nn.py 229.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'conv2d',
    'pool2d',
    'batch_norm',
    'dropout',
    'split',
    'l2_normalize',
    'matmul',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
79
    'spectral_norm',
X
Xin Pan 已提交
80 81 82 83 84 85
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'image_resize',
    'resize_bilinear',
K
Kaipeng Deng 已提交
86
    'resize_trilinear',
87
    'resize_nearest',
X
Xin Pan 已提交
88 89 90 91 92 93 94 95 96 97 98
    'relu',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'gaussian_random',
    'sampling_id',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
M
minqiyang 已提交
99
    'hash',
D
dengkaipeng 已提交
100
    'grid_sampler',
G
gmcather 已提交
101
    'log_loss',
Q
Qiao Longfei 已提交
102
    'bilinear_tensor_product',
C
chengduo 已提交
103 104
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
H
heqiaozhi 已提交
105
    'continuous_value_model',
106
    'unfold',
C
cjt222 已提交
107
    'deformable_roi_pooling',
108
    'shard_index',
H
huangjun12 已提交
109
    'hard_swish',
K
Kaipeng Deng 已提交
110
    'mish',
111
    'uniform_random',
myq406450149's avatar
myq406450149 已提交
112
    'unbind',
Y
Yu Yang 已提交
113 114
]

115
OP_NAMEMAPPING = {
116 117 118 119 120 121 122 123
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
124
    'elementwise_mod': 'remainder',
125 126
}

Y
Yu Yang 已提交
127

128 129
def _get_reduce_dim(dim, input):
    """
130
    Internal function for reduce_sum, reduce_mean, reduce_prod.
131 132 133 134 135 136 137 138 139
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
140
                "The type of dim must be int, list, tuple or range, but received {}".format(
141
                    type(dim)
142 143
                )
            )
144 145 146 147 148 149 150 151 152 153
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


154
@dygraph_only
155 156 157
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
158 159 160 161
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
162
        op = getattr(_legacy_C_ops, op_name)
163 164 165
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
166 167
            op = getattr(
                _C_ops,
168 169
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
170 171 172
            out = op(x, y)

        if _in_legacy_dygraph():
173
            op = getattr(_legacy_C_ops, op_name)
174
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
175 176 177 178 179 180 181 182 183 184 185 186 187 188
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
189
    r"""
190 191
    :api_attr: Static Graph

192
    **Fully Connected Layer**
Y
Yu Yang 已提交
193

194 195 196
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
197
    which represents a fully connected weight matrix from each input unit to
198 199 200 201
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
202
    is not None, a bias variable will be created and added to the output.
203
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
204

205
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
206

207 208 209 210
    .. math::

        Out = Act({XW + b})

211
    When the input is a list of Tensor(or LoDTensor):
212 213 214

    .. math::

215
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
216 217 218

    In the above equation:

219 220 221
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
222
    * :math:`b`: The bias parameter created by this layer (if needed).
223
    * :math:`Act`: The activation function.
224
    * :math:`Out`: The output Tensor.
225 226 227

    .. code-block:: text

228 229 230 231 232 233 234 235 236 237 238 239 240 241
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
242 243 244 245 246 247 248 249 250 251 252 253 254
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
255
    Args:
256 257 258
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
259
        size(int): The number of output units in this layer, which also means the feature size of output
260 261
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
262
            two dimensions. If this happens, the multidimensional tensor will first be flattened
263 264
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
265
            dimensions will be flatten to form the first dimension of the final matrix (height of
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
281 282

    Raises:
283
        ValueError: If dimensions of the input Tensor is less than 2.
284 285 286 287

    Examples:
        .. code-block:: python

288
          import paddle.fluid as fluid
289 290
          import paddle
          paddle.enable_static()
291
          # when input is single tensor
292
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
293
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
294 295

          # when input are multiple tensors
296 297
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
298
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
299
    """
C
caoying03 已提交
300
    helper = LayerHelper("fc", **locals())
301
    check_type(input, 'input', (list, tuple, Variable), 'fc')
302 303
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
304
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
305
    dtype = helper.input_dtype()
306 307 308
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
309
    mul_results = []
310 311
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
312 313
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
314 315 316
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
317

318 319 320
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
321
        tmp = helper.create_variable_for_type_inference(dtype)
322 323 324 325 326 327
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
328 329 330 331
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
332
    else:
X
Xin Pan 已提交
333
        pre_bias = helper.create_variable_for_type_inference(dtype)
334 335 336 337 338 339
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
340 341 342 343
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
344 345


T
tangwei12 已提交
346
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
347 348 349 350 351 352 353 354 355
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
356
    r"""
357
    :api_attr: Static Graph
358

359 360 361 362 363 364 365 366 367 368 369 370
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

371
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
389

390 391 392 393
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
394

395
        Case 2:
396

397 398 399 400 401 402 403 404 405 406 407 408 409 410
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
411 412

    Args:
413 414 415 416 417 418
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
419
            affects the performance of the backwards gradient update. It is recommended to set
420
            True because sparse update is faster. But some optimizer does not support sparse update,
421
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
422 423 424 425 426
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
427
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
428 429 430 431 432 433
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
434
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
435
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
436
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
437 438 439
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
440

441
    Returns:
442
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
443

444 445
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
446

B
bdzhuxiaoning 已提交
447
          import paddle.fluid as fluid
448
          import numpy as np
449 450
          import paddle
          paddle.enable_static()
451

452 453
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
454
          # example 1
455 456 457 458 459 460 461 462 463
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
464
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
465 466 467
    """

    helper = LayerHelper('embedding', **locals())
468 469 470 471 472 473 474 475 476
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
477 478 479 480 481 482 483 484 485

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

486 487 488
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
489
    tmp = helper.create_variable_for_type_inference(dtype)
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
508 509 510
    return tmp


511 512 513 514 515 516 517 518 519 520 521
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
522
    r"""
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
568
        'is_distributed': True,
569 570
    }
    # this is only for compatible with embedding op
571 572 573 574 575 576 577 578 579
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
580 581 582 583 584
    if len(outs) == 1:
        return outs[0]
    return outs


585 586 587 588 589 590 591 592 593 594 595
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
596
    r"""
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
642
        'is_distributed': True,
643 644
    }
    # this is only for compatible with embedding op
645 646 647 648 649 650 651 652 653
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
654
    if len(outs) == 1:
Y
yaoxuefeng 已提交
655 656 657 658
        return outs[0]
    return outs


659 660 661
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
675
        float32 now.
Y
yaoxuefeng 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
695 696 697
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
698 699 700 701 702 703
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
704 705 706 707 708 709 710 711 712 713 714 715 716
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
717
    if len(outs) == 1:
718 719 720 721
        return outs[0]
    return outs


722 723 724
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
725
    r"""
H
hutuxian 已提交
726 727 728 729 730 731 732
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
733
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
734
            contains the IDs information.
735
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
736
            each embedding vector respectively.
737
        dtype(str): The dtype refers to the data type of output tensor. Only supports
738
        float32 now.
H
hutuxian 已提交
739 740 741 742 743 744 745 746 747 748

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
749
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
750 751 752 753
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
754 755 756
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
757 758 759 760 761 762
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
763 764 765 766 767 768 769 770 771 772 773 774 775
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
776 777 778 779 780
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
781
@templatedoc()
782
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
783
    """
784 785
    :api_attr: Static Graph

Y
yuyang18 已提交
786 787 788 789 790
    Linear Chain CRF.

    ${comment}

    Args:
791
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
792
        label(${label_type}): ${label_comment}
793
        Length(${length_type}): ${length_comment}
794
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
795 796

    Returns:
D
dzhwinter 已提交
797 798
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
799
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
800

J
JesseyXujin 已提交
801 802 803
    Examples:
        .. code-block:: python

804 805
            import paddle.fluid as fluid
            import numpy as np
806 807
            import paddle
            paddle.enable_static()
808 809 810 811 812

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
813 814
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
815 816 817 818 819 820
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
821
                    learning_rate=0.01))
822 823 824
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
825
            exe.run(startup_program)
826 827 828 829 830
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
831
            print(loss)
832 833 834 835 836

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
837 838 839
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
840 841 842 843 844 845
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
846
                     name='crfw',
847 848 849 850 851 852
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
853

854 855 856
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
857
            ll=np.array([[3],[3],[4],[2]])
858 859
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
860
            print(loss2)
861 862 863 864 865
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

866 867 868
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
869

Y
yuyang18 已提交
870
    """
871 872 873
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
874
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
875
    helper = LayerHelper('linear_chain_crf', **locals())
876
    size = input.shape[2] if length else input.shape[1]
877 878 879 880 881
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
882
    alpha = helper.create_variable_for_type_inference(
883 884
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
885
    emission_exps = helper.create_variable_for_type_inference(
886 887
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
888
    transition_exps = helper.create_variable_for_type_inference(
889 890
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
891
    log_likelihood = helper.create_variable_for_type_inference(
892 893
        dtype=helper.input_dtype()
    )
894 895 896
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
897
        "Label": [label],
898 899
    }
    if length:
900
        this_inputs['Length'] = [length]
901 902 903 904 905 906 907 908 909 910
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
911 912 913 914

    return log_likelihood


W
wopeizl 已提交
915
@templatedoc()
916
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
917
    """
918
    :api_attr: Static Graph
919

W
wopeizl 已提交
920
    ${comment}
Y
yi.wu 已提交
921

W
wopeizl 已提交
922
    Args:
923
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
924

925 926
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
927
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
928

Y
Yibing Liu 已提交
929
        label(${label_type}, optional): ${label_comment}
930

Y
Yibing Liu 已提交
931
        length(${length_type}, optional): ${length_comment}
932

W
wopeizl 已提交
933
    Returns:
934
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
935

W
wopeizl 已提交
936 937
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
938

939 940
           import paddle
           paddle.enable_static()
941 942 943

           # LoDTensor-based example
           num_labels = 10
944 945 946
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
947

948 949 950 951
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
952 953 954

           # Common tensor example
           num_labels, max_len = 10, 20
955 956 957 958
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
959
                                      num_flatten_dims=2)
960

961 962 963 964
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
965
    """
966 967 968
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
969 970 971
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
972 973
        dtype=core.VarDesc.VarType.INT64
    )
974 975 976
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
977 978 979 980 981
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
982

W
wopeizl 已提交
983
    return viterbi_path
Y
Yu Yang 已提交
984 985


986
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
987 988 989 990 991 992 993 994
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
995
    """
996

997 998 999 1000
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1001
    training. The dropout operator randomly sets (according to the given dropout
1002 1003 1004
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1005 1006
    dropout op can be removed from the program to make the program more efficient.

1007
    Args:
L
lvmengsi 已提交
1008
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
1009
        dropout_prob (float): Probability of setting units to zero.
1010
        is_test (bool): A flag indicating whether it is in test phrase or not.
1011
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
1012 1013 1014
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
1015
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
1016 1017
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1018 1019
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1020
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1021 1022

                                           - train: out = input * mask
C
ceci3 已提交
1023
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1024 1025 1026

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1027
                                        2. upscale_in_train, upscale the outcome at training time
1028

H
haowang101779990 已提交
1029 1030
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1031

H
haowang101779990 已提交
1032 1033
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1034

M
minqiyang 已提交
1035

1036
    Returns:
L
lvmengsi 已提交
1037
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1038 1039

    Examples:
1040

1041 1042
        .. code-block:: python

1043
            import paddle
1044
            import paddle.fluid as fluid
1045

1046
            paddle.enable_static()
L
lvmengsi 已提交
1047
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1048
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1049
    """
1050 1051
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1052 1053
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1054
    # fast return for p == 0
1055
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1056
        return x
1057

J
Jiabin Yang 已提交
1058
    if _non_static_mode():
1059 1060 1061
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1062
            seed = default_main_program().random_seed
1063 1064
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1078
        return out
1079

W
wanghuancoder 已提交
1080 1081 1082
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1083 1084
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1085 1086 1087 1088
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1089 1090 1091 1092 1093 1094 1095 1096 1097
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1098
    helper = LayerHelper('dropout', **locals())
1099 1100 1101
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1102

X
Xin Pan 已提交
1103 1104
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1105 1106
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1107

1108
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1109

1110 1111 1112 1113 1114 1115
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1116 1117 1118
    return out


1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1134
    r"""
1135 1136
    :api_attr: Static Graph

C
chengduoZH 已提交
1137
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1138
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1139
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1140
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1141 1142 1143 1144 1145 1146
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1147
    for more details.
1148 1149 1150
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1151

1152
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1153

C
chengduoZH 已提交
1154 1155
    .. math::

C
refine  
chengduoZH 已提交
1156
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1157

T
tensor-tang 已提交
1158
    Where:
C
chengduoZH 已提交
1159

L
liym27 已提交
1160
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1161 1162 1163 1164
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1165
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1166 1167 1168

    Example:

1169 1170
        - Input:

W
weixing02 已提交
1171
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1172

W
weixing02 已提交
1173
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1174

1175
        - Output:
T
tensor-tang 已提交
1176

W
weixing02 已提交
1177
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1178

C
chengduoZH 已提交
1179
        Where
1180 1181

        .. math::
C
chengduoZH 已提交
1182

W
weixing02 已提交
1183 1184
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1185 1186

    Args:
1187
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1188
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1189
        num_filters(int): The number of filter. It is as same as the output
1190
            image channel.
1191 1192
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1193 1194
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1195 1196
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1197 1198
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1199
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1200 1201
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1202 1203
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1204
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1205 1206 1207
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1208
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1209 1210
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1211
            Default: dilation = 1.
1212 1213 1214 1215
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1216 1217 1218 1219 1220
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1221
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1222 1223 1224 1225 1226
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1227 1228
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1229 1230
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1231 1232
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1233
           None by default.
1234
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1235
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1236 1237
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1238 1239

    Returns:
1240 1241 1242
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1243
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1244

1245 1246 1247 1248 1249
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1250
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1251 1252 1253 1254 1255 1256 1257
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1258 1259 1260
    Examples:
        .. code-block:: python

1261 1262
          import paddle
          paddle.enable_static()
1263

1264 1265 1266
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1267 1268
    """

1269 1270 1271
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1272
    if len(input.shape) != 4:
1273 1274 1275 1276
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1277
    num_channels = input.shape[1]
L
liym27 已提交
1278
    if not isinstance(use_cudnn, bool):
1279 1280 1281 1282
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1283 1284 1285 1286

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1287 1288
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1289

1290
    channel_last = data_format == "NHWC"
L
liym27 已提交
1291 1292 1293 1294
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1295 1296
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1297
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1298

1299 1300 1301
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1302 1303
        raise ValueError(
            "the groups of input must be greater than 0, "
1304 1305
            "but received the groups of input is {}".format(groups)
        )
1306 1307 1308 1309 1310
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1311 1312
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1313 1314
        num_filter_channels = num_channels // groups

1315
    l_type = 'conv2d'
1316 1317 1318 1319 1320
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1321
        l_type = 'depthwise_conv2d'
1322

1323 1324 1325 1326 1327
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1328 1329
        l_type = 'depthwise_conv2d'

1330 1331
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1332
        if num_channels == groups and num_channels == num_filters:
1333 1334 1335 1336
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1337 1338 1339
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1340 1341
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1342
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1343

L
liym27 已提交
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1356 1357
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1358 1359 1360 1361 1362 1363
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1364 1365
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1366 1367 1368
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1369 1370 1371
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1382 1383 1384
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1385 1386
        if padding == "VALID":
            padding_algorithm = "VALID"
1387
            padding = [0, 0]
L
liym27 已提交
1388 1389
        elif padding == "SAME":
            padding_algorithm = "SAME"
1390
            padding = [0, 0]
L
liym27 已提交
1391 1392

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1393

M
minqiyang 已提交
1394
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1395 1396

    def _get_default_param_initializer():
C
chengduo 已提交
1397
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1398 1399 1400 1401
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1402 1403 1404
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1405 1406 1407 1408 1409 1410
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1411 1412
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1413

X
Xin Pan 已提交
1414
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1415

1416 1417 1418 1419 1420 1421
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1422 1423
        use_cudnn = False

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1443

1444 1445 1446 1447
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1448 1449 1450 1451

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1452
@templatedoc()
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1466
    """
1467

F
fengjiayi 已提交
1468
    ${comment}
1469 1470

    Args:
K
Kaipeng Deng 已提交
1471 1472 1473 1474 1475
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1476
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1477 1478
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1479
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1480 1481 1482
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1483 1484 1485 1486 1487 1488 1489
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1490
            Otherwise, the pool padding size will be a square of an int.
1491 1492 1493
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1494 1495 1496
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1497
        exclusive (bool): Whether to exclude padding points in average pooling
1498
                          mode, default is `true`.
1499
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1500 1501
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1502

1503
    Returns:
K
Kaipeng Deng 已提交
1504
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1505 1506

    Raises:
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1519 1520 1521 1522 1523

    Examples:

        .. code-block:: python

1524
          import paddle.fluid as fluid
1525 1526 1527
          import paddle

          paddle.enable_static()
1528

K
Kaipeng Deng 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1572 1573 1574
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1575
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1576 1577
            str(pool_type),
        )
C
chengduoZH 已提交
1578

C
chengduoZH 已提交
1579 1580
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1581
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1582 1583
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1584 1585

    if not isinstance(use_cudnn, bool):
1586 1587 1588 1589
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1590 1591 1592 1593

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1594 1595
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1596

C
chengduoZH 已提交
1597 1598 1599
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1611 1612
                        "is not supported." % str(padding)
                    )
1613 1614 1615 1616 1617 1618
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1619 1620
                        "is not supported." % str(padding)
                    )
1621 1622 1623
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1624

1625 1626
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1638 1639
                % str(pool_padding)
            )
1640 1641
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1642
            pool_padding = [0, 0]
1643
            if ceil_mode is not False:
1644 1645
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1646 1647
                    "Received ceil_mode: True."
                )
1648 1649
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1650
            pool_padding = [0, 0]
1651 1652

    pool_padding = update_padding(pool_padding, data_format)
1653
    if in_dygraph_mode():
1654
        input = input._use_gpudnn(use_cudnn)
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1668 1669
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1670
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1671
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1672

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1691 1692 1693 1694

    return pool_out


1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
1711
    r"""
1712 1713
    :api_attr: Static Graph

Q
qiaolongfei 已提交
1714 1715
    **Batch Normalization Layer**

L
lvmengsi 已提交
1716
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
1717
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1718

Q
qiaolongfei 已提交
1719
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1720

Q
qiaolongfei 已提交
1721 1722
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
1723 1724 1725
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
1738

L
lvmengsi 已提交
1739
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
1740
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
L
lvmengsi 已提交
1741

1742

L
lvmengsi 已提交
1743
    moving_mean is global mean and moving_var is global variance.
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
1757
    Note:
1758
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
L
lvmengsi 已提交
1759
        sync_batch_norm automatically.
1760
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
1761

1762
    Args:
1763
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
L
lvmengsi 已提交
1764
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
1765
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
1766 1767
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
1768 1769
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
1770
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
1771 1772 1773 1774 1775
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
1776 1777
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1778
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1779
	     If the Initializer of the param_attr is not set, the parameter is initialized
1780
	     with Xavier. Default: None.
C
chengduo 已提交
1781 1782
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
1783 1784
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
1785
	     Default: None.
1786
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
K
Kaipeng Deng 已提交
1787 1788 1789
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
1790
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
1791 1792 1793 1794
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
1795
            will save global mean with the string.
L
lvmengsi 已提交
1796
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
1797
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
1798
            will save global variance with the string.
1799 1800
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
1801 1802 1803 1804 1805
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
1806
    Returns:
1807
        A Tensor which is the result after applying batch normalization on the input,
1808
        has same shape and data type with input.
Q
qiaolongfei 已提交
1809 1810 1811 1812 1813

    Examples:

        .. code-block:: python

1814
            import paddle
1815

1816
            paddle.enable_static()
1817 1818 1819 1820 1821 1822 1823
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
Y
Yu Yang 已提交
1824
    """
1825 1826 1827
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
1828 1829
    helper = LayerHelper('batch_norm', **locals())

1830 1831 1832
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
1833
    dtype = helper.input_dtype()
1834

W
Wu Yi 已提交
1835 1836 1837 1838
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
1871 1872
    mean.stop_gradient = True

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
1883
    variance.stop_gradient = True
Y
Yu Yang 已提交
1884 1885 1886 1887

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
1888
    # variance and variance_out share the same memory
Y
Yu Yang 已提交
1889
    variance_out = variance
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

    if in_dygraph_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
1918
        else:
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
1933
        if inputs_has_MomemtumTensor:
1934
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
1945
        else:
1946
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )
1957

1958 1959 1960
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )
1961

1962 1963 1964
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
1965
    saved_variance = helper.create_variable_for_type_inference(
1966 1967
        dtype=dtype, stop_gradient=True
    )
1968
    reserve_space = None
1969
    if not is_test:
1970
        reserve_space = helper.create_variable_for_type_inference(
1971 1972
            dtype=helper.input_dtype(), stop_gradient=True
        )
1973

1974 1975 1976
    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )
Y
Yu Yang 已提交
1977

1978 1979 1980 1981 1982
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
1983 1984
        "Variance": variance,
        "MeanOut": mean_out,
1985
        "VarianceOut": variance_out,
1986 1987 1988 1989 1990 1991 1992
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
1993
        "use_global_stats": use_global_stats,
1994 1995 1996 1997 1998
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
1999 2000 2001 2002 2003 2004

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
2005
        "SavedVariance": saved_variance,
2006 2007 2008 2009
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

2010 2011 2012
    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )
Y
Yu Yang 已提交
2013 2014 2015 2016

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2017
@templatedoc()
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
2029
    r"""
2030 2031
    :api_attr: Static Graph

2032 2033 2034 2035
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2036 2037 2038

    The formula is as follows:

Y
yuyang18 已提交
2039
    ..  math::
G
guosheng 已提交
2040

2041
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2042

2043
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2044

2045
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2046

2047 2048 2049 2050 2051
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2052

G
guosheng 已提交
2053
    Args:
2054
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
2055 2056 2057 2058 2059
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2060
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2061 2062 2063 2064
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2065 2066
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2067
            a default :code:`ParamAttr` would be added as scale. The
2068 2069
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2070 2071
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2072
            a default :code:`ParamAttr` would be added as bias. The
2073
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2074
        act(str, optional): Activation to be applied to the output of layer normalization.
2075 2076
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2077 2078

    Returns:
2079
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2080 2081 2082

    Examples:

2083 2084
        .. code-block:: python

2085 2086
            import paddle
            paddle.enable_static()
2087 2088 2089
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
2090
    """
2091 2092 2093
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
2094
    helper = LayerHelper('layer_norm', **locals())
2095 2096 2097
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
2098 2099 2100 2101 2102 2103 2104
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2105 2106 2107 2108 2109 2110 2111 2112 2113
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
2114
        inputs['Scale'] = scale
2115 2116
    else:
        if param_attr:
T
tianshuo78520a 已提交
2117
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
2118
    if shift:
2119 2120 2121 2122 2123 2124
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
2125
        inputs['Bias'] = bias
2126 2127
    else:
        if bias_attr:
T
tianshuo78520a 已提交
2128
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
2129 2130

    # create output
2131 2132 2133 2134 2135 2136
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2137
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2138

2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
2149 2150 2151 2152

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
2153
@templatedoc()
2154
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
2155
    r"""
2156 2157
    :api_attr: Static Graph

D
dengkaipeng 已提交
2158 2159
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
2160
    This operation calculates the spectral normalization value of weight parameters of
2161
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
2162 2163
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
2164

D
dengkaipeng 已提交
2165 2166 2167
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
2168
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
2169 2170

    Step 2:
T
tianshuo78520a 已提交
2171
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
2172 2173
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
2174

2175
    .. math::
D
dengkaipeng 已提交
2176 2177 2178 2179 2180 2181

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
2182
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
2183 2184 2185 2186

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
2187

D
dengkaipeng 已提交
2188
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
2189

2190

D
dengkaipeng 已提交
2191 2192 2193
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
2194
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
2195 2196 2197
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
2198 2199 2200
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
2201 2202

    Returns:
C
Chen Long 已提交
2203
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
2204
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
2205 2206

    Examples:
K
Kaipeng Deng 已提交
2207
       .. code-block:: python
D
dengkaipeng 已提交
2208

2209
            import paddle
K
Kaipeng Deng 已提交
2210

2211
            paddle.enable_static()
C
Chen Long 已提交
2212
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
2213
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
2214
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
2215 2216
    """
    helper = LayerHelper('spectral_norm', **locals())
2217 2218 2219
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
2220 2221 2222
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
2223
    dtype = weight.dtype
D
dengkaipeng 已提交
2224 2225

    # create intput and parameters
2226
    input_shape = weight.shape
2227
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
2228 2229 2230 2231 2232
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
2233 2234 2235
    h = input_shape[dim]
    w = np.prod(input_shape) // h

2236 2237 2238 2239 2240 2241
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2242
    u.stop_gradient = True
2243 2244 2245 2246 2247 2248
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2249
    v.stop_gradient = True
D
dengkaipeng 已提交
2250

2251 2252 2253 2254 2255 2256 2257
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
2258
    # create output
2259
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
2273

2274
    return out
D
Dun 已提交
2275 2276


C
caoying03 已提交
2277
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2278
    """
2279

Y
yangyaming 已提交
2280
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2281 2282

    Args:
2283 2284 2285
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2286 2287
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2288 2289
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2290
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2291
            output Tensor. The result tensor will have one fewer dimension
2292 2293 2294 2295
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
2296 2297

    Returns:
2298 2299
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
2300

2301 2302
    Raises:
        TypeError, if out data type is different with the input data type.
2303

G
guosheng 已提交
2304 2305 2306
    Examples:
        .. code-block:: python

2307
            import paddle.fluid as fluid
2308 2309
            import paddle
            paddle.enable_static()
G
guosheng 已提交
2310 2311 2312
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2313
            # Each example is followed by the corresponding output tensor.
2314
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
2315 2316 2317 2318
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2319

2320
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
2321 2322
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2323
            # Each example is followed by the corresponding output tensor.
2324
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
2325 2326
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
2327

G
guosheng 已提交
2328
    """
2329 2330
    reduce_all, dim = _get_reduce_dim(dim, input)

2331
    if in_dygraph_mode():
2332
        return _C_ops.sum(input, dim, None, keep_dim)
2333
    elif _in_legacy_dygraph():
2334 2335 2336
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
2337
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
2338
    check_variable_and_dtype(
2339 2340 2341 2342 2343
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
2344
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
2345
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2346 2347 2348 2349 2350 2351
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
2352
    return out
G
guosheng 已提交
2353 2354


C
caoying03 已提交
2355
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2356
    """
2357
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
2358 2359

    Args:
2360
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
2361
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
2362
            indicates the number of equal sized sub-Tensors that the ``input``
2363
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
2364 2365 2366 2367 2368
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
2369
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
2370
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2371 2372

    Returns:
2373
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
2374

2375
    Example:
G
guosheng 已提交
2376 2377
        .. code-block:: python

2378 2379
            import paddle.fluid as fluid

2380
            # input is a Tensor which shape is [3, 9, 5]
2381
            input = fluid.data(
2382 2383
                 name="input", shape=[3, 9, 5], dtype="float32")

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
2398

2399 2400 2401 2402 2403 2404
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
2405

G
guosheng 已提交
2406
    """
J
Jiabin Yang 已提交
2407
    if _non_static_mode():
2408 2409 2410
        num = None
        attrs = ()

S
songyouwei 已提交
2411 2412
        if isinstance(dim, Variable):
            dim = dim.numpy()
2413
            dim = dim.item(0)
W
wangzhen38 已提交
2414
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
2415
        dim = (len(input.shape) + dim) if dim < 0 else dim
2416
        attrs += ('axis', dim)
2417 2418 2419

        if isinstance(num_or_sections, int):
            num = num_or_sections
2420
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
2421
        elif isinstance(num_or_sections, (list, tuple)):
2422
            num = len(num_or_sections)
L
Leo Chen 已提交
2423
            if utils._contain_var(num_or_sections):
2424 2425
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2426 2427 2428
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2429
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
2430
            else:
2431
                attrs += ('sections', list(num_or_sections))
2432 2433
        else:
            raise TypeError(
2434
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2435 2436
                "received %s." % (type(num_or_sections))
            )
2437
        if in_dygraph_mode():
C
Charles-hit 已提交
2438 2439 2440 2441
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2442 2443
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2444
            _legacy_C_ops.split(input, out, *attrs)
2445
            return out
L
Leo Chen 已提交
2446

2447
    check_variable_and_dtype(
2448 2449 2450 2451 2452
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
2453 2454 2455 2456
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2457

G
guosheng 已提交
2458
    helper = LayerHelper('split', **locals())
2459

G
guosheng 已提交
2460
    input_shape = input.shape
2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2472
                assert isinstance(dim_size, int)
2473 2474 2475
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2476 2477 2478
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2479 2480
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2481 2482 2483
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2484 2485 2486 2487 2488 2489 2490
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
2491
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
2492 2493 2494
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
2495 2496
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
2497
        if isinstance(dim, int) and input_shape[dim] > 0:
2498 2499 2500 2501 2502 2503
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
2504 2505
        num = num_or_sections
    else:
2506
        if isinstance(dim, int) and input_shape[dim] > 0:
2507 2508 2509
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
2510
        num = len(num_or_sections)
2511
        attrs['sections'] = list(
2512 2513 2514 2515 2516
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
2517
        if utils._contain_var(num_or_sections):
2518
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2519 2520
                num_or_sections
            )
2521

G
guosheng 已提交
2522
    outs = [
X
Xin Pan 已提交
2523
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
2524 2525
        for i in range(num)
    ]
2526 2527 2528
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
2529
    return outs
C
caoying03 已提交
2530 2531 2532


def l2_normalize(x, axis, epsilon=1e-12, name=None):
2533
    r"""
2534

R
ruri 已提交
2535
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
2536 2537
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2538
    .. math::
2539 2540

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2541 2542 2543 2544 2545

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2546
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
2547
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
2548 2549
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
2550
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
2551
            the default value is 1e-12.
2552
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2553

C
caoying03 已提交
2554
    Returns:
R
ruri 已提交
2555
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
2556 2557

    Examples:
2558

2559 2560
    .. code-block:: python
        :name: code-example1
2561

2562
        import paddle
2563

2564 2565
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
2566
        print(out)
R
ruri 已提交
2567

2568 2569 2570
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
2571

C
caoying03 已提交
2572
    """
F
fengjiayi 已提交
2573 2574
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
2575
    if _non_static_mode():
2576 2577 2578
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
2579 2580 2581
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
2582 2583 2584
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
2585

2586
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
2587 2588
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
2589 2590 2591 2592 2593 2594 2595 2596 2597
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
2598
    return out
2599 2600


S
ShenLiang 已提交
2601
@deprecated(since="2.0.0", update_to="paddle.matmul")
S
sneaxiy 已提交
2602
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
2603
    """
Y
ying 已提交
2604 2605 2606 2607
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2608

C
chengduoZH 已提交
2609
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2610
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2611

2612 2613 2614 2615 2616
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2617
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2618

C
chengduoZH 已提交
2619
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2620
      performs in the following way.
G
guosheng 已提交
2621

2622
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2623
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2624
        last two dimensions and a batched matrix multiply supporting broadcast
2625
        applies on the two tensors.
G
guosheng 已提交
2626

Y
ying 已提交
2627 2628
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2629
    removed after matrix multiplication.
G
guosheng 已提交
2630 2631 2632

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2633 2634 2635
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
2636
        alpha (float): The scale of output. Default 1.0.
2637
        name(str|None): A name for this layer(optional). If set None, the layer
2638
            will be named automatically.
G
guosheng 已提交
2639 2640

    Returns:
石晓伟 已提交
2641
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
2642

G
guosheng 已提交
2643 2644 2645
    Examples:
        .. code-block:: python

2646
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2647
            # x: [B, ..., M, K], y: [B, ..., K, N]
2648
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2649

2650
            # x: [B, M, K], y: [B, K, N]
2651
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2652

2653
            # x: [B, M, K], y: [K, N]
2654
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2655

2656
            # x: [M, K], y: [K, N]
2657
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2658 2659

            # x: [B, M, K], y: [K]
2660
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
2661

2662
            # x: [K], y: [K]
2663
            # fluid.layers.matmul(x, y)  # out: [1]
2664

Y
ying 已提交
2665
            # x: [M], y: [N]
2666 2667
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

2668
            import paddle
2669
            import paddle.fluid as fluid
2670 2671
            paddle.enable_static()

2672 2673 2674
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
2675
    """
J
Jiabin Yang 已提交
2676
    if _non_static_mode():
S
ShenLiang 已提交
2677
        out = _varbase_creator(dtype=x.dtype)
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
        _legacy_C_ops.matmul(
            x,
            y,
            out,
            'transpose_X',
            transpose_x,
            'transpose_Y',
            transpose_y,
            'alpha',
            float(alpha),
        )
S
ShenLiang 已提交
2689 2690 2691 2692 2693
        return out

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
2694 2695 2696
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul'
            )
S
ShenLiang 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
2710 2711 2712 2713 2714 2715
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1), (
                "After performing an optional transpose, Input X's width should be "
                "equal to Y's width for multiplication "
                "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                % (x_shape, y_shape)
            )
S
ShenLiang 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
2727 2728
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
S
ShenLiang 已提交
2729

W
wanghuancoder 已提交
2730 2731 2732 2733 2734 2735
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

S
ShenLiang 已提交
2736 2737 2738 2739
    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2740 2741 2742 2743 2744 2745
    helper.append_op(
        type='matmul',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
S
ShenLiang 已提交
2746
    return out
2747 2748


Y
yuyang18 已提交
2749
@templatedoc()
2750
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
2751
    """
2752 2753
    :api_attr: Static Graph

Y
yuyang18 已提交
2754
    ${comment}
2755 2756

    Args:
Y
yuyang18 已提交
2757
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
2758 2759
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
2760 2761 2762 2763 2764
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
2765
        ${out_comment}.
2766 2767

    Examples:
B
Bai Yifan 已提交
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
2780 2781
    """
    helper = LayerHelper('row_conv', **locals())
2782
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
2783
    dtype = helper.input_dtype()
2784
    filter_shape = [future_context_size + 1, input.shape[-1]]
2785 2786 2787
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
2788
    out = helper.create_variable_for_type_inference(dtype)
2789 2790 2791 2792 2793
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
2794
    return helper.append_activation(out)
2795 2796


2797
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
2798
def one_hot(input, depth, allow_out_of_range=False):
2799
    """
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
2838
                        [0., 1., 0., 0.],
2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
2851
            The second dimension in X is 5, which is greater than depth.
2852 2853
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
2854 2855

    Args:
2856 2857 2858
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
2859
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
2860
            is word id, depth is generally the dictionary size.
2861
        allow_out_of_range(bool): A bool value indicating whether the input
2862 2863 2864 2865
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
2866 2867

    Returns:
2868
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
2869 2870

    Examples:
C
caoying03 已提交
2871
        .. code-block:: python
2872

2873
            import paddle
2874
            import paddle.fluid as fluid
2875 2876
            paddle.enable_static()

2877 2878 2879
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
2880
    """
J
Jiabin Yang 已提交
2881
    if _non_static_mode():
S
songyouwei 已提交
2882 2883 2884
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
2885 2886
                1,
            ), "depth of type Variable should have shape [1]"
2887
            depth = depth.item(0)
2888 2889 2890
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
2891 2892
        out.stop_gradient = True
        return out
2893

2894
    helper = LayerHelper("one_hot", **locals())
2895
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
2896
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
2897
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
2898

2899 2900
    if not isinstance(depth, Variable):
        # user attribute
2901
        inputs = {'X': input}
Y
Yi Liu 已提交
2902
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
2903
    else:
2904 2905 2906
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
2907 2908 2909
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
2910
    one_hot_out.stop_gradient = True
2911
    return one_hot_out
Y
Yu Yang 已提交
2912 2913


Y
Yu Yang 已提交
2914
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
2915
    """
2916 2917
    :api_attr: Static Graph

2918 2919
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
2920
    and the step size is 1.
Y
Yu Yang 已提交
2921 2922

    Args:
Y
Yibing Liu 已提交
2923 2924 2925
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
2926

2927
    Returns:
Y
Yibing Liu 已提交
2928
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
2929 2930 2931 2932

    Examples:
        .. code-block:: python

2933
           import paddle.fluid as fluid
2934 2935
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
2936
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
2937
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
2938 2939
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
2940 2941
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
2942
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
2943 2944 2945 2946
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
2947 2948
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
2949
    if is_new_var:
2950 2951 2952
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
2953
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
2954 2955
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
2956
            outputs={'Out': [counter]},
2957 2958
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
2959 2960 2961
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
2962 2963


2964
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
2965
    """
2966
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
2967 2968
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
2969

M
minqiyang 已提交
2970
    For example:
H
haowang101779990 已提交
2971 2972 2973

    .. code-block:: text

M
minqiyang 已提交
2974
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
2975
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
2976

Y
Yibing Liu 已提交
2977
    Args:
2978
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2979
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
2980
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
2981 2982

    Returns:
2983
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
2984 2985 2986 2987

    Examples:
        .. code-block:: python

2988 2989 2990
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
2991

Y
Yibing Liu 已提交
2992
    """
J
Jiabin Yang 已提交
2993
    if _non_static_mode():
L
Leo Chen 已提交
2994 2995 2996
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2997
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
2998 2999 3000 3001 3002
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
3003
        if _in_legacy_dygraph():
3004
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
3005
            return out
3006
        return _C_ops.unsqueeze(input, axes)
3007 3008

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
3036
        if utils._contain_var(axes):
3037
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
3038 3039 3040
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
3041 3042
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
3043 3044 3045 3046 3047 3048
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
3049

3050 3051
    return out

3052

Y
yangyaming 已提交
3053
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3054
    """
Y
Yibing Liu 已提交
3055
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
3056 3057 3058 3059
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
3060
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
3061 3062 3063 3064 3065 3066

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
3067
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
3068 3069 3070
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

3071
            target_lod: [4, 2]
Y
yangyaming 已提交
3072 3073

            then we get a 1-level LoDTensor:
3074
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
3075 3076 3077 3078 3079 3080
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
3081
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3082 3083 3084 3085
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
3086
                y.data = [[2, 4]]
Y
yangyaming 已提交
3087 3088 3089
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
3090
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
3091 3092 3093 3094 3095 3096
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
3097
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3098 3099 3100 3101
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
3102
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3103 3104 3105 3106
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
3107
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3108 3109 3110 3111
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
3112
        x (Variable): Input variable which could be a Tensor or LoDTensor.
3113
                      The data type should be int32, int64, float32 or float64.
3114 3115
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
3116 3117
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
3118
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
3119 3120

    Returns:
Y
Yibing Liu 已提交
3121
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
3122 3123

    Raises:
Y
Yibing Liu 已提交
3124
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
3125 3126 3127 3128

    Examples:
        .. code-block:: python

3129
            import paddle.fluid as fluid
3130 3131 3132
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
3133
    """
3134 3135 3136
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
3137
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
3138
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
3139
    if y is not None:
3140
        check_type(y, 'y', (Variable), 'lod_reset')
3141 3142 3143 3144
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
3145
    elif target_lod is not None:
3146 3147 3148 3149 3150 3151
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
3152
    else:
3153 3154 3155 3156
        raise ValueError("y and target_lod should not be both none.")
    return out


3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
def image_resize(
    input,
    out_shape=None,
    scale=None,
    name=None,
    resample='BILINEAR',
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
3168
    """
3169

R
ruri 已提交
3170
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
3171

3172 3173
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
3174 3175
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
T
tianshuo78520a 已提交
3176
    and the resizing only applies on the three dimensions(depth, height and width).
3177

3178
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
3179 3180
    future and only use :attr:`out_shape` instead.

3181
    Supporting resample methods:
3182
        'LINEAR' : Linear interpolation
Q
update  
qiaolongfei 已提交
3183

3184
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
3185

K
Kaipeng Deng 已提交
3186 3187
        'TRILINEAR' : Trilinear interpolation

3188
        'NEAREST' : Nearest neighbor interpolation
3189

3190
        'BICUBIC' : Bicubic interpolation
3191 3192

    Linear interpolation is the method of using a line connecting two known quantities
3193
    to determine the value of an unknown quantity between the two known quantities.
3194

3195
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
3196
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
3197
    direction) on input tensor.
3198 3199 3200 3201 3202

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
3203 3204
    again in the other direction.

3205 3206 3207
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
3208
    The linear interpolation is performed on three directions.
3209

3210 3211 3212 3213
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
K
Kaipeng Deng 已提交
3214

3215
    Align_corners and align_mode are optional parameters,the calculation method
3216 3217 3218 3219
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
3220
    .. code-block:: text
3221

T
Tink_Y 已提交
3222
        For scale:
3223

T
Tink_Y 已提交
3224
            if align_corners = True && out_size > 1 :
3225

T
Tink_Y 已提交
3226
              scale_factor = (in_size-1.0)/(out_size-1.0)
3227

T
Tink_Y 已提交
3228
            else:
3229

T
Tink_Y 已提交
3230
              scale_factor = float(in_size/out_size)
3231 3232


T
Tink_Y 已提交
3233
        Nearest neighbor interpolation:
3234

T
Tink_Y 已提交
3235 3236
          if:
              align_corners = False
3237

T
Tink_Y 已提交
3238 3239
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3240

T
Tink_Y 已提交
3241 3242
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
3243

T
Tink_Y 已提交
3244 3245
          else:
              align_corners = True
3246

T
Tink_Y 已提交
3247 3248
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3249

T
Tink_Y 已提交
3250 3251
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
3252

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
        linear interpolation:

          if:
              align_corners = False , align_mode = 0

              input : (N,C,W_in)
              output: (N,C,W_out) where:

              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,W_in)
              output: (N,C,H_out,W_out) where:

              W_out = W_{in} * scale_{factor}

T
Tink_Y 已提交
3270 3271 3272 3273
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3274

T
Tink_Y 已提交
3275 3276
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3277

T
Tink_Y 已提交
3278 3279
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
3280

T
Tink_Y 已提交
3281
          else:
3282

T
Tink_Y 已提交
3283 3284
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3285

T
Tink_Y 已提交
3286 3287
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
3288

K
Kaipeng Deng 已提交
3289 3290 3291 3292
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3293

K
Kaipeng Deng 已提交
3294 3295
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
3296

K
Kaipeng Deng 已提交
3297 3298 3299 3300 3301 3302
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
3303

K
Kaipeng Deng 已提交
3304 3305 3306 3307
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
3308

3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
K
Kaipeng Deng 已提交
3321 3322
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
3323

3324

3325 3326
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
3327

3328
    For details of nearest neighbor interpolation, please refer to Wikipedia:
3329
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
3330

3331
    For details of bilinear interpolation, please refer to Wikipedia:
3332
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
3333

3334
    For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
3335
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
3336

3337 3338
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
3339

R
ruri 已提交
3340
    Parameters:
3341
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
3342
                          its data format is specified by :attr:`data_format`.
3343
        out_shape (list|tuple|Variable|None): Output shape of image resize
3344 3345
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
3346
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
3347
             If a Tensor Variable, its dimensions size should be a 1.
3348 3349 3350
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
3351
             Default: None.
3352 3353
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
3354
        resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR'
K
Kaipeng Deng 已提交
3355
                       and 'NEAREST' currently. Default: 'BILINEAR'
3356 3357 3358
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
3359
                                :attr:`out_shape` and :attr:`scale` specifying
3360 3361
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
3362 3363 3364 3365 3366
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
3367
                                errors would be occurred in graph constructing stage.
3368
                                Default: None
3369 3370
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
3371 3372
                               corner pixels.
                               Default: True
3373 3374
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the
                            the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 ,
3375
                            can be \'1\' for src_idx = scale*dst_index.
3376
        data_format (str, optional): Specify the data format of the input, and the data format of the output
3377
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
3378
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
3379
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
3380
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
3381 3382

    Returns:
3383
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
3384 3385
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
3386

3387 3388 3389
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
3390 3391
        ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR',
                    'TRILINEAR', 'BICUBIC' or 'NEAREST' currently.
3392
        ValueError: 'LINEAR' only support 3-D tensor.
3393
        ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor.
K
Kaipeng Deng 已提交
3394
        ValueError: 'TRILINEAR' only support 5-D tensor.
3395
        ValueError: One of out_shape and scale must not be None.
3396
        ValueError: out_shape length should be 1 for input 3-D tensor.
K
Kaipeng Deng 已提交
3397 3398
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
3399
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
3400
        TypeError: align_corners should be a bool value
3401
        ValueError: align_mode can only be '0' or '1'
3402
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
3403

3404 3405
    Examples:
        .. code-block:: python
3406

3407 3408 3409 3410 3411 3412
            #declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
3413

3414 3415
            #1
            output = fluid.layers.image_resize(input=input,out_shape=[12,12])
R
ruri 已提交
3416

3417 3418 3419 3420 3421
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])
R
ruri 已提交
3422

3423 3424 3425 3426 3427
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)
R
ruri 已提交
3428

3429 3430 3431 3432 3433
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.image_resize(input=input,scale=scale_tensor)
R
ruri 已提交
3434

3435 3436 3437
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3438

3439
            input_data = np.random.rand(2,3,6,10).astype("float32")
3440

3441
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
3442 3443 3444
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
3445

3446
            print(output_data[0].shape)
3447

3448 3449 3450 3451 3452 3453 3454 3455
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
3456

3457 3458
            #imperative mode
            import paddle.fluid.dygraph as dg
3459

3460 3461 3462 3463
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.image_resize(input=input, out_shape=[12,12])
                print(output.shape)
3464

3465
                # [2L, 3L, 12L, 12L]
3466

3467
    """
3468
    resample_methods = {
3469
        'LINEAR': 'linear',
3470
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
3471
        'TRILINEAR': 'trilinear',
3472
        'NEAREST': 'nearest',
3473
        'LINEAR': 'linear',
3474
    }
3475
    resample = resample.upper()
3476 3477
    if resample not in resample_methods:
        raise ValueError(
3478
            "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' "
3479 3480
            "or 'NEAREST' currently."
        )
3481
    resample_type = resample_methods[resample]
3482

3483 3484 3485
    if resample == 'LINEAR' and len(input.shape) != 3:
        raise ValueError("'LINER only support 3-D tensor.")
    elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
K
Kaipeng Deng 已提交
3486
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
3487
    elif resample == 'TRILINEAR' and len(input.shape) != 5:
K
Kaipeng Deng 已提交
3488 3489
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

3490 3491 3492 3493 3494
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

3495
    if out_shape is None and scale is None:
3496
        raise ValueError("One of out_shape and scale must not be None.")
3497
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
3498
    dtype = helper.input_dtype()
3499

3500
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
3501
        raise ValueError(
3502 3503 3504 3505
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
3506
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
3507
        raise ValueError(
3508 3509 3510 3511
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
3512 3513
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
3514 3515 3516 3517
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
3518

3519
    def _is_list_or_turple_(data):
3520
        return isinstance(data, list) or isinstance(data, tuple)
3521

3522
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
3523
        data_layout = 'NCHW'
3524
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
3525 3526
        data_layout = 'NHWC'

3527
    inputs = {"X": input}
D
dengkaipeng 已提交
3528
    attrs = {
3529 3530 3531
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
3532 3533
        "interp_method": resample_type,
        "align_corners": align_corners,
3534
        "align_mode": align_mode,
3535
        "data_layout": data_layout,
D
dengkaipeng 已提交
3536 3537
    }

3538
    if out_shape is not None:
3539
        if isinstance(out_shape, Variable) and not _non_static_mode():
3540
            out_shape.stop_gradient = True
3541
            inputs['OutSize'] = out_shape
3542
        else:
3543 3544 3545 3546 3547 3548 3549 3550
            if _non_static_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                else:
                    out_shape = list(out_shape)
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
3551
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
3552
                raise TypeError(
3553 3554
                    "out_shape should be a list or tuple or Variable."
                )
3555 3556 3557 3558 3559 3560
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
3561 3562 3563
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
3574
                        assert isinstance(dim, int)
3575
                        temp_out = helper.create_variable_for_type_inference(
3576 3577 3578 3579 3580
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
3581 3582 3583 3584
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

3585 3586
            if len(input.shape) == 3:
                if len(out_shape) != 1:
3587 3588 3589
                    raise ValueError(
                        "out_shape length should be 1 for " "input 3-D tensor."
                    )
3590 3591 3592 3593 3594 3595
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
            elif len(input.shape) == 4:
K
Kaipeng Deng 已提交
3596
                if len(out_shape) != 2:
3597 3598 3599
                    raise ValueError(
                        "out_shape length should be 2 for " "input 4-D tensor."
                    )
3600 3601 3602 3603 3604 3605 3606
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
3607 3608
            if len(input.shape) == 5:
                if len(out_shape) != 3:
3609 3610 3611
                    raise ValueError(
                        "out_shape length should be 3 for " "input 5-D tensor."
                    )
3612 3613 3614 3615 3616 3617 3618 3619 3620
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
3621

3622
    else:
3623 3624 3625
        if _non_static_mode() and isinstance(scale, Variable):
            scale = scale.numpy()
        elif isinstance(scale, Variable):
3626 3627
            scale.stop_gradient = True
            inputs["Scale"] = scale
3628
        elif isinstance(scale, float) or isinstance(scale, int):
3629
            if scale <= 0:
3630
                raise ValueError("Attr(scale) should be greater than zero.")
3631
            attrs['scale'] = float(scale)
3632 3633
        else:
            raise TypeError(
3634 3635
                "Attr(scale)'s type should be float, int or Variable."
            )
3636

3637
    if isinstance(actual_shape, Variable):
3638 3639 3640 3641 3642
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
3643 3644 3645
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")
3646 3647 3648 3649 3650 3651 3652 3653 3654

    if _non_static_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
3655
            out = _legacy_C_ops.linear_interp(input, actual_shape, *dy_attr)
3656
        elif resample_type == "bilinear":
3657
            out = _legacy_C_ops.bilinear_interp(input, actual_shape, *dy_attr)
3658
        elif resample_type == "trilinear":
3659
            out = _legacy_C_ops.trilinear_interp(input, actual_shape, *dy_attr)
3660
        elif resample_type == "nearest":
3661
            out = _legacy_C_ops.nearest_interp(input, actual_shape, *dy_attr)
3662
        elif resample_type == "bicubic":
3663
            out = _legacy_C_ops.bicubic_interp(input, actual_shape, *dy_attr)
3664 3665
        return out

X
Xin Pan 已提交
3666
    out = helper.create_variable_for_type_inference(dtype)
3667 3668 3669 3670 3671 3672
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
3673
    return out
F
stash  
fengjiayi 已提交
3674 3675


3676
@templatedoc(op_type="bilinear_interp")
3677 3678 3679 3680 3681 3682 3683 3684 3685 3686
def resize_bilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
3687
    """
3688

R
ruri 已提交
3689
    This op resizes the input by performing bilinear interpolation based on given
3690
    output shape which specified by actual_shape, out_shape and scale
3691 3692
    in priority order.

3693
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in
3694 3695
    the future and only use :attr:`out_shape` instead.

3696 3697 3698 3699
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
3700 3701
    again in the other direction.

3702
    For details of bilinear interpolation, please refer to Wikipedia:
3703
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
3704

3705
    Align_corners and align_mode are optional parameters,the calculation
3706 3707 3708 3709
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
3710
    .. code-block:: text
3711

T
Tink_Y 已提交
3712
        For scale:
3713

T
Tink_Y 已提交
3714
            if align_corners = True && out_size > 1 :
3715

T
Tink_Y 已提交
3716
              scale_factor = (in_size-1.0)/(out_size-1.0)
3717

T
Tink_Y 已提交
3718
            else:
3719

3720
              scale_factor = float(in_size/out_size)
3721

T
Tink_Y 已提交
3722 3723 3724 3725
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3726

T
Tink_Y 已提交
3727 3728
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3729

T
Tink_Y 已提交
3730 3731
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
3732

T
Tink_Y 已提交
3733
          else:
T
tink2123 已提交
3734

T
Tink_Y 已提交
3735 3736 3737 3738
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
3739

R
ruri 已提交
3740 3741
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
3742
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
3743
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
3744 3745
            layer, the shape is (out_h, out_w).Default: None. If a list, each
            element can be an integer or a Tensor Variable with shape: [1]. If a
3746
            Tensor Variable, its dimension size should be 1.
3747
        scale(float|Variable|None): The multiplier for the input height or width. At
3748 3749
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
3750
             Default: None.
3751 3752 3753
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
3754
                                :attr:`out_shape` and :attr:`scale` specifying
3755 3756
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
3757 3758 3759 3760 3761
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
3762
                                errors would be occurred in graph constructing stage.
3763
                                Default: None
3764 3765
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
3766
        data_format (str, optional): Specify the data format of the input, and the data format of the output
3767 3768 3769
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
3770
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
3771 3772

    Returns:
3773
        Variable: 4-D tensor(NCHW or NHWC).
3774

3775 3776
    Examples:
        .. code-block:: python
3777

3778 3779 3780 3781 3782 3783
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
3784

3785 3786
            #1
            output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
R
ruri 已提交
3787

3788 3789 3790 3791 3792
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
R
ruri 已提交
3793

3794 3795 3796 3797 3798
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
3799

3800 3801 3802 3803 3804
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
R
ruri 已提交
3805

3806 3807 3808
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3809

3810
            input_data = np.random.rand(2,3,6,10).astype("float32")
3811

3812
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
3813 3814 3815
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
3816

3817
            print(output_data[0].shape)
3818

3819 3820 3821 3822 3823 3824 3825 3826
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
3827

3828 3829
            #imperative mode
            import paddle.fluid.dygraph as dg
3830

3831 3832 3833 3834
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
                print(output.shape)
3835

3836
                # [2L, 3L, 12L, 12L]
3837

3838 3839
    """

3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'BILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
3851 3852


K
Kaipeng Deng 已提交
3853
@templatedoc(op_type="trilinear_interp")
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
def resize_trilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCDHW',
):
K
Kaipeng Deng 已提交
3864
    """
3865

R
ruri 已提交
3866
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
3867 3868 3869
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

3870
    **Warning:** the parameter :attr:`actual_shape` will be deprecated
3871 3872
    in the future and only use :attr:`out_shape` instead.

3873 3874 3875
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
3876 3877 3878 3879 3880
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

3881
    Align_corners and align_mode are optional parameters,the calculation
K
Kaipeng Deng 已提交
3882 3883 3884 3885 3886 3887 3888
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
3889

K
Kaipeng Deng 已提交
3890 3891 3892
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
3893

K
Kaipeng Deng 已提交
3894
            else:
3895 3896

              scale_factor = float(in_size/out_size)
K
Kaipeng Deng 已提交
3897 3898 3899 3900

        Bilinear interpolation:

          if:
3901

K
Kaipeng Deng 已提交
3902
              align_corners = False , align_mode = 0
3903

K
Kaipeng Deng 已提交
3904 3905
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
3906

K
Kaipeng Deng 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
3920
    Parameters:
3921 3922
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
3923
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
3924
        scale(float|Variable|None): The multiplier for the input depth, height or width.
3925 3926
             At least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
K
Kaipeng Deng 已提交
3927
             Default: None.
R
ruri 已提交
3928
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
3929 3930 3931 3932 3933 3934
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
3935 3936 3937 3938 3939
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
3940
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
3941 3942 3943
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
3944
        data_format (str, optional): Specify the data format of the input, and the data format of the output
3945 3946 3947
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
3948 3949

    Returns:
3950
        Variable: A 5-D Tensor(NCDHW or NDHWC)
K
Kaipeng Deng 已提交
3951 3952 3953

    Examples:
        .. code-block:: python
3954

3955 3956 3957 3958 3959 3960
            #declarative mode
            import paddle.fluid as fluid
            import paddle
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,8,10])
R
ruri 已提交
3961

3962 3963
            #1
            output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])
R
ruri 已提交
3964

3965 3966 3967 3968 3969
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])
R
ruri 已提交
3970

3971 3972 3973 3974 3975
            #3
            #x = np.array([3,12,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
3976

3977 3978 3979 3980 3981
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)
R
ruri 已提交
3982

3983 3984 3985
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3986

3987
            input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
3988

3989
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
3990 3991 3992
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
3993

3994
            print(output_data[0].shape)
R
ruri 已提交
3995

3996 3997 3998 3999 4000 4001 4002 4003
            #1
            # (2, 3, 12, 12, 12)
            #2
            # (2, 3, 12, 2, 4)
            #3
            # (2, 3, 3, 12, 12)
            #4
            # (2, 3, 3, 4, 5)
R
ruri 已提交
4004

4005 4006
            #imperative mode
            import paddle.fluid.dygraph as dg
4007

4008 4009 4010 4011
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
                print(output.shape)
4012

4013
                # [2L, 3L, 12L, 12L, 12L]
4014 4015 4016



K
Kaipeng Deng 已提交
4017 4018
    """

4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'TRILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
K
Kaipeng Deng 已提交
4030 4031


4032
@templatedoc(op_type="nearest_interp")
4033 4034 4035 4036 4037 4038 4039 4040 4041
def resize_nearest(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    data_format='NCHW',
):
4042
    """
4043

R
ruri 已提交
4044
    This op resizes the input by performing nearest neighbor interpolation in both the
4045
    height direction and the width direction based on given output shape
4046
    which is specified by actual_shape, out_shape and scale in priority order.
4047

4048
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
4049 4050
    future and only use :attr:`out_shape` instead.

4051 4052
    Example:

T
Tink_Y 已提交
4053 4054 4055
    .. code-block:: text

        For scale:
4056

T
Tink_Y 已提交
4057 4058
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
4059

T
Tink_Y 已提交
4060
            else:
4061

T
Tink_Y 已提交
4062
              scale_factor = float(in_size/out_size)
4063

T
Tink_Y 已提交
4064
        Nearest neighbor interpolation:
4065

T
Tink_Y 已提交
4066 4067
          if:
              align_corners = False
4068

T
Tink_Y 已提交
4069 4070
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4071

T
Tink_Y 已提交
4072 4073
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
4074

T
Tink_Y 已提交
4075 4076
          else:
              align_corners = True
4077

T
Tink_Y 已提交
4078 4079
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4080

T
Tink_Y 已提交
4081 4082
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
4083 4084


4085
    For details of nearest neighbor interpolation, please refer to Wikipedia:
4086
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
4087

R
ruri 已提交
4088
    Parameters:
4089 4090
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
4091
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
4092
        scale(float|Variable|None): The multiplier for the input height or width. At
4093 4094 4095
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
R
ruri 已提交
4096
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4097
        actual_shape(Variable): An optional input to specify output shape
4098 4099
                                dynamically. If provided, image resize
                                according to this given shape rather than
4100
                                :attr:`out_shape` and :attr:`scale` specifying
4101 4102
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4103 4104 4105 4106 4107
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4108
                                errors would be occurred in graph constructing stage.
4109
                                Default: None
4110
        align_corners(bool): ${align_corners_comment}
4111
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4112 4113 4114
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
4115 4116

    Returns:
4117
        Variable: 4-D tensor(NCHW or NHWC).
4118 4119 4120

    Examples:
        .. code-block:: python
4121

4122 4123 4124 4125 4126
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
4127

4128
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4129

4130 4131
            #1
            output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])
R
ruri 已提交
4132

4133 4134 4135 4136 4137
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])
R
ruri 已提交
4138

4139 4140 4141 4142 4143
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)
R
ruri 已提交
4144

4145 4146 4147 4148 4149
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)
R
ruri 已提交
4150

4151 4152 4153
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4154

4155
            input_data = np.random.rand(2,3,6,10).astype("float32")
4156

4157
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4158 4159 4160
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4161

4162
            print(output_data[0].shape)
R
ruri 已提交
4163

4164 4165 4166 4167 4168 4169 4170 4171
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4172

4173 4174
            #imperative mode
            import paddle.fluid.dygraph as dg
4175

4176 4177 4178 4179
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
                print(output.shape)
R
ruri 已提交
4180

4181
                # [2L, 3L, 12L, 12L]
4182 4183 4184



4185 4186
    """

4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format,
    )
4198 4199


4200
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
4201
def relu(x, name=None):
W
wanghaoshuang 已提交
4202
    """
Z
zhupengyang 已提交
4203
    ${comment}
W
wanghaoshuang 已提交
4204 4205

    Args:
Z
zhupengyang 已提交
4206 4207 4208 4209
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
4210 4211

    Returns:
Z
zhupengyang 已提交
4212
        Variable: ${out_comment}
W
wanghaoshuang 已提交
4213 4214 4215 4216 4217

    Examples:

        .. code-block:: python

4218
            import paddle.fluid as fluid
Z
zhupengyang 已提交
4219 4220 4221 4222 4223 4224 4225
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
4226
                #  [1.  2.6]]"""
4227 4228

    if in_dygraph_mode():
W
wanghuancoder 已提交
4229
        return _C_ops.relu(x)
4230 4231
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
4232

4233 4234
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

4235
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
4236
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
4237
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
4238
    out = helper.create_variable_for_type_inference(dtype)
4239 4240 4241
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
4242
    return out
4243 4244


G
fix  
gongweibao 已提交
4245 4246 4247
from paddle.fluid.framework import convert_np_dtype_to_dtype_


4248
@deprecated(since="2.0.0", update_to="paddle.normal")
G
gongweibao 已提交
4249
@templatedoc()
4250 4251 4252
def gaussian_random(
    shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None
):
G
fix  
gongweibao 已提交
4253
    """
4254 4255
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
4256 4257

    Args:
4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        mean(float|int, optional): Mean of the output tensor, default is 0.0.
        std(float|int, optional): Standard deviation of the output tensor, default
            is 1.0.
        seed(int, optional): ${seed_comment}
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
fix  
gongweibao 已提交
4273 4274

    Returns:
4275 4276
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
4277

4278
    Examples:
4279
       .. code-block:: python
4280

4281
            import paddle
4282
            import paddle.fluid as fluid
4283
            paddle.enable_static()
4284 4285

            # example 1:
4286
            # attr shape is a list which doesn't contain Tensor.
4287
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
4288 4289 4290
            # [[-0.31261674,  1.8736548,  -0.6274357,   0.96988016],
            #  [-0.12294637,  0.9554768,   1.5690808,  -1.2894802 ],
            #  [-0.60082096, -0.61138713,  1.5345167,  -0.21834975]]
4291 4292

            # example 2:
4293 4294 4295
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
4296
            result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2])
4297 4298
            # [[ 0.51398206, -0.3389769,   0.23597084],
            #  [ 1.0388143,  -1.2015356,  -1.0499583 ]]
4299 4300

            # example 3:
4301
            # attr shape is a Tensor, the data type must be int64 or int32.
4302 4303
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = fluid.layers.gaussian_random(var_shape)
4304 4305 4306 4307
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.12310527,  0.8187662,   1.923219  ]
            #  [ 0.70721835,  0.5210541,  -0.03214082]]
4308

4309
       .. code-block:: python
4310

4311 4312
           # declarative mode
           # required: skiptest
4313 4314
           import numpy as np
           from paddle import fluid
4315

4316
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
4317

4318 4319 4320 4321
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
4322

4323 4324
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
4325

4326 4327 4328 4329 4330 4331 4332 4333 4334 4335
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
4336

4337 4338 4339
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
4340
               x_np = x.numpy()
4341 4342 4343
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
4344
    """
4345 4346
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
4347

4348 4349 4350
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
4351
        return _C_ops.gaussian(
4352 4353
            shape, float(mean), float(std), seed, dtype, place
        )
4354 4355

    if _in_legacy_dygraph():
4356
        shape = utils.convert_shape_to_list(shape)
4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
4369 4370 4371

    check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
4372 4373

    inputs = {}
4374 4375 4376 4377
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
4378
        'dtype': dtype,
4379
        'use_mkldnn': False,
4380
    }
4381 4382 4383
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn'
    )
4384

4385 4386
    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_variable_for_type_inference(dtype)
4387 4388 4389
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
G
fix  
gongweibao 已提交
4390 4391 4392 4393

    return out


G
gongweibao 已提交
4394
@templatedoc()
G
fix  
gongweibao 已提交
4395
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
4396
    """
R
ruri 已提交
4397
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
4398

R
ruri 已提交
4399 4400 4401 4402
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
4403
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time.
G
fix  
gongweibao 已提交
4404
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
4405 4406

    Returns:
R
ruri 已提交
4407
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
4408

4409 4410 4411
    Examples:
        .. code-block:: python

4412
            import paddle.fluid as fluid
R
ruri 已提交
4413
            x = fluid.data(
4414 4415
                name="X",
                shape=[13, 11],
R
ruri 已提交
4416
                dtype='float32')
4417

Y
Yibing Liu 已提交
4418
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
4419 4420 4421
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
4422
    out = helper.create_variable_for_type_inference(dtype)
4423 4424 4425 4426 4427 4428
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min, 'max': max, 'seed': seed},
    )
G
fix  
gongweibao 已提交
4429 4430 4431 4432

    return out


S
sneaxiy 已提交
4433 4434 4435 4436
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
4437

S
sneaxiy 已提交
4438 4439
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
4440
    check_variable_and_dtype(
4441 4442 4443 4444 4445
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
4446
    check_variable_and_dtype(
4447 4448 4449 4450 4451
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
4452

S
sneaxiy 已提交
4453 4454
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
4455
    name = helper.kwargs.get('name', None)
4456
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
4457

4458 4459 4460 4461 4462 4463
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
4464 4465 4466
    return helper.append_activation(out)


X
Xin Pan 已提交
4467
def elementwise_add(x, y, axis=-1, act=None, name=None):
4468
    """
4469

4470
    Examples:
4471

4472
        .. code-block:: python
4473

4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
4487

4488 4489 4490 4491
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4492

4493
            print(z_value) # [3., 8., 6.]
4494 4495


4496
        .. code-block:: python
4497

4498 4499 4500
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4501

4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
4512

4513 4514
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4515

4516 4517
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4518

4519
            print(z_value) # z.shape=[2,3,4,5]
4520 4521


4522
        ..  code-block:: python
4523

4524 4525 4526
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4527

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
4538

4539 4540
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4541

4542 4543 4544
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4545 4546

    """
J
Jiabin Yang 已提交
4547
    if _non_static_mode():
4548
        return _elementwise_op_in_dygraph(
4549 4550 4551 4552 4553
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
4554 4555
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
4556

S
sneaxiy 已提交
4557 4558 4559
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


4560
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
4561
def elementwise_div(x, y, axis=-1, act=None, name=None):
4562
    """
4563

4564
    Examples:
4565

4566
        .. code-block:: python
4567

4568 4569 4570
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4571

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
4582

4583 4584 4585 4586
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4587

4588
            print(z_value) # [2., 0.6, 2.]
4589 4590


4591
        .. code-block:: python
4592

4593 4594 4595
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4596

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
4607

4608 4609
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4610

4611 4612
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4613

4614
            print(z_value) # z.shape=[2,3,4,5]
4615 4616


4617
        ..  code-block:: python
4618

4619 4620 4621
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4622

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
4633

4634 4635
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4636

4637 4638 4639
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4640 4641

    """
J
Jiabin Yang 已提交
4642
    if _non_static_mode():
4643 4644 4645
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
4646

S
sneaxiy 已提交
4647 4648 4649
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
4650
def elementwise_sub(x, y, axis=-1, act=None, name=None):
4651
    """
4652

4653
    Examples:
4654

4655
        .. code-block:: python
4656

4657 4658 4659
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4660

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
4671

4672 4673 4674 4675
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4676

4677
            print(z_value) # [1., -2., 2.]
4678 4679


4680
        .. code-block:: python
4681

4682 4683 4684
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4685

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
4696

4697 4698
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4699

4700 4701
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4702

4703
            print(z_value) # z.shape=[2,3,4,5]
4704 4705


4706
        ..  code-block:: python
4707

4708 4709 4710
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4711

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
4722

4723 4724
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4725

4726 4727 4728
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4729 4730

    """
J
Jiabin Yang 已提交
4731
    if _non_static_mode():
4732 4733 4734
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
4735

S
sneaxiy 已提交
4736 4737 4738
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


4739
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
4740
def elementwise_mul(x, y, axis=-1, act=None, name=None):
4741
    """
4742

4743
    Examples:
4744

4745
        .. code-block:: python
4746

4747 4748 4749
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4750

4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
4761

4762 4763 4764 4765
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4766

4767
            print(z_value) # [2., 15., 8.]
4768 4769


4770
        .. code-block:: python
4771

4772 4773 4774
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4775

4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
4786

4787 4788
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4789

4790 4791
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4792

4793
            print(z_value) # z.shape=[2,3,4,5]
4794 4795


4796
        ..  code-block:: python
4797

4798 4799 4800
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4801

4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
4812

4813 4814
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4815

4816 4817 4818
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4819

4820
    """
J
Jiabin Yang 已提交
4821
    if _non_static_mode():
4822 4823 4824
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
4825

S
sneaxiy 已提交
4826 4827 4828 4829
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
4830 4831 4832 4833
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
4834 4835
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
4836 4837

    # insert the c++ doc string on top of python doc string
4838 4839 4840 4841 4842
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
4843 4844
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
4845
                "act (string, optional): Activation applied to the output. \
4846
            Default is None. Details: :ref:`api_guide_activations_en` ",
4847
                "name (string, optional): Name of the output. \
4848
            Default is None. It's used to print debug info for developers. Details: \
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
4865

4866 4867 4868
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
4869 4870 4871 4872 4873
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
4874 4875 4876 4877
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

4878
for func in []:
S
sneaxiy 已提交
4879 4880 4881 4882
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
4883
            "act (basestring|None): Activation applied to the output.",
4884 4885 4886 4887 4888 4889
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
4890 4891 4892

Examples:
  .. code-block:: python
4893

4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
4934 4935


4936
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
4937
    if _non_static_mode():
4938
        op = getattr(_legacy_C_ops, op_name)
4939 4940 4941 4942
        if binary_op:
            return op(x, y)
        else:
            return op(x)
4943
    check_variable_and_dtype(
4944 4945
        x,
        "x",
4946
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
4947 4948
        op_name,
    )
4949
    if y is not None:
4950
        check_variable_and_dtype(
4951 4952
            y,
            "y",
4953
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
4954 4955
            op_name,
        )
4956
    if out is not None:
4957
        check_type(out, "out", Variable, op_name)
4958

M
minqiyang 已提交
4959 4960
    helper = LayerHelper(op_name, **locals())

4961 4962 4963
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
4964 4965
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
4966 4967

    if out is None:
4968
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
4969 4970

    if binary_op:
4971 4972 4973
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
4974 4975 4976 4977 4978 4979
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


4980 4981 4982
@templatedoc()
def clip(x, min, max, name=None):
    """
4983
        :old_api: paddle.fluid.layers.clip
4984

4985 4986 4987 4988
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
4989 4990
        min(float): ${min_comment}
        max(float): ${max_comment}
4991 4992
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
4993
                             For more information, please refer to :ref:`api_guide_Name`
4994 4995

    Returns:
S
SunGaofeng 已提交
4996 4997 4998 4999
        ${out_comment}

    Return Type:
        ${out_type}
5000 5001 5002 5003

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5004
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5005
            input = fluid.data(
5006 5007
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
5008 5009 5010
    """

    helper = LayerHelper("clip", **locals())
5011
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
5012 5013

    if name is None:
5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
5040 5041 5042
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
5043 5044

    Returns:
5045
        Tensor:
W
wangguanzhong 已提交
5046

5047
        out(${out_type}): ${out_comment}
5048

W
wangguanzhong 已提交
5049

5050 5051 5052
    Examples:
        .. code-block:: python

5053
            import paddle
5054
            import paddle.fluid as fluid
5055

5056 5057 5058
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
5059 5060
    """

L
lyq 已提交
5061
    if in_dygraph_mode():
5062
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
5063
    if _non_static_mode():
5064
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
5065

5066
    helper = LayerHelper("clip_by_norm", **locals())
5067
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
5068
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
5069 5070

    if name is None:
5071 5072 5073
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
5074

5075 5076 5077
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
5078

5079 5080 5081 5082 5083 5084
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
5085 5086

    return out
X
Xin Pan 已提交
5087 5088


5089
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5101 5102 5103 5104

    Examples:
        .. code-block:: python

5105
            import paddle
5106
            import paddle.fluid as fluid
5107 5108
            paddle.enable_static()

5109 5110
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
5111
            mean = paddle.mean(input)
X
Xin Pan 已提交
5112
    """
5113

5114
    if _in_legacy_dygraph():
5115
        return _legacy_C_ops.mean(x)
5116
    if in_dygraph_mode():
5117
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
5118 5119

    helper = LayerHelper("mean", **locals())
5120
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
5121
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
5122

5123 5124 5125
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
5126 5127 5128 5129

    return out


C
chengduo 已提交
5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5141 5142 5143 5144

    Examples:
        .. code-block:: python

5145
            import paddle.fluid as fluid
5146 5147 5148 5149 5150
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
5151
    """
5152 5153 5154
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

5155
    if _non_static_mode():
5156
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
5157 5158 5159

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5160 5161 5162 5163 5164 5165
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
5166 5167 5168
    return out


X
Xin Pan 已提交
5169 5170
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
5171 5172 5173 5174 5175 5176 5177 5178
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
5179 5180

    Args:
L
liu zhengxi 已提交
5181 5182
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
5183 5184 5185
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
5186 5187

    Returns:
L
liu zhengxi 已提交
5188
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
5189 5190

    Examples:
L
liu zhengxi 已提交
5191
        ..  code-block:: python
5192

5193
            import paddle.fluid as fluid
5194 5195
            import paddle
            paddle.enable_static()
5196 5197 5198 5199 5200
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
5201

5202

X
Xin Pan 已提交
5203
    """
J
Jiabin Yang 已提交
5204
    if _non_static_mode():
5205 5206 5207 5208 5209 5210 5211 5212
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
5213

5214 5215
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
5216
    helper = LayerHelper("mul", **locals())
5217 5218
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
5219
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
5220

5221 5222 5223
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
5224 5225 5226
    return out


M
minqiyang 已提交
5227 5228
def hash(input, hash_size, num_hash=1, name=None):
    """
5229

Z
zhupengyang 已提交
5230
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
5231 5232
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
5233 5234

    Args:
Z
zhupengyang 已提交
5235 5236 5237 5238 5239 5240
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
5241 5242

    Returns:
Z
zhupengyang 已提交
5243
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
5244 5245

    Examples:
Z
zhupengyang 已提交
5246
        .. code-block:: python
H
haowang101779990 已提交
5247

5248
            import paddle.fluid as fluid
Z
zhupengyang 已提交
5249
            import numpy as np
5250 5251
            import paddle
            paddle.enable_static()
5252

Z
zhupengyang 已提交
5253
            place = fluid.core.CPUPlace()
5254

5255 5256
            x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4)
5257

Z
zhupengyang 已提交
5258 5259 5260 5261
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
5262
            x_i = fluid.create_lod_tensor(in1, [[0, 2]], place)
Z
zhupengyang 已提交
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
5273
    """
5274
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash')
5275 5276
    check_type(hash_size, 'hash_size', int, 'hash')
    check_type(num_hash, 'num_hash', int, 'hash')
M
minqiyang 已提交
5277
    helper = LayerHelper('hash', **locals())
5278 5279 5280 5281 5282 5283 5284 5285 5286
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash, 'mod_by': hash_size},
    )
M
minqiyang 已提交
5287
    return out
G
gmcather 已提交
5288 5289


D
dengkaipeng 已提交
5290
@templatedoc()
5291 5292
def grid_sampler(x, grid, name=None):
    """
5293

5294
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
5295
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
5296 5297
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
5298 5299
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
5300
    interpolation value of 4 nearest corner points. The output tensor
K
Kaipeng Deng 已提交
5301
    shape will be [N, C, H, W].
5302

H
haowang101779990 已提交
5303
    .. code-block:: text
5304

H
haowang101779990 已提交
5305 5306
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
5307

K
Kaipeng Deng 已提交
5308 5309 5310 5311
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
5312

H
haowang101779990 已提交
5313 5314 5315
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
5316

H
haowang101779990 已提交
5317 5318 5319 5320 5321 5322 5323 5324 5325
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
5326

H
haowang101779990 已提交
5327 5328 5329 5330
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
5331

H
haowang101779990 已提交
5332 5333 5334 5335
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
5336

H
haowang101779990 已提交
5337 5338 5339 5340
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
5341

H
haowang101779990 已提交
5342 5343
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
5344 5345

    Args:
K
Kaipeng Deng 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
5355 5356

    Returns:
H
haowang101779990 已提交
5357
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
5358 5359
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
5360

H
haowang101779990 已提交
5361 5362 5363 5364
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
5365
            import paddle.fluid as fluid
5366 5367
            import paddle.fluid as fluid
            import paddle
K
Kaipeng Deng 已提交
5368

5369
            paddle.enable_static()
K
Kaipeng Deng 已提交
5370 5371
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
5372 5373
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
5374
            out = fluid.layers.grid_sampler(x=x, grid=grid)
5375

D
dengkaipeng 已提交
5376 5377 5378
    """
    helper = LayerHelper("grid_sampler", **locals())

5379
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
5380 5381 5382
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'grid_sampler'
    )
D
dengkaipeng 已提交
5383 5384 5385 5386 5387 5388
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

5389
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
5390 5391
    ipts = {'X': x, 'Grid': grid}

5392 5393
    attrs = {'use_cudnn': False} if core.is_compiled_with_rocm() else {}

5394 5395 5396
    helper.append_op(
        type='grid_sampler', inputs=ipts, outputs={'Output': out}, attrs=attrs
    )
5397 5398 5399
    return out


G
gmcather 已提交
5400
def log_loss(input, label, epsilon=1e-4, name=None):
5401
    r"""
5402

G
gmcather 已提交
5403 5404 5405 5406 5407 5408 5409
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

5410 5411
        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}
G
gmcather 已提交
5412 5413

    Args:
5414
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
5415
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
5416
                                by the previous operator. Data type float32.
5417
        label (Tensor|list):  The ground truth which is a 2-D tensor with
5418
                                shape [N x 1], where N is the batch size.
Y
Yibing Liu 已提交
5419 5420
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
5421
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
5422
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
5423 5424

    Returns:
5425
        Tensor, which shape is [N x 1], data type is float32.
G
gmcather 已提交
5426 5427 5428 5429

    Examples:
        .. code-block:: python

5430 5431 5432 5433 5434 5435
          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
G
gmcather 已提交
5436
    """
5437
    return paddle.nn.functional.log_loss(input, label, epsilon, name)
G
gmcather 已提交
5438 5439


5440 5441 5442
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
5443
    r"""
5444 5445
    :api_attr: Static Graph

Y
Yibing Liu 已提交
5446
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
5447

Q
Qiao Longfei 已提交
5448
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
5449 5450 5451
    For example:

    .. math::
H
haowang101779990 已提交
5452
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
5453

Q
Qiao Longfei 已提交
5454
    In this formula:
5455 5456
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
5457
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
5458
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
5459 5460 5461
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
5462
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type
Y
Yibing Liu 已提交
5463
            is float32 or float64.
5464
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type
Y
Yibing Liu 已提交
5465
            should be same as **x**.
Q
Qiao Longfei 已提交
5466
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
5467
        act (str|None): Activation to be applied to the output of this layer. Default None.
5468
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
5469
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
5470 5471
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
Y
Yibing Liu 已提交
5472
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
5473 5474
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
Y
Yibing Liu 已提交
5475
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
5476
    Returns:
Y
Yibing Liu 已提交
5477
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
5478 5479 5480 5481

    Examples:
        .. code-block:: python

5482 5483 5484 5485 5486
            import paddle
            paddle.enable_static()
            layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
5487 5488
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
5489
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
5490 5491 5492

    param_shape = [size, x.shape[1], y.shape[1]]

5493 5494 5495
    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
5496
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
5497 5498 5499 5500

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
5501 5502 5503
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
Q
Qiao Longfei 已提交
5504
        inputs["Bias"] = bias
5505 5506 5507
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
Q
Qiao Longfei 已提交
5508 5509 5510

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
5511 5512 5513 5514 5515


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
5516 5517 5518 5519 5520 5521 5522 5523 5524
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

5525
        Output is LoDTensor:
5526 5527 5528 5529 5530 5531
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
5532 5533

    Args:
5534 5535 5536
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
5537 5538

    Returns:
5539
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
5540 5541 5542

    Examples:
        .. code-block:: python
5543

B
bdzhuxiaoning 已提交
5544 5545 5546 5547
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
5548 5549
    """

5550 5551 5552 5553 5554
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
5555 5556
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5557 5558 5559 5560 5561 5562
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
5563
    return out
5564 5565


H
heqiaozhi 已提交
5566
def continuous_value_model(input, cvm, use_cvm=True):
5567
    r"""
H
fix doc  
heqiaozhi 已提交
5568

H
heqiaozhi 已提交
5569
    **continuous_value_model layers**
H
fix doc  
heqiaozhi 已提交
5570

Z
zhoushiyu 已提交
5571
    Now, this OP is used in CTR project to remove or dispose show and click value in :attr:`input`.
H
fix doc  
heqiaozhi 已提交
5572

Z
zhoushiyu 已提交
5573 5574
    :attr:`input` is an embedding vector including show and click value, whose shape is :math:`[N, D]` (N is batch size. D is `2 + embedding dim` ).
    Show and click at first two dims of embedding vector D.
T
tianshuo78520a 已提交
5575
    If :attr:`use_cvm` is True, it will calculate :math:`log(show)` and :math:`log(click)` , and output shape is :math:`[N, D]` .
Z
zhoushiyu 已提交
5576 5577
    If :attr:`use_cvm` is False, it will remove show and click from :attr:`input` , and output shape is :math:`[N, D - 2]` .
    :attr:`cvm` is show_click info, whose shape is :math:`[N, 2]` .
H
fix doc  
heqiaozhi 已提交
5578

Z
zhoushiyu 已提交
5579 5580 5581 5582 5583 5584 5585
    Args:
        input (Variable): The input variable. A 2-D LoDTensor with shape :math:`[N, D]` , where N is the batch size, D is `2 + the embedding dim` . `lod level = 1` .
        A Tensor with type float32, float64.
        cvm (Variable): Show and click variable. A 2-D Tensor with shape :math:`[N, 2]` , where N is the batch size, 2 is show and click.
        A Tensor with type float32, float64.
        use_cvm  (bool):  Use show_click or not. if use, the output dim is the same as input.
                          if not use, the output dim is `input dim - 2` (remove show and click)
H
fix doc  
heqiaozhi 已提交
5586

H
heqiaozhi 已提交
5587
    Returns:
H
fix doc  
heqiaozhi 已提交
5588

Z
zhoushiyu 已提交
5589 5590
        Variable: A 2-D LodTensor with shape :math:`[N, M]` . if :attr:`use_cvm` = True, M is equal to input dim D. if False, M is equal to `D - 2`. \
        A Tensor with same type as input.
H
fix doc  
heqiaozhi 已提交
5591

H
heqiaozhi 已提交
5592
    Examples:
H
fix doc  
heqiaozhi 已提交
5593

H
heqiaozhi 已提交
5594
        .. code-block:: python
H
fix doc  
heqiaozhi 已提交
5595

5596
          import paddle.fluid as fluid
Z
zhoushiyu 已提交
5597 5598
          input = fluid.data(name="input", shape=[64, 1], dtype="int64")
          label = fluid.data(name="label", shape=[64, 1], dtype="int64")
H
heqiaozhi 已提交
5599 5600 5601 5602 5603 5604 5605 5606
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)
H
fix doc  
heqiaozhi 已提交
5607

H
heqiaozhi 已提交
5608 5609 5610
    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
5611 5612 5613 5614 5615 5616 5617 5618 5619
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'cvm'
    )
    helper.append_op(
        type='cvm',
        inputs={'X': [input], 'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm},
    )
H
heqiaozhi 已提交
5620
    return out
Z
zhoukunsheng 已提交
5621 5622


5623
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
5624
    r"""
5625

S
SunGaofeng 已提交
5626
    This op returns a col buffer of sliding local blocks of input x, also known
5627
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
5628
    all element will be rearranged as a column. While the convolution filter sliding over
5629 5630
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
5631
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
5632 5633 5634 5635
    can be calculated as following.

    .. math::

5636
        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1
5637

5638
        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1
5639

5640
        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
5641

5642
        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
5643

5644
        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]
5645

5646
        Lout &= hout \times wout
5647 5648


S
SunGaofeng 已提交
5649
    Parameters:
5650
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
S
SunGaofeng 已提交
5651
                                  data type can be float32 or float64
5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
5664
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
5665
                                  [dilation_h, dilation_w], or an integer dilation treated as
5666
                                  [dilation, dilation]. For default, it will be [1, 1].
5667 5668
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
5669
                             For more information, please refer to :ref:`api_guide_Name`
5670

5671

5672
    Returns:
5673
        The tensor corresponding to the sliding local blocks.
5674 5675 5676
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
S
SunGaofeng 已提交
5677 5678 5679
        The data type of output is the same as the input :math:`x`

    Return Type:
5680
        Tensor
5681 5682 5683 5684 5685

    Examples:

        .. code-block:: python

5686 5687 5688 5689 5690
            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
5691 5692
    """

5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
    return paddle.nn.functional.unfold(
        x, kernel_sizes, strides, paddings, dilations, name
    )


def deformable_roi_pooling(
    input,
    rois,
    trans,
    no_trans=False,
    spatial_scale=1.0,
    group_size=[1, 1],
    pooled_height=1,
    pooled_width=1,
    part_size=None,
    sample_per_part=1,
    trans_std=0.1,
    position_sensitive=False,
    name=None,
):
5713
    r"""
5714

5715
    Deformable ROI Pooling Layer
5716

5717
    Performs deformable region-of-interest pooling on inputs. As described
5718
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after
5719
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
5720

5721
    The operation has three steps:
5722

5723
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
5724

5725 5726
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
5727

5728
    3. Sample several points in each bin to get average values as output.
5729 5730


5731 5732 5733 5734 5735 5736 5737 5738 5739
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
5740 5741 5742
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where
                          N is number of ROIs, C is number of channels, which indicate the offset distance
                          in the x and y directions, H is pooled height, and W is pooled width.
5743 5744 5745 5746
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
5747
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels
5748
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
5749
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
5750 5751 5752 5753 5754 5755 5756
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
5757
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
5758 5759 5760 5761
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
5762 5763 5764 5765

    Examples:
      .. code-block:: python

5766 5767
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
5768
        input = fluid.data(name="input",
5769 5770
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
5771 5772
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
5773
                          dtype='float32',
C
chengjuntao 已提交
5774 5775
                          lod_level=1)
        trans = fluid.data(name="trans",
5776 5777 5778 5779 5780
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
5781
                                                no_trans=False,
5782
                                                spatial_scale=1.0,
C
chengjuntao 已提交
5783 5784 5785 5786
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
5787
                                                sample_per_part=4,
C
chengjuntao 已提交
5788 5789
                                                trans_std=0.1,
                                                position_sensitive=True)
5790

5791
        # position_sensitive=False
5792
        import paddle.fluid as fluid
C
chengjuntao 已提交
5793
        input = fluid.data(name="input",
5794 5795
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
5796 5797
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
5798
                          dtype='float32',
C
chengjuntao 已提交
5799 5800
                          lod_level=1)
        trans = fluid.data(name="trans",
5801 5802 5803 5804 5805
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
5806
                                                no_trans=False,
5807
                                                spatial_scale=1.0,
C
chengjuntao 已提交
5808 5809 5810 5811
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
5812
                                                sample_per_part=4,
C
chengjuntao 已提交
5813 5814
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
5815 5816
    """

5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_type(
        group_size, 'group_size', (list, tuple), 'deformable_roi_pooling'
    )
5829
    if part_size is not None:
5830 5831 5832
        check_type(
            part_size, 'part_size', (list, tuple), 'deformable_roi_pooling'
        )
5833

C
cjt222 已提交
5834
    input_channels = input.shape[1]
5835
    if position_sensitive is False:
C
cjt222 已提交
5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input, "ROIs": rois, "Trans": trans},
        outputs={"Output": output, "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std,
        },
    )
C
cjt222 已提交
5866
    return output
5867 5868


5869
@deprecated(since="2.0.0", update_to="paddle.shard_index")
5870 5871
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
L
lilong12 已提交
5872 5873 5874 5875 5876 5877 5878 5879 5880
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
5881 5882
    ::

5883
        shard_size = (index_num + nshards - 1) // nshards
5884

L
lilong12 已提交
5885 5886 5887
    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
5888

L
lilong12 已提交
5889 5890 5891 5892
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.
5893 5894

    Args:
L
lilong12 已提交
5895 5896
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
5897 5898 5899
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.
5900 5901

    Returns:
L
lilong12 已提交
5902
        Tensor.
5903 5904 5905 5906

    Examples:
        .. code-block:: python

5907 5908 5909 5910 5911 5912 5913 5914
            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
5915
    """
H
hong 已提交
5916
    if in_dygraph_mode():
5917 5918 5919
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
H
hong 已提交
5920

B
Baibaifan 已提交
5921
    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
5922 5923 5924
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
5925 5926 5927
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
5928 5929

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
5942
    return out
H
huangjun12 已提交
5943 5944 5945 5946


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
5947
    r"""
5948 5949 5950
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
5951

5952
    The formula is as follows:
H
huangjun12 已提交
5953

5954
    .. math::
H
huangjun12 已提交
5955

5956
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
5957

5958 5959 5960 5961 5962 5963 5964 5965 5966
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
5967 5968
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

5969 5970
    Returns:
        Variable: The output tensor with the same shape and data type as input.
5971 5972


5973
    Examples:
5974

5975
    .. code-block:: python
5976

5977
        import paddle.fluid as fluid
5978
        import paddle
5979
        import numpy as np
5980
        paddle.enable_static()
5981

5982
        DATATYPE='float32'
5983

5984
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
5985

5986 5987
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
5988

5989 5990 5991 5992 5993
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
5994
    """
J
Jiabin Yang 已提交
5995
    if _non_static_mode():
5996 5997 5998
        return _legacy_C_ops.hard_swish(
            x, 'threshold', threshold, 'scale', scale, 'offset', offset
        )
5999

6000 6001 6002
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hard_swish'
    )
6003

H
huangjun12 已提交
6004 6005
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6006 6007 6008 6009 6010 6011
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
    )
H
huangjun12 已提交
6012
    return out
R
ruri 已提交
6013 6014


K
Kaipeng Deng 已提交
6015 6016
@templatedoc()
def mish(x, threshold=20, name=None):
6017
    r"""
K
Kaipeng Deng 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
    This operator implements the mish activation function.
    Refer to `Mish: A Self Regularized Non-Monotonic Neural
    Activation Function <https://arxiv.org/abs/1908.08681>`_


    The formula is as follows if :attr:`threshold` is :code:`None` or negative:

    .. math::

        out = x * \\tanh(\\ln(1 + e^{x}))

    The formula is as follows if :attr:`threshold` is set as positive value:

    .. math::

6033 6034 6035 6036 6037
    out = \\begin{cases}
        x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\
        x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\
        x \\ast \\tanh(\\ln(1 + e^{x})),  \\text{otherwise}
          \\end{cases}
K
Kaipeng Deng 已提交
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type
                      should be float16, float32 or float64.
        threshold (float|None): threshold for softplus in Mish operator.
                Approximate value of softplus will be used if absolute value
                of input is greater than :attr:threshold and :attr:threshold
                is set as positive value. For none or negative threshold,
                approximate value is not used. Default 20.
        name (str, optional): The default value is None. Normally there is no
                need for user to set this property. For more information, please
                refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output tensor with the same shape and data type as input.


    Examples:

    .. code-block:: python

6059
        import paddle
K
Kaipeng Deng 已提交
6060 6061 6062
        import paddle.fluid as fluid
        import numpy as np

6063
        paddle.enable_static()
K
Kaipeng Deng 已提交
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
        DATATYPE='float32'

        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)

        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.mish(x)

        place = fluid.CPUPlace()
        # place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667, 3., 4.]]
    """
6077
    if in_dygraph_mode():
6078
        return _C_ops.mish(x, threshold)
6079
    if _in_legacy_dygraph():
6080
        return _legacy_C_ops.mish(x, 'threshold', threshold)
6081

K
Kaipeng Deng 已提交
6082 6083
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish')
    check_type(threshold, 'threshold', (float, int), 'mish')
6084 6085 6086 6087 6088
    assert (
        threshold > 0
    ), "threshold of mish should be greater than 0, " "but got {}".format(
        threshold
    )
K
Kaipeng Deng 已提交
6089 6090 6091

    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6092 6093 6094 6095 6096 6097
    helper.append_op(
        type='mish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
K
Kaipeng Deng 已提交
6098 6099 6100
    return out


6101
@deprecated(since="2.0.0", update_to="paddle.uniform")
6102
@templatedoc()
6103 6104 6105
def uniform_random(
    shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None
):
6106
    """
6107 6108
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6109 6110 6111

    Examples:
    ::
6112

6113 6114
        Input:
          shape = [1, 2]
6115

6116 6117 6118 6119
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
6133 6134
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
6135
            time. Default is 0.
6136 6137 6138
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
6139

6140
    Returns:
6141 6142
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6143

6144
    Raises:
6145 6146
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
6147

6148 6149 6150
    Examples:
        .. code-block:: python

6151
            import paddle
6152
            import paddle.fluid as fluid
6153
            paddle.enable_static()
6154 6155

            # example 1:
6156
            # attr shape is a list which doesn't contain Tensor.
6157
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
6158 6159 6160
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]
6161 6162

            # example 2:
6163 6164 6165
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
6166
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
6167 6168
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]
6169 6170

            # example 3:
6171
            # attr shape is a Tensor, the data type must be int64 or int32.
6172
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
6173
            result_3 = fluid.layers.uniform_random(var_shape)
6174 6175 6176 6177
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]
6178

6179 6180 6181
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
6182

6183 6184
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
6185
        return _C_ops.uniform(
6186 6187 6188 6189 6190 6191 6192
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
6193
    elif _in_legacy_dygraph():
6194
        shape = utils.convert_shape_to_list(shape)
6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
6207

6208
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
6209 6210 6211
    check_dtype(
        dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand'
    )
6212 6213
    check_type(min, 'min', (float, int, Variable), 'uniform_random/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform_random/rand')
6214 6215

    inputs = dict()
6216
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
6217 6218 6219
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand'
    )
6220

6221
    helper = LayerHelper("uniform_random", **locals())
6222
    out = helper.create_variable_for_type_inference(dtype)
6223 6224 6225
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
6226
    utils.try_set_static_shape_tensor(out, shape)
6227
    return out
myq406450149's avatar
myq406450149 已提交
6228 6229 6230 6231 6232 6233 6234


def unbind(input, axis=0):
    """
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
6235

myq406450149's avatar
myq406450149 已提交
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
6261 6262 6263
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
6264
    if not isinstance(axis, (int)):
6265 6266 6267
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

6278 6279 6280 6281 6282 6283
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
6284
    return outs