control_flow.py 107.8 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
62
          x = fluid.layers.data(name='x', shape=[1])
63 64
          x.persistable = True

Q
qiaolongfei 已提交
65
          y = fluid.layers.data(name='y', shape=[1])
66 67
          y.persistable = True

Q
qiaolongfei 已提交
68
          out_true, out_false = fluid.layers.split_lod_tensor(
69
                input=x, mask=y, level=level)
70

71
    """
72
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
73 74
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


87
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
88 89 90 91 92
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
93 94 95
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
96 97 98 99 100 101 102

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
103
        level(int): The specific lod level to merge.
104 105 106 107 108 109 110

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

111
          import paddle.fluid as fluid
112 113 114 115 116 117 118 119 120 121 122 123
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
124
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
125
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
126 127 128 129 130 131 132 133 134 135 136
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
137 138 139
def Print(input,
          first_n=-1,
          message=None,
140
          summarize=20,
Y
Yan Chunwei 已提交
141 142 143
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
144 145
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153 154 155
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
156 157 158 159 160 161 162 163 164
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
165
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
166 167
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
168 169

    Returns:
170
        Variable: Output tensor.
Y
Yan Chunwei 已提交
171

172 173 174 175
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
176

Y
Yan Chunwei 已提交
177 178
    Examples:
        .. code-block:: python
179 180 181
           
           import paddle.fluid as fluid
           
182 183 184 185 186 187
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
188

189 190 191 192 193 194 195 196 197 198 199 200 201
    Output at runtime:
        .. code-block:: bash 
           
           1564546375   The content of input layer:     The place is:CPUPlace
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
           # The information of dtype at runtime may vary in different environments.
           # Eg: 
           #    If the dtype='int64' of Tensor y, the corresponding c++ type is int64_t.
           #    The dtype of output is "x" ("x" is typeid(int64_t).name()) with MacOS and gcc4.8.2
Y
Yan Chunwei 已提交
202
    '''
203 204
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
205 206
    helper.append_op(
        type='print',
Y
yangyaming 已提交
207
        inputs={'In': input},
208
        outputs={'Out': output},
Y
Yan Chunwei 已提交
209 210 211 212 213 214 215 216
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
217
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
218
        })
219
    return output
Y
Yan Chunwei 已提交
220 221


Y
Yu Yang 已提交
222 223
class BlockGuard(object):
    """
224 225 226 227
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
228 229
    """

230 231
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
232
            raise TypeError("BlockGuard takes a program")
233
        self.main_program = main_program
Y
Yu Yang 已提交
234 235

    def __enter__(self):
W
Wu Yi 已提交
236
        self.main_program._create_block()
Y
Yu Yang 已提交
237 238

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
239
        self.main_program._rollback()
Y
Yu Yang 已提交
240 241 242 243 244
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
245 246 247 248 249
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
250 251
    """

Y
Yu Yang 已提交
252
    def __init__(self, rnn):
X
Xin Pan 已提交
253
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
254
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
255
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
256 257 258 259
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
260
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
261 262

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
263 264
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
265
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
266
        self.rnn._complete_op()
Y
Yang Yang 已提交
267 268
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
269 270 271 272


class StaticRNNMemoryLink(object):
    """
273 274 275 276
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
277 278 279 280 281 282 283 284 285


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
286 287 288 289 290 291 292 293 294
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
295 296 297
    """
    StaticRNN class.

298 299 300 301 302 303 304
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
305 306

    Examples:
307 308 309 310 311 312
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
313 314
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
315 316 317 318 319
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
320
            # transform batch size to dim 1
321 322 323 324
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
325
                # mark created x_emb as input, each step process a word
326
                word = rnn.step_input(x_emb)
327
                # create prev memory parameter, batch size comes from word
328 329
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
330 331 332
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
333
                rnn.step_output(hidden)
334
            # get StaticrNN final output
335
            result = rnn()
C
chengduo 已提交
336

337
    """
Y
Yu Yang 已提交
338 339 340 341
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

342 343
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
344 345 346 347 348 349 350 351
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
352
        """
353 354
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
355
        """
Y
Yang Yang 已提交
356
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
357 358 359 360 361

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

362 363 364 365 366 367 368
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
369
        """
C
chengduo 已提交
370 371 372
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
373 374
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
375

