control_flow.py 154.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator, in_dygraph_mode, static_only
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
D
dzhwinter 已提交
32

Q
QI JUN 已提交
33
__all__ = [
W
Wu Yi 已提交
34
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
35
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
36
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
37 38
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
39 40
]

Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
59 60 61 62
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='select_output',
        inputs={'X': input,
                'Mask': mask},
        outputs={'Out': outputs})
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
87 88 89 90 91 92
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

    input_dtype = inputs[0].dtype
    input_shape = inputs[0].shape
    input_type = inputs[0].type
93 94 95

    out = helper.create_variable(
        dtype=input_dtype, shape=input_shape, type=input_type)
96 97 98 99 100 101 102 103
    helper.append_op(
        type='select_input',
        inputs={'X': inputs,
                'Mask': mask},
        outputs={'Out': out})
    return out


104
def split_lod_tensor(input, mask, level=0):
105 106 107 108
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
109 110
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
111 112

    Args:
113
        input(Variable|tuple|list|None): The input tensor that contains complete
114
                                lod information needed to construct the output.
115
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
116
        level(int): The specific lod level to split.
117 118

    Returns:
Q
qiaolongfei 已提交
119 120 121 122
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
123 124 125 126

    Examples:
        .. code-block:: python

127
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
128
          x = fluid.layers.data(name='x', shape=[1])
129 130
          x.persistable = True

Q
qiaolongfei 已提交
131
          y = fluid.layers.data(name='y', shape=[1])
132 133
          y.persistable = True

Q
qiaolongfei 已提交
134
          out_true, out_false = fluid.layers.split_lod_tensor(
135
                input=x, mask=y, level=level)
136

137
    """
138 139 140 141
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
142
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
143 144
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
145 146 147 148 149 150 151 152 153 154 155 156
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


157
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
158 159 160 161 162
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
163 164 165
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
166 167

    Args:
168 169 170
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
171
                            lod information needed to construct the output.
172
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
173
        level(int): The specific lod level to merge.
174 175 176 177 178 179 180

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

181
          import paddle.fluid as fluid
182 183 184 185 186 187 188 189 190 191 192 193
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
194
    helper = LayerHelper('merge_lod_tensor', **locals())
195 196 197 198 199 200 201
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
202
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
203 204 205 206 207 208 209 210 211 212 213
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


214
@static_only
Y
Yan Chunwei 已提交
215 216 217
def Print(input,
          first_n=-1,
          message=None,
218
          summarize=20,
Y
Yan Chunwei 已提交
219 220 221
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
222
          print_tensor_layout=True,
Y
yangyaming 已提交
223 224
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
225
    '''
226 227
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
228 229 230 231 232 233 234 235 236
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
237
        input (Variable): A Tensor to print.
238
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
239
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
240 241
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
242 243 244
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
245
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
246
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
247
        print_phase (str): Which phase to displace, including 'forward',
248 249 250
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
251 252

    Returns:
253
        Variable: Output tensor.
Y
Yan Chunwei 已提交
254

255 256 257 258
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
259

Y
Yan Chunwei 已提交
260 261
    Examples:
        .. code-block:: python
262
           
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
           import paddle

           paddle.enable_static()
        
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
281
    '''
282 283 284
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
285

286 287
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
288 289
    helper.append_op(
        type='print',
Y
yangyaming 已提交
290
        inputs={'In': input},
291
        outputs={'Out': output},
Y
Yan Chunwei 已提交
292 293 294 295 296 297 298
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
299
            'print_tensor_layout': print_tensor_layout,
Y
Yan Chunwei 已提交
300
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
301
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
302
        })
303
    return output
Y
Yan Chunwei 已提交
304 305


H
Huihuang Zheng 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond,
                "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize})

    return op


Y
Yu Yang 已提交
378 379
class BlockGuard(object):
    """
380 381 382 383
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
384 385
    """

386 387
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
388
            raise TypeError("BlockGuard takes a program")
389
        self.main_program = main_program
Y
Yu Yang 已提交
390 391

    def __enter__(self):
W
Wu Yi 已提交
392
        self.main_program._create_block()
Y
Yu Yang 已提交
393 394

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
395
        self.main_program._rollback()
Y
Yu Yang 已提交
396 397 398 399 400
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
401 402 403 404 405
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
406 407
    """

Y
Yu Yang 已提交
408
    def __init__(self, rnn):
X
Xin Pan 已提交
409
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
410
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
411
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
412 413 414 415
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
416
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
417 418

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
419 420
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
421
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
422
        self.rnn._complete_op()
Y
Yang Yang 已提交
423 424
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
425 426 427 428


class StaticRNNMemoryLink(object):
    """
429 430 431 432
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
433 434 435 436 437 438 439 440 441


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
442 443 444 445 446 447 448 449 450
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
451
    """
452 453
    :api_attr: Static Graph

454 455
    StaticRNN class.

456 457 458 459 460 461 462
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
463 464

    Examples:
465 466 467 468 469 470
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
471 472
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
473 474 475 476 477
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
478
            # transform batch size to dim 1
479 480 481 482
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
483
                # mark created x_emb as input, each step process a word
484
                word = rnn.step_input(x_emb)
485
                # create prev memory parameter, batch size comes from word
486 487
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
488 489 490
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
491
                rnn.step_output(hidden)
492
            # get StaticrNN final output
493
            result = rnn()
C
chengduo 已提交
494

495
    """
Y
Yu Yang 已提交
496 497 498 499
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

500
    def __init__(self, name=None):
501
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
502
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
503 504 505 506 507 508 509 510
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
511
        """
512 513
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
514
        """
Y
Yang Yang 已提交
515
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
516 517 518 519 520

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

521 522 523 524 525 526 527
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
528
        """
C
chengduo 已提交
529 530 531
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
532 533
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
534

535
        Args:
536
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
537 538
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
539 540 541 542 543 544 545
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
546 547

        Returns:
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
579 580
            .. code-block:: python

581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

604
        """
Y
Yu Yang 已提交
605
        self._assert_in_rnn_block_('memory')
606 607 608 609 610 611
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
612
        if init is None:
613
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
614
                raise ValueError(
615
                    "if init is None, memory at least need shape and batch_ref")
616
            parent_block = self._parent_block()
617
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
618
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
619
            boot_var = parent_block.create_var(
620 621
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
622
                dtype=batch_ref.dtype,
623
                persistable=False)
Y
Yu Yang 已提交
624 625

            parent_block.append_op(
626 627
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
628 629 630
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
631
                    'shape': boot_var.shape,
F
fengjiayi 已提交
632
                    'dtype': boot_var.dtype,
633 634
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
635 636 637 638 639
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
640 641
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
642
                dtype=init.dtype,
Y
Yu Yang 已提交
643 644 645 646 647 648
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
649 650 651 652 653 654 655 656
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
686
        """
Y
Yu Yang 已提交
687
        self._assert_in_rnn_block_('step_input')
688
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
689
        if self.seq_len is None:
Y
Yu Yang 已提交
690
            self.seq_len = x.shape[0]
691
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
692 693 694
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
695
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
696 697 698 699
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
700 701 702 703 704 705 706 707
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
739
        """
Y
Yu Yang 已提交
740
        self._assert_in_rnn_block_('step_output')
741
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
742

X
Xin Pan 已提交
743
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
744 745 746 747
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
748
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
749

750
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
751 752
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
753
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
754 755 756 757

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
758 759 760 761
        """
        Mark the StaticRNN output variables.

        Args:
762
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
763 764 765

        Returns:
            None
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
797
        """
Y
Yu Yang 已提交
798 799 800 801
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
802
        """
803
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
804 805 806

        Args:
            mem(Variable): the memory variable.
807
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
808
                           var and mem should have same dims and data type.
C
chengduo 已提交
809 810 811

        Returns:
            None
812

C
chengduo 已提交
813
        """
814 815
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
816 817
        self.memories[mem.name].mem = var

818
    def _parent_block(self):
819
        prog = self.helper.main_program
Y
Yu Yang 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

835
    def _complete_op(self):
836 837
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
838
        parent_block = self._parent_block()
Y
Yu Yang 已提交
839 840 841 842 843 844 845 846 847 848 849 850 851 852

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
853 854 855
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
856 857 858 859 860 861 862 863
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

864
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
865 866 867 868 869 870 871

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
872
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
873 874 875
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
876
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
877 878
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
879 880
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
881 882
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
883 884
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
885 886 887 888
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
889
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
903
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
904 905
                'ex_states': pre_memories,
                'states': memories,
906
                'sub_block': rnn_block
Y
Yu Yang 已提交
907
            })
Y
Yu Yang 已提交
908 909


Y
Yang Yang(Tony) 已提交
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
925
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
926 927 928
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
                if in_var_name not in inner_outputs:
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
972
class While(object):
X
Xin Pan 已提交
973
    """
974 975
    :api_attr: Static Graph
    
976
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
977

978 979 980 981
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

982 983 984 985 986 987
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
988
    Args:
989
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
990
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
991
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
992

993
    Examples 1:
X
Xin Pan 已提交
994
          .. code-block:: python
995 996
            
            import paddle.fluid as fluid
997 998 999 1000 1001
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1002

1003
            cond = fluid.layers.less_than(x=i, y=loop_len)
1004
            while_op = fluid.layers.While(cond=cond)
1005
            with while_op.block():
1006
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1007
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1008 1009 1010 1011 1012

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1042 1043
    """

Y
Yang Yang(Tony) 已提交
1044 1045 1046 1047
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1048
    def __init__(self, cond, is_test=False, name=None):
1049
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1050
        self.status = While.BEFORE_WHILE_BLOCK
1051
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1052
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1053
            raise TypeError(
1054
                "condition expected shape as [1], but given shape as {0}.".
1055
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1056
        self.cond_var = cond
C
chengduo 已提交
1057
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1058 1059 1060 1061

    def block(self):
        return WhileGuard(self)

1062
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1063 1064 1065 1066 1067 1068 1069
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1070 1071
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1072 1073 1074

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1075 1076 1077
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1078 1079 1080 1081 1082 1083 1084

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
1085 1086 1087 1088
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
1089 1090 1091 1092
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
1093 1094
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
1095 1096


1097
def assign_skip_lod_tensor_array(input, output):
1098
    """
1099
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1100
    """
1101 1102 1103 1104
    if not isinstance(input, Variable) and not isinstance(input, core.VarBase):
        output = input
        return

1105 1106 1107 1108 1109 1110 1111 1112
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
        assign(input, output)
1113 1114


G
guofei 已提交
1115
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1116
    """
1117 1118
    :api_attr: Static Graph

G
guofei 已提交
1119 1120
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1121 1122 1123 1124
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1125
    Args:
1126 1127 1128 1129 1130
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1131
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1132 1133
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1134

G
guofei 已提交
1135
    Returns:
1136
        A list or tuple of tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    
    Returen type:
        list(Variable)|tuple(Variable).

    Raises:
        TypeError: If the type of ``cond`` is not callable.
        TypeError: If the type of ``body`` is not callable.
        TypeError: If the type of ``loop_vars`` is not list or tuple.
        TypeError: If the type of ``cond`` returns is not Variable.
        TypeError: If the type of ``cond`` returns is not a boolean variable.
        TypeError: If the shape of ``cond`` returns is not equals 1.
        ValueError: If the ``var_loops`` is empty.
1149
        ValueError: If the length or type of ``body`` returns is not same as ``loop_vars``.
G
guofei 已提交
1150 1151 1152 1153 1154 1155

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
1156 1157 1158
            import paddle
            paddle.enable_static()

G
guofei 已提交
1159

1160 1161
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1162

1163 1164 1165
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1166 1167 1168 1169 1170 1171

            main_program = fluid.default_main_program()
            startup_program = fluid.default_startup_program()
            with fluid.program_guard(main_program, startup_program):
                i = layers.fill_constant(shape=[1], dtype='int64', value=0)     # loop counter
                ten = layers.fill_constant(shape=[1], dtype='int64', value=10)  # loop length
1172
                i, ten = layers.while_loop(cond, body, [i, ten])
G
guofei 已提交
1173 1174
                
                exe = fluid.Executor(fluid.CPUPlace())
1175
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1176 1177 1178 1179 1180 1181 1182 1183
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1184
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1185 1186 1187 1188
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1189 1190
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1191 1192
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1193
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1194 1195
            "but given shape as {0}.".format(list(pre_cond.shape)))

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
    if in_dygraph_mode():
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1207
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1208 1209
        return loop_vars

G
guofei 已提交
1210
    while_loop_block = While(pre_cond, is_test, name)
1211
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1212
    with while_loop_block.block():
1213 1214 1215 1216 1217 1218 1219 1220 1221
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1222 1223
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1224 1225 1226
        try:
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1227
            raise ValueError("body in while_loop should return the same arity "
1228 1229
                             "(length and structure) as loop_vars: {0}".format(
                                 e))
1230
        now_cond = cond(*output_vars)
1231
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1232 1233 1234 1235
        assign(now_cond, pre_cond)
    return loop_vars


1236
def lod_rank_table(x, level=0):
1237 1238
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1239 1240
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1241
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1242
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1243 1244
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1245 1246 1247 1248

        .. code-block:: text

            x is a LoDTensor:
1249 1250
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1251 1252
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1253 1254 1255
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1256

Y
yangyaming 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1266 1267 1268 1269

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1270 1271
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1272 1273 1274 1275 1276 1277 1278

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1279
            import paddle.fluid as fluid
Y
yangyaming 已提交
1280
            x = fluid.layers.data(name='x', shape=[10],
1281
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1282
            out = layers.lod_rank_table(x=x, level=0)
1283
    """
1284 1285 1286 1287 1288 1289
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1290 1291 1292
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
1293
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
1294 1295 1296 1297 1298 1299
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1300 1301


Y
yuyang18 已提交
1302
@templatedoc()
1303
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1304 1305 1306 1307 1308 1309 1310 1311
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1312 1313

    Args:
Y
yuyang18 已提交
1314
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1315 1316

    Returns:
Y
yuyang18 已提交
1317
        ${out_comment}.
F
fengjiayi 已提交
1318 1319
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1320
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
1321 1322 1323 1324 1325 1326 1327
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


1328
def lod_tensor_to_array(x, table):
1329
    """
F
fengjiayi 已提交
1330 1331
    Convert a LoDTensor to a LoDTensorArray.

1332 1333 1334 1335 1336
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1337
    Users should not use it directly.
1338 1339

    Args:
F
fengjiayi 已提交
1340
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1341 1342
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1343
                                descending order. It is generally generated
F
fengjiayi 已提交
1344
                                by `layers.lod_rank_table()` API.
1345 1346

    Returns:
F
fengjiayi 已提交
1347
        Variable: The LoDTensorArray that has been converted from the input tensor.
1348 1349 1350 1351

    Examples:
        .. code-block:: python

1352
          import paddle.fluid as fluid
1353 1354 1355
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1356
    """
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1367 1368
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1369
        name=unique_name.generate("lod_tensor_to_array"),
1370
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1371
        dtype=x.dtype)
1372 1373 1374 1375 1376 1377 1378 1379
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


1380
def array_to_lod_tensor(x, table):
1381
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1382 1383

    Args:
1384
        x (Variable|list): The lod tensor array to be converted to a tensor.
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1396
          import paddle.fluid as fluid
1397 1398 1399 1400
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1401
    """
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1413
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1414
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1415 1416 1417 1418 1419 1420 1421 1422
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


1423
def increment(x, value=1.0, in_place=True):
1424
    """
1425 1426
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1427

1428
    Parameters:
T
tianshuo78520a 已提交
1429
        x (Variable): A tensor that must always contain only one element, its data type supports
1430 1431 1432
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1433 1434

    Returns:
1435
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1436 1437 1438 1439

    Examples:
        .. code-block:: python

1440
          import paddle.fluid as fluid
1441 1442
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1443
    """
1444 1445
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1446
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1447
    if not in_place:
X
Xin Pan 已提交
1448
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1449 1450
    else:
        out = x
Y
Yu Yang 已提交
1451 1452 1453
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1454
        outputs={'Out': [out]},
1455
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1456
    return out
Y
Yu Yang 已提交
1457 1458


1459
def array_write(x, i, array=None):
1460
    """
1461 1462 1463 1464
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1465 1466

    Args:
1467 1468 1469 1470 1471 1472 1473
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1474

1475
    Returns:
1476
        Variable: The input ``array`` after ``x`` is written into.
1477 1478

    Examples:
D
dzhwinter 已提交
1479
        .. code-block:: python
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1508
    """
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    if in_dygraph_mode():
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1519
        i = i.numpy().item(0)
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1534 1535
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1536
    helper = LayerHelper('array_write', **locals())
1537 1538 1539 1540 1541 1542
    if array is not None:
        if not isinstance(
                array,
                Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1543 1544 1545 1546
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1547
            dtype=x.dtype)
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553 1554 1555
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


1556
def create_array(dtype):
1557
    """
1558 1559 1560 1561
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1562 1563

    Args:
1564 1565
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1566 1567

    Returns:
1568
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1569 1570 1571 1572

    Examples:
        .. code-block:: python

1573
          import paddle.fluid as fluid
1574
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1575 1576

    """
1577 1578 1579
    if in_dygraph_mode():
        return []

Y
Yang Yang(Tony) 已提交
1580 1581 1582 1583 1584 1585 1586
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1587
@templatedoc()
W
wawltor 已提交
1588
def less_than(x, y, force_cpu=None, cond=None, name=None):
1589
    """
1590

Y
yuyang18 已提交
1591
    ${comment}
1592 1593

    Args:
N
Noel 已提交
1594 1595
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1596
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1597
        cond(Tensor, optional): Optional output which can be any created Tensor
1598
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1599
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1600 1601
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1602
    Returns:
Y
yuyang18 已提交
1603
        ${out_comment}.
1604 1605 1606 1607

    Examples:
        .. code-block:: python

N
Noel 已提交
1608 1609 1610 1611 1612 1613 1614
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1615
    """
1616 1617 1618 1619 1620 1621 1622 1623 1624
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1625 1626
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1627
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1628 1629
        cond.stop_gradient = True

Y
yuyang18 已提交
1630 1631 1632 1633
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

Y
Yang Yang(Tony) 已提交
1634
    helper.append_op(
J
JiayiFeng 已提交
1635 1636 1637 1638
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1639
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1640 1641 1642
    return cond


Z
zhoukunsheng 已提交
1643
@templatedoc()
W
wawltor 已提交
1644
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1645
    """
1646 1647 1648 1649
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1650
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1651 1652

    Args:
1653 1654
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1655 1656
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1657 1658
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1659 1660

    Returns:
1661
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1662 1663 1664 1665

    Examples:
        .. code-block:: python

1666
          import paddle.fluid as fluid
1667 1668 1669 1670 1671 1672
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1673
    """
1674 1675 1676 1677 1678
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1679
        check_type(cond, "cond", Variable, "less_equal")
1680

Z
zhoukunsheng 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
W
wawltor 已提交
1698
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1699
    """
1700 1701 1702 1703
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1704
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1705 1706

    Args:
1707 1708
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1709 1710
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1711 1712
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1713 1714

    Returns:
1715
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1716 1717 1718 1719

    Examples:
        .. code-block:: python

1720
          import paddle.fluid as fluid
1721 1722 1723 1724 1725
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1726
    """
1727 1728 1729 1730 1731
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1732
        check_type(cond, "cond", Variable, "greater_than")
1733

Z
zhoukunsheng 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
W
wawltor 已提交
1751
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1752
    """
1753 1754 1755 1756
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1757
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1758 1759

    Args:
1760 1761
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1762 1763
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1764 1765
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1766 1767

    Returns:
1768
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1769 1770 1771 1772

    Examples:
        .. code-block:: python

1773
          import paddle.fluid as fluid
1774 1775 1776 1777 1778 1779
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1780

Z
zhoukunsheng 已提交
1781
    """
1782 1783 1784 1785 1786
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1787
        check_type(cond, "cond", Variable, "greater_equal")
1788

Z
zhoukunsheng 已提交
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


W
wawltor 已提交
1805
def equal(x, y, cond=None, name=None):
1806 1807 1808 1809
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1810 1811 1812 1813 1814
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1815 1816
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1817 1818

    Returns:
W
wangchaochaohu 已提交
1819 1820
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1821 1822 1823 1824

    Examples:
        .. code-block:: python

1825
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1826 1827 1828 1829 1830 1831 1832
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1833
    """
1834 1835 1836 1837 1838
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
1839
        check_type(cond, "cond", Variable, "equal")
1840

1841 1842
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1843
        cond = helper.create_variable_for_type_inference(dtype='bool')
1844 1845 1846 1847 1848 1849 1850 1851
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


W
wawltor 已提交
1852
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1853
    """
1854 1855 1856 1857
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

1858
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1859 1860

    Args:
1861 1862
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1863 1864
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1865 1866
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1867 1868

    Returns:
1869
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1870 1871 1872 1873

    Examples:
        .. code-block:: python

1874 1875 1876 1877
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1878 1879
          out = fluid.layers.not_equal(x=label, y=limit)
    """
1880 1881 1882 1883 1884
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
1885
        check_type(cond, "cond", Variable, "not_equal")
1886

Z
zhoukunsheng 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1898
def array_read(array, i):
1899
    """
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1915

K
kavyasrinet 已提交
1916
    Args:
1917 1918 1919
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1920

K
kavyasrinet 已提交
1921
    Returns:
1922
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1923

K
kavyasrinet 已提交
1924
    Examples:
1925 1926
        .. code-block:: python

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1958
    """
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
    if in_dygraph_mode():
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1969
        i = i.numpy().item(0)
1970 1971
        return array[i]

1972
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
1973 1974 1975 1976 1977
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1978
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1979 1980 1981 1982 1983 1984
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1985 1986


1987
def shrink_memory(x, i, table):
1988
    """
Y
yuyang18 已提交
1989
    This function creates an operator to shrink rnn memory using the RankTable
1990
    as mentioned in the input parameter.
Y
yuyang18 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2011
    """
Y
Yang Yu 已提交
2012
    helper = LayerHelper('shrink_memory', **locals())
2013 2014 2015
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2016
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2017
    helper.append_op(
Y
Yang Yu 已提交
2018
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
2019 2020 2021 2022 2023 2024
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
2025 2026


2027
def array_length(array):
2028
    """
2029 2030
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
T
tianshuo78520a 已提交
2031
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2032

K
kavyasrinet 已提交
2033
    Args:
2034
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2035 2036

    Returns:
2037
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2038 2039

    Examples:
Q
qiaolongfei 已提交
2040
        .. code-block:: python
K
kavyasrinet 已提交
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2058

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2071
    """
2072

2073 2074 2075 2076 2077 2078
    if in_dygraph_mode():
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2079 2080 2081 2082 2083 2084
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2085
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2086
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2087 2088 2089 2090
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
2091 2092 2093


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2094
    """
2095 2096 2097
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2098 2099 2100
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2101
    def __init__(self, block):
2102
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2116 2117 2118 2119 2120 2121 2122 2123
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2124
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2125 2126 2127 2128 2129
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2130
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2142
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2143
        for each_input in inputs:
2144
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2145
        self.inputs = inputs
2146
        self.is_scalar_condition = is_scalar_condition
2147
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2158 2159
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper)
Y
Yu Yang 已提交
2160

2161 2162 2163
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2164
        param_list = [
W
Wu Yi 已提交
2165
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2166 2167
        ]

X
Xin Pan 已提交
2168 2169 2170 2171 2172
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2173 2174

        step_scope = parent_block.create_var(
2175
            type=core.VarDesc.VarType.STEP_SCOPES)
2176
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2177 2178
            type='conditional_block',
            inputs={
2179 2180
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2181 2182 2183
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
2184 2185 2186 2187 2188
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2189 2190 2191 2192 2193 2194
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2195
        inside_block_idx = inside_block.idx
2196

2197 2198 2199
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            conditional_block_op.desc,
            cpt.to_text(set()), [grad_sub_block.desc])

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
            if grad_sub_block.desc.has_var_recursive(
                    cpt.to_bytes(grad_var_name)
            ) or grad_var_name == core.empty_var_name():
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2276

2277 2278 2279 2280 2281 2282 2283 2284
def copy_var_to_parent_block(var, layer_helper):
    if var is None:
        return None
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2285 2286 2287 2288 2289 2290 2291
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type)
        assign(var, parent_block_var)
2292 2293 2294 2295 2296
    return parent_block_var


def cond(pred, true_fn=None, false_fn=None, name=None):
    """
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

        2. Any tensors or operations created outside of ``true_fn`` and
        ``false_fn`` will be executed regardless of which branch is selected at
        runtime. This has frequently surprised users who expected a lazy
        semantics. For example:

        .. code-block:: python
2318 2319 2320 2321 2322

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2323
            c = a * b
2324
            out = paddle.nn.cond(a < b, lambda: a + c, lambda: b * b)
2325 2326

        No matter whether ``a < b`` , ``c = a * b`` will run.
2327 2328

    Args:
2329
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2330
            value determines whether to return the result of ``true_fn`` or
2331 2332 2333 2334 2335 2336
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2337
             don't have to set this parameter. For more information, please
2338 2339 2340
             refer to :ref:`api_guide_Name` .

    Returns:
2341
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2342
        predicate ``pred`` is true else ``false_fn()`` .
2343 2344 2345

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2346 2347
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2348 2349 2350 2351

    Examples:
        .. code-block:: python

2352
            import paddle
2353 2354 2355 2356 2357 2358 2359 2360 2361

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

2362

2363
            def true_func():
2364 2365 2366 2367 2368
                return paddle.fill_constant(shape=[1, 2], dtype='int32',
                                            value=1), paddle.fill_constant(shape=[2, 3],
                                                                           dtype='bool',
                                                                           value=True)

2369 2370

            def false_func():
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
                return paddle.fill_constant(shape=[3, 4], dtype='float32',
                                            value=3), paddle.fill_constant(shape=[4, 5],
                                                                           dtype='int64',
                                                                           value=2)

            x = paddle.fill_constant(shape=[1], dtype='float32', value=0.1)
            y = paddle.fill_constant(shape=[1], dtype='float32', value=0.23)
            pred = paddle.less_than(x=x, y=y, name=None)
            ret = paddle.nn.cond(pred, true_func, false_func)
            # ret is a tuple containing 2 tensors
2381 2382
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2383
            #           [ True  True  True]]            
2384

2385
    """
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    if in_dygraph_mode():
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
        assert pred.numpy().size == 1, "condition input's numel should be 1"
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
                        "The false_fn in cond must be callable, but received {}".
                        format(type(false_fn).__name__))
                return false_fn()
        return None

2406 2407
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2408 2409 2410
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2411
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2412 2413
    if true_fn is not None:
        if not callable(true_fn):
2414 2415 2416
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2417 2418 2419 2420
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2421
                true_output = map_structure(copy_to_parent_func,
2422 2423 2424
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2425 2426 2427
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2428 2429 2430 2431 2432
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True)
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2433
                false_output = map_structure(copy_to_parent_func,
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
    try:
        assert_same_structure(true_output, false_output, check_types=False)
    except ValueError as e:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: {}".
            format(e))

    mask = cast(pred, dtype='int32')
    merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask)
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


L
liym27 已提交
2462
def _error_message(what, arg_name, op_name, right_value, error_value):
2463
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2476 2477
    :api_attr: Static Graph

L
liym27 已提交
2478 2479 2480 2481 2482 2483 2484 2485
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2486
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2487 2488 2489 2490 2491 2492 2493
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2494
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2495 2496 2497 2498 2499 2500
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2501 2502 2503
            import paddle

            paddle.enable_static()
L
liym27 已提交
2504 2505

            def fn_1():
2506
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2507 2508

            def fn_2():
2509
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2510 2511

            def fn_3():
2512
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2513

2514 2515 2516 2517
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2518 2519 2520
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2521

2522 2523 2524
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2525 2526

                # Call fn_1 because pred_1 is True
2527
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2528 2529 2530 2531
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2532
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2533

2534
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2545
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2546 2547 2548 2549 2550

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2551
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
                                   "2", str(len(pred_fn)) + "-tuple"))
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2588
class Switch(object):
Q
qiaolongfei 已提交
2589
    """
2590
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2591

2592 2593 2594 2595 2596 2597 2598
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2599 2600 2601 2602
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2603
    Member Functions:
2604
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2605 2606 2607 2608 2609 2610
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2611

2612 2613 2614 2615 2616 2617 2618 2619 2620
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2621

2622 2623
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2624 2625 2626

    Examples:
        .. code-block:: python
2627 2628
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2629

2630
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2631 2632 2633 2634 2635
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2636
            zero_var = fluid.layers.fill_constant(
2637
                shape=[1], dtype='float32', value=0.0)
2638
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2639
                shape=[1], dtype='float32', value=1.0)
2640
            two_var = fluid.layers.fill_constant(
2641
                shape=[1], dtype='float32', value=2.0)
2642

2643
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2644 2645

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2646
                with switch.case(global_step == zero_var):
2647
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2648
                with switch.default():
2649
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2650

2651 2652 2653 2654 2655
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2656 2657
    """

2658 2659 2660 2661 2662 2663 2664 2665 2666
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2667 2668 2669 2670
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2747
    """
2748 2749
    :api_attr: Static Graph

2750 2751 2752 2753
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2754 2755 2756 2757
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
2799
        print(res)
2800
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
2801 2802

    Args:
2803 2804
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2805

2806 2807
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2819

X
Xin Pan 已提交
2820
    """
Y
Yu Yang 已提交
2821 2822 2823 2824
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

2825
    def __init__(self, cond, name=None):
2826 2827
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
2828
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
2840
            parent_block = self._parent_block()
Y
Yu Yang 已提交
2841
            out_true = parent_block.create_var(
2842 2843
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2844
                dtype=x.dtype)
Y
Yu Yang 已提交
2845 2846

            out_false = parent_block.create_var(
2847 2848
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2849
                dtype=x.dtype)
Y
Yu Yang 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

2868
    def _parent_block(self):
Y
Yu Yang 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
2884
        parent_block = self._parent_block()
Y
Yu Yang 已提交
2885
        for each_out in outs:
2886 2887
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
2888 2889
            # create outside tensor
            outside_out = parent_block.create_var(
2890
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
2891
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
2892
                dtype=each_out.dtype)
Y
Yu Yang 已提交
2893 2894 2895
            out_table.append(outside_out)

            # assign local var to outside
2896
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
2897 2898 2899 2900

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
2901
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
2920
                    level=0))
Y
Yu Yang 已提交
2921
        return rlist
2922 2923 2924


class DynamicRNN(object):
Y
yuyang18 已提交
2925
    """
2926 2927
    :api_attr: Static Graph

2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
2940
    The input sequences will be shrank because only sequences of which the
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
2953

2954 2955 2956 2957
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
2958 2959 2960 2961

    Examples:
        .. code-block:: python

2962
            import paddle.fluid as fluid
2963

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
2990
    """
2991 2992 2993 2994
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

2995 2996
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
2997 2998 2999 3000
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3001
        self.zero_idx = None
3002 3003 3004
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3005
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3006 3007 3008 3009 3010
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3011
    def step_input(self, x, level=0):
3012
        r"""
3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3056

Y
yuyang18 已提交
3057
        Args:
3058 3059 3060 3061 3062 3063 3064
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3065 3066

        Returns:
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3101
        """
3102
        self._assert_in_rnn_block_("step_input")
3103
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3104 3105 3106
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3107
                name=unique_name.generate('lod_rank_table'),
3108 3109 3110 3111 3112
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
3113 3114
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
3115
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3116 3117
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
3128 3129
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
3130 3131

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3132
            name=unique_name.generate('dynamic_rnn_input_array'),
3133 3134 3135 3136 3137 3138 3139 3140
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
3141
        return array_read(array=input_array, i=self.step_idx)
3142

Y
yangyaming 已提交
3143
    def static_input(self, x):
3144
        r"""
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3218

Y
yuyang18 已提交
3219
        Args:
3220 3221 3222 3223
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3224 3225

        Returns:
T
tianshuo78520a 已提交
3226
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3238 3239 3240 3241

        Examples:
            .. code-block:: python

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3268
        """
Y
yangyaming 已提交
3269
        self._assert_in_rnn_block_("static_input")
3270
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3271 3272 3273 3274 3275
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3276
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3277 3278 3279 3280 3281 3282 3283 3284 3285
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3286
    @signature_safe_contextmanager
3287
    def block(self):
Y
yuyang18 已提交
3288
        """
3289 3290 3291 3292 3293 3294
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3295
        """
3296 3297
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3298 3299
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
3300 3301 3302 3303
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3304
            increment(x=self.step_idx, value=1.0, in_place=True)
3305 3306

            for new_mem, mem_array in self.mem_link:
3307 3308
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
3309 3310 3311 3312 3313
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
3314 3315 3316 3317 3318

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
3319
                    x=each_array, table=self.lod_rank_table))
3320 3321

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3322
        """
T
tianshuo78520a 已提交
3323
        This function is used to get the output  sequences of DynamicRNN.
3324 3325 3326 3327 3328 3329 3330 3331 3332

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3333
        """
3334
        if self.status != DynamicRNN.AFTER_RNN:
3335 3336
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3337 3338 3339 3340 3341
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3342 3343 3344 3345 3346 3347
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3348
        r"""
3349 3350 3351
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3352

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3365
            value (float, optional): When init is None, it is used as initialized value
3366 3367
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3368
                the memory needs to reorder like the RNN's input sequences. It should be
3369 3370 3371 3372 3373 3374 3375
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3376
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3377
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3378
                the memory Tensor also need to be shrank and will only retain data \
3379 3380 3381 3382 3383 3384
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3385

3386 3387 3388
        Examples:
            .. code-block:: python

3389
                import paddle.fluid as fluid
3390

3391 3392
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3393

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3405

3406 3407
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3408 3409


3410 3411
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3412

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3432
        """
3433
        self._assert_in_rnn_block_('memory')
3434
        self._init_zero_idx_()
3435 3436 3437
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3438
        if init is not None:
3439 3440
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3441
            parent_block = self._parent_block_()
3442 3443 3444 3445 3446 3447 3448 3449
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3450
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
3461
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3462
                name=unique_name.generate('dynamic_rnn_mem_array'),
3463 3464 3465 3466
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
3467
                inputs={'X': init_tensor,
3468 3469
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
3470
            retv = array_read(array=mem_array, i=self.step_idx)
3471
            retv = shrink_memory(
3472
                x=retv, i=self.step_idx, table=self.lod_rank_table)
3473 3474 3475 3476 3477 3478 3479 3480 3481
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3482
                name=unique_name.generate('mem_init'), dtype=dtype)
3483
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
3484 3485
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3503
        """
3504 3505
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3506
        Args:
3507 3508 3509
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3510 3511 3512

        Returns:
            None
3513 3514 3515 3516 3517 3518
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3519
        """
3520
        self._assert_in_rnn_block_('update_memory')
3521 3522 3523 3524
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3535
        """
3536
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3537 3538

        Args:
3539 3540
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3541 3542 3543

        Returns:
            None
3544 3545 3546

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3547
        """
3548 3549 3550
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3551 3552
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3553
            outside_array = parent_block.create_var(
3554
                name=unique_name.generate_with_ignorable_key("_".join(
3555 3556 3557 3558 3559 3560
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
3589 3590


L
liym27 已提交
3591 3592
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3593 3594
    :api_attr: Static Graph

L
liym27 已提交
3595 3596 3597
    This operator is like a C++ switch/case statement.

    Args:
3598
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3599 3600 3601 3602 3603
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3604
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3605 3606 3607 3608
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3609
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3621 3622 3623
            import paddle

            paddle.enable_static()
3624

L
liym27 已提交
3625
            def fn_1():
3626
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3627 3628

            def fn_2():
3629
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3630 3631

            def fn_3():
3632
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3633

3634 3635 3636
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3637 3638
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3639

3640
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3641 3642 3643 3644
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3645
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3646 3647 3648 3649 3650
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3651
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3652 3653 3654
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3655
                exe = paddle.static.Executor(paddle.CPUPlace())
3656
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3657 3658 3659 3660 3661 3662 3663 3664
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3665 3666
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3667 3668 3669 3670

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3671
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
3684
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
3697
                                   "switch_case", int, type(key)))
L
liym27 已提交
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

            if key in keys_of_fns:
                raise ValueError(
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".
                    format(key))
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
                    _error_message("The type of function for key {}".format(
                        key), "branch_fns", "switch_case", "callable", type(
                            fn)))

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3735
@templatedoc()
Y
Yang Yu 已提交
3736
def reorder_lod_tensor_by_rank(x, rank_table):
3737 3738 3739 3740
    """
    ${comment}

    Args:
3741 3742
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3743 3744
    
    Returns:
3745
        out(${out_type}): ${out_comment}.
3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
3759 3760 3761 3762 3763 3764 3765

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
3766 3767
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
3768
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
3769 3770 3771 3772 3773 3774
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
3775 3776


3777
def is_empty(x, name=None):
3778
    """
3779

3780
    Test whether a Tensor is empty.
3781 3782

    Args:
3783 3784 3785 3786
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
3787 3788

    Returns:
3789
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
3790 3791 3792 3793

    Examples:
        .. code-block:: python

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
3805

3806
    """
3807 3808 3809
    if in_dygraph_mode():
        return core.ops.is_empty(x)

3810 3811
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
3812 3813
    check_type(name, "name", (str, type(None)), "is_empty")

3814
    helper = LayerHelper("is_empty", **locals())
3815 3816
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
3817 3818 3819
    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond