control_flow.py 76.6 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

61
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
62
          x = fluid.layers.data(name='x', shape=[1])
63 64
          x.persistable = True

Q
qiaolongfei 已提交
65
          y = fluid.layers.data(name='y', shape=[1])
66 67
          y.persistable = True

Q
qiaolongfei 已提交
68
          out_true, out_false = fluid.layers.split_lod_tensor(
69
                input=x, mask=y, level=level)
70

71
    """
72
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
73 74
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
75 76 77 78 79 80 81 82 83 84 85 86
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


87
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
88 89 90 91 92
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
93 94 95
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
96 97 98 99 100 101 102

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
103
        level(int): The specific lod level to merge.
104 105 106 107 108 109 110

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

111
          import paddle.fluid as fluid
112 113 114 115 116 117 118 119 120 121 122 123
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
124
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
125
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
126 127 128 129 130 131 132 133 134 135 136
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
137 138 139 140 141 142 143
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
144 145
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
146 147 148 149 150 151 152 153 154 155
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
156 157 158 159 160 161 162 163 164
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
165
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
166 167
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
168 169

    Returns:
170
        Variable: Output tensor.
Y
Yan Chunwei 已提交
171

172 173 174 175
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
176

Y
Yan Chunwei 已提交
177 178
    Examples:
        .. code-block:: python
179 180 181 182
           
           import paddle.fluid as fluid
           
           input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
183
           input = fluid.layers.Print(input, message = "The content of input layer:")
184 185 186
           # value = some_layer(...)
           # Print(value, summarize=10,
           #    message="The content of some_layer: ")
Y
Yan Chunwei 已提交
187 188

    '''
189 190
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
191 192
    helper.append_op(
        type='print',
Y
yangyaming 已提交
193
        inputs={'In': input},
194
        outputs={'Out': output},
Y
Yan Chunwei 已提交
195 196 197 198 199 200 201 202
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
203
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
204
        })
205
    return output
Y
Yan Chunwei 已提交
206 207


Y
Yu Yang 已提交
208 209
class BlockGuard(object):
    """
210 211 212 213
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
214 215
    """

216 217
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
218
            raise TypeError("BlockGuard takes a program")
219
        self.main_program = main_program
Y
Yu Yang 已提交
220 221

    def __enter__(self):
W
Wu Yi 已提交
222
        self.main_program._create_block()
Y
Yu Yang 已提交
223 224

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
225
        self.main_program._rollback()
Y
Yu Yang 已提交
226 227 228 229 230
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
231 232 233 234 235
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
236 237
    """

Y
Yu Yang 已提交
238
    def __init__(self, rnn):
X
Xin Pan 已提交
239
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
240
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
241
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
242 243 244 245
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
246
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
247 248

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
249 250
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
251
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
252
        self.rnn._complete_op()
Y
Yang Yang 已提交
253 254
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
255 256 257 258


class StaticRNNMemoryLink(object):
    """
259 260 261 262
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
263 264 265 266 267 268 269 270 271


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
272 273 274 275 276 277 278 279 280
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
281 282 283
    """
    StaticRNN class.

C
chengduo 已提交
284 285 286 287 288 289 290
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)
312
                rnn.output(word)
313 314

            result = rnn()
C
chengduo 已提交
315 316 317 318 319 320 321 322 323 324

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
325
    """
Y
Yu Yang 已提交
326 327 328 329
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

330 331
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
332 333 334 335 336 337 338 339
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
340 341 342
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
343
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
344 345 346 347 348

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

349 350 351 352 353 354 355
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
356
        """
C
chengduo 已提交
357 358 359 360 361 362
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

363
        Args:
C
chengduo 已提交
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
400
        """
Y
Yu Yang 已提交
401 402
        self._assert_in_rnn_block_('memory')
        if init is None:
403
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
404
                raise ValueError(
405
                    "if init is None, memory at least need shape and batch_ref")
406
            parent_block = self._parent_block()
407
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
408
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
409
            boot_var = parent_block.create_var(
410 411
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
412
                dtype=batch_ref.dtype,
413
                persistable=False)
Y
Yu Yang 已提交
414 415

            parent_block.append_op(
416 417
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
418 419 420
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
421
                    'shape': boot_var.shape,
F
fengjiayi 已提交
422
                    'dtype': boot_var.dtype,
423 424
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
425 426 427 428 429
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
430 431
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
432
                dtype=init.dtype,
Y
Yu Yang 已提交
433 434 435 436 437 438
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
439 440 441 442 443 444 445 446 447 448
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
449 450 451 452
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
453
            self.seq_len = x.shape[0]
454
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
455 456 457
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
458
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
459 460 461 462
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
463 464 465 466 467 468 469 470 471
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
472 473 474 475
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
476
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
477 478 479 480
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
481
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
482

