control_flow.py 76.3 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
61
          x = fluid.layers.data(name='x', shape=[1])
62 63
          x.persistable = True

Q
qiaolongfei 已提交
64
          y = fluid.layers.data(name='y', shape=[1])
65 66
          y.persistable = True

Q
qiaolongfei 已提交
67
          out_true, out_false = fluid.layers.split_lod_tensor(
68
                input=x, mask=y, level=level)
69

70
    """
71
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
72 73
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
74 75 76 77 78 79 80 81 82 83 84 85
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


86
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
87 88 89 90 91
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
92 93 94
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
95 96 97 98 99 100 101

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
102
        level(int): The specific lod level to merge.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
122
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
123
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
135 136 137 138 139 140 141
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
142 143
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
154 155 156 157 158 159 160 161 162
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
163
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
164 165
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
166 167

    Returns:
168
        Variable: Output tensor.
Y
Yan Chunwei 已提交
169

170 171 172 173
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
174

Y
Yan Chunwei 已提交
175 176
    Examples:
        .. code-block:: python
177 178 179 180
           
           import paddle.fluid as fluid
           
           input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
181
           input = fluid.layers.Print(input, message = "The content of input layer:")
182 183 184
           # value = some_layer(...)
           # Print(value, summarize=10,
           #    message="The content of some_layer: ")
Y
Yan Chunwei 已提交
185 186

    '''
187 188
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
189 190
    helper.append_op(
        type='print',
Y
yangyaming 已提交
191
        inputs={'In': input},
192
        outputs={'Out': output},
Y
Yan Chunwei 已提交
193 194 195 196 197 198 199 200
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
201
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
202
        })
203
    return output
Y
Yan Chunwei 已提交
204 205


Y
Yu Yang 已提交
206 207
class BlockGuard(object):
    """
208 209 210 211
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
212 213
    """

214 215
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
216
            raise TypeError("BlockGuard takes a program")
217
        self.main_program = main_program
Y
Yu Yang 已提交
218 219

    def __enter__(self):
W
Wu Yi 已提交
220
        self.main_program._create_block()
Y
Yu Yang 已提交
221 222

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
223
        self.main_program._rollback()
Y
Yu Yang 已提交
224 225 226 227 228
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
229 230 231 232 233
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
234 235
    """

Y
Yu Yang 已提交
236
    def __init__(self, rnn):
X
Xin Pan 已提交
237
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
238
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
239
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
240 241 242 243
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
244
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
245 246

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
247 248
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
249
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
250
        self.rnn._complete_op()
Y
Yang Yang 已提交
251 252
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
253 254 255 256


class StaticRNNMemoryLink(object):
    """
257 258 259 260
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
261 262 263 264 265 266 267 268 269


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
270 271 272 273 274 275 276 277 278
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
279 280 281
    """
    StaticRNN class.

C
chengduo 已提交
282 283 284 285 286 287 288
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)
310
                rnn.output(word)
311 312

            result = rnn()
C
chengduo 已提交
313 314 315 316 317 318 319 320 321 322

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
323
    """
Y
Yu Yang 已提交
324 325 326 327
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

328 329
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
330 331 332 333 334 335 336 337
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
338 339 340
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
341
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
342 343 344 345 346

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

347 348 349 350 351 352 353
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
354
        """
C
chengduo 已提交
355 356 357 358 359 360
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

361
        Args:
C
chengduo 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
398
        """
Y
Yu Yang 已提交
399 400
        self._assert_in_rnn_block_('memory')
        if init is None:
401
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
402
                raise ValueError(
403
                    "if init is None, memory at least need shape and batch_ref")
404
            parent_block = self._parent_block()
405
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
406
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
407
            boot_var = parent_block.create_var(
408 409
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
410
                dtype=batch_ref.dtype,
411
                persistable=False)
Y
Yu Yang 已提交
412 413

            parent_block.append_op(
414 415
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
416 417 418
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
419
                    'shape': boot_var.shape,
F
fengjiayi 已提交
420
                    'dtype': boot_var.dtype,
421 422
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
423 424 425 426 427
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
428 429
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
430
                dtype=init.dtype,
Y
Yu Yang 已提交
431 432 433 434 435 436
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
437 438 439 440 441 442 443 444 445 446
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
447 448 449 450
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
451
            self.seq_len = x.shape[0]
452
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
453 454 455
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
456
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
457 458 459 460
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
461 462 463 464 465 466 467 468 469
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
470 471 472 473
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
474
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
475 476 477 478
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
479
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
480

481
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
482 483
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
484
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
485 486 487 488

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
489 490 491 492 493 494 495 496 497
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
498 499 500 501
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
502 503 504 505 506 507 508 509 510 511 512
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
513 514 515 516
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

517
    def _parent_block(self):
518
        prog = self.helper.main_program
Y
Yu Yang 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

534
    def _complete_op(self):
535 536
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
537
        parent_block = self._parent_block()
Y
Yu Yang 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
552 553 554
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
571
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
572 573 574
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
575
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
576 577
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
578 579
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
580 581
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
582 583
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
584 585 586 587
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
588
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
602
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
603 604
                'ex_states': pre_memories,
                'states': memories,
605
                'sub_block': rnn_block
Y
Yu Yang 已提交
606
            })
Y
Yu Yang 已提交
607 608


Y
Yang Yang(Tony) 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
624
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
625 626 627 628
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
629 630 631 632
    """
    while loop control flow.

    Args:
633
        cond(Variable): condition used to compare.
C
chengduo 已提交
634
        is_test(bool): A flag indicating whether execution is in test phase.
635
        name(str): The name of this layer.
X
Xin Pan 已提交
636 637 638

    Examples:
          .. code-block:: python
639 640 641 642 643 644 645 646 647 648
            
            import paddle.fluid as fluid
            
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            d0 = fluid.layers.data("d0", shape=[10], dtype='float32')
            data_array = fluid.layers.array_write(x=d0, i=i)
            array_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=3)

            cond = fluid.layers.less_than(x=i, y=array_len)
            while_op = fluid.layers.While(cond=cond)
X
Xin Pan 已提交
649
            with while_op.block():
650 651 652
                d = fluid.layers.array_read(array=data_array, i=i)
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                fluid.layers.less_than(x=i, y=array_len, cond=cond)            
X
Xin Pan 已提交
653 654
    """

Y
Yang Yang(Tony) 已提交
655 656 657 658
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
659
    def __init__(self, cond, is_test=False, name=None):
660
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
661 662 663 664
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
665
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
666 667 668 669
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
670
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
671 672 673 674

    def block(self):
        return WhileGuard(self)

675
    def _complete(self):
Y
Yang Yang(Tony) 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
695 696 697
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
698 699 700 701 702 703 704

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
705 706 707 708
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
709 710 711 712
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
713 714
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
715 716


717
def lod_rank_table(x, level=0):
718 719
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
720 721
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
722
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
723 724 725
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
726 727 728 729

        .. code-block:: text

            x is a LoDTensor:
730 731
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
732 733
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
734 735 736
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
737

Y
yangyaming 已提交
738 739 740 741 742 743 744 745 746
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
747 748 749 750

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
751 752
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
753 754 755 756 757 758 759 760

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
761
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
762
            out = layers.lod_rank_table(x=x, level=0)
763
    """
Y
Yu Yang 已提交
764 765 766
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
767
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
768 769 770 771 772 773
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
774 775


Y
yuyang18 已提交
776
@templatedoc()
777
def max_sequence_len(rank_table):
Y
yuyang18 已提交
778 779 780 781 782 783 784 785
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
786 787

    Args:
Y
yuyang18 已提交
788
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
789 790

    Returns:
Y
yuyang18 已提交
791
        ${out_comment}.
F
fengjiayi 已提交
792 793
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
794
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
795 796 797 798 799 800 801
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


802
def lod_tensor_to_array(x, table):
803
    """
F
fengjiayi 已提交
804 805
    Convert a LoDTensor to a LoDTensorArray.

806 807 808 809 810
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
811
    Users should not use it directly.
812 813

    Args:
F
fengjiayi 已提交
814
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
815 816
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
817
                                descending order. It is generally generated
F
fengjiayi 已提交
818
                                by `layers.lod_rank_table()` API.
819 820

    Returns:
F
fengjiayi 已提交
821
        Variable: The LoDTensorArray that has been converted from the input tensor.
822 823 824 825 826 827 828

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
829
    """
830 831
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
832
        name=unique_name.generate("lod_tensor_to_array"),
833
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
834
        dtype=x.dtype)
835 836 837 838 839 840 841 842
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


843
def array_to_lod_tensor(x, table):
844
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
845 846

    Args:
847
        x (Variable|list): The lod tensor array to be converted to a tensor.
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
863
    """
864
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
865
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
866 867 868 869 870 871 872 873
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


874
def increment(x, value=1.0, in_place=True):
875
    """
S
sneaxiy 已提交
876
    This function performs an operation that increments the value in the
877
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
878 879
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
880 881 882 883 884 885 886

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
887
        Variable: The elementwise-incremented object.
888 889 890 891

    Examples:
        .. code-block:: python

892
          import paddle.fluid as fluid
S
sneaxiy 已提交
893 894
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
895
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
896
    """
Y
Yu Yang 已提交
897
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
898
    if not in_place:
X
Xin Pan 已提交
899
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
900 901
    else:
        out = x
Y
Yu Yang 已提交
902 903 904
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
905
        outputs={'Out': [out]},
906
        attrs={'step': float(value)})
Y
Yang Yu 已提交
907
    return out
Y
Yu Yang 已提交
908 909


910
def array_write(x, i, array=None):
911 912 913 914 915
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
916 917 918

    Args:
        x (Variable|list): The input tensor from which the data will be read.
919 920 921 922 923 924 925 926
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

927
    Returns:
928
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
929 930

    Examples:
D
dzhwinter 已提交
931
        .. code-block:: python
932

933
          import paddle.fluid as fluid
934 935
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
936
          arr = fluid.layers.array_write(tmp, i=i)
937
    """
Y
Yu Yang 已提交
938 939 940 941 942
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
943
            dtype=x.dtype)
Y
Yu Yang 已提交
944 945 946 947 948 949 950 951
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


952
def create_array(dtype):
953
    """
Q
qiaolongfei 已提交
954
    **Create LoDTensorArray**
955

Q
qiaolongfei 已提交
956 957
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
958 959

    Args:
Q
qiaolongfei 已提交
960
        dtype (int|float): The data type of the elements in the lod_tensor_array.
961 962

    Returns:
963
        Variable: The lod_tensor_array variable storing the elements of data type.
964 965 966 967 968 969 970

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
971 972 973 974 975 976 977
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
978
@templatedoc()
979
def less_than(x, y, force_cpu=None, cond=None):
980
    """
Y
yuyang18 已提交
981
    ${comment}
982 983

    Args:
Y
yuyang18 已提交
984 985 986
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
987 988 989
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
990
        ${out_comment}.
991 992 993 994 995 996 997

    Examples:
        .. code-block:: python

          label = fluid.layers.data(name='y', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5)
          cond = fluid.layers.less_than(x=label, y=limit)
998
    """
Y
Yang Yang(Tony) 已提交
999 1000
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1001
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1002 1003
        cond.stop_gradient = True

Y
yuyang18 已提交
1004 1005 1006 1007 1008 1009
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1010
    helper.append_op(
J
JiayiFeng 已提交
1011 1012 1013 1014
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1015
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1016 1017 1018
    return cond


Z
zhoukunsheng 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

1035 1036 1037 1038
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

1075 1076 1077 1078
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

1115 1116 1117 1118
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1119
          out = fluid.layers.greater_equal(x=label, y=limit)
1120

Z
zhoukunsheng 已提交
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1140
def equal(x, y, cond=None):
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

1155 1156 1157
          import paddle.fluid as fluid
          label = fluid.layers.data(name="label", shape=[3,10,32,32], dtype="float32")
          limit = fluid.layers.data(name="limit", shape=[3,10,32,32], dtype="float32")
1158 1159 1160 1161
          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1162
        cond = helper.create_variable_for_type_inference(dtype='bool')
1163 1164 1165 1166 1167 1168 1169 1170
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

1186 1187 1188 1189
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1203
def array_read(array, i):
1204 1205
    """
    This function performs the operation to read the data in as an
1206
    LOD_TENSOR_ARRAY.
1207 1208 1209 1210 1211 1212

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1213

1214
        And:
1215

1216 1217 1218 1219 1220 1221
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1222
    Args:
1223 1224 1225
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1226 1227
    Returns:
        Variable: The tensor type variable that has the data written to it.
1228

K
kavyasrinet 已提交
1229
    Examples:
1230 1231
        .. code-block:: python

1232
          import paddle.fluid as fluid
Z
zhaoyuchen 已提交
1233
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1234
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1235
          item = fluid.layers.array_read(array, i)
1236
    """
Y
Yu Yang 已提交
1237 1238 1239 1240 1241
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1242
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1243 1244 1245 1246 1247 1248
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1249 1250


1251
def shrink_memory(x, i, table):
1252
    """
Y
yuyang18 已提交
1253
    This function creates an operator to shrink rnn memory using the RankTable
1254
    as mentioned in the input parameter.
Y
yuyang18 已提交
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1275
    """
Y
Yang Yu 已提交
1276
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1277
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1278
    helper.append_op(
Y
Yang Yu 已提交
1279
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1280 1281 1282 1283 1284 1285
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1286 1287


1288
def array_length(array):
1289
    """
Q
qiaolongfei 已提交
1290
    **Get the Length of Input LoDTensorArray**
1291 1292

    This function performs the operation to find the length of the input
1293
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1294

1295 1296
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1297 1298 1299 1300 1301 1302 1303 1304
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1305
        .. code-block:: python
K
kavyasrinet 已提交
1306

1307
          import paddle.fluid as fluid
K
kavyasrinet 已提交
1308 1309 1310 1311
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1312

1313
    """
Y
Yang Yu 已提交
1314
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1315
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1316 1317 1318 1319
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1320 1321 1322


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1323
    """
1324 1325 1326
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1327 1328 1329
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1371
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1372 1373 1374 1375
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1376
        self.is_scalar_condition = is_scalar_condition
1377
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1402
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1403 1404 1405
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1406 1407 1408 1409 1410
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1411 1412

        step_scope = parent_block.create_var(
1413
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1414 1415 1416
        parent_block.append_op(
            type='conditional_block',
            inputs={
1417 1418
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1419 1420 1421
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1422 1423 1424 1425 1426 1427 1428
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1429
    """
Q
qiaolongfei 已提交
1430 1431
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1432 1433 1434 1435

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1436

Q
qiaolongfei 已提交
1437
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1438 1439 1440 1441

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1442 1443 1444

    Examples:
        .. code-block:: python
1445 1446
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1447

1448
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1449 1450 1451 1452 1453
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1454 1455 1456
            zero_var = fluid.layers.fill_constant(
                 shape=[1], dtype='float32', value=0.0)
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1457
                shape=[1], dtype='float32', value=1.0)
1458 1459 1460 1461 1462
            two_var = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=2.0) 

            global_step = fluid.layers.autoincreased_step_counter(
                   counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1463 1464

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1465
                with switch.case(global_step == zero_var):
1466
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1467
                with switch.default():
1468
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1469 1470 1471

    """

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1566

1567 1568 1569 1570
            import paddle.fluid as fluid

            image = fluid.layers.data(name="X", shape=[2, 5, 5], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
X
improve  
Xin Pan 已提交
1571
            limit = fluid.layers.fill_constant_batch_size_like(
1572
                 input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1573 1574
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1575 1576
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1577 1578
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1579 1580 1581 1582
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1583 1584 1585
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1586 1587 1588
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1589 1590 1591 1592
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1593
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1594 1595
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1596
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1608
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1609
            out_true = parent_block.create_var(
1610 1611
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1612
                dtype=x.dtype)
Y
Yu Yang 已提交
1613 1614

            out_false = parent_block.create_var(
1615 1616
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1617
                dtype=x.dtype)
Y
Yu Yang 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1636
    def _parent_block(self):
Y
Yu Yang 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1652
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1653 1654 1655 1656 1657
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1658
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1659
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1660
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1661 1662 1663
            out_table.append(outside_out)

            # assign local var to outside
1664
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1665 1666 1667 1668

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1669
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1688
                    level=0))
Y
Yu Yang 已提交
1689
        return rlist
1690 1691 1692


class DynamicRNN(object):
Y
yuyang18 已提交
1693
    """
Y
yuyang18 已提交
1694 1695 1696
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1697

1698
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1708

C
chengduoZH 已提交
1709 1710 1711
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1732
    """
1733 1734 1735 1736
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1737 1738
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1739 1740 1741 1742
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1743
        self.zero_idx = None
1744 1745 1746
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1747
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1748 1749 1750 1751 1752
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1753
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1754 1755
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1756

Y
yuyang18 已提交
1757
        Args:
1758 1759
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1760 1761 1762 1763

        Returns:
            The current timestep in the input sequence.
        """
1764 1765 1766
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1767
                "step_input() can only take a Variable as its input.")
1768 1769 1770
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1771
                name=unique_name.generate('lod_rank_table'),
1772 1773 1774 1775 1776
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1777 1778
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1779
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1780 1781
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1792 1793
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1794 1795

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1796
            name=unique_name.generate('dynamic_rnn_input_array'),
1797 1798 1799 1800 1801 1802 1803 1804
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1805
        return array_read(array=input_array, i=self.step_idx)
1806

Y
yangyaming 已提交
1807
    def static_input(self, x):
Y
yuyang18 已提交
1808 1809
        """
        Mark a variable as a RNN input. The input will not be scattered into
1810
        time steps. It is optional.
H
haowang101779990 已提交
1811

Y
yuyang18 已提交
1812
        Args:
1813
            x (Variable): The input variable.
Y
yuyang18 已提交
1814 1815 1816

        Returns:
            The input variable that can access in RNN.
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1841
        """
Y
yangyaming 已提交
1842 1843 1844 1845 1846 1847 1848 1849 1850
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1851
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1861
    @signature_safe_contextmanager
1862
    def block(self):
Y
yuyang18 已提交
1863
        """
1864
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1865
        """
1866 1867
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1868 1869
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1870 1871 1872 1873
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1874
            increment(x=self.step_idx, value=1.0, in_place=True)
1875 1876

            for new_mem, mem_array in self.mem_link:
1877 1878
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1879 1880 1881 1882 1883
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1884 1885 1886 1887 1888

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1889
                    x=each_array, table=self.lod_rank_table))
1890 1891

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1892 1893 1894
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1895
        if self.status != DynamicRNN.AFTER_RNN:
1896 1897
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1898 1899 1900 1901 1902
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1903 1904 1905 1906 1907 1908
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1909
        """
Y
yuyang18 已提交
1910
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1911 1912 1913 1914 1915 1916

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
1934 1935 1936 1937 1938


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

1939 1940
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
1941

1942
              import paddle.fluid as fluid
Y
yuyang18 已提交
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
1953

1954
              rnn_output = drnn()
Y
yuyang18 已提交
1955 1956


1957 1958 1959
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
1960
            value(float): the initalized value.
H
haowang101779990 已提交
1961
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1962 1963 1964
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1965
            The memory variable.
Y
yuyang18 已提交
1966
        """
1967
        self._assert_in_rnn_block_('memory')
1968
        self._init_zero_idx_()
1969 1970 1971 1972 1973
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1974 1975 1976 1977 1978 1979 1980 1981
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1982
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1993
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1994
                name=unique_name.generate('dynamic_rnn_mem_array'),
1995 1996 1997 1998
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1999
                inputs={'X': init_tensor,
2000 2001
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2002
            retv = array_read(array=mem_array, i=self.step_idx)
2003
            retv = shrink_memory(
2004
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2005 2006 2007 2008 2009 2010 2011 2012 2013
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2014
                name=unique_name.generate('mem_init'), dtype=dtype)
2015
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2016 2017
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2035 2036 2037
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
2038
        
Y
yuyang18 已提交
2039 2040 2041 2042 2043 2044 2045
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2063
        """
2064
        Mark the RNN output variables.
Y
yuyang18 已提交
2065 2066 2067 2068 2069 2070 2071

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2072 2073 2074 2075
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2076
                name=unique_name.generate_with_ignorable_key("_".join(
2077 2078 2079 2080 2081 2082
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2111 2112


2113
@templatedoc()
Y
Yang Yu 已提交
2114
def reorder_lod_tensor_by_rank(x, rank_table):
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2138 2139 2140 2141
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2142
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2143 2144 2145 2146 2147 2148
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2149 2150


2151
def is_empty(x, cond=None):
2152
    """
F
fengjiayi 已提交
2153
    Test whether a Variable is empty.
2154 2155

    Args:
F
fengjiayi 已提交
2156
        x (Variable): The Variable to be tested.
2157
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2158
                              of given 'x'. Default: None
2159 2160

    Returns:
F
fengjiayi 已提交
2161
        Variable: A bool scalar. True if 'x' is an empty Variable.
2162 2163 2164

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2165
                   not bool.
2166 2167 2168 2169

    Examples:
        .. code-block:: python

2170 2171
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2172 2173
          res = fluid.layers.is_empty(x=input)
          # or:
2174 2175
          # fluid.layers.is_empty(x=input, cond=res)

2176 2177 2178
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2179
        cond = helper.create_variable_for_type_inference(dtype='bool')
2180 2181 2182 2183 2184 2185 2186 2187 2188
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond