control_flow.py 75.1 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
61
          x = fluid.layers.data(name='x', shape=[1])
62 63
          x.persistable = True

Q
qiaolongfei 已提交
64
          y = fluid.layers.data(name='y', shape=[1])
65 66
          y.persistable = True

Q
qiaolongfei 已提交
67
          out_true, out_false = fluid.layers.split_lod_tensor(
68
                input=x, mask=y, level=level)
69

70
    """
71
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
72 73
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
74 75 76 77 78 79 80 81 82 83 84 85
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


86
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
87 88 89 90 91
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
92 93 94
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
95 96 97 98 99 100 101

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
102
        level(int): The specific lod level to merge.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
122
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
123
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
135 136 137 138 139 140 141
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
142 143
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
154 155 156 157 158 159 160 161 162
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
163
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
164 165
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
166 167

    Returns:
Y
yangyaming 已提交
168
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
169

Y
Yan Chunwei 已提交
170

Y
Yan Chunwei 已提交
171 172
    Examples:
        .. code-block:: python
173 174 175 176 177 178 179 180
           
           import paddle.fluid as fluid
           
           input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
           fluid.layers.Print(input, message = "The content of input layer:")
           # value = some_layer(...)
           # Print(value, summarize=10,
           #    message="The content of some_layer: ")
Y
Yan Chunwei 已提交
181 182 183 184 185

    '''
    helper = LayerHelper('print', **locals())
    helper.append_op(
        type='print',
Y
yangyaming 已提交
186
        inputs={'In': input},
Y
Yan Chunwei 已提交
187 188 189 190 191 192 193 194
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
195
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
196
        })
197
    return input
Y
Yan Chunwei 已提交
198 199


Y
Yu Yang 已提交
200 201
class BlockGuard(object):
    """
202 203 204 205
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
206 207
    """

208 209
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
210
            raise TypeError("BlockGuard takes a program")
211
        self.main_program = main_program
Y
Yu Yang 已提交
212 213

    def __enter__(self):
W
Wu Yi 已提交
214
        self.main_program._create_block()
Y
Yu Yang 已提交
215 216

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
217
        self.main_program._rollback()
Y
Yu Yang 已提交
218 219 220 221 222
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
223 224 225 226 227
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
228 229
    """

Y
Yu Yang 已提交
230
    def __init__(self, rnn):
X
Xin Pan 已提交
231
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
232
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
233
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
234 235 236 237
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
238
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
239 240

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
241 242
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
243
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
244
        self.rnn._complete_op()
Y
Yang Yang 已提交
245 246
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
247 248 249 250


class StaticRNNMemoryLink(object):
    """
251 252 253 254
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
255 256 257 258 259 260 261 262 263


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
273 274 275
    """
    StaticRNN class.

C
chengduo 已提交
276 277 278 279 280 281 282
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)

            result = rnn()
C
chengduo 已提交
306 307 308 309 310 311 312 313 314 315

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
316
    """
Y
Yu Yang 已提交
317 318 319 320
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

321 322
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
323 324 325 326 327 328 329 330
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
331 332 333
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
334
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
335 336 337 338 339

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

340 341 342 343 344 345 346
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
347
        """
C
chengduo 已提交
348 349 350 351 352 353
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

354
        Args:
C
chengduo 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
391
        """
Y
Yu Yang 已提交
392 393
        self._assert_in_rnn_block_('memory')
        if init is None:
394
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
395
                raise ValueError(
396
                    "if init is None, memory at least need shape and batch_ref")
397
            parent_block = self._parent_block()
398
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
399
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
400
            boot_var = parent_block.create_var(
401 402
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
403
                dtype=batch_ref.dtype,
404
                persistable=False)
Y
Yu Yang 已提交
405 406

            parent_block.append_op(
407 408
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
409 410 411
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
412
                    'shape': boot_var.shape,
F
fengjiayi 已提交
413
                    'dtype': boot_var.dtype,
414 415
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
416 417 418 419 420
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
421 422
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
423
                dtype=init.dtype,
Y
Yu Yang 已提交
424 425 426 427 428 429
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
430 431 432 433 434 435 436 437 438 439
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
440 441 442 443
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
444 445
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
446 447 448
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
449
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
450 451 452 453
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
454 455 456 457 458 459 460 461 462
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
463 464 465 466
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
467
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
468 469 470 471
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
472
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
473

474
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
475 476
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
477
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
478 479 480 481

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
482 483 484 485 486 487 488 489 490
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
491 492 493 494
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
495 496 497 498 499 500 501 502 503 504 505
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
506 507 508 509
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

510
    def _parent_block(self):
511
        prog = self.helper.main_program
Y
Yu Yang 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

527
    def _complete_op(self):
528 529
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
530
        parent_block = self._parent_block()
Y
Yu Yang 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
545 546 547
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
564
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
565 566 567
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
568
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
569 570
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
571 572
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
573 574
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
575 576
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
577 578 579 580
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
581
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
595
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
596 597
                'ex_states': pre_memories,
                'states': memories,
598
                'sub_block': rnn_block
Y
Yu Yang 已提交
599
            })
Y
Yu Yang 已提交
600 601


Y
Yang Yang(Tony) 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
617
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
618 619 620 621
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
622 623 624 625
    """
    while loop control flow.

    Args:
626
        cond(Variable): condition used to compare.
C
chengduo 已提交
627
        is_test(bool): A flag indicating whether execution is in test phase.
628
        name(str): The name of this layer.
X
Xin Pan 已提交
629 630 631

    Examples:
          .. code-block:: python
632 633 634 635 636 637 638 639 640 641
            
            import paddle.fluid as fluid
            
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            d0 = fluid.layers.data("d0", shape=[10], dtype='float32')
            data_array = fluid.layers.array_write(x=d0, i=i)
            array_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=3)

            cond = fluid.layers.less_than(x=i, y=array_len)
            while_op = fluid.layers.While(cond=cond)
X
Xin Pan 已提交
642
            with while_op.block():
643 644 645
                d = fluid.layers.array_read(array=data_array, i=i)
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                fluid.layers.less_than(x=i, y=array_len, cond=cond)            
X
Xin Pan 已提交
646 647
    """

Y
Yang Yang(Tony) 已提交
648 649 650 651
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
652
    def __init__(self, cond, is_test=False, name=None):
653
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
654 655 656 657
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
658
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
659 660 661 662
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
663
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
664 665 666 667

    def block(self):
        return WhileGuard(self)

668
    def _complete(self):
Y
Yang Yang(Tony) 已提交
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
688 689 690
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
691 692 693 694 695 696 697

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
698 699 700 701
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
702 703 704 705
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
706 707
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
708 709


710
def lod_rank_table(x, level=0):
711 712
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
713 714
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
715
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
716 717 718
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
719 720 721 722

        .. code-block:: text

            x is a LoDTensor:
723 724
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
725 726
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
727 728 729
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
730

Y
yangyaming 已提交
731 732 733 734 735 736 737 738 739
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
740 741 742 743

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
744 745
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
746 747 748 749 750 751 752 753

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
754
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
755
            out = layers.lod_rank_table(x=x, level=0)
756
    """
Y
Yu Yang 已提交
757 758 759
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
760
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
761 762 763 764 765 766
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
767 768


Y
yuyang18 已提交
769
@templatedoc()
770
def max_sequence_len(rank_table):
Y
yuyang18 已提交
771 772 773 774 775 776 777 778
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
779 780

    Args:
Y
yuyang18 已提交
781
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
782 783

    Returns:
Y
yuyang18 已提交
784
        ${out_comment}.
F
fengjiayi 已提交
785 786
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
787
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
788 789 790 791 792 793 794
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


795
def lod_tensor_to_array(x, table):
796
    """
F
fengjiayi 已提交
797 798
    Convert a LoDTensor to a LoDTensorArray.

799 800 801 802 803
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
804
    Users should not use it directly.
805 806

    Args:
F
fengjiayi 已提交
807
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
808 809
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
810
                                descending order. It is generally generated
F
fengjiayi 已提交
811
                                by `layers.lod_rank_table()` API.
812 813

    Returns:
F
fengjiayi 已提交
814
        Variable: The LoDTensorArray that has been converted from the input tensor.
815 816 817 818 819 820 821

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
822
    """
823 824
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
825
        name=unique_name.generate("lod_tensor_to_array"),
826
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
827
        dtype=x.dtype)
828 829 830 831 832 833 834 835
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


836
def array_to_lod_tensor(x, table):
837
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
838 839

    Args:
840
        x (Variable|list): The lod tensor array to be converted to a tensor.
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
856
    """
857
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
858
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
859 860 861 862 863 864 865 866
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


867
def increment(x, value=1.0, in_place=True):
868
    """
S
sneaxiy 已提交
869
    This function performs an operation that increments the value in the
870
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
871 872
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
873 874 875 876 877 878 879

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
880
        Variable: The elementwise-incremented object.
881 882 883 884

    Examples:
        .. code-block:: python

885
          import paddle.fluid as fluid
S
sneaxiy 已提交
886 887
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
888
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
889
    """
Y
Yu Yang 已提交
890
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
891
    if not in_place:
X
Xin Pan 已提交
892
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
893 894
    else:
        out = x
Y
Yu Yang 已提交
895 896 897
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
898
        outputs={'Out': [out]},
899
        attrs={'step': float(value)})
Y
Yang Yu 已提交
900
    return out
Y
Yu Yang 已提交
901 902


903
def array_write(x, i, array=None):
904 905 906 907 908
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
909 910 911

    Args:
        x (Variable|list): The input tensor from which the data will be read.
912 913 914 915 916 917 918 919
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

920
    Returns:
921
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
922 923

    Examples:
D
dzhwinter 已提交
924
        .. code-block:: python
925

926
          import paddle.fluid as fluid
927 928
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
929
          arr = fluid.layers.array_write(tmp, i=i)
930
    """
Y
Yu Yang 已提交
931 932 933 934 935
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
936
            dtype=x.dtype)
Y
Yu Yang 已提交
937 938 939 940 941 942 943 944
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


945
def create_array(dtype):
946
    """
Q
qiaolongfei 已提交
947
    **Create LoDTensorArray**
948

Q
qiaolongfei 已提交
949 950
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
951 952

    Args:
Q
qiaolongfei 已提交
953
        dtype (int|float): The data type of the elements in the lod_tensor_array.
954 955

    Returns:
956
        Variable: The lod_tensor_array variable storing the elements of data type.
957 958 959 960 961 962 963

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
964 965 966 967 968 969 970
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
971
@templatedoc()
972
def less_than(x, y, force_cpu=None, cond=None):
973
    """
Y
yuyang18 已提交
974
    ${comment}
975 976

    Args:
Y
yuyang18 已提交
977 978 979
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
980 981 982
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
983
        ${out_comment}.
984 985 986 987 988 989 990

    Examples:
        .. code-block:: python

          label = fluid.layers.data(name='y', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5)
          cond = fluid.layers.less_than(x=label, y=limit)
991
    """
Y
Yang Yang(Tony) 已提交
992 993
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
994
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
995 996
        cond.stop_gradient = True

Y
yuyang18 已提交
997 998 999 1000 1001 1002
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1003
    helper.append_op(
J
JiayiFeng 已提交
1004 1005 1006 1007
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1008
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1009 1010 1011
    return cond


Z
zhoukunsheng 已提交
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_equal(x=label, y=limit)
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1120
def equal(x, y, cond=None):
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

1135 1136 1137
          import paddle.fluid as fluid
          label = fluid.layers.data(name="label", shape=[3,10,32,32], dtype="float32")
          limit = fluid.layers.data(name="limit", shape=[3,10,32,32], dtype="float32")
1138 1139 1140 1141
          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1142
        cond = helper.create_variable_for_type_inference(dtype='bool')
1143 1144 1145 1146 1147 1148 1149 1150
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1179
def array_read(array, i):
1180 1181
    """
    This function performs the operation to read the data in as an
1182
    LOD_TENSOR_ARRAY.
1183 1184 1185 1186 1187 1188

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1189

1190
        And:
1191

1192 1193 1194 1195 1196 1197
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1198
    Args:
1199 1200 1201
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1202 1203
    Returns:
        Variable: The tensor type variable that has the data written to it.
1204

K
kavyasrinet 已提交
1205
    Examples:
1206 1207
        .. code-block:: python

1208
          import paddle.fluid as fluid
Z
zhaoyuchen 已提交
1209
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1210
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1211
          item = fluid.layers.array_read(array, i)
1212
    """
Y
Yu Yang 已提交
1213 1214 1215 1216 1217
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1218
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1219 1220 1221 1222 1223 1224
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1225 1226


1227
def shrink_memory(x, i, table):
1228
    """
Y
yuyang18 已提交
1229
    This function creates an operator to shrink rnn memory using the RankTable
1230
    as mentioned in the input parameter.
Y
yuyang18 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1251
    """
Y
Yang Yu 已提交
1252
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1253
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1254
    helper.append_op(
Y
Yang Yu 已提交
1255
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1256 1257 1258 1259 1260 1261
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1262 1263


1264
def array_length(array):
1265
    """
Q
qiaolongfei 已提交
1266
    **Get the Length of Input LoDTensorArray**
1267 1268

    This function performs the operation to find the length of the input
1269
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1270

1271 1272
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1273 1274 1275 1276 1277 1278 1279 1280
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1281
        .. code-block:: python
K
kavyasrinet 已提交
1282

1283
          import paddle.fluid as fluid
K
kavyasrinet 已提交
1284 1285 1286 1287
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1288

1289
    """
Y
Yang Yu 已提交
1290
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1291
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1292 1293 1294 1295
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1296 1297 1298


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1299
    """
1300 1301 1302
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1303 1304 1305
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1347
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1348 1349 1350 1351
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1352
        self.is_scalar_condition = is_scalar_condition
1353
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1378
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1379 1380 1381
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1382 1383 1384 1385 1386
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1387 1388

        step_scope = parent_block.create_var(
1389
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1390 1391 1392
        parent_block.append_op(
            type='conditional_block',
            inputs={
1393 1394
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1395 1396 1397
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1398 1399 1400 1401 1402 1403 1404
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1405
    """
Q
qiaolongfei 已提交
1406 1407
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1408 1409 1410 1411

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1412

Q
qiaolongfei 已提交
1413
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1414 1415 1416 1417

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1418 1419 1420

    Examples:
        .. code-block:: python
1421 1422
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1423

1424
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1425 1426 1427 1428 1429
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1430 1431 1432
            zero_var = fluid.layers.fill_constant(
                 shape=[1], dtype='float32', value=0.0)
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1433
                shape=[1], dtype='float32', value=1.0)
1434 1435 1436 1437 1438
            two_var = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=2.0) 

            global_step = fluid.layers.autoincreased_step_counter(
                   counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1439 1440

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1441
                with switch.case(global_step == zero_var):
1442
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1443
                with switch.default():
1444
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1445 1446 1447

    """

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1533 1534 1535 1536 1537 1538 1539 1540 1541
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1542

1543 1544 1545 1546
            import paddle.fluid as fluid

            image = fluid.layers.data(name="X", shape=[2, 5, 5], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
X
improve  
Xin Pan 已提交
1547
            limit = fluid.layers.fill_constant_batch_size_like(
1548
                 input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1549 1550
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1551 1552
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1553 1554
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1555 1556 1557 1558
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1559 1560 1561
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1562 1563 1564
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1565 1566 1567 1568
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1569
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1570 1571
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1572
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1584
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1585
            out_true = parent_block.create_var(
1586 1587
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1588
                dtype=x.dtype)
Y
Yu Yang 已提交
1589 1590

            out_false = parent_block.create_var(
1591 1592
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1593
                dtype=x.dtype)
Y
Yu Yang 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1612
    def _parent_block(self):
Y
Yu Yang 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1628
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1629 1630 1631 1632 1633
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1634
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1635
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1636
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1637 1638 1639
            out_table.append(outside_out)

            # assign local var to outside
1640
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1641 1642 1643 1644

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1645
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1664
                    level=0))
Y
Yu Yang 已提交
1665
        return rlist
1666 1667 1668


class DynamicRNN(object):
Y
yuyang18 已提交
1669
    """
Y
yuyang18 已提交
1670 1671 1672
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1673

1674
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1675 1676 1677 1678 1679 1680 1681 1682 1683

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1684

C
chengduoZH 已提交
1685 1686 1687
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1708
    """
1709 1710 1711 1712
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1713 1714
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1715 1716 1717 1718
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1719
        self.zero_idx = None
1720 1721 1722
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1723
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1724 1725 1726 1727 1728
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1729
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1730 1731
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1732

Y
yuyang18 已提交
1733
        Args:
1734 1735
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1736 1737 1738 1739

        Returns:
            The current timestep in the input sequence.
        """
1740 1741 1742
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1743
                "step_input() can only take a Variable as its input.")
1744 1745 1746
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1747
                name=unique_name.generate('lod_rank_table'),
1748 1749 1750 1751 1752
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1753 1754
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1755
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1756 1757
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1768 1769
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1770 1771

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1772
            name=unique_name.generate('dynamic_rnn_input_array'),
1773 1774 1775 1776 1777 1778 1779 1780
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1781
        return array_read(array=input_array, i=self.step_idx)
1782

Y
yangyaming 已提交
1783
    def static_input(self, x):
Y
yuyang18 已提交
1784 1785
        """
        Mark a variable as a RNN input. The input will not be scattered into
1786
        time steps. It is optional.
H
haowang101779990 已提交
1787

Y
yuyang18 已提交
1788
        Args:
1789
            x (Variable): The input variable.
Y
yuyang18 已提交
1790 1791 1792

        Returns:
            The input variable that can access in RNN.
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1817
        """
Y
yangyaming 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1827
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1837
    @signature_safe_contextmanager
1838
    def block(self):
Y
yuyang18 已提交
1839
        """
1840
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1841
        """
1842 1843
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1844 1845
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1846 1847 1848 1849
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1850
            increment(x=self.step_idx, value=1.0, in_place=True)
1851 1852

            for new_mem, mem_array in self.mem_link:
1853 1854
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1855 1856 1857 1858 1859
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1860 1861 1862 1863 1864

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1865
                    x=each_array, table=self.lod_rank_table))
1866 1867

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1868 1869 1870
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1871
        if self.status != DynamicRNN.AFTER_RNN:
1872 1873
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1874 1875 1876 1877 1878
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1879 1880 1881 1882 1883 1884
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1885
        """
Y
yuyang18 已提交
1886
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1887 1888 1889 1890 1891 1892

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
1910 1911 1912 1913 1914


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

1915 1916
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
1917

1918
              import paddle.fluid as fluid
Y
yuyang18 已提交
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
1929

1930
              rnn_output = drnn()
Y
yuyang18 已提交
1931 1932


1933 1934 1935
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
1936
            value(float): the initalized value.
H
haowang101779990 已提交
1937
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1938 1939 1940
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1941
            The memory variable.
Y
yuyang18 已提交
1942
        """
1943
        self._assert_in_rnn_block_('memory')
1944
        self._init_zero_idx_()
1945 1946 1947 1948 1949
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1950 1951 1952 1953 1954 1955 1956 1957
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1958
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1969
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1970
                name=unique_name.generate('dynamic_rnn_mem_array'),
1971 1972 1973 1974
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1975
                inputs={'X': init_tensor,
1976 1977
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1978
            retv = array_read(array=mem_array, i=self.step_idx)
1979
            retv = shrink_memory(
1980
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1981 1982 1983 1984 1985 1986 1987 1988 1989
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1990
                name=unique_name.generate('mem_init'), dtype=dtype)
1991
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1992 1993
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2011 2012 2013
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
2014
        
Y
yuyang18 已提交
2015 2016 2017 2018 2019 2020 2021
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2039
        """
2040
        Mark the RNN output variables.
Y
yuyang18 已提交
2041 2042 2043 2044 2045 2046 2047

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2048 2049 2050 2051
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2052
                name=unique_name.generate_with_ignorable_key("_".join(
2053 2054 2055 2056 2057 2058
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2087 2088


2089
@templatedoc()
Y
Yang Yu 已提交
2090
def reorder_lod_tensor_by_rank(x, rank_table):
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2114 2115 2116 2117
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2118
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2119 2120 2121 2122 2123 2124
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2125 2126


2127
def is_empty(x, cond=None):
2128
    """
F
fengjiayi 已提交
2129
    Test whether a Variable is empty.
2130 2131

    Args:
F
fengjiayi 已提交
2132
        x (Variable): The Variable to be tested.
2133
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2134
                              of given 'x'. Default: None
2135 2136

    Returns:
F
fengjiayi 已提交
2137
        Variable: A bool scalar. True if 'x' is an empty Variable.
2138 2139 2140

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2141
                   not bool.
2142 2143 2144 2145

    Examples:
        .. code-block:: python

2146 2147
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2148 2149
          res = fluid.layers.is_empty(x=input)
          # or:
2150 2151
          # fluid.layers.is_empty(x=input, cond=res)

2152 2153 2154
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2155
        cond = helper.create_variable_for_type_inference(dtype='bool')
2156 2157 2158 2159 2160 2161 2162 2163 2164
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond