Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
8002b2be
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8002b2be
编写于
4月 18, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
4月 18, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Avoid logging.info be printed many times in dygraph_mode,test=develop (#23932)
上级
771c3b29
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
34 addition
and
22 deletion
+34
-22
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+9
-0
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+13
-18
python/paddle/fluid/tests/unittests/test_regularizer.py
python/paddle/fluid/tests/unittests/test_regularizer.py
+12
-4
未找到文件。
python/paddle/fluid/optimizer.py
浏览文件 @
8002b2be
...
...
@@ -15,6 +15,7 @@
from
__future__
import
print_function
import
numpy
as
np
import
logging
from
collections
import
defaultdict
from
paddle.fluid.distribute_lookup_table
import
find_distributed_lookup_table
...
...
@@ -81,6 +82,14 @@ class Optimizer(object):
raise
AttributeError
(
"parameter_list argument given to the Optimizer should not be None in dygraph mode."
)
if
regularization
is
not
None
:
for
param
in
self
.
_parameter_list
:
if
param
.
regularizer
is
not
None
:
logging
.
info
(
"If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
"The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
%
regularization
.
__str__
())
break
else
:
if
not
isinstance
(
learning_rate
,
float
)
and
\
not
isinstance
(
learning_rate
,
framework
.
Variable
):
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
8002b2be
...
...
@@ -13,19 +13,16 @@
# limitations under the License.
from
__future__
import
print_function
import
logging
from
.
import
framework
from
.framework
import
in_dygraph_mode
,
_varbase_creator
from
.
import
core
import
logging
__all__
=
[
'L1Decay'
,
'L2Decay'
,
'L1DecayRegularizer'
,
'L2DecayRegularizer'
]
def
_create_regularization_of_grad
(
param
,
grad
,
regularization
=
None
,
_repeat_regularizer
=
None
):
def
_create_regularization_of_grad
(
param
,
grad
,
regularization
=
None
):
""" Create and add backward regularization Operators
Function helper of append_regularization_ops.
...
...
@@ -35,8 +32,6 @@ def _create_regularization_of_grad(param,
return
grad
regularization_term
=
None
if
param
.
regularizer
is
not
None
:
if
regularization
is
not
None
:
_repeat_regularizer
.
append
(
param
.
name
)
# Add variable for regularization term in grad block
regularization_term
=
param
.
regularizer
(
param
,
grad
,
grad
.
block
)
elif
regularization
is
not
None
:
...
...
@@ -89,25 +84,25 @@ def append_regularization_ops(parameters_and_grads, regularization=None):
Exception: Unknown regularization type
"""
params_and_grads
=
[]
_repeat_regularizer
=
[]
if
in_dygraph_mode
():
for
param
,
grad
in
parameters_and_grads
:
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
,
_repeat_regularizer
)
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
)
params_and_grads
.
append
((
param
,
new_grad
))
else
:
repeate_regularizer
=
False
with
framework
.
name_scope
(
'regularization'
):
for
param
,
grad
in
parameters_and_grads
:
if
not
repeate_regularizer
and
param
.
regularizer
is
not
None
and
regularization
is
not
None
:
repeate_regularizer
=
True
logging
.
info
(
"If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
"The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
%
regularization
.
__str__
())
with
param
.
block
.
program
.
_optimized_guard
([
param
,
grad
]):
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
,
_repeat_regularizer
)
new_grad
=
_create_regularization_of_grad
(
param
,
grad
,
regularization
)
params_and_grads
.
append
((
param
,
new_grad
))
if
len
(
_repeat_regularizer
)
>
0
:
param_name_strlist
=
", "
.
join
(
_repeat_regularizer
)
logging
.
info
(
"Regularization of [%s] have been set by ParamAttr or WeightNormParamAttr already. "
"So, the Regularization of Optimizer will not take effect for these parameters!"
%
param_name_strlist
)
return
params_and_grads
...
...
python/paddle/fluid/tests/unittests/test_regularizer.py
浏览文件 @
8002b2be
...
...
@@ -231,12 +231,20 @@ class TestRegularizer(unittest.TestCase):
rtol
=
5e-5
)
def
test_repeated_regularization
(
self
):
l1
=
fluid
.
regularizer
.
L1Decay
(
regularization_coeff
=
0.1
)
l2
=
fluid
.
regularizer
.
L2Decay
(
regularization_coeff
=
0.01
)
fc_param_attr
=
fluid
.
ParamAttr
(
regularizer
=
l1
)
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
x
=
fluid
.
layers
.
uniform_random
([
2
,
2
,
3
])
out
=
fluid
.
layers
.
fc
(
x
,
5
,
param_attr
=
fc_param_attr
)
loss
=
fluid
.
layers
.
reduce_sum
(
out
)
sgd
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.1
,
regularization
=
l2
)
sgd
.
minimize
(
loss
)
with
fluid
.
dygraph
.
guard
():
input
=
fluid
.
dygraph
.
to_variable
(
np
.
random
.
randn
(
3
,
5
).
astype
(
'float32'
))
fluid
.
default_main_program
().
random_seed
=
1
l1
=
fluid
.
regularizer
.
L1Decay
(
regularization_coeff
=
0.1
)
fc_param_attr
=
fluid
.
ParamAttr
(
regularizer
=
l1
)
linear1
=
fluid
.
dygraph
.
Linear
(
5
,
2
,
param_attr
=
fc_param_attr
,
bias_attr
=
fc_param_attr
)
linear2
=
fluid
.
dygraph
.
Linear
(
...
...
@@ -245,7 +253,7 @@ class TestRegularizer(unittest.TestCase):
loss1
=
linear1
(
input
)
loss1
.
backward
()
# set l2 regularizer in optimizer, but l1 in fluid.ParamAttr
l2
=
fluid
.
regularizer
.
L2Decay
(
regularization_coeff
=
0.01
)
fluid
.
optimizer
.
SGD
(
parameter_list
=
linear1
.
parameters
(),
learning_rate
=
1e-2
,
regularization
=
l2
).
minimize
(
loss1
)
...
...
@@ -259,7 +267,7 @@ class TestRegularizer(unittest.TestCase):
np
.
allclose
(
linear1
.
weight
.
numpy
(),
linear2
.
weight
.
numpy
()),
"weight should use the regularization in fluid.ParamAttr!"
)
self
.
assertTrue
(
np
.
allclose
(
linear1
.
bias
.
numpy
(),
linear
1
.
bias
.
numpy
()),
np
.
allclose
(
linear1
.
bias
.
numpy
(),
linear
2
.
bias
.
numpy
()),
"bias should use the regularization in fluid.ParamAttr!"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录