483
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
484 485
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
486
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
487 488 489 490

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
491 492 493 494 495 496 497 498 499
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
500 501 502 503
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
504 505 506 507 508 509 510 511 512 513 514
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
515 516 517 518
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

519
    def _parent_block(self):
520
        prog = self.helper.main_program
Y
Yu Yang 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

536
    def _complete_op(self):
537 538
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
539
        parent_block = self._parent_block()
Y
Yu Yang 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
554 555 556
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
573
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
574 575 576
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
577
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
578 579
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
580 581
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
582 583
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
584 585
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
586 587 588 589
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
590
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
591 592 593 594 595 596 597 598 599 600 601 602 603

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
604
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
605 606
                'ex_states': pre_memories,
                'states': memories,
607
                'sub_block': rnn_block
Y
Yu Yang 已提交
608
            })
Y
Yu Yang 已提交
609 610


Y
Yang Yang(Tony) 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
626
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
627 628 629 630
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
631 632 633 634
    """
    while loop control flow.

    Args:
635
        cond(Variable): condition used to compare.
C
chengduo 已提交
636
        is_test(bool): A flag indicating whether execution is in test phase.
637
        name(str): The name of this layer.
X
Xin Pan 已提交
638 639 640

    Examples:
          .. code-block:: python
641 642 643 644 645 646 647 648 649 650
            
            import paddle.fluid as fluid
            
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            d0 = fluid.layers.data("d0", shape=[10], dtype='float32')
            data_array = fluid.layers.array_write(x=d0, i=i)
            array_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=3)

            cond = fluid.layers.less_than(x=i, y=array_len)
            while_op = fluid.layers.While(cond=cond)
X
Xin Pan 已提交
651
            with while_op.block():
652 653 654
                d = fluid.layers.array_read(array=data_array, i=i)
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                fluid.layers.less_than(x=i, y=array_len, cond=cond)            
X
Xin Pan 已提交
655 656
    """

Y
Yang Yang(Tony) 已提交
657 658 659 660
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
661
    def __init__(self, cond, is_test=False, name=None):
662
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
663 664 665 666
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
667
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
668 669 670 671
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
672
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
673 674 675 676

    def block(self):
        return WhileGuard(self)

677
    def _complete(self):
Y
Yang Yang(Tony) 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
697 698 699
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
700 701 702 703 704 705 706

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
707 708 709 710
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
711 712 713 714
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
715 716
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
717 718


719
def lod_rank_table(x, level=0):
720 721
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
722 723
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
724
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
725 726 727
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
728 729 730 731

        .. code-block:: text

            x is a LoDTensor:
732 733
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
734 735
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
736 737 738
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
739

Y
yangyaming 已提交
740 741 742 743 744 745 746 747 748
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
749 750 751 752

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
753 754
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
755 756 757 758 759 760 761

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

762
            import paddle.fluid as fluid
Y
yangyaming 已提交
763
            x = fluid.layers.data(name='x', shape=[10],
764
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
765
            out = layers.lod_rank_table(x=x, level=0)
766
    """
Y
Yu Yang 已提交
767 768 769
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
770
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
771 772 773 774 775 776
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
777 778


Y
yuyang18 已提交
779
@templatedoc()
780
def max_sequence_len(rank_table):
Y
yuyang18 已提交
781 782 783 784 785 786 787 788
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
789 790

    Args:
Y
yuyang18 已提交
791
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
792 793

    Returns:
Y
yuyang18 已提交
794
        ${out_comment}.
F
fengjiayi 已提交
795 796
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
797
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
798 799 800 801 802 803 804
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


805
def lod_tensor_to_array(x, table):
806
    """
F
fengjiayi 已提交
807 808
    Convert a LoDTensor to a LoDTensorArray.

809 810 811 812 813
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
814
    Users should not use it directly.
815 816

    Args:
F
fengjiayi 已提交
817
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
818 819
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
820
                                descending order. It is generally generated
F
fengjiayi 已提交
821
                                by `layers.lod_rank_table()` API.
822 823

    Returns:
F
fengjiayi 已提交
824
        Variable: The LoDTensorArray that has been converted from the input tensor.
825 826 827 828

    Examples:
        .. code-block:: python

829
          import paddle.fluid as fluid
830 831 832
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
833
    """
834 835
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
836
        name=unique_name.generate("lod_tensor_to_array"),
837
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
838
        dtype=x.dtype)
839 840 841 842 843 844 845 846
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


847
def array_to_lod_tensor(x, table):
848
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
849 850

    Args:
851
        x (Variable|list): The lod tensor array to be converted to a tensor.
852 853 854 855 856 857 858 859 860 861 862
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

863
          import paddle.fluid as fluid
864 865 866 867
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
868
    """
869
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
870
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
871 872 873 874 875 876 877 878
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


879
def increment(x, value=1.0, in_place=True):
880
    """
S
sneaxiy 已提交
881
    This function performs an operation that increments the value in the
882
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
883 884
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
885 886 887 888 889 890 891

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
892
        Variable: The elementwise-incremented object.
893 894 895 896

    Examples:
        .. code-block:: python

897
          import paddle.fluid as fluid
S
sneaxiy 已提交
898 899
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
900
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
901
    """
Y
Yu Yang 已提交
902
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
903
    if not in_place:
X
Xin Pan 已提交
904
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
905 906
    else:
        out = x
Y
Yu Yang 已提交
907 908 909
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
910
        outputs={'Out': [out]},
911
        attrs={'step': float(value)})
Y
Yang Yu 已提交
912
    return out
Y
Yu Yang 已提交
913 914


915
def array_write(x, i, array=None):
916 917 918 919 920
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
921 922 923

    Args:
        x (Variable|list): The input tensor from which the data will be read.
924 925 926 927 928 929 930 931
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

932
    Returns:
933
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
934 935

    Examples:
D
dzhwinter 已提交
936
        .. code-block:: python
937

938
          import paddle.fluid as fluid
939 940
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
941
          arr = fluid.layers.array_write(tmp, i=i)
942
    """
Y
Yu Yang 已提交
943 944 945 946 947
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
948
            dtype=x.dtype)
Y
Yu Yang 已提交
949 950 951 952 953 954 955 956
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


957
def create_array(dtype):
958
    """
Q
qiaolongfei 已提交
959
    **Create LoDTensorArray**
960

Q
qiaolongfei 已提交
961 962
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
963 964

    Args:
Q
qiaolongfei 已提交
965
        dtype (int|float): The data type of the elements in the lod_tensor_array.
966 967

    Returns:
968
        Variable: The lod_tensor_array variable storing the elements of data type.
969 970 971 972

    Examples:
        .. code-block:: python

973
          import paddle.fluid as fluid
974 975 976
          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
977 978 979 980 981 982 983
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
984
@templatedoc()
985
def less_than(x, y, force_cpu=None, cond=None):
986
    """
Y
yuyang18 已提交
987
    ${comment}
988 989

    Args:
Y
yuyang18 已提交
990 991 992
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
993 994 995
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
996
        ${out_comment}.
997 998 999 1000

    Examples:
        .. code-block:: python

1001
          import paddle.fluid as fluid
1002 1003 1004
          label = fluid.layers.data(name='y', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], dtype='int64', value=5)
          cond = fluid.layers.less_than(x=label, y=limit)
1005
    """
Y
Yang Yang(Tony) 已提交
1006 1007
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1008
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1009 1010
        cond.stop_gradient = True

Y
yuyang18 已提交
1011 1012 1013 1014 1015 1016
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
1017
    helper.append_op(
J
JiayiFeng 已提交
1018 1019 1020 1021
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1022
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1023 1024 1025
    return cond


Z
zhoukunsheng 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

1042 1043 1044 1045
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

1082 1083 1084 1085
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

1122 1123 1124 1125
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1126
          out = fluid.layers.greater_equal(x=label, y=limit)
1127

Z
zhoukunsheng 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1147
def equal(x, y, cond=None):
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

1162 1163 1164
          import paddle.fluid as fluid
          label = fluid.layers.data(name="label", shape=[3,10,32,32], dtype="float32")
          limit = fluid.layers.data(name="limit", shape=[3,10,32,32], dtype="float32")
1165 1166 1167 1168
          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1169
        cond = helper.create_variable_for_type_inference(dtype='bool')
1170 1171 1172 1173 1174 1175 1176 1177
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

1193 1194 1195 1196
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1210
def array_read(array, i):
1211 1212
    """
    This function performs the operation to read the data in as an
1213
    LOD_TENSOR_ARRAY.
1214 1215 1216 1217 1218 1219

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1220

1221
        And:
1222

1223 1224 1225 1226 1227 1228
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1229
    Args:
1230 1231 1232
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1233 1234
    Returns:
        Variable: The tensor type variable that has the data written to it.
1235

K
kavyasrinet 已提交
1236
    Examples:
1237 1238
        .. code-block:: python

1239
          import paddle.fluid as fluid
Z
zhaoyuchen 已提交
1240
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1241
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1242
          item = fluid.layers.array_read(array, i)
1243
    """
Y
Yu Yang 已提交
1244 1245 1246 1247 1248
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1249
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1250 1251 1252 1253 1254 1255
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1256 1257


1258
def shrink_memory(x, i, table):
1259
    """
Y
yuyang18 已提交
1260
    This function creates an operator to shrink rnn memory using the RankTable
1261
    as mentioned in the input parameter.
Y
yuyang18 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1282
    """
Y
Yang Yu 已提交
1283
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1284
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1285
    helper.append_op(
Y
Yang Yu 已提交
1286
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1287 1288 1289 1290 1291 1292
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1293 1294


1295
def array_length(array):
1296
    """
Q
qiaolongfei 已提交
1297
    **Get the Length of Input LoDTensorArray**
1298 1299

    This function performs the operation to find the length of the input
1300
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1301

1302 1303
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1304 1305 1306 1307 1308 1309 1310 1311
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1312
        .. code-block:: python
K
kavyasrinet 已提交
1313

1314
          import paddle.fluid as fluid
K
kavyasrinet 已提交
1315 1316 1317 1318
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1319

1320
    """
Y
Yang Yu 已提交
1321
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1322
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1323 1324 1325 1326
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1327 1328 1329


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1330
    """
1331 1332 1333
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1334 1335 1336
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1367
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1379
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1380 1381 1382 1383
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1384
        self.is_scalar_condition = is_scalar_condition
1385
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1410
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1411 1412 1413
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1414 1415 1416 1417 1418
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1419 1420

        step_scope = parent_block.create_var(
1421
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1422 1423 1424
        parent_block.append_op(
            type='conditional_block',
            inputs={
1425 1426
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1427 1428 1429
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1430 1431 1432 1433 1434 1435 1436
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1437
    """
Q
qiaolongfei 已提交
1438 1439
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1440 1441 1442 1443

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1444

Q
qiaolongfei 已提交
1445
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1446 1447 1448 1449

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1450 1451 1452

    Examples:
        .. code-block:: python
1453 1454
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
1455

1456
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
1457 1458 1459 1460 1461
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
1462 1463 1464
            zero_var = fluid.layers.fill_constant(
                 shape=[1], dtype='float32', value=0.0)
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
1465
                shape=[1], dtype='float32', value=1.0)
1466 1467 1468 1469 1470
            two_var = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=2.0) 

            global_step = fluid.layers.autoincreased_step_counter(
                   counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
1471 1472

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1473
                with switch.case(global_step == zero_var):
1474
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
1475
                with switch.default():
1476
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1477 1478 1479

    """

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1574

1575 1576 1577 1578
            import paddle.fluid as fluid

            image = fluid.layers.data(name="X", shape=[2, 5, 5], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
X
improve  
Xin Pan 已提交
1579
            limit = fluid.layers.fill_constant_batch_size_like(
1580
                 input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1581 1582
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1583 1584
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1585 1586
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1587 1588 1589 1590
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1591 1592 1593
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1594 1595 1596
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1597 1598 1599 1600
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1601
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1602 1603
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1604
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1616
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1617
            out_true = parent_block.create_var(
1618 1619
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1620
                dtype=x.dtype)
Y
Yu Yang 已提交
1621 1622

            out_false = parent_block.create_var(
1623 1624
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
1625
                dtype=x.dtype)
Y
Yu Yang 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1644
    def _parent_block(self):
Y
Yu Yang 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1660
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1661 1662 1663 1664 1665
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
1666
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
1667
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1668
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1669 1670 1671
            out_table.append(outside_out)

            # assign local var to outside
1672
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1673 1674 1675 1676

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1677
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1696
                    level=0))
Y
Yu Yang 已提交
1697
        return rlist
1698 1699 1700


class DynamicRNN(object):
Y
yuyang18 已提交
1701
    """
Y
yuyang18 已提交
1702 1703 1704
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1705

1706
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1716

C
chengduoZH 已提交
1717 1718 1719
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1740
    """
1741 1742 1743 1744
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1745 1746
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1747 1748 1749 1750
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1751
        self.zero_idx = None
1752 1753 1754
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1755
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1756 1757 1758 1759 1760
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1761
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1762 1763
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1764

Y
yuyang18 已提交
1765
        Args:
1766 1767
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1768 1769 1770 1771

        Returns:
            The current timestep in the input sequence.
        """
1772 1773 1774
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1775
                "step_input() can only take a Variable as its input.")
1776 1777 1778
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1779
                name=unique_name.generate('lod_rank_table'),
1780 1781 1782 1783 1784
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1785 1786
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1787
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1788 1789
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1800 1801
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1802 1803

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1804
            name=unique_name.generate('dynamic_rnn_input_array'),
1805 1806 1807 1808 1809 1810 1811 1812
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1813
        return array_read(array=input_array, i=self.step_idx)
1814

Y
yangyaming 已提交
1815
    def static_input(self, x):
Y
yuyang18 已提交
1816 1817
        """
        Mark a variable as a RNN input. The input will not be scattered into
1818
        time steps. It is optional.
H
haowang101779990 已提交
1819

Y
yuyang18 已提交
1820
        Args:
1821
            x (Variable): The input variable.
Y
yuyang18 已提交
1822 1823 1824

        Returns:
            The input variable that can access in RNN.
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1849
        """
Y
yangyaming 已提交
1850 1851 1852 1853 1854 1855 1856 1857 1858
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1859
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1860 1861 1862 1863 1864 1865 1866 1867 1868
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1869
    @signature_safe_contextmanager
1870
    def block(self):
Y
yuyang18 已提交
1871
        """
1872
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1873
        """
1874 1875
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1876 1877
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1878 1879 1880 1881
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1882
            increment(x=self.step_idx, value=1.0, in_place=True)
1883 1884

            for new_mem, mem_array in self.mem_link:
1885 1886
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1887 1888 1889 1890 1891
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1892 1893 1894 1895 1896

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1897
                    x=each_array, table=self.lod_rank_table))
1898 1899

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1900 1901 1902
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1903
        if self.status != DynamicRNN.AFTER_RNN:
1904 1905
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1906 1907 1908 1909 1910
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1911 1912 1913 1914 1915 1916
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1917
        """
Y
yuyang18 已提交
1918
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1919 1920 1921 1922 1923 1924

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
1942 1943 1944 1945 1946


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

1947 1948
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
1949

1950
              import paddle.fluid as fluid
Y
yuyang18 已提交
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
1961

1962
              rnn_output = drnn()
Y
yuyang18 已提交
1963 1964


1965 1966 1967
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
1968
            value(float): the initalized value.
H
haowang101779990 已提交
1969
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1970 1971 1972
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1973
            The memory variable.
Y
yuyang18 已提交
1974
        """
1975
        self._assert_in_rnn_block_('memory')
1976
        self._init_zero_idx_()
1977 1978 1979 1980 1981
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1982 1983 1984 1985 1986 1987 1988 1989
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1990
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
2001
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
2002
                name=unique_name.generate('dynamic_rnn_mem_array'),
2003 2004 2005 2006
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
2007
                inputs={'X': init_tensor,
2008 2009
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
2010
            retv = array_read(array=mem_array, i=self.step_idx)
2011
            retv = shrink_memory(
2012
                x=retv, i=self.step_idx, table=self.lod_rank_table)
2013 2014 2015 2016 2017 2018 2019 2020 2021
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
2022
                name=unique_name.generate('mem_init'), dtype=dtype)
2023
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
2024 2025
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
2043 2044 2045
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
2046
        
Y
yuyang18 已提交
2047 2048 2049 2050 2051 2052 2053
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2071
        """
2072
        Mark the RNN output variables.
Y
yuyang18 已提交
2073 2074 2075 2076 2077 2078 2079

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2080 2081 2082 2083
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
2084
                name=unique_name.generate_with_ignorable_key("_".join(
2085 2086 2087 2088 2089 2090
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2119 2120


2121
@templatedoc()
Y
Yang Yu 已提交
2122
def reorder_lod_tensor_by_rank(x, rank_table):
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2146 2147 2148 2149
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2150
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2151 2152 2153 2154 2155 2156
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2157 2158


2159
def is_empty(x, cond=None):
2160
    """
F
fengjiayi 已提交
2161
    Test whether a Variable is empty.
2162 2163

    Args:
F
fengjiayi 已提交
2164
        x (Variable): The Variable to be tested.
2165
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2166
                              of given 'x'. Default: None
2167 2168

    Returns:
F
fengjiayi 已提交
2169
        Variable: A bool scalar. True if 'x' is an empty Variable.
2170 2171 2172

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2173
                   not bool.
2174 2175 2176 2177

    Examples:
        .. code-block:: python

2178 2179
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2180 2181
          res = fluid.layers.is_empty(x=input)
          # or:
2182 2183
          # fluid.layers.is_empty(x=input, cond=res)

2184 2185 2186
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2187
        cond = helper.create_variable_for_type_inference(dtype='bool')
2188 2189 2190 2191 2192 2193 2194 2195 2196
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond