
33
from .dygraph import base as imperative_base
34
from .dygraph import no_grad
35 36 37 38
from .dygraph.learning_rate_scheduler import LearningRateDecay
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
39
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
40
from .. import compat as cpt
41

42
__all__ = [
43 44 45 46
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
47 48 49 50
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
    'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer',
    'ExponentialMovingAverage', 'PipelineOptimizer', 'LookaheadOptimizer',
    'RecomputeOptimizer'
51
]
Q
Qiao Longfei 已提交
52 53 54 55 56 57


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
58 59
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
60 61
    """

62
    @imperative_base.no_grad
63 64 65 66 67 68
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
                 name=None):
        self._parameter_list = None
L
lujun 已提交
69
        if framework.in_dygraph_mode():
M
minqiyang 已提交
70 71 72 73 74
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, LearningRateDecay):
                raise TypeError(
                    "learning rate should be float or LearningRateDecay, got %s here"
                    % type(learning_rate))
75 76 77 78
            if name is not None:
                self._name = unique_name.generate(name)
            else:
                self._name = unique_name.generate(self.__class__.__name__)
79 80 81 82 83 84
            if parameter_list is not None:
                self._parameter_list = parameter_list
            else:
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
M
minqiyang 已提交
85 86 87 88 89 90
        else:
            if not isinstance(learning_rate, float) and \
                    not isinstance(learning_rate, framework.Variable):
                raise TypeError(
                    "learning rate should be float or Variable, got %s here" %
                    type(learning_rate))
91
            self._name = name
M
minqiyang 已提交
92

D
dzhwinter 已提交
93
        self.regularization = regularization
94
        self._learning_rate = learning_rate
D
dzhwinter 已提交
95 96
        # the learning rate type should be inferenced from loss
        self._dtype = None
97
        # each program should have a independent learning rate
98
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
99
        self._learning_rate_map = dict()
100
        if isinstance(self._learning_rate, framework.Variable):
101 102
            self._learning_rate_map[framework.default_main_program(
            )] = self._learning_rate
103 104 105 106 107
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
Q
Qiao Longfei 已提交
108
        self.helper = None
109
        self._opti_name_list = []
H
hong 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        self._accumulators_holder = {}

    @framework.dygraph_only
    def state_dict(self):
        '''
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam opimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimzier never be called(minimize function), the state_dict is empty.

        Args: None
        Return:
            state_dict(dict) : dict contains all the variablel used by optimizer
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
126 127 128 129 130 131

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
132 133 134 135 136 137 138 139

        '''
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
        # global step if use lr decay
        if isinstance(self._learning_rate, LearningRateDecay):
140
            var_tmp = None
L
Leo Chen 已提交
141
            if framework.in_dygraph_mode():
142 143
                var_temp = framework._varbase_creator(
                    None, name='global_step', dtype='int32')
L
Leo Chen 已提交
144 145
            else:
                var_temp = Variable(None, name='global_step', dtype='int32')
146

H
hong 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            tensor.fill_constant(
                [1], "int32", self._learning_rate.step_num, out=var_temp)

            state_dict['global_step'] = var_temp
        return state_dict

    @framework.dygraph_only
    def set_dict(self, state_dict):
        '''
        Load optimizer state dict. For Adam opimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.

        Args: 
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
        
        Examples:
            .. code-block:: python
165

H
hong 已提交
166
                with fluid.dygraph.guard():
167
                    emb = fluid.dygraph.Embedding([10, 10])
168

H
hong 已提交
169
                    state_dict = emb.state_dict()
170
                    fluid.save_dygraph(state_dict, "paddle_dy")
171

172 173
                    adam = fluid.optimizer.Adam(learning_rate=fluid.layers.noam_decay( 100, 10000), 
                                                parameter_list=emb.parameters())
H
hong 已提交
174
                    state_dict = adam.state_dict()
175
                    fluid.save_dygraph(state_dict, "paddle_dy")
176

H
hong 已提交
177
                    para_state_dict, opti_state_dict = fluid.load_dygraph( "paddle_dy")
178

179
                    adam.set_dict(opti_state_dict)
H
hong 已提交
180 181 182 183 184 185 186 187 188

        '''

        if isinstance(self._learning_rate, LearningRateDecay):
            assert 'global_step' in state_dict, \
                    'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
            global_step = state_dict['global_step']

            if isinstance(global_step, core.VarBase):
189
                step_np = global_step
H
hong 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
                step_np = np.array(step_np.value().get_tensor())
                assert step_np.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( step_np.shape )

                self._learning_rate.step_num = int(step_np[0])
            elif isinstance(global_step, Variable):
                step_np = global_step.numpy()
                assert step_np.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( step_np.shape )
                self._learning_rate.step_num = step_np[0]
            elif isinstance(global_step, np.ndarray):
                assert global_step.shape == (1,),  \
                        "global step shape is (1,), the shape is {}".format( global_step.shape )
                self._learning_rate.step_num = global_step[0]
            else:
                raise RuntimeError(
                    "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                    type(global_step))

        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
214
                var = var_tmp.value()
H
hong 已提交
215 216 217 218 219 220 221 222
                tensor = var.get_tensor()
                model_np = np.array(tensor)

                load_para = state_dict[var_tmp.name]

                if isinstance(load_para, Variable):
                    load_para_np = load_para.numpy()
                elif isinstance(load_para, core.VarBase):
223
                    load_para_np = load_para.numpy()
H
hong 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                elif isinstance(load_para, np.ndarray):
                    load_para_np = load_para
                else:
                    raise RuntimeError("State dict type {} not supprt".format(
                        str(type(load_para))))

                assert model_np.shape == load_para_np.shape,  \
                                          "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
                                                 item.name, model_np.shape, load_para_np.shape)

                assert model_np.dtype == load_para_np.dtype, \
                                          "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                                                item.name, model_np.dtype, load_para_np.dtype)

                tensor.set(load_para_np, framework._current_expected_place())
239

240 241
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
242

Q
Qiao Longfei 已提交
243
    def _create_global_learning_rate(self):
244 245 246
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
247 248 249 250 251 252 253 254 255 256 257 258
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
259
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
260
            elif isinstance(self._learning_rate, LearningRateDecay):
261 262 263
                self._learning_rate_map[framework.default_main_program(
                )] = self._learning_rate()
            else:
Q
qiaolongfei 已提交
264
                raise TypeError(
265 266
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
267
        else:
268 269 270 271
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
272 273 274 275 276 277
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
278

279 280 281 282 283 284 285 286
            # create learning rate in the current main program
            self._learning_rate_map[framework.default_main_program(
            )] = layers.create_global_var(
                name=unique_name.generate("learning_rate"),
                shape=[1],
                value=float(self._learning_rate),
                dtype='float32' if self._dtype is None else self._dtype,
                persistable=True)
287

Y
yuyang18 已提交
288
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
289 290 291 292
        """
        get global decayed learning rate
        :return:
        """
293 294
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
295
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
296

Q
Qiao Longfei 已提交
297 298 299 300 301
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

302 303 304 305
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
306 307
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
308
        else:
W
Wu Yi 已提交
309
            if param_lr == 1.0:
Y
yuyang18 已提交
310
                return self._global_learning_rate()
W
Wu Yi 已提交
311
            else:
X
Xin Pan 已提交
312 313 314
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
315
                    return self._global_learning_rate() * param_lr
316 317 318 319 320 321 322

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
323
        """
324 325
        pass

326
    def _finish_update(self, block, parameters_and_grads):
327 328 329 330 331 332 333 334
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
335
            None
336 337 338
        """
        pass

339 340 341 342 343
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
344 345
                         shape=None,
                         type=None):
346 347 348 349 350 351 352 353 354
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
355 356
        if self._name is not None:
            name = self._name + "_" + name
357 358
        if (name in self._accumulators and
                param.name in self._accumulators[name]):
L
lujun 已提交
359
            if framework.in_dygraph_mode():
X
polish  
Xin Pan 已提交
360
                return self._accumulators[name][param.name]
361
            raise Exception("Accumulator {} already exists for parameter {}".
362
                            format(name, param.name))
363 364
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
365
        assert isinstance(self.helper, LayerHelper)
366 367 368 369 370

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
371
        var = self.helper.create_global_variable(
372
            name=var_name,
Q
Qiao Longfei 已提交
373
            persistable=True,
F
fengjiayi 已提交
374
            dtype=dtype or param.dtype,
375
            type=param.type if type is None else type,
H
hong 已提交
376 377
            shape=shape,
            belong_to_optimizer=True)
Q
Qiao Longfei 已提交
378
        self.helper.set_variable_initializer(
379
            var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
380 381 382 383 384 385 386

        if framework.in_dygraph_mode():
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
387
        self._accumulators[name][param.name] = var
388
        return var
389 390 391 392 393 394 395 396 397 398 399

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
            accumulator variable for the parameter
        """
W
whs 已提交
400 401
        if self._name is not None:
            name = self._name + "_" + name
402 403 404 405 406 407
        if (name not in self._accumulators or
                param.name not in self._accumulators[name]):
            raise Exception("Accumulator {} does not exist for parameter {}".
                            format(name, param.name))
        return self._accumulators[name][param.name]

408
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
409 410 411
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
412
          parameters_and_grads(list(tuple(Variable, Variable))):
413
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
414 415

        Returns:
416
          return_op_list: a list of operators that will complete one step of
417 418 419
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
420
        """
421 422 423 424 425
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
426
        # for parameters and extend _finish_update method to add custom ops.
427

428
        # Allways called under program_guard use global block as loss block
429 430 431
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

432
        global_block = framework.default_main_program().global_block()
433 434 435 436 437 438 439 440 441
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
442
        self.helper = LayerHelper(self.__class__.__name__)
C
chengduo 已提交
443
        self._create_accumulators(
444
            target_block,
C
chengduo 已提交
445
            [p[0] for p in parameters_and_grads if p[0].trainable])
446 447
        self._create_global_learning_rate()

M
minqiyang 已提交
448
        if framework.in_dygraph_mode():
449 450 451
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
452 453
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
454 455 456 457 458 459 460
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
461
                        self._append_optimize_op(target_block, param_and_grad)
462 463 464

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
465
        self._finish_update(target_block, parameters_and_grads)
466

467 468
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
469 470

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
471 472 473 474 475 476 477 478 479
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
480 481
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
497 498 499 500 501 502 503 504 505 506 507 508 509
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
510 511
        return new_param_grads, (table_param, table_grad), sgd_op

512 513 514
    def _append_dgc_ops(self, param_and_grad):
        pass

515 516 517 518 519 520 521
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
522
        The first part of ``minimize``, do auto-diff to append backward operations for
523 524 525
        the current program.

        Args:
526 527 528 529
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
530
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
531 532 533 534 535 536
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable`` objects that don't need
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
537

538
        Return:
539 540
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
541

542
        Examples:
543
            See examples in ``apply_gradients``.
544
        """
545
        act_no_grad_set = None
L
Leo Chen 已提交
546
        if framework.in_dygraph_mode():
547
            pass
L
Leo Chen 已提交
548 549
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
550

C
chengduo 已提交
551
        self._dtype = loss.dtype
L
lujun 已提交
552
        if framework.in_dygraph_mode():
C
chengduo 已提交
553
            params_grads = []
554
            for param in self._parameter_list:
C
chengduo 已提交
555 556
                if not param.trainable:
                    continue
557
                if param._grad_ivar() is not None:
C
chengduo 已提交
558
                    # create gradient variable
559
                    grad_var = param._grad_ivar()
C
chengduo 已提交
560
                    params_grads.append((param, grad_var))
561
        else:
C
chengduo 已提交
562 563 564 565 566
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
567 568 569 570
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
                "Maybe that you should call fluid.layers.mean to process the current loss.".format(
                    loss.shape)
C
chengduo 已提交
571 572
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
573
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
574 575 576 577
                # Note: since we can't use all_reduce_op now,
                #  dgc_op should be the last op of one grad.
                self._append_dgc_ops(params_grads)
        return params_grads
578 579 580 581 582 583 584 585

    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
586

587 588
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
589

590 591 592
        Examples:
            .. code-block:: python

593
                import paddle.fluid as fluid
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        params_grads = append_gradient_clip_ops(params_grads)

        # Add regularization if any
        params_grads = append_regularization_ops(params_grads,
                                                 self.regularization)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

C
chengduo 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.
        """
L
lujun 已提交
633
        if framework.in_dygraph_mode():
C
chengduo 已提交
634 635
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
636 637
                params_grads = append_regularization_ops(params_grads,
                                                         self.regularization)
C
chengduo 已提交
638 639 640 641 642 643 644
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    def _get_no_grad_set(self, loss, no_grad_set=None):
        if no_grad_set is None:
            no_grad_set = set()
        elif isinstance(no_grad_set, set) or isinstance(
                no_grad_set, list) or isinstance(no_grad_set, tuple):
            no_grad_set = set(no_grad_set)
        else:
            assert "no_grad_set should be a set, but the passed type is {}".format(
                type(no_grad_set))
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
        
        Returns:
            None
        
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
                    adam = fluid.optimizer.Adam(learning_rate = 0.01, 
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

693
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
694 695
    def minimize(self,
                 loss,
696
                 startup_program=None,
Q
Qiao Longfei 已提交
697
                 parameter_list=None,
698 699
                 no_grad_set=None,
                 grad_clip=None):
700
        """
701
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
702

703
        Args:
704 705 706 707
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
708
            parameter_list (list, optional): List of ``Variable`` or ``Variable.name`` to update
709 710 711 712 713 714 715 716
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
            no_grad_set (set, optional): Set of ``Variable`` objects that don't need
                to be updated. The default value is None.
            grad_clip (GradClipBase, optional) : Gradient clipping strategy, static
                graph mode does not need to use this argument. Currently, this argument
                only supports gradient clipping in dygraph mode. In the future, this
                argument my be adjusted. The default value is None.
Q
Qiao Longfei 已提交
717

718
        Returns:
719 720 721 722 723 724
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
725
        """
C
chengduo 已提交
726
        assert isinstance(loss, Variable), "The loss should be an Variable."
C
chengduo 已提交
727 728 729 730 731
        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set)
732 733 734 735 736

        if grad_clip is not None and framework.in_dygraph_mode():
            # TODO(hongyu): FIX later, this is only for dygraph, should be work for static mode
            params_grads = grad_clip(params_grads)

C
chengduo 已提交
737 738
        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)
M
minqiyang 已提交
739

Q
Qiao Longfei 已提交
740
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
741 742 743


class SGDOptimizer(Optimizer):
Q
qiaolongfei 已提交
744 745 746 747 748 749 750
    """
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

751 752 753
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
754 755 756
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
757 758 759 760
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
761 762 763 764

    Examples:
        .. code-block:: python

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
790 791
    """

792 793 794 795 796
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
                 name=None):
Q
Qiao Longfei 已提交
797
        assert learning_rate is not None
Q
Qiao Longfei 已提交
798
        super(SGDOptimizer, self).__init__(
X
Xin Pan 已提交
799
            learning_rate=learning_rate,
800
            parameter_list=parameter_list,
X
Xin Pan 已提交
801 802
            regularization=regularization,
            name=name)
Q
Qiao Longfei 已提交
803 804
        self.type = "sgd"

805
    @no_grad
806
    def _append_optimize_op(self, block, param_and_grad):
807 808 809 810 811 812 813 814 815 816
        if framework.in_dygraph_mode():
            inputs = {
                "Param": [param_and_grad[0]],
                "Grad": [param_and_grad[1]],
                "LearningRate": [self._create_param_lr(param_and_grad)]
            }
            attrs = {}
            outputs = {'ParamOut': [param_and_grad[0]]}
            outs = core.ops.sgd(inputs, attrs, outputs)
            return outs['ParamOut'][0]
817

818
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
819 820 821 822 823 824
        # create the optimize op
        sgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
825
                "LearningRate": self._create_param_lr(param_and_grad)
Q
Qiao Longfei 已提交
826
            },
M
minqiyang 已提交
827 828
            outputs={"ParamOut": param_and_grad[0]},
            stop_gradient=True)
Q
Qiao Longfei 已提交
829 830

        return sgd_op
831 832 833


class MomentumOptimizer(Optimizer):
Q
qiaolongfei 已提交
834 835 836 837 838 839 840 841 842 843 844 845 846 847
    """

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

848
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
849 850 851

        & else:

Q
qiaolongfei 已提交
852
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
853

854 855 856 857
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
858 859 860
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
861 862 863 864 865
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
866 867 868 869

    Examples:
        .. code-block:: python

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

895 896 897
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
898 899 900
    def __init__(self,
                 learning_rate,
                 momentum,
901
                 parameter_list=None,
X
Xin Pan 已提交
902 903 904
                 use_nesterov=False,
                 regularization=None,
                 name=None):
905 906
        assert learning_rate is not None
        assert momentum is not None
Q
Qiao Longfei 已提交
907
        super(MomentumOptimizer, self).__init__(
X
Xin Pan 已提交
908
            learning_rate=learning_rate,
909
            parameter_list=parameter_list,
X
Xin Pan 已提交
910 911
            regularization=regularization,
            name=name)
912 913
        self.type = "momentum"
        self._momentum = momentum
914
        self._use_nesterov = bool(use_nesterov)
915 916 917 918 919

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
920
            self._add_accumulator(self._velocity_acc_str, p)
921 922 923 924 925 926

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}

        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
            "LearningRate": [self._create_param_lr(param_and_grad)]
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }

        if framework.in_dygraph_mode():
            core.ops.momentum(inputs, attrs, outputs)
            return None

945 946 947
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
948 949 950
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
951
            stop_gradient=True)
952 953

        return momentum_op
954 955


956
class DGCMomentumOptimizer(Optimizer):
957
    """
958
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
959

G
gongweibao 已提交
960
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
961 962
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
963
    To avoid losing information, DGC accumulates the rest of the gradients locally.
964 965 966

    Eventually, these gradients become large enough to be transmitted.

967
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
968

G
gongweibao 已提交
969
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
970 971 972 973

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
974

975 976
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
977

978
        2. Call momentum to optimize the cost.
979 980

    Args:
981 982
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
983
        momentum (float): Momentum factor.
G
gongweibao 已提交
984
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
985 986 987 988 989 990 991
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
992 993 994
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
995 996 997 998 999 1000 1001
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
        local_grad_clip_norm (float, optional): Local gradient clip norm value. Optional, default is None, represent no need clip.
        num_trainers (int, optional): The number of training nodes. Optional, default is None.
        regularization (WeightDecayRegularizer, optional): A Regularizer, such as \
            :ref:`api_fluid_regularizer_L2DecayRegularizer`. Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1002 1003 1004 1005

    Examples:
        .. code-block:: python

1006
            import paddle.fluid as fluid
1007
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1008 1009 1010 1011 1012
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1013 1014

    """
1015 1016
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1017 1018 1019 1020 1021 1022 1023

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1024
                 parameter_list=None,
1025 1026 1027 1028 1029
                 use_nesterov=False,
                 local_grad_clip_norm=None,
                 num_trainers=None,
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
1030 1031
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1032 1033 1034 1035
        assert learning_rate is not None
        assert momentum is not None
        super(DGCMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1036
            parameter_list=parameter_list,
1037 1038 1039 1040 1041
            regularization=regularization,
            name=name)
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1042

1043
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1044
        self._rampup_begin_step = rampup_begin_step
1045 1046
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1047

1048
        self._rampup_begin_step_var = None
1049
        self._global_step_var = None
1050

1051 1052 1053 1054 1055 1056 1057 1058 1059
        self._local_grad_clip_norm = None
        self._clip_norm = None
        if local_grad_clip_norm is not None:
            assert isinstance(num_trainers, int)
            assert isinstance(local_grad_clip_norm, float)
            assert num_trainers > 0

            self._local_grad_clip_norm = local_grad_clip_norm
            self._num_trainers = num_trainers
1060
            self._clip_norm = local_grad_clip_norm * (num_trainers**-0.5)
1061

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        self._get_dgc_regularization_param()

    def _get_dgc_regularization_param(self):
        self.regular_coeff = 0.0
        self.regular_type = 0

        if self.regularization is not None:
            self.regular_coeff = self.regularization._regularization_coeff
            from .regularizer import L1Decay, L2Decay
            if isinstance(self.regularization, L1Decay):
                self.regular_type = 1
            elif isinstance(self.regularization, L2Decay):
                self.regular_type = 2
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1104 1105

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1106 1107 1108
            type = "momentum"
        else:
            type = "dgc_momentum"
1109 1110 1111 1112 1113
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1114
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1115 1116 1117

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
1118 1119 1120 1121
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
1122 1123 1124
            stop_gradient=True)
        return dgc_momentum_op

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(begin - 1), force_cpu=True))
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=Constant(
                    value=float(value), force_cpu=True))
            counter.stop_gradient = True

        return counter

1157 1158 1159 1160 1161 1162
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1163
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1164

1165 1166 1167
        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1)

1168 1169 1170 1171 1172
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1173
            name=core.dgc.kDGCRampUpBeginStepName(),
1174 1175 1176
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1177 1178
        self.helper = LayerHelper(self.__class__.__name__)

1179
        for param_var, grad_var in param_and_grads:
1180 1181 1182
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1183
            if not self._is_use_dgc(param_var, grad_var):
1184 1185
                continue

1186
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1187 1188 1189 1190 1191

            k_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1192
                name=param_var.name + core.dgc.kDGCKName(),
1193 1194 1195 1196 1197 1198 1199
                value=0.0,
                force_cpu=True)

            encoded_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
G
gongweibao 已提交
1200
                name=param_var.name + core.dgc.kDGCEncodedName(),
1201 1202 1203
                value=0.0,
                force_cpu=False)

1204 1205 1206 1207 1208 1209 1210 1211
            gather_var = tensor.create_global_var(
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False)

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._local_grad_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._clip_norm)
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1234
                         encoded_var, gather_var)
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1250 1251
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1252 1253 1254 1255 1256

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False)

        helper.append_op(
G
gongweibao 已提交
1257
            type="dgc_clip_by_norm",
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
            inputs={"X": x,
                    "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step)
            },
            outputs={"Out": out})
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
G
gongweibao 已提交
1270
                x=grad_var, max_norm=clip_norm, name=grad_var.name)
1271 1272

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1273
                encoded_var, gather_var):
1274 1275
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1276

1277 1278 1279 1280 1281 1282
        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
1283
                "Param": param_var,
1284 1285
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
1286 1287 1288 1289 1290 1291
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
1292 1293
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
1294 1295 1296 1297 1298 1299
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
1300
                "rampup_step": float(self._rampup_step),
1301 1302
                "regular_coeff": float(self.regular_coeff),
                "regular_type": int(self.regular_type),
1303 1304 1305 1306 1307 1308 1309 1310
            },
            stop_gradient=True)

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    def apply_gradients(self, params_grads):
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

        # DGC clip and regularization in local
        not_dgc_params_grads = append_gradient_clip_ops(not_dgc_params_grads)

        # Add regularization if any
        not_dgc_params_grads = append_regularization_ops(not_dgc_params_grads,
                                                         self.regularization)

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
class LarsMomentumOptimizer(Optimizer):
    """
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param)

        & param = param - velocity

1358 1359 1360 1361 1362 1363
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
1364 1365 1366
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1367 1368 1369 1370
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`.
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1371 1372 1373 1374

    Examples:
        .. code-block:: python

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1391 1392 1393 1394 1395 1396 1397 1398
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
1399
                 parameter_list=None,
1400 1401 1402 1403 1404 1405
                 regularization=None,
                 name=None):
        assert learning_rate is not None
        assert momentum is not None
        super(LarsMomentumOptimizer, self).__init__(
            learning_rate=learning_rate,
1406
            parameter_list=parameter_list,
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
            regularization=regularization,
            name=name)
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
        # create the momentum optimize op
        momentum_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Velocity": velocity_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "VelocityOut": velocity_acc
            },
            attrs={
                "mu": self._momentum,
                "lars_coeff": self._lars_coeff,
                "lars_weight_decay": self._lars_weight_decay
M
minqiyang 已提交
1442 1443
            },
            stop_gradient=True)
1444 1445 1446 1447

        return momentum_op


1448
class AdagradOptimizer(Optimizer):
Q
qiaolongfei 已提交
1449
    """
1450 1451
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
1452

1453
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1454 1455 1456 1457 1458 1459 1460

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

1461 1462 1463 1464 1465 1466
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
1467 1468 1469
    for numerical stability to avoid the division by zero error.

    Args:
1470 1471 1472 1473
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
1474 1475 1476
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1477 1478 1479 1480 1481 1482 1483
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
1484 1485 1486 1487

    Examples:
        .. code-block:: python

1488
            import numpy as np
1489
            import paddle.fluid as fluid
1490 1491

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
1492
            inp = fluid.data(name="inp", shape=[2, 2])
1493 1494
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
1495
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
1496 1497 1498 1499 1500 1501 1502
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
1503 1504 1505
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
1506 1507 1508
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
1509
                 parameter_list=None,
X
Xin Pan 已提交
1510
                 regularization=None,
1511
                 name=None,
X
xuezhong 已提交
1512
                 initial_accumulator_value=0.0):
1513 1514
        assert learning_rate is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1515
        super(AdagradOptimizer, self).__init__(
X
Xin Pan 已提交
1516
            learning_rate=learning_rate,
1517
            parameter_list=parameter_list,
X
Xin Pan 已提交
1518 1519
            regularization=regularization,
            name=name)
1520 1521
        self.type = "adagrad"
        self._epsilon = epsilon
1522
        self.initial_accumulator_value = initial_accumulator_value
1523 1524 1525 1526 1527

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Z
zhongpu 已提交
1528 1529 1530 1531
            self._add_accumulator(
                self._moment_acc_str,
                p,
                fill_value=self.initial_accumulator_value)
1532 1533 1534 1535 1536 1537

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
1538
        # Create the adagrad optimizer op
1539 1540 1541 1542 1543 1544
        adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
1545
                "LearningRate": self._create_param_lr(param_and_grad)
1546 1547 1548
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
M
minqiyang 已提交
1549 1550
            attrs={"epsilon": self._epsilon},
            stop_gradient=True)
1551 1552

        return adagrad_op
1553 1554 1555


class AdamOptimizer(Optimizer):
Q
qiaolongfei 已提交
1556
    """
1557 1558 1559 1560 1561 1562
    The Adam optimzier uses an optimization described at the end
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
    
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

1577 1578
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
1579
    Args:
1580 1581
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
1582 1583
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1584
            The default value is 0.9.
1585 1586
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
1587 1588 1589
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
1590 1591 1592
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
Q
qiaolongfei 已提交
1605 1606 1607 1608

    Examples:
        .. code-block:: python

1609 1610 1611 1612 1613 1614
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
1615 1616
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
1632

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
1650
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate):
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

                    return beta1, beta2

                beta1, beta2 = get_decayed_betas(0.9, 0.99, 1e5, 0.9)
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
1679
                                                    beta1=beta1,
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
                                                    beta2=beta2)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
1691 1692 1693
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
1694 1695
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
1696 1697 1698 1699 1700

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1701
                 epsilon=1e-8,
1702
                 parameter_list=None,
X
Xin Pan 已提交
1703
                 regularization=None,
Q
Qiao Longfei 已提交
1704
                 name=None,
Q
Qiao Longfei 已提交
1705
                 lazy_mode=False):
1706 1707 1708 1709
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1710
        super(AdamOptimizer, self).__init__(
X
Xin Pan 已提交
1711
            learning_rate=learning_rate,
1712
            parameter_list=parameter_list,
X
Xin Pan 已提交
1713 1714
            regularization=regularization,
            name=name)
1715 1716 1717 1718
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
1719
        self._lazy_mode = lazy_mode
1720 1721 1722 1723 1724 1725

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
1726 1727
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
Q
qiaolongfei 已提交
1728 1729 1730
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
1731 1732
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
1733 1734
                shape=[1],
                type=core.VarDesc.VarType.LOD_TENSOR)
Q
qiaolongfei 已提交
1735 1736 1737
            self._add_accumulator(
                name=self._beta2_pow_acc_str,
                param=p,
1738 1739
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
1740 1741
                shape=[1],
                type=core.VarDesc.VarType.LOD_TENSOR)
1742 1743 1744 1745 1746 1747 1748 1749

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
Q
qiaolongfei 已提交
1750 1751 1752 1753 1754
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

1755
        # create the adam optimize op
1756
        inputs = {
1757 1758 1759 1760 1761 1762 1763
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "LearningRate": [self._create_param_lr(param_and_grad)],
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
1764 1765
        }
        outputs = {
1766 1767 1768 1769 1770
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
        }
        attrs = {
            "epsilon": self._epsilon,
            "lazy_mode": self._lazy_mode,
            "min_row_size_to_use_multithread": 1000
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2

1787 1788 1789 1790
        if framework.in_dygraph_mode():
            core.ops.adam(inputs, attrs, outputs)
            return None

1791 1792
        adam_op = block.append_op(
            type=self.type,
1793 1794 1795
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
M
minqiyang 已提交
1796
            stop_gradient=True)
1797 1798 1799

        return adam_op

1800 1801

class AdamaxOptimizer(Optimizer):
Q
qiaolongfei 已提交
1802
    """
1803 1804 1805 1806
    The Adamax optimizer is implemented based on the Adamax Optimization 
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
1807

1808
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

1822
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
1823

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
1836 1837 1838
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1839 1840 1841 1842 1843 1844 1845 1846
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
1847

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
1861
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
1862 1863
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
1864
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
1865 1866 1867 1868 1869 1870 1871 1872 1873
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
1874 1875 1876
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
1877
    _beta1_pow_acc_str = "beta1_pow_acc"
1878 1879 1880 1881 1882

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
1883
                 epsilon=1e-8,
1884
                 parameter_list=None,
X
Xin Pan 已提交
1885 1886
                 regularization=None,
                 name=None):
1887 1888 1889 1890
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
Q
Qiao Longfei 已提交
1891
        super(AdamaxOptimizer, self).__init__(
X
Xin Pan 已提交
1892
            learning_rate=learning_rate,
1893
            parameter_list=parameter_list,
X
Xin Pan 已提交
1894 1895
            regularization=regularization,
            name=name)
1896 1897 1898 1899 1900 1901 1902 1903
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
1904 1905
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
Q
qiaolongfei 已提交
1906 1907 1908 1909 1910
            self._add_accumulator(
                name=self._beta1_pow_acc_str,
                param=p,
                fill_value=self._beta1,
                shape=[1])
1911 1912 1913 1914 1915 1916 1917

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
1918 1919
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
1920 1921 1922 1923 1924 1925
        # create the adamax optimize op
        adamax_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
1926
                "LearningRate": self._create_param_lr(param_and_grad),
1927 1928
                "Moment": moment,
                "InfNorm": inf_norm,
Q
qiaolongfei 已提交
1929
                "Beta1Pow": beta1_pow_acc
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": moment,
                "InfNormOut": inf_norm
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon
M
minqiyang 已提交
1940 1941
            },
            stop_gradient=True)
1942 1943 1944

        return adamax_op

1945
    def _finish_update(self, block, parameters_and_grads):
1946 1947 1948
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
1949
        for param, grad in parameters_and_grads:
C
chengduo 已提交
1950
            if grad is None or param.trainable is False:
1951
                continue
X
Xin Pan 已提交
1952 1953
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('adamx'):
1954 1955
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
1956
                block.append_op(
1957 1958 1959
                    type="scale",
                    inputs={"X": beta1_pow_acc},
                    outputs={"Out": beta1_pow_acc},
M
minqiyang 已提交
1960 1961
                    attrs={"scale": self._beta1},
                    stop_gradient=True)
1962 1963


1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
class DpsgdOptimizer(Optimizer):
    """
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
2002 2003 2004
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2005 2006 2007 2008 2009 2010 2011 2012
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2013 2014
                 sigma=1e-8,
                 parameter_list=None):
2015 2016 2017 2018
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2019 2020
        super(DpsgdOptimizer, self).__init__(
            learning_rate=learning_rate, parameter_list=parameter_list)
2021 2022 2023 2024
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2025 2026 2027 2028 2029 2030 2031
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2032 2033 2034 2035 2036

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2037 2038 2039
        if self._seed == None:
            self._seed = 0

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        dpsgd_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0]},
            attrs={
                "clip": self._clip,
                "batch_size": self._batch_size,
Z
zhongpu 已提交
2051 2052
                "sigma": self._sigma,
                "seed": self._seed
2053 2054 2055 2056 2057 2058
            },
            stop_gradient=True)

        return dpsgd_op


2059
class DecayedAdagradOptimizer(Optimizer):
2060
    """
2061 2062 2063
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2064

2065
    The parameter ``param_out`` update rule with gradient ``grad``:
2066 2067 2068 2069 2070 2071 2072

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2073 2074 2075 2076
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2077 2078 2079
    stability to avoid the division by zero error.

    Args:
2080 2081 2082 2083 2084
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
2085 2086 2087
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2088 2089 2090 2091 2092 2093 2094 2095
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
2096 2097 2098 2099

    Examples:
        .. code-block:: python

2100 2101
            import paddle.fluid as fluid

2102 2103 2104 2105
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
2106
            optimizer.minimize(cost)
2107 2108 2109
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2110 2111 2112 2113
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
2114
                 parameter_list=None,
X
Xin Pan 已提交
2115 2116
                 regularization=None,
                 name=None):
2117 2118 2119 2120
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

Q
Qiao Longfei 已提交
2121
        super(DecayedAdagradOptimizer, self).__init__(
X
Xin Pan 已提交
2122
            learning_rate=learning_rate,
2123
            parameter_list=parameter_list,
X
Xin Pan 已提交
2124 2125
            regularization=regularization,
            name=name)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

        # Create the decayed adagrad optimizer op
        decayed_adagrad_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": moment_acc,
                "LearningRate": self._create_param_lr(param_and_grad)
            },
            outputs={"ParamOut": param_and_grad[0],
                     "MomentOut": moment_acc},
2153 2154
            attrs={"epsilon": self._epsilon,
                   "decay": self._decay},
M
minqiyang 已提交
2155
            stop_gradient=True)
2156 2157

        return decayed_adagrad_op
2158 2159


2160
class AdadeltaOptimizer(Optimizer):
2161
    """
Z
Zeng Jinle 已提交
2162
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
2163

Z
Zeng Jinle 已提交
2164
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
2165 2166 2167
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
2168

Z
Zeng Jinle 已提交
2169 2170
    .. math::

Z
Zeng Jinle 已提交
2171
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
2172

Z
Zeng Jinle 已提交
2173
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
2174

Z
Zeng Jinle 已提交
2175
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
2176 2177

    Args:
Z
Zeng Jinle 已提交
2178 2179 2180
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
2181 2182 2183
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
Z
Zeng Jinle 已提交
2184 2185 2186
        regularization (WeightDecayRegularizer, optional): A Regularizer, such as
                fluid.regularizer.L2DecayRegularizer. Default None, meaning that there is no
                regularization.
2187 2188 2189
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
2190 2191 2192 2193

    Examples:
        .. code-block:: python

2194
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
2195

2196
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
2197 2198
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
2199 2200
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
2201

Z
Zeng Jinle 已提交
2202 2203 2204 2205
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
2206
    """
2207

2208 2209 2210
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
2211 2212 2213 2214
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
2215
                 parameter_list=None,
X
Xin Pan 已提交
2216 2217
                 regularization=None,
                 name=None):
2218 2219 2220 2221 2222 2223
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
2224
        super(AdadeltaOptimizer, self).__init__(
X
Xin Pan 已提交
2225
            learning_rate=learning_rate,
2226
            parameter_list=parameter_list,
X
Xin Pan 已提交
2227 2228
            regularization=regularization,
            name=name)
2229 2230 2231 2232 2233
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
2234 2235
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2236 2237 2238 2239 2240 2241

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
2242 2243
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

        # Create the adadelta optimizer op
        adadelta_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "AvgSquaredGrad": avg_squared_grad_acc,
                "AvgSquaredUpdate": avg_squared_update_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "AvgSquaredGradOut": avg_squared_grad_acc,
                "AvgSquaredUpdateOut": avg_squared_update_acc
            },
            attrs={"epsilon": self._epsilon,
M
minqiyang 已提交
2265 2266
                   "rho": self._rho},
            stop_gradient=True)
2267 2268 2269 2270

        return adadelta_op


Q
qingqing01 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
class RMSPropOptimizer(Optimizer):
    """
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
2281
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2282 2283 2284 2285

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
2286
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
2287 2288 2289 2290 2291 2292

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
2293
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
2309 2310 2311 2312
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
2313
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
2314 2315 2316 2317 2318
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


2319 2320 2321
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
2322
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
2323
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
2324
        momentum(float): :math:`\\beta` in equation is the momentum term,
2325
            default is 0.0.
2326 2327 2328 2329
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
2330 2331 2332
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2333 2334 2335 2336
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
2337 2338 2339 2340 2341 2342 2343

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
2369 2370 2371 2372
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
2373
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
2374 2375 2376 2377 2378 2379

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
2380
                 centered=False,
2381
                 parameter_list=None,
X
Xin Pan 已提交
2382 2383
                 regularization=None,
                 name=None):
Q
qingqing01 已提交
2384
        super(RMSPropOptimizer, self).__init__(
X
Xin Pan 已提交
2385
            learning_rate=learning_rate,
2386
            parameter_list=parameter_list,
X
Xin Pan 已提交
2387 2388
            regularization=regularization,
            name=name)
Q
qingqing01 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
2402
        self._centered = centered
Q
qingqing01 已提交
2403 2404 2405 2406 2407 2408 2409 2410

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
2411
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
2421 2422
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
Q
qingqing01 已提交
2423 2424 2425 2426 2427 2428 2429
        rmsprop_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "Moment": momentum_acc,
                "MeanSquare": mean_square_acc,
2430
                "MeanGrad": mean_grad_acc,
Q
qingqing01 已提交
2431 2432 2433 2434 2435
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "MomentOut": momentum_acc,
2436 2437
                "MeanSquareOut": mean_square_acc,
                "MeanGradOut": mean_grad_acc
Q
qingqing01 已提交
2438 2439 2440 2441
            },
            attrs={
                "epsilon": self._epsilon,
                "decay": self._rho,
2442 2443
                "momentum": self._momentum,
                "centered": self._centered
M
minqiyang 已提交
2444 2445
            },
            stop_gradient=True)
Q
qingqing01 已提交
2446 2447 2448 2449

        return rmsprop_op


Q
qiaolongfei 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
class FtrlOptimizer(Optimizer):
    """
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

2490 2491 2492 2493 2494
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
2495 2496 2497
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2498 2499 2500 2501
        regularization: A Regularizer, such as :ref:`api_fluid_regularizer_L2DecayRegularizer`. \
            Optional, default is None.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
2502 2503 2504 2505 2506 2507 2508

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
2533

2534
    NOTE:
C
chengduo 已提交
2535
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
2536 2537 2538 2539 2540
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
2541 2542 2543 2544 2545
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
2546
                 parameter_list=None,
X
Xin Pan 已提交
2547 2548
                 regularization=None,
                 name=None):
Q
qiaolongfei 已提交
2549
        super(FtrlOptimizer, self).__init__(
X
Xin Pan 已提交
2550
            learning_rate=learning_rate,
2551
            parameter_list=parameter_list,
X
Xin Pan 已提交
2552 2553
            regularization=regularization,
            name=name)
Q
qiaolongfei 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
        ftrl_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "SquaredAccumulator": squared_acc,
                "LinearAccumulator": linear_acc,
                "LearningRate": self._create_param_lr(param_and_grad),
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "SquaredAccumOut": squared_acc,
                "LinearAccumOut": linear_acc
            },
            attrs={"l1": self._l1,
                   "l2": self._l1,
M
minqiyang 已提交
2594 2595
                   "lr_power": self._lr_power},
            stop_gradient=True)
Q
qiaolongfei 已提交
2596 2597 2598 2599

        return ftrl_op


Y
Yibing Liu 已提交
2600 2601 2602 2603 2604 2605
class LambOptimizer(AdamOptimizer):
    """
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

    LAMB Optimizer is designed to scale up the batch size of training without losing 
    accuracy, which supports adaptive element-wise updating and accurate layer-wise 
Y
Yibing Liu 已提交
2606 2607
    correction. For more information, please refer to `Large Batch Optimization for 
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
2608 2609 2610 2611 2612

    The updating of parameters follows:

    ..  math::

Y
Yibing Liu 已提交
2613
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t 
Y
Yibing Liu 已提交
2614

Y
Yibing Liu 已提交
2615
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
2616

Y
Yibing Liu 已提交
2617
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
2618

Y
Yibing Liu 已提交
2619
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
2620 2621 2622 2623 2624 2625


    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the 
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
2626 2627 2628 2629 2630 2631 2632 2633
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
2634 2635 2636
        parameter_list (list, optional):  List of ``Variable`` names to update to minimize ``loss``. \
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
Y
Yibing Liu 已提交
2637 2638 2639 2640 2641 2642 2643
        regularization (Regularizer|None): A Regularizer, such as
           fluid.regularizer.L1DecayRegularizer. Default None.
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight 
            decay when **exclude_from_weight_decay_fn(parameter)** returns true. 
            Default None.
        name(str|None): For detailed information, please refer to 
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
2644 2645 2646 2647 2648 2649

    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid 

Y
Yibing Liu 已提交
2650
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
2651 2652 2653
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
2654 2655 2656 2657 2658
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
2659 2660 2661 2662
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Y
Yibing Liu 已提交
2663
    # these two not used in op temporarily
Y
Yibing Liu 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
2673
                 parameter_list=None,
Y
Yibing Liu 已提交
2674
                 regularization=None,
Y
Yibing Liu 已提交
2675
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
2676 2677 2678 2679 2680 2681 2682 2683
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
        super(LambOptimizer, self).__init__(
            learning_rate=learning_rate,
2684
            parameter_list=parameter_list,
Y
Yibing Liu 已提交
2685 2686 2687 2688 2689 2690 2691
            regularization=regularization,
            beta1=beta1,
            beta2=beta2,
            epsilon=epsilon,
            name=name)
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
2692
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
2693 2694 2695

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2696
        block.program._use_lamb = True
Y
Yibing Liu 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
2707 2708 2709 2710 2711 2712
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay

Y
Yibing Liu 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        # create the lamb optimize op
        lamb_op = block.append_op(
            type=self.type,
            inputs={
                "Param": param_and_grad[0],
                "Grad": param_and_grad[1],
                "LearningRate": self._create_param_lr(param_and_grad),
                "Moment1": moment1,
                "Moment2": moment2,
                "Beta1Pow": beta1_pow_acc,
                "Beta2Pow": beta2_pow_acc
            },
            outputs={
                "ParamOut": param_and_grad[0],
                "Moment1Out": moment1,
                "Moment2Out": moment2
            },
            attrs={
                "beta1": self._beta1,
                "beta2": self._beta2,
                "epsilon": self._epsilon,
Y
Yibing Liu 已提交
2734
                "weight_decay": weight_decay
Y
Yibing Liu 已提交
2735 2736 2737 2738 2739 2740
            },
            stop_gradient=True)

        return lamb_op


2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
2754
Dpsgd = DpsgdOptimizer
2755
DecayedAdagrad = DecayedAdagradOptimizer
2756
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
2757
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
2758
Ftrl = FtrlOptimizer
2759
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
2760
Lamb = LambOptimizer
2761 2762 2763


class ModelAverage(Optimizer):
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
    """
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
2793 2794

    Args:
2795 2796 2797 2798 2799 2800 2801 2802
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
        regularization (WeightDecayRegularizer, optional): A ``Regularizer``, such as
             :ref:`api_fluid_regularizer_L2DecayRegularizer`. The default value is None.
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
2803

2804
    Examples:
Q
qiaolongfei 已提交
2805 2806 2807

      .. code-block:: python

2808 2809 2810 2811 2812 2813
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
2814

2815 2816 2817 2818
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
2819
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2820 2821 2822 2823 2824 2825 2826 2827
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
2828
                                                         max_average_window=12500)
2829 2830

            exe.run(startup_program)
2831 2832 2833 2834 2835
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
2836 2837

            # apply ModelAverage
2838
            with model_average.apply(exe):
2839 2840 2841 2842
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
2843 2844 2845
    """

    def __init__(self,
W
wanghaoshuang 已提交
2846
                 average_window_rate,
2847 2848
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
2849 2850
                 regularization=None,
                 name=None):
Z
zhongpu 已提交
2851 2852
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support ModelAverage.")
X
Xin Pan 已提交
2853 2854
        super(ModelAverage, self).__init__(
            0.0, regularization=regularization, name=name)
2855 2856 2857
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
2858

2859
        self.params_grads = []
2860 2861
        for param in framework.default_main_program().global_block(
        ).all_parameters():
2862
            if param.do_model_average != False:
2863
                grad = param.block.create_var(
2864 2865
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
2866 2867
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
2868
                    stop_gradient=True)
2869
                self.params_grads.append((param, grad))
2870

2871
        for param, grad in self.params_grads:
2872 2873
            if grad is None:
                continue
X
Xin Pan 已提交
2874 2875
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
2876
                self._append_average_accumulate_op(param)
2877

2878 2879 2880 2881
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
2882
                self._add_average_apply_op(block, param_grad)
2883 2884 2885 2886 2887

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
2888
                self._add_average_restore_op(block, param_grad)
2889

2890
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
2891 2892 2893 2894 2895 2896
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
2897
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
2898
        old_num_accumulates = block._clone_variable(
2899
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
2900
        num_updates = block._clone_variable(
2901 2902 2903 2904 2905 2906
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
2907 2908 2909 2910
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
2911
        ops._elementwise_div(x=sum, y=tmp, out=param)
2912 2913

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
2914 2915
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
        num_accumulates = self._add_accumulator(
            'num_accumulates', param, dtype='int64', shape=[1])
        old_num_accumulates = self._add_accumulator(
            'old_num_accumulates', param, dtype='int64', shape=[1])
        num_updates = self._add_accumulator(
            'num_updates', param, dtype='int64', shape=[1])

        self.helper.append_op(
            type='average_accumulates',
            inputs={
                "param": param,
                "in_sum_1": sum_1,
                "in_sum_2": sum_2,
                "in_sum_3": sum_3,
                "in_num_accumulates": num_accumulates,
                "in_old_num_accumulates": old_num_accumulates,
                "in_num_updates": num_updates
            },
            outputs={
                "out_sum_1": sum_1,
                "out_sum_2": sum_2,
                "out_sum_3": sum_3,
                "out_num_accumulates": num_accumulates,
                "out_old_num_accumulates": old_num_accumulates,
                "out_num_updates": num_updates,
            },
            attrs={
                "average_window": self.average_window,
                "min_average_window": self.min_average_window,
                "max_average_window": self.max_average_window,
M
minqiyang 已提交
2953 2954
            },
            stop_gradient=True)
2955

S
rename  
sneaxiy 已提交
2956
    @signature_safe_contextmanager
2957
    def apply(self, executor, need_restore=True):
2958 2959
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
2960 2961

        Args:
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
3006
        """
3007 3008 3009 3010 3011 3012
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
3013 3014

    def restore(self, executor):
3015 3016
        """
        Restore ``Parameter`` values of current model.
3017 3018
        
        Args:
3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
3063
        """
3064
        executor.run(self.restore_program)
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074


class ExponentialMovingAverage(object):
    """
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

3075
        \\text{EMA}_0 & = 0
3076

3077 3078
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

Y
Yibing Liu 已提交
3079 3080 3081 3082
    The average results calculated by **update()** method will be saved in 
    temporary variables which are created and maintained by the object, and can 
    be applied to parameters of current model by calling **apply()** method. And 
    the **restore()** method is used to restore the parameters.
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103

    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be 
    zero biased, which can be corrected by divided by a factor 
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters 
    when calling **apply()** method would be 

    ..  math::
    
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

    **Decay rate scheduling**. A large decay rate very close to 1 would result 
    in that the averages move very slowly. And a better strategy is to set a 
    relative smaller decay rate in the very beginning. The argument **thres_steps**
    allows users to pass a Variable to schedule the decay rate, in this case, 
    the actual decay rate becomes
     
    ..  math::
    
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
3104 3105 3106


    Args:
Y
Yibing Liu 已提交
3107 3108 3109 3110 3111 3112 3113
	decay (float, optional): The exponential decay rate, usually close to 1, such as 
            0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None): If not `None`, schedule the decay rate. 
            Default None.
        name (str|None): For detailed information, please refer to 
            :ref:`api_guide_Name`. Usually name is no need to set and None by 
            default.
3114 3115 3116 3117 3118


    Examples:

	.. code-block:: python
3119 3120 3121 3122 3123

	    import numpy
	    import paddle
	    import paddle.fluid as fluid

Y
Yibing Liu 已提交
3124
	    data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
3125 3126 3127 3128 3129 3130 3131 3132
	    hidden = fluid.layers.fc(input=data, size=10)
	    cost = fluid.layers.mean(hidden)

	    test_program = fluid.default_main_program().clone(for_test=True)

	    optimizer = fluid.optimizer.Adam(learning_rate=0.001)
	    optimizer.minimize(cost)

3133
	    global_steps = fluid.layers.autoincreased_step_counter()
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	    ema = fluid.optimizer.ExponentialMovingAverage(0.999, thres_steps=global_steps)
	    ema.update()

	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    for pass_id in range(3):
		for batch_id in range(6):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=fluid.default_main_program(),
			feed={'x': data}, 
			fetch_list=[cost.name])

		# usage 1
		with ema.apply(exe):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
			    

		 # usage 2
		with ema.apply(exe, need_restore=False):
		    data = numpy.random.random(size=(10, 5)).astype('float32')
		    exe.run(program=test_program,
			    feed={'x': data}, 
			    fetch_list=[hidden.name])
		ema.restore(exe)
3163 3164
    """

3165
    def __init__(self, decay=0.999, thres_steps=None, name=None):
Z
zhongpu 已提交
3166 3167 3168
        if framework.in_dygraph_mode():
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
3169
        self._decay = decay
3170
        self._thres_steps = thres_steps
3171
        self._name = name if name is not None else ''
3172 3173
        self._decay_var = self._get_ema_decay()

3174
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
3175
        self._params_tmps = []
3176
        for param in default_main_program().global_block().all_parameters():
3177 3178 3179 3180 3181 3182 3183
            if param.do_model_average != False:
                tmp = param.block.create_var(
                    name=unique_name.generate(".".join(
                        [self._name + param.name, 'ema_tmp'])),
                    dtype=param.dtype,
                    persistable=False,
                    stop_gradient=True)
Y
Yibing Liu 已提交
3184
                self._params_tmps.append((param, tmp))
3185

Y
Yibing Liu 已提交
3186 3187
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
3188 3189
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
3190
                self._ema_vars[param.name] = self._create_ema_vars(param)
3191 3192 3193 3194

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
3195
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
3196
            for param, tmp in self._params_tmps:
3197 3198
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
3199
                ema = block._clone_variable(self._ema_vars[param.name])
3200
                layers.assign(input=param, output=tmp)
3201
                # bias correction
3202 3203 3204
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
                        layers.assign(output=ema, input=ema / (1.0 - decay_pow))
3205 3206 3207 3208 3209
                layers.assign(input=ema, output=param)

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
3210
            for param, tmp in self._params_tmps:
3211 3212 3213 3214
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
                            np.array(
                                [self._decay], dtype=np.float32),
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
3237 3238 3239 3240 3241 3242 3243
        global_step = layers.create_global_var(
            name=self._step_counter_name,
            shape=[1],
            value=0,
            dtype='int64',
            persistable=True)
        global_step = layers.cast(global_step, "float32")
3244
        decay_var = block._clone_variable(self._decay_var)
3245 3246
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
3247

Y
Yibing Liu 已提交
3248
    def _create_ema_vars(self, param):
3249 3250 3251 3252 3253 3254 3255 3256 3257
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
3258 3259 3260 3261 3262
    def update(self):
        """ 
        Update Exponential Moving Average. Should only call this method in 
        train program.
        """
3263 3264
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
3265
        param_master_emas = []
Y
Yibing Liu 已提交
3266 3267 3268 3269
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
3270
                if param.name + '.master' in self._ema_vars:
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
3288

3289 3290 3291 3292 3293 3294 3295
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
        
        Args:
            executor (Executor): The Executor to execute applying.
Y
Yibing Liu 已提交
3296 3297
            need_restore (bool, optional): Whether to restore parameters after 
                applying. Default True.
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
        
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
3313 3314 3315


class PipelineOptimizer(object):
3316 3317
    """
    Pipeline Optimizer
H
hutuxian 已提交
3318 3319 3320 3321 3322 3323 3324 3325 3326

    Train with pipeline mode. The program will be splited by cut_list. 

    If the len of cut_list is k, then the whole program (including \
    backward part) will be splited to 2*k-1 sections. 
    
    So the length of place_list and concurrency_list must be also 2*k-1.

    Note: Though the asynchronous mode is applied in pipeline training to speed up, \
3327
    the final performance depends on the training progress of each pipeline heavily.
H
hutuxian 已提交
3328 3329 3330

    And we will try the synchronous mode in the future.

3331
    Args:
H
hutuxian 已提交
3332 3333 3334 3335
        optimizer (Optimizer): The based optimizer, such as SGD.
        cut_list (list of Variable list): The cut variable of the main_program.
        place_list (list of Place): The place where the section will run on.
        concurrency_list (list of int): The concurrency degree.
3336 3337
        queue_size (int): Each section will consume scopes from its in-scope queue 
                        and produce scopes to out-scope queue. And this parameter 
H
hutuxian 已提交
3338 3339 3340 3341
                        specify the scope queue size. [Optional. Default: 30].
        sync_steps (int): The synchronization steps between different cards. [Optional. Default: 1].
        start_cpu_core_id (int): specify the first cpu core id. [Optional. Default:0].

3342 3343
    Examples:
        .. code-block:: python
H
hutuxian 已提交
3344

3345
            import paddle.fluid as fluid
H
hutuxian 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
            import paddle.fluid.layers as layers

            x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
            y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
            emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
            emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)
            concat = layers.concat([emb_x, emb_y], axis=1)
            fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
            loss = layers.reduce_mean(fc)
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer,
                    cut_list=[[emb_x, emb_y], [loss]],
                    place_list=[fluid.CPUPlace(), fluid.CUDAPlace(0), fluid.CPUPlace()],
                    concurrency_list=[1, 1, 4],
                    queue_size=2,
                    sync_steps=1,
                    )
            optimizer.minimize(loss)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            filelist = [] # you should set your own filelist, e.g. filelist = ["dataA.txt"]
            dataset = fluid.DatasetFactory().create_dataset("FileInstantDataset")
            dataset.set_use_var([x,y])
            dataset.set_batch_size(batch_size)
            dataset.set_filelist(filelist)
            exe.train_from_dataset(
                        fluid.default_main_program(),
                        dataset,
                        thread=2,
                        debug=False,
                        fetch_list=[],
                        fetch_info=[],
                        print_period=1)
3380 3381
    """

H
hutuxian 已提交
3382 3383 3384 3385 3386 3387 3388 3389
    def __init__(self,
                 optimizer,
                 cut_list=None,
                 place_list=None,
                 concurrency_list=None,
                 queue_size=30,
                 sync_steps=1,
                 start_cpu_core_id=0):
Z
zhongpu 已提交
3390 3391
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support PipelineOptimizer.")
H
hutuxian 已提交
3392 3393 3394 3395 3396 3397 3398 3399 3400
        # TODO: check properties
        self._optimizer = optimizer
        self._cut_list = cut_list
        self._place_list = place_list
        self._concurrency_list = concurrency_list
        self._queue_size = queue_size
        self._sync_steps = sync_steps
        self._start_cpu_core_id = start_cpu_core_id

H
hutuxian 已提交
3401
    def _create_vars(self, block, main_program):
H
hutuxian 已提交
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
        used_var_set = set()
        for op_idx in range(block.desc.op_size()):
            op_desc = block.desc.op(op_idx)
            vars = op_desc.input_arg_names() + op_desc.output_arg_names()
            for var in vars:
                if var in used_var_set:
                    continue
                used_var_set.add(var)
                source_var = main_program.block(0).var(str(var))
                block._clone_variable(source_var, False)

H
hutuxian 已提交
3413
    def _extract_section_opt_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
        """
        Extract opt ops in the given section
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if _some_in_set_(op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3429
    def _find_input_output(self, ops, name, is_forward=True):
H
hutuxian 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
        """
        Find the inputs or outputs of a section
        """
        all_set = set()
        part_set = set()
        for op in ops:
            if is_forward:
                part_set.update(op.desc.output_arg_names())
            else:
                part_set.update(op.desc.input_arg_names())
            all_set.update(op.desc.output_arg_names())
            all_set.update(op.desc.input_arg_names())
        return all_set - part_set

H
hutuxian 已提交
3444
    def _find_persistable_vars(self, ops, whole_parameters):
H
hutuxian 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
        """
        find the persistable input vars in current section
        """
        res = set()
        for op in ops:
            vars = op.desc.input_arg_names()
            for var in vars:
                if var in whole_parameters:
                    res.add(var)
        return res

    def _is_opt_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) & int(optimize_role) != 0:
            return True
        return False

    def _is_lr_role_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.LRSched
        if op_maker.kOpRoleAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

H
hutuxian 已提交
3472
    def _extract_section_ops(self, ops, cut_point_name):
H
hutuxian 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
        """
        Extract ops in the given section 
        """
        output_names = set(cut_point_name)
        relevant_op_flags = [True] * len(ops)
        for i, op in reversed(list(enumerate(ops))):
            if not self._is_opt_role_op(op) and _some_in_set_(
                    op.desc.output_arg_names(), output_names):
                for name in op.desc.input_arg_names():
                    output_names.add(name)
            elif op.desc.type() == "print" and op.desc.input_arg_names()[
                    0] in output_names:
                continue
            else:
                relevant_op_flags[i] = False

        op_path = [ops[i] for i in range(len(ops)) if relevant_op_flags[i]]
        return op_path

H
hutuxian 已提交
3492 3493
    def _find_section_opt(self, ops, params):
        res = self._extract_section_opt_ops(ops, params)
H
hutuxian 已提交
3494 3495
        return res

H
hutuxian 已提交
3496
    def _split_program(self, main_program, cut_list):
H
hutuxian 已提交
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
        programs = []
        block = main_program.block(0)
        whole_parameters = [e.name for e in block.all_parameters()]
        cut_var_names = []
        cut_len = len(cut_list)
        sec_params = []
        for i, cut_vars in enumerate(cut_list[:-1]):
            cut_var_names.append([cut_var.name for cut_var in cut_vars])
        for i, cut_vars in reversed(list(enumerate(cut_list[:-1]))):
            cut_var_names.append(
                [_append_grad_suffix_(cut_var.name) for cut_var in cut_vars])
            if i == 0:
                cut_var_names[-1] += [var.name for var in cut_list[-1]]
        ops = block.ops[:]
        for i, cut_vars in enumerate(cut_var_names):
            program = {
                "program": Program(),
                "input_set": set(),
                "output_set": set()
            }
H
hutuxian 已提交
3517
            cur_ops = self._extract_section_ops(ops, cut_vars)
H
hutuxian 已提交
3518 3519 3520 3521 3522 3523
            if i == 0:
                for op in ops:
                    if self._is_lr_role_op(op):
                        cur_ops.append(op)
            #prevent inplace in/out
            program["input_set"].update(
H
hutuxian 已提交
3524
                self._find_input_output(
H
hutuxian 已提交
3525 3526 3527 3528 3529 3530
                    cur_ops, [], is_forward=True))
            for e in cur_ops:
                ops.remove(e)

            if i < cut_len:
                sec_params.append(
H
hutuxian 已提交
3531
                    self._find_persistable_vars(cur_ops, whole_parameters))
H
hutuxian 已提交
3532
            if i >= cut_len - 1:
H
hutuxian 已提交
3533 3534
                opt_ops = self._find_section_opt(
                    ops, sec_params[2 * cut_len - 2 - i])
H
hutuxian 已提交
3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

                for e in opt_ops:
                    ops.remove(e)
                cur_ops += opt_ops

            op_descs = [op.desc for op in cur_ops]
            for op_desc in op_descs:
                ap_op = program["program"].block(0).desc.append_op()
                ap_op.copy_from(op_desc)
            program["input_set"].update(
H
hutuxian 已提交
3545
                self._find_input_output(
H
hutuxian 已提交
3546 3547 3548
                    cur_ops, cut_vars, is_forward=True))
            program["input_set"].update(sec_params[min(i, 2 * cut_len - 2 - i)])
            program["output_set"].update(
H
hutuxian 已提交
3549
                self._find_input_output(
H
hutuxian 已提交
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
                    cur_ops, cut_vars, is_forward=False))
            programs.append(program)
        program = {
            "program": Program(),
            "input_set": set(),
            "output_set": set()
        }
        op_descs = [op.desc for op in ops]
        for op_desc in op_descs:
            ap_op = program["program"].block(0).desc.append_op()
            ap_op.copy_from(op_desc)
        program["input_set"].update(
            [cut_var.name + "@GRAD" for cut_var in cut_list[0]])
        program["input_set"].update(
H
hutuxian 已提交
3564
            self._find_input_output(
H
hutuxian 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
                ops, [], is_forward=True))
        program["input_set"].update(sec_params[0])
        programs.append(program)
        inputs = set()
        for program in reversed(list(programs)):
            output_list = list(program["output_set"])
            for output in output_list:
                if output not in inputs:
                    program["output_set"].remove(output)
            inputs.update(program["input_set"])
        return programs

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        self._optimizer.minimize(loss, startup_program, parameter_list,
                                 no_grad_set)
        program = loss.block.program
H
hutuxian 已提交
3585 3586 3587 3588 3589 3590 3591 3592
        if len(self._cut_list) == 0:
            program_list = []
            ptmp = {"program": program, "input_set": set(), "output_set": set()}
            program_list.append(ptmp)
        else:
            program_list = self._split_program(program, self._cut_list)
            for p in program_list:
                self._create_vars(p["program"].block(0), program)
H
hutuxian 已提交
3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
        whole_parameters = [e.name for e in program.block(0).all_parameters()]
        param_need_sync = []
        for i, section_p in enumerate(program_list):
            if not isinstance(self._place_list[i], core.CUDAPlace):
                continue
            section_var = [e for e in section_p["program"].block(0).vars]
            for p in section_var:
                if p in whole_parameters:
                    param_need_sync.append(p)
        program._pipeline_opt = {
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
            "section_program_list": program_list,
            "place_list": self._place_list,
            "concurrency_list": self._concurrency_list,
            "queue_size": self._queue_size,
            "start_cpu_core_id": self._start_cpu_core_id,
            "sync_steps": self._sync_steps,
            "param_need_sync": param_need_sync
        }
M
mapingshuo 已提交
3613 3614


M
mapingshuo 已提交
3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
class RecomputeOptimizer(Optimizer):
    """
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
    Operators to calculate the loss; second, run backward Operators to 
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

    In the forward computation process, all variables that are needed by 
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

    Recompute split the network to k segments. In each segment, It will 
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
 
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
Z
zhongpu 已提交
3677 3678
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
        self._optimizer = optimizer
        self._checkpoints = None

    def _set_checkpoints(self, checkpoints):
        self._checkpoints = checkpoints

    def load(self, stat_dict):
        """
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
            stat_dict: the dict load by load_persistable method

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
                    stat_dict = {}
                    sgd.load(stat_dict)
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
                    no_grad_set=None,
                    checkpoints=[fc_1, pred])

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None,
                 checkpoints=None):
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            parameter_list (list): list of Variables to update.
            no_grad_set (set|None): set of Variables should be ignored.
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
    
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
    
    
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
    
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
                    no_grad_set=None,
                    checkpoints=[fc_1, pred])
                print("Finished backward")
        """

        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
            params_grads = append_backward(
                loss,
                parameter_list,
                no_grad_set,
                checkpoints=self._checkpoints)
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.

        Examples:
            .. code-block:: python
M
mapingshuo 已提交
3845

M
mapingshuo 已提交
3846 3847 3848 3849 3850 3851 3852
                import paddle.fluid as fluid
                
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
M
mapingshuo 已提交
3853
                    return sum_cost, fc_1, prediction                
M
mapingshuo 已提交
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
                
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
                
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
                    no_grad_set=None,
                    checkpoints=[fc_1, pred])
                
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
                
                print("Finished apply_optimize")
M
mapingshuo 已提交
3873

M
mapingshuo 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
        """

        return self._optimizer.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 grad_clip=None):

        assert (isinstance(loss, Variable)), "The loss should be an Variable."
        assert (self._checkpoints is not None
                ), "You should call _set_checkpoints first"
        if framework.in_dygraph_mode():
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        params_grads = self.backward(
            loss,
            startup_program=startup_program,
            parameter_list=parameter_list,
            no_grad_set=no_grad_set,
            checkpoints=self._checkpoints)

        if grad_clip:
            # TODO(guru4elephant): should add grad_clip for static graph
            pass

        optimize_ops = self.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads)

        return optimize_ops, params_grads


M
mapingshuo 已提交
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
class LookaheadOptimizer(object):
    """
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
    the slow_params. inner_optimizer update fast_params every 
    training step. Lookahead updates the slow_params and fast_params 
    every k training steps as follows:

    .. math::
        
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
	
	fast\_param_t &=  slow\_param_t

    Args:
        inner_optimizer (Optimizer): The optimizer that update fast params step by step. 
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

	    x = fluid.layers.data(name='x', shape=[2], dtype='float32')
	    label = fluid.layers.data(name="label", shape=[1], dtype="int64")
	    y = fluid.layers.fc(input=[x], size=2, act="softmax")
	    loss = fluid.layers.cross_entropy(input=y, label=label)
	    loss = fluid.layers.mean(x=loss)
	    sgd = fluid.optimizer.SGD(learning_rate=0.01)
	    optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                            alpha=0.5,
                                            k=5)
	    optimizer.minimize(loss)
	    main_program = fluid.default_main_program()
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    feeder = fluid.DataFeeder(feed_list=[x, label], place=place)

	    step = 0
            while(step < 10):
                step += 1
		exe.run(fluid.default_main_program(),
            	feed=feeder.feed(batch_data))

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

Z
zhongpu 已提交
3965 3966
        if framework.in_dygraph_mode():
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
            slow_var = main_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
            slow_var = startup_block.create_var(
                name=param + "@SLOW",
                shape=fast_var.shape,
                dtype=fast_var.dtype,
                persistable=True)

            startup_block.append_op(
                type="assign",
                inputs={"X": fast_var},
                outputs={"Out": slow_var})

        # Add Var k to main prog and startup prog
        k = layers.create_global_var(
            name="lookahead_k",
            shape=[1],
            value=int(self.k),
            dtype='int32',
            persistable=True)

        # Add Var alpha to main prog and startup prog
        alpha = layers.create_global_var(
            name="lookahead_alpha",
            shape=[1],
            value=float(self.alpha),
            dtype='float32',
            persistable=True)

        # Add Var step
        step = layers.create_global_var(
            name="lookahead_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True)
        layers.increment(x=step, value=1.0, in_place=True)

        # lookahead
        zero_var = layers.fill_constant(shape=[1], dtype='float32', value=0.0)

        one_var = layers.fill_constant(shape=[1], dtype='float32', value=1.0)

        mod = layers.elementwise_mod(step, k)
        with layers.control_flow.Switch() as switch:
            with switch.case(mod == zero_var):
                for param_name in params:
                    fast_var = main_block.var(param_name)
                    slow_var = param_to_slow[param_name]
                    tmp_var = layers.elementwise_add(
                        layers.elementwise_mul(fast_var, alpha),
                        layers.elementwise_mul(
                            slow_var, layers.elementwise_sub(one_var, alpha)))
                    layers.assign(input=tmp_var, output=slow_var)
                    layers.assign(input=tmp_var, output=fast_var)
            with switch.default():
                pass
        return mini_out