376
        Args:
377
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
378 379
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
380 381 382 383 384 385 386
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
387 388

        Returns:
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
420 421
            .. code-block:: python

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

445
        """
Y
Yu Yang 已提交
446 447
        self._assert_in_rnn_block_('memory')
        if init is None:
448
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
449
                raise ValueError(
450
                    "if init is None, memory at least need shape and batch_ref")
451
            parent_block = self._parent_block()
452
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
453
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
454
            boot_var = parent_block.create_var(
455 456
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
457
                dtype=batch_ref.dtype,
458
                persistable=False)
Y
Yu Yang 已提交
459 460

            parent_block.append_op(
461 462
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
463 464 465
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
466
                    'shape': boot_var.shape,
F
fengjiayi 已提交
467
                    'dtype': boot_var.dtype,
468 469
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
470 471 472 473 474
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
475 476
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
477
                dtype=init.dtype,
Y
Yu Yang 已提交
478 479 480 481 482 483
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
484 485 486 487 488 489 490 491
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
521
        """
Y
Yu Yang 已提交
522 523 524 525
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
526
            self.seq_len = x.shape[0]
527
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
528 529 530
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
531
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
532 533 534 535
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
536 537 538 539 540 541 542 543
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
575
        """
Y
Yu Yang 已提交
576 577 578 579
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
580
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
581 582 583 584
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
585
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
586

587
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
588 589
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
590
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
591 592 593 594

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
595 596 597 598
        """
        Mark the StaticRNN output variables.

        Args:
599
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
600 601 602

        Returns:
            None
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
634
        """
Y
Yu Yang 已提交
635 636 637 638
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
639
        """
640
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
641 642 643

        Args:
            mem(Variable): the memory variable.
644 645
            var(Variable): the plain variable generated in RNN block, used to update memory.
                           var and mem should hava same dims and data type.
C
chengduo 已提交
646 647 648

        Returns:
            None
649

C
chengduo 已提交
650
        """
Y
Yu Yang 已提交
651 652 653 654
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

655
    def _parent_block(self):
656
        prog = self.helper.main_program
Y
Yu Yang 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

672
    def _complete_op(self):
673 674
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
675
        parent_block = self._parent_block()
Y
Yu Yang 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
690 691 692
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
693 694 695 696 697 698 699 700
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

701
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
702 703 704 705 706 707 708

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
709
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
710 711 712
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
713
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
714 715
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
716 717
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
718 719
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
720 721
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
722 723 724 725
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
726
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
740
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
741 742
                'ex_states': pre_memories,
                'states': memories,
743
                'sub_block': rnn_block
Y
Yu Yang 已提交
744
            })
Y
Yu Yang 已提交
745 746


Y
Yang Yang(Tony) 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
762
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
763 764 765 766
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
767
    """
768
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
769 770

    Args:
771 772 773
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is None.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
774 775 776

    Examples:
          .. code-block:: python
777 778
            
            import paddle.fluid as fluid
779 780 781 782 783
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
784

785
            cond = fluid.layers.less_than(x=i, y=loop_len)              
786
            while_op = fluid.layers.While(cond=cond)
787
            with while_op.block():  
788
                i = fluid.layers.increment(x=i, value=1, in_place=True)
789 790 791 792 793 794 795
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)      

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
            print(res) # [array([10])]           
X
Xin Pan 已提交
796 797
    """

Y
Yang Yang(Tony) 已提交
798 799 800 801
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
802
    def __init__(self, cond, is_test=False, name=None):
803
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
804 805 806 807
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
808
        if cond.dtype != core.VarDesc.VarType.BOOL:
809
            raise TypeError("condition should be a boolean variable")
Y
Yang Yang(Tony) 已提交
810
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
811 812 813
            raise TypeError(
                "condition expected shape as [], but given shape as {0}.".
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
814
        self.cond_var = cond
C
chengduo 已提交
815
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
816 817 818 819

    def block(self):
        return WhileGuard(self)

820
    def _complete(self):
Y
Yang Yang(Tony) 已提交
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
840 841 842
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
843 844 845 846 847 848 849

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
850 851 852 853
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
854 855 856 857
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
858 859
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
860 861


862
def lod_rank_table(x, level=0):
863 864
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
865 866
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
867
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
868 869 870
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
871 872 873 874

        .. code-block:: text

            x is a LoDTensor:
875 876
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
877 878
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
879 880 881
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
882

Y
yangyaming 已提交
883 884 885 886 887 888 889 890 891
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
892 893 894 895

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
896 897
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
898 899 900 901 902 903 904

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

905
            import paddle.fluid as fluid
Y
yangyaming 已提交
906
            x = fluid.layers.data(name='x', shape=[10],
907
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
908
            out = layers.lod_rank_table(x=x, level=0)
909
    """
Y
Yu Yang 已提交
910 911 912
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
913
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
914 915 916 917 918 919
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
920 921


Y
yuyang18 已提交
922
@templatedoc()
923
def max_sequence_len(rank_table):
Y
yuyang18 已提交
924 925 926 927 928 929 930 931
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
932 933

    Args:
Y
yuyang18 已提交
934
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
935 936

    Returns:
Y
yuyang18 已提交
937
        ${out_comment}.
F
fengjiayi 已提交
938 939
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
940
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
941 942 943 944 945 946 947
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


948
def lod_tensor_to_array(x, table):
949
    """
F
fengjiayi 已提交
950 951
    Convert a LoDTensor to a LoDTensorArray.

952 953 954 955 956
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
957
    Users should not use it directly.
958 959

    Args:
F
fengjiayi 已提交
960
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
961 962
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
963
                                descending order. It is generally generated
F
fengjiayi 已提交
964
                                by `layers.lod_rank_table()` API.
965 966

    Returns:
F
fengjiayi 已提交
967
        Variable: The LoDTensorArray that has been converted from the input tensor.
968 969 970 971

    Examples:
        .. code-block:: python

972
          import paddle.fluid as fluid
973 974 975
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
976
    """
977 978
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
979
        name=unique_name.generate("lod_tensor_to_array"),
980
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
981
        dtype=x.dtype)
982 983 984 985 986 987 988 989
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


990
def array_to_lod_tensor(x, table):
991
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
992 993

    Args:
994
        x (Variable|list): The lod tensor array to be converted to a tensor.
995 996 997 998 999 1000 1001 1002 1003 1004 1005
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1006
          import paddle.fluid as fluid
1007 1008 1009 1010
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1011
    """
1012
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1013
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1014 1015 1016 1017 1018 1019 1020 1021
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


1022
def increment(x, value=1.0, in_place=True):
1023
    """
S
sneaxiy 已提交
1024
    This function performs an operation that increments the value in the
1025
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
1026 1027
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
1028 1029 1030 1031 1032 1033 1034

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
1035
        Variable: The elementwise-incremented object.
1036 1037 1038 1039

    Examples:
        .. code-block:: python

1040
          import paddle.fluid as fluid
S
sneaxiy 已提交
1041 1042
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
1043
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
1044
    """
Y
Yu Yang 已提交
1045
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1046
    if not in_place:
X
Xin Pan 已提交
1047
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1048 1049
    else:
        out = x
Y
Yu Yang 已提交
1050 1051 1052
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1053
        outputs={'Out': [out]},
1054
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1055
    return out
Y
Yu Yang 已提交
1056 1057


1058
def array_write(x, i, array=None):
1059
    """
1060 1061 1062 1063
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1064 1065

    Args:
1066 1067 1068 1069 1070 1071 1072
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1073

1074
    Returns:
1075
        Variable: The input ``array`` after ``x`` is written into.
1076 1077

    Examples:
D
dzhwinter 已提交
1078
        .. code-block:: python
1079

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1107
    """
Y
Yu Yang 已提交
1108 1109 1110 1111 1112
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1113
            dtype=x.dtype)
Y
Yu Yang 已提交
1114 1115 1116 1117 1118 1119 1120 1121
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


1122
def create_array(dtype):
1123
    """
Q
qiaolongfei 已提交
1124
    **Create LoDTensorArray**
1125

Q
qiaolongfei 已提交
1126 1127
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
1128 1129

    Args:
Q
qiaolongfei 已提交
1130
        dtype (int|float): The data type of the elements in the lod_tensor_array.
1131 1132

    Returns:
1133
        Variable: The lod_tensor_array variable storing the elements of data type.
1134 1135 1136 1137

    Examples:
        .. code-block:: python

1138
          import paddle.fluid as fluid
1139 1140 1141
          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
1142 1143 1144 1145 1146 1147 1148
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1149
@templatedoc()
1150
def less_than(x, y, force_cpu=None, cond=None):
1151
    """
Y
yuyang18 已提交
1152
    ${comment}
1153 1154

    Args:
Y
yuyang18 已提交
1155 1156 1157
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1158 1159 1160
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1161
        ${out_comment}.
1162 1163 1164 1165

    Examples:
        .. code-block:: python

1166
          import paddle.fluid as fluid
W
Wilber 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
          import numpy as np
  
          # Graph Organizing
          x = fluid.layers.data(name='x', shape=[2], dtype='float64')
          y = fluid.layers.data(name='y', shape=[2], dtype='float64')
          result = fluid.layers.less_than(x=x, y=y)
          # The comment lists another available method.
          # result = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0)
          # fluid.layers.less_than(x=x, y=y, cond=result)
  
          # Create an executor using CPU as example
          exe = fluid.Executor(fluid.CPUPlace())
  
          # Execute
          x_i = np.array([[1, 2], [3, 4]]).astype(np.float64)
          y_i = np.array([[2, 2], [1, 3]]).astype(np.float64)
          result_value, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[result])
          print(result_value) # [[True, False], [False, False]]
1185
    """
Y
Yang Yang(Tony) 已提交
1186 1187
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1188
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1189 1190
        cond.stop_gradient = True

Y
yuyang18 已提交
1191 1192 1193 1194 1195 1196
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1197
    helper.append_op(
J
JiayiFeng 已提交
1198 1199 1200 1201
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1202
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1203 1204 1205
    return cond


Z
zhoukunsheng 已提交
1206 1207 1208
@templatedoc()
def less_equal(x, y, cond=None):
    """
1209
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1210 1211

    Args:
1212 1213 1214 1215 1216
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \
            this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \
            and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1217 1218

    Returns:
1219
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1220 1221 1222 1223

    Examples:
        .. code-block:: python

1224
          import paddle.fluid as fluid
1225 1226 1227 1228 1229 1230
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
1253
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1254 1255

    Args:
1256 1257 1258 1259 1260
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \
            of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1261 1262

    Returns:
1263
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` .
Z
zhoukunsheng 已提交
1264 1265 1266 1267

    Examples:
        .. code-block:: python

1268
          import paddle.fluid as fluid
1269 1270 1271 1272 1273
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
1296
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1297 1298

    Args:
1299 1300 1301 1302 1303
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \
            type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1304 1305

    Returns:
1306
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1307 1308 1309 1310

    Examples:
        .. code-block:: python

1311
          import paddle.fluid as fluid
1312 1313 1314 1315 1316 1317
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1318

Z
zhoukunsheng 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1338
def equal(x, y, cond=None):
1339 1340 1341 1342
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1343 1344 1345 1346 1347
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
1348 1349

    Returns:
W
wangchaochaohu 已提交
1350 1351
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1352 1353 1354 1355

    Examples:
        .. code-block:: python

1356
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1357 1358 1359 1360 1361 1362 1363
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1364 1365 1366
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1367
        cond = helper.create_variable_for_type_inference(dtype='bool')
1368 1369 1370 1371 1372 1373 1374 1375
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1376 1377
def not_equal(x, y, cond=None):
    """
1378
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1379 1380

    Args:
1381 1382 1383 1384 1385
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
             tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \
             type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1386 1387

    Returns:
1388
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1389 1390 1391 1392

    Examples:
        .. code-block:: python

1393 1394 1395 1396
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1410
def array_read(array, i):
1411
    """
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1427

K
kavyasrinet 已提交
1428
    Args:
1429 1430 1431
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1432

K
kavyasrinet 已提交
1433
    Returns:
1434
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1435

K
kavyasrinet 已提交
1436
    Examples:
1437 1438
        .. code-block:: python

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1470
    """
Y
Yu Yang 已提交
1471 1472 1473 1474 1475
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1476
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1477 1478 1479 1480 1481 1482
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1483 1484


1485
def shrink_memory(x, i, table):
1486
    """
Y
yuyang18 已提交
1487
    This function creates an operator to shrink rnn memory using the RankTable
1488
    as mentioned in the input parameter.
Y
yuyang18 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1509
    """
Y
Yang Yu 已提交
1510
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1511
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1512
    helper.append_op(
Y
Yang Yu 已提交
1513
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1514 1515 1516 1517 1518 1519
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1520 1521


1522
def array_length(array):
1523
    """
1524 1525 1526
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
    :ref:`api_fluid_layers_While` OP to traverse, read and wirte LoDTensorArray.
1527

K
kavyasrinet 已提交
1528
    Args:
1529
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
1530 1531

    Returns:
1532
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
1533 1534

    Examples:
Q
qiaolongfei 已提交
1535
        .. code-block:: python
K
kavyasrinet 已提交
1536

1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1566
    """
Y
Yang Yu 已提交
1567
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1568
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1569 1570 1571 1572
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1573 1574 1575


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1576
    """
1577 1578 1579
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1580 1581 1582
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1613
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1625
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1626 1627 1628 1629
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1630
        self.is_scalar_condition = is_scalar_condition
1631
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1656
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1657 1658 1659
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1660 1661 1662 1663 1664
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1665 1666

        step_scope = parent_block.create_var(
1667
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1668 1669 1670
        parent_block.append_op(
            type='conditional_block',
            inputs={
1671 1672
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1673 1674 1675
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1676 1677 1678 1679 1680 1681 1682
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1683 1684
    """

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

    Member Functions:
        case(cond): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
        
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
1710

1711 1712
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
1713 1714 1715

    Examples:
        .. code-block:: python
1716 1717
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1718

1719
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1720 1721 1722 1723 1724
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1725
            zero_var = fluid.layers.fill_constant(
1726
                shape=[1], dtype='float32', value=0.0)
1727
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1728
                shape=[1], dtype='float32', value=1.0)
1729
            two_var = fluid.layers.fill_constant(
1730
                shape=[1], dtype='float32', value=2.0)
1731

1732
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1733 1734

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1735
                with switch.case(global_step == zero_var):
1736
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1737
                with switch.default():
1738
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1739

1740 1741 1742 1743 1744
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
1745 1746
    """

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1832
    """
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
        print res
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
1880 1881

    Args:
1882 1883
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1884

1885 1886
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
1887

1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
1898

X
Xin Pan 已提交
1899
    """
Y
Yu Yang 已提交
1900 1901 1902 1903
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1904
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1905 1906
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1907
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1919
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1920
            out_true = parent_block.create_var(
1921 1922
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1923
                dtype=x.dtype)
Y
Yu Yang 已提交
1924 1925

            out_false = parent_block.create_var(
1926 1927
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1928
                dtype=x.dtype)
Y
Yu Yang 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1947
    def _parent_block(self):
Y
Yu Yang 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1963
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1964 1965 1966 1967 1968
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1969
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1970
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1971
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1972 1973 1974
            out_table.append(outside_out)

            # assign local var to outside
1975
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1976 1977 1978 1979

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1980
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1999
                    level=0))
Y
Yu Yang 已提交
2000
        return rlist
2001 2002 2003


class DynamicRNN(object):
Y
yuyang18 已提交
2004
    """
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
    The input sequences will be shrinked because only sequences of which the
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
2030

2031 2032 2033 2034
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
2035 2036 2037 2038

    Examples:
        .. code-block:: python

2039
            import paddle.fluid as fluid
2040

2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
2067
    """
2068 2069 2070 2071
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

2072 2073
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
2074 2075 2076 2077
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
2078
        self.zero_idx = None
2079 2080 2081
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
2082
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
2083 2084 2085 2086 2087
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

2088
    def step_input(self, x, level=0):
Y
yuyang18 已提交
2089
        """
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
2133

Y
yuyang18 已提交
2134
        Args:
2135 2136 2137 2138 2139 2140 2141
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
2142 2143

        Returns:
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2178
        """
2179 2180 2181
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
2182
                "step_input() can only take a Variable as its input.")
2183 2184 2185
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
2186
                name=unique_name.generate('lod_rank_table'),
2187 2188 2189 2190 2191
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
2192 2193
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
2194
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
2195 2196
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
2207 2208
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
2209 2210

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
2211
            name=unique_name.generate('dynamic_rnn_input_array'),
2212 2213 2214 2215 2216 2217 2218 2219
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
2220
        return array_read(array=input_array, i=self.step_idx)
2221

Y
yangyaming 已提交
2222
    def static_input(self, x):
Y
yuyang18 已提交
2223
        """
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
2297

Y
yuyang18 已提交
2298
        Args:
2299 2300 2301 2302
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
2303 2304

        Returns:
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
            Variable: The input LoDTensor after sorted and shrinked. If there are :code:`num_sequences` \
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
2317 2318 2319 2320

        Examples:
            .. code-block:: python

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2347
        """
Y
yangyaming 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2357
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
2367
    @signature_safe_contextmanager
2368
    def block(self):
Y
yuyang18 已提交
2369
        """
2370 2371 2372 2373 2374 2375
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
2376
        """
2377 2378
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
2379 2380
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
2381 2382 2383 2384
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
2385
            increment(x=self.step_idx, value=1.0, in_place=True)
2386 2387

            for new_mem, mem_array in self.mem_link:
2388 2389
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
2390 2391 2392 2393 2394
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
2395 2396 2397 2398 2399

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
2400
                    x=each_array, table=self.lod_rank_table))
2401 2402

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
2403
        """
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
        This function is used to get the output  sequneces of DynamicRNN.

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
2414
        """
2415
        if self.status != DynamicRNN.AFTER_RNN:
2416 2417
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
2418 2419 2420 2421 2422
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

2423 2424 2425 2426 2427 2428
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
2429
        """
2430 2431 2432
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
2433

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
            value (float, optional): When init is None, it is used as initalized value
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
                the memory needs to reorder like the RNN's input sequeneces. It should be
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
            Variable: The memory LoDTensor after shrinked.  If there are :code:`num_sequences` \
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the memory Tensor also need to be shrinked and will only retain data \
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
2466

2467 2468 2469
        Examples:
            .. code-block:: python

2470
                import paddle.fluid as fluid
2471

2472 2473
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
2486

2487 2488
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2489 2490


2491 2492
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
2493

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2513
        """
2514
        self._assert_in_rnn_block_('memory')
2515
        self._init_zero_idx_()
2516 2517 2518 2519 2520
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
2521 2522 2523 2524 2525 2526 2527 2528
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2529
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
2540
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
2541
                name=unique_name.generate('dynamic_rnn_mem_array'),
2542 2543 2544 2545
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
2546
                inputs={'X': init_tensor,
2547 2548
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2549
            retv = array_read(array=mem_array, i=self.step_idx)
2550
            retv = shrink_memory(
2551
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2552 2553 2554 2555 2556 2557 2558 2559 2560
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2561
                name=unique_name.generate('mem_init'), dtype=dtype)
2562
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2563 2564
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2582
        """
2583 2584
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
2585
        Args:
2586 2587 2588
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
2589 2590 2591

        Returns:
            None
2592 2593 2594 2595 2596 2597
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
2598
        """
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2616
        """
2617
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
2618 2619

        Args:
2620 2621
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
2622 2623 2624

        Returns:
            None
2625 2626 2627

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
2628
        """
2629 2630 2631 2632
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2633
                name=unique_name.generate_with_ignorable_key("_".join(
2634 2635 2636 2637 2638 2639
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2668 2669


2670
@templatedoc()
Y
Yang Yu 已提交
2671
def reorder_lod_tensor_by_rank(x, rank_table):
2672 2673 2674 2675
    """
    ${comment}

    Args:
2676 2677
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
2678 2679
    
    Returns:
2680
        out(${out_type}): ${out_comment}.
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2694 2695 2696 2697
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2698
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2699 2700 2701 2702 2703 2704
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2705 2706


2707
def is_empty(x, cond=None):
2708
    """
F
fengjiayi 已提交
2709
    Test whether a Variable is empty.
2710 2711

    Args:
F
fengjiayi 已提交
2712
        x (Variable): The Variable to be tested.
2713
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2714
                              of given 'x'. Default: None
2715 2716

    Returns:
F
fengjiayi 已提交
2717
        Variable: A bool scalar. True if 'x' is an empty Variable.
2718 2719 2720

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2721
                   not bool.
2722 2723 2724 2725

    Examples:
        .. code-block:: python

2726 2727
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2728 2729
          res = fluid.layers.is_empty(x=input)
          # or:
2730 2731
          # fluid.layers.is_empty(x=input, cond=res)

2732 2733 2734
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2735
        cond = helper.create_variable_for_type_inference(dtype='bool')
2736 2737 2738 2739 2740 2741 2742 2743 2744
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond