control_flow.py 136.8 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
23
from .nn import logical_and, logical_not, logical_or
24
from .utils import assert_same_structure, map_structure
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
L
liym27 已提交
28
from functools import reduce, partial
29
from ..data_feeder import convert_dtype, check_variable_and_dtype
30 31
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
D
dzhwinter 已提交
32

Q
QI JUN 已提交
33
__all__ = [
W
Wu Yi 已提交
34
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
35
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
36
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
G
guofei 已提交
37 38
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case',
    'while_loop'
D
dzhwinter 已提交
39 40
]

Y
Yu Yang 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
def select_output(input, outputs, mask):
    """
    **select_output**    
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
    helper.append_op(
        type='select_output',
        inputs={'X': input,
                'Mask': mask},
        outputs={'Out': outputs})
    return outputs


def select_input(inputs, mask):
    """
    **select_input**
    
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        input_dtype = inputs[0].dtype
85
        input_shape = inputs[0].shape
86 87
    else:
        input_dtype = inputs.dtype
88 89
        input_shape = inputs.shape
    out = helper.create_variable(dtype=input_dtype, shape=input_shape)
90 91 92 93 94 95 96 97
    helper.append_op(
        type='select_input',
        inputs={'X': inputs,
                'Mask': mask},
        outputs={'Out': out})
    return out


98
def split_lod_tensor(input, mask, level=0):
99 100 101 102
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
103 104
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
105 106 107 108 109

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
110
        level(int): The specific lod level to split.
111 112

    Returns:
Q
qiaolongfei 已提交
113 114 115 116
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
117 118 119 120

    Examples:
        .. code-block:: python

121
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
122
          x = fluid.layers.data(name='x', shape=[1])
123 124
          x.persistable = True

Q
qiaolongfei 已提交
125
          y = fluid.layers.data(name='y', shape=[1])
126 127
          y.persistable = True

Q
qiaolongfei 已提交
128
          out_true, out_false = fluid.layers.split_lod_tensor(
129
                input=x, mask=y, level=level)
130

131
    """
132
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
133 134
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
135 136 137 138 139 140 141 142 143 144 145 146
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


147
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
148 149 150 151 152
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
153 154 155
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
156 157 158 159 160 161 162

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
163
        level(int): The specific lod level to merge.
164 165 166 167 168 169 170

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

171
          import paddle.fluid as fluid
172 173 174 175 176 177 178 179 180 181 182 183
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
184
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
185
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
186 187 188 189 190 191 192 193 194 195 196
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
197 198 199
def Print(input,
          first_n=-1,
          message=None,
200
          summarize=20,
Y
Yan Chunwei 已提交
201 202 203
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
204 205
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
206 207 208 209 210 211 212 213 214 215
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
216
        input (Variable): A Tensor to print.
217 218
        summarize (int): Number of elements in the tensor to be print. If it's
                vaule is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
219 220
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
221 222 223 224
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
225
        print_phase (str): Which phase to displace, including 'forward',
226 227 228
                'backward' and 'both'. Default: 'both'. If set to 'backward', will 
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
229 230

    Returns:
231
        Variable: Output tensor.
Y
Yan Chunwei 已提交
232

233 234 235 236
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
237

Y
Yan Chunwei 已提交
238 239
    Examples:
        .. code-block:: python
240 241 242
           
           import paddle.fluid as fluid
           
243 244 245 246 247 248
           input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64')
           input = fluid.layers.Print(input, message="The content of input layer:")
           
           main_program = fluid.default_main_program()
           exe = fluid.Executor(fluid.CPUPlace())
           exe.run(main_program)
Y
Yan Chunwei 已提交
249

250 251 252
    Output at runtime:
        .. code-block:: bash 
           
253
           The content of input layer:     The place is:CPUPlace
254 255 256 257 258
           Tensor[fill_constant_0.tmp_0]
               shape: [10,2,]
               dtype: x
               data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, 
               
Y
Yan Chunwei 已提交
259
    '''
260 261 262
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
263

264 265
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
Y
Yan Chunwei 已提交
266 267
    helper.append_op(
        type='print',
Y
yangyaming 已提交
268
        inputs={'In': input},
269
        outputs={'Out': output},
Y
Yan Chunwei 已提交
270 271 272 273 274 275 276 277
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
278
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
279
        })
280
    return output
Y
Yan Chunwei 已提交
281 282


Y
Yu Yang 已提交
283 284
class BlockGuard(object):
    """
285 286 287 288
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
289 290
    """

291 292
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
293
            raise TypeError("BlockGuard takes a program")
294
        self.main_program = main_program
Y
Yu Yang 已提交
295 296

    def __enter__(self):
W
Wu Yi 已提交
297
        self.main_program._create_block()
Y
Yu Yang 已提交
298 299

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
300
        self.main_program._rollback()
Y
Yu Yang 已提交
301 302 303 304 305
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
306 307 308 309 310
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
311 312
    """

Y
Yu Yang 已提交
313
    def __init__(self, rnn):
X
Xin Pan 已提交
314
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
315
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
316
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
317 318 319 320
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
321
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
322 323

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
324 325
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
326
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
327
        self.rnn._complete_op()
Y
Yang Yang 已提交
328 329
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
330 331 332 333


class StaticRNNMemoryLink(object):
    """
334 335 336 337
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
338 339 340 341 342 343 344 345 346


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
356 357 358
    """
    StaticRNN class.

359 360 361 362 363 364 365
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
366 367

    Examples:
368 369 370 371 372 373
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
374 375
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
376 377 378 379 380
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
381
            # transform batch size to dim 1
382 383 384 385
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
386
                # mark created x_emb as input, each step process a word
387
                word = rnn.step_input(x_emb)
388
                # create prev memory parameter, batch size comes from word
389 390
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
391 392 393
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
                # mark hidden as output 
394
                rnn.step_output(hidden)
395
            # get StaticrNN final output
396
            result = rnn()
C
chengduo 已提交
397

398
    """
Y
Yu Yang 已提交
399 400 401 402
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

403 404
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
405 406 407 408 409 410 411 412
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
413
        """
414 415
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
416
        """
Y
Yang Yang 已提交
417
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
418 419 420 421 422

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

423 424 425 426 427 428 429
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
430
        """
C
chengduo 已提交
431 432 433
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
434 435
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
436

437
        Args:
438
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
439 440
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
441 442 443 444 445 446 447
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
448 449

        Returns:
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
481 482
            .. code-block:: python

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

506
        """
Y
Yu Yang 已提交
507 508
        self._assert_in_rnn_block_('memory')
        if init is None:
509
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
510
                raise ValueError(
511
                    "if init is None, memory at least need shape and batch_ref")
512
            parent_block = self._parent_block()
513
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
514
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
515
            boot_var = parent_block.create_var(
516 517
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
518
                dtype=batch_ref.dtype,
519
                persistable=False)
Y
Yu Yang 已提交
520 521

            parent_block.append_op(
522 523
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
524 525 526
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
527
                    'shape': boot_var.shape,
F
fengjiayi 已提交
528
                    'dtype': boot_var.dtype,
529 530
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
531 532 533 534 535
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
536 537
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
538
                dtype=init.dtype,
Y
Yu Yang 已提交
539 540 541 542 543 544
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
545 546 547 548 549 550 551 552
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
582
        """
Y
Yu Yang 已提交
583 584 585 586
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
587
            self.seq_len = x.shape[0]
588
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
589 590 591
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
592
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
593 594 595 596
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
597 598 599 600 601 602 603 604
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
636
        """
Y
Yu Yang 已提交
637 638 639 640
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
641
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
642 643 644 645
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
646
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
647

648
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
649 650
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
651
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
652 653 654 655

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
656 657 658 659
        """
        Mark the StaticRNN output variables.

        Args:
660
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
661 662 663

        Returns:
            None
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
695
        """
Y
Yu Yang 已提交
696 697 698 699
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
700
        """
701
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
702 703 704

        Args:
            mem(Variable): the memory variable.
705 706
            var(Variable): the plain variable generated in RNN block, used to update memory.
                           var and mem should hava same dims and data type.
C
chengduo 已提交
707 708 709

        Returns:
            None
710

C
chengduo 已提交
711
        """
Y
Yu Yang 已提交
712 713 714 715
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

716
    def _parent_block(self):
717
        prog = self.helper.main_program
Y
Yu Yang 已提交
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

733
    def _complete_op(self):
734 735
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
736
        parent_block = self._parent_block()
Y
Yu Yang 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
751 752 753
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
754 755 756 757 758 759 760 761
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

762
        parameters = [parent_block.var(name) for name in set(params)]
Y
Yu Yang 已提交
763 764 765 766 767 768 769

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
770
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
771 772 773
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
774
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
775 776
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
777 778
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
779 780
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
781 782
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
783 784 785 786
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
787
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
801
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
802 803
                'ex_states': pre_memories,
                'states': memories,
804
                'sub_block': rnn_block
Y
Yu Yang 已提交
805
            })
Y
Yu Yang 已提交
806 807


Y
Yang Yang(Tony) 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
823
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
824 825 826 827
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
828
    """
829
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
830

831 832 833 834
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

X
Xin Pan 已提交
835
    Args:
836
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
837
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
838
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
839 840 841

    Examples:
          .. code-block:: python
842 843
            
            import paddle.fluid as fluid
844 845 846 847 848
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
849

850
            cond = fluid.layers.less_than(x=i, y=loop_len)              
851
            while_op = fluid.layers.While(cond=cond)
852
            with while_op.block():  
853
                i = fluid.layers.increment(x=i, value=1, in_place=True)
854 855 856 857 858 859 860
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)      

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
            print(res) # [array([10])]           
X
Xin Pan 已提交
861 862
    """

Y
Yang Yang(Tony) 已提交
863 864 865 866
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
867
    def __init__(self, cond, is_test=False, name=None):
868
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
869 870 871 872
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
873
        if cond.dtype != core.VarDesc.VarType.BOOL:
874
            raise TypeError("condition should be a boolean variable")
Y
Yang Yang(Tony) 已提交
875
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
876 877 878
            raise TypeError(
                "condition expected shape as [], but given shape as {0}.".
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
879
        self.cond_var = cond
C
chengduo 已提交
880
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
881 882 883 884

    def block(self):
        return WhileGuard(self)

885
    def _complete(self):
Y
Yang Yang(Tony) 已提交
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
905 906 907
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
908 909 910 911 912 913 914

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
915 916 917 918
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
919 920 921 922
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
923 924
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
925 926


G
guofei 已提交
927
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
928 929 930 931 932
    """
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

    Args:
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping.
933 934 935
        body(Callable): A callable returning a tuple or list of tensors and LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors and LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
936
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
937 938 939 940
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
    
    Returns:
941
        A list or tuple of tensors and LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    
    Returen type:
        list(Variable)|tuple(Variable).

    Raises:
        TypeError: If the type of ``cond`` is not callable.
        TypeError: If the type of ``body`` is not callable.
        TypeError: If the type of ``loop_vars`` is not list or tuple.
        TypeError: If the type of ``cond`` returns is not Variable.
        TypeError: If the type of ``cond`` returns is not a boolean variable.
        TypeError: If the shape of ``cond`` returns is not equals 1.
        ValueError: If the ``var_loops`` is empty.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            def cond(i):
                return layers.less_than(i, ten)

            def body(i):
                return layers.increment(x=i, value=1, in_place=True)

            main_program = fluid.default_main_program()
            startup_program = fluid.default_startup_program()
            with fluid.program_guard(main_program, startup_program):
                i = layers.fill_constant(shape=[1], dtype='int64', value=0)     # loop counter
                ten = layers.fill_constant(shape=[1], dtype='int64', value=10)  # loop length
                out = layers.while_loop(cond, body, [i])
                
                exe = fluid.Executor(fluid.CPUPlace())
                res = exe.run(main_program, feed={}, fetch_list=out)
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
    if not isinstance(loop_vars, (list, tuple)):
        raise TypeError("loop_vars in while_loop should be a list or tuple")
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
    if not isinstance(pre_cond, Variable):
        raise TypeError("cond in while_loop should return a variable")
    if pre_cond.dtype != core.VarDesc.VarType.BOOL:
        raise TypeError("cond in while_loop should return a boolean variable")
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
            "the shape of the variable returned by cond should be [],"
            "but given shape as {0}.".format(list(pre_cond.shape)))

G
guofei 已提交
999
    while_loop_block = While(pre_cond, is_test, name)
G
guofei 已提交
1000 1001
    with while_loop_block.block():
        output_vars = body(*loop_vars)
1002
        map_structure(assign, output_vars, loop_vars)
G
guofei 已提交
1003 1004 1005 1006 1007 1008 1009 1010
        if len(loop_vars) == 1:
            now_cond = cond(output_vars)
        else:
            now_cond = cond(*output_vars)
        assign(now_cond, pre_cond)
    return loop_vars


1011
def lod_rank_table(x, level=0):
1012 1013
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1014 1015
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1016
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
1017 1018 1019
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1020 1021 1022 1023

        .. code-block:: text

            x is a LoDTensor:
1024 1025
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1026 1027
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1028 1029 1030
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1031

Y
yangyaming 已提交
1032 1033 1034 1035 1036 1037 1038 1039 1040
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1041 1042 1043 1044

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1045 1046
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1047 1048 1049 1050 1051 1052 1053

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1054
            import paddle.fluid as fluid
Y
yangyaming 已提交
1055
            x = fluid.layers.data(name='x', shape=[10],
1056
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1057
            out = layers.lod_rank_table(x=x, level=0)
1058
    """
Y
Yu Yang 已提交
1059 1060 1061
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
1062
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
1063 1064 1065 1066 1067 1068
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
1069 1070


Y
yuyang18 已提交
1071
@templatedoc()
1072
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1073 1074 1075 1076 1077 1078 1079 1080
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1081 1082

    Args:
Y
yuyang18 已提交
1083
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1084 1085

    Returns:
Y
yuyang18 已提交
1086
        ${out_comment}.
F
fengjiayi 已提交
1087 1088
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1089
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
1090 1091 1092 1093 1094 1095 1096
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


1097
def lod_tensor_to_array(x, table):
1098
    """
F
fengjiayi 已提交
1099 1100
    Convert a LoDTensor to a LoDTensorArray.

1101 1102 1103 1104 1105
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1106
    Users should not use it directly.
1107 1108

    Args:
F
fengjiayi 已提交
1109
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1110 1111
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1112
                                descending order. It is generally generated
F
fengjiayi 已提交
1113
                                by `layers.lod_rank_table()` API.
1114 1115

    Returns:
F
fengjiayi 已提交
1116
        Variable: The LoDTensorArray that has been converted from the input tensor.
1117 1118 1119 1120

    Examples:
        .. code-block:: python

1121
          import paddle.fluid as fluid
1122 1123 1124
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1125
    """
1126 1127
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1128
        name=unique_name.generate("lod_tensor_to_array"),
1129
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1130
        dtype=x.dtype)
1131 1132 1133 1134 1135 1136 1137 1138
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


1139
def array_to_lod_tensor(x, table):
1140
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1141 1142

    Args:
1143
        x (Variable|list): The lod tensor array to be converted to a tensor.
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1155
          import paddle.fluid as fluid
1156 1157 1158 1159
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1160
    """
1161
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1162
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1163 1164 1165 1166 1167 1168 1169 1170
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


1171
def increment(x, value=1.0, in_place=True):
1172
    """
1173 1174
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1175

1176 1177 1178 1179 1180
    Parameters:
        x (Variable): A tensor that must alway contain only one element, its data type supports
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1181 1182

    Returns:
1183
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1184 1185 1186 1187

    Examples:
        .. code-block:: python

1188
          import paddle.fluid as fluid
1189 1190
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1191
    """
Y
Yu Yang 已提交
1192
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1193
    if not in_place:
X
Xin Pan 已提交
1194
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1195 1196
    else:
        out = x
Y
Yu Yang 已提交
1197 1198 1199
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
1200
        outputs={'Out': [out]},
1201
        attrs={'step': float(value)})
Y
Yang Yu 已提交
1202
    return out
Y
Yu Yang 已提交
1203 1204


1205
def array_write(x, i, array=None):
1206
    """
1207 1208 1209 1210
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1211 1212

    Args:
1213 1214 1215 1216 1217 1218 1219
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. 
            The default value is None, when a new LoDTensorArray will be created and returned 
            as a result.
1220

1221
    Returns:
1222
        Variable: The input ``array`` after ``x`` is written into.
1223 1224

    Examples:
D
dzhwinter 已提交
1225
        .. code-block:: python
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1254
    """
Y
Yu Yang 已提交
1255 1256 1257 1258 1259
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1260
            dtype=x.dtype)
Y
Yu Yang 已提交
1261 1262 1263 1264 1265 1266 1267 1268
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


1269
def create_array(dtype):
1270
    """
1271 1272 1273 1274
    This OP creates an LOD_TENSOR_ARRAY. It is used as
    the input of :ref:`api_fluid_layers_array_read` and 
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1275 1276

    Args:
1277 1278
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1279 1280

    Returns:
1281
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1282 1283 1284 1285

    Examples:
        .. code-block:: python

1286
          import paddle.fluid as fluid
1287
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1288 1289

    """
Y
Yang Yang(Tony) 已提交
1290 1291 1292 1293 1294 1295 1296
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
1297
@templatedoc()
1298
def less_than(x, y, force_cpu=None, cond=None):
1299
    """
Y
yuyang18 已提交
1300
    ${comment}
1301 1302

    Args:
Y
yuyang18 已提交
1303 1304 1305
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
1306 1307 1308
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
1309
        ${out_comment}.
1310 1311 1312 1313

    Examples:
        .. code-block:: python

1314
          import paddle.fluid as fluid
W
Wilber 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
          import numpy as np
  
          # Graph Organizing
          x = fluid.layers.data(name='x', shape=[2], dtype='float64')
          y = fluid.layers.data(name='y', shape=[2], dtype='float64')
          result = fluid.layers.less_than(x=x, y=y)
          # The comment lists another available method.
          # result = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0)
          # fluid.layers.less_than(x=x, y=y, cond=result)
  
          # Create an executor using CPU as example
          exe = fluid.Executor(fluid.CPUPlace())
  
          # Execute
          x_i = np.array([[1, 2], [3, 4]]).astype(np.float64)
          y_i = np.array([[2, 2], [1, 3]]).astype(np.float64)
          result_value, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[result])
          print(result_value) # [[True, False], [False, False]]
1333
    """
Y
Yang Yang(Tony) 已提交
1334 1335
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1336
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1337 1338
        cond.stop_gradient = True

Y
yuyang18 已提交
1339 1340 1341 1342
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

Y
Yang Yang(Tony) 已提交
1343
    helper.append_op(
J
JiayiFeng 已提交
1344 1345 1346 1347
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
1348
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1349 1350 1351
    return cond


Z
zhoukunsheng 已提交
1352 1353 1354
@templatedoc()
def less_equal(x, y, cond=None):
    """
1355
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1356 1357

    Args:
1358 1359 1360 1361 1362
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \
            this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \
            and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1363 1364

    Returns:
1365
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1366 1367 1368 1369

    Examples:
        .. code-block:: python

1370
          import paddle.fluid as fluid
1371 1372 1373 1374 1375 1376
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
1397
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1398 1399

    Args:
1400 1401 1402 1403 1404
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \
            of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1405 1406

    Returns:
1407
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` .
Z
zhoukunsheng 已提交
1408 1409 1410 1411

    Examples:
        .. code-block:: python

1412
          import paddle.fluid as fluid
1413 1414 1415 1416 1417
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
1438
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1439 1440

    Args:
1441 1442 1443 1444 1445
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \
            tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \
            type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1446 1447

    Returns:
1448
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1449 1450 1451 1452

    Examples:
        .. code-block:: python

1453
          import paddle.fluid as fluid
1454 1455 1456 1457 1458 1459
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1460

Z
zhoukunsheng 已提交
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1478
def equal(x, y, cond=None):
1479 1480 1481 1482
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1483 1484 1485 1486 1487
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
        cond(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
1488 1489

    Returns:
W
wangchaochaohu 已提交
1490 1491
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1492 1493 1494 1495

    Examples:
        .. code-block:: python

1496
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
1497 1498 1499 1500 1501 1502 1503
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
1504 1505 1506
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1507
        cond = helper.create_variable_for_type_inference(dtype='bool')
1508 1509 1510 1511 1512 1513 1514 1515
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1516 1517
def not_equal(x, y, cond=None):
    """
1518
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
1519 1520

    Args:
1521 1522 1523 1524 1525
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. 
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
        cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \
             tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \
             type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`.
Z
zhoukunsheng 已提交
1526 1527

    Returns:
1528
        Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`.
Z
zhoukunsheng 已提交
1529 1530 1531 1532

    Examples:
        .. code-block:: python

1533 1534 1535 1536
          import paddle.fluid as fluid
          
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1550
def array_read(array, i):
1551
    """
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
    This OP is used to read data at the specified position from the input array 
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
    is the specified read position. This OP is often used together with 
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
1567

K
kavyasrinet 已提交
1568
    Args:
1569 1570 1571
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
1572

K
kavyasrinet 已提交
1573
    Returns:
1574
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
1575

K
kavyasrinet 已提交
1576
    Examples:
1577 1578
        .. code-block:: python

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1610
    """
Y
Yu Yang 已提交
1611 1612 1613 1614 1615
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1616
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1617 1618 1619 1620 1621 1622
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1623 1624


1625
def shrink_memory(x, i, table):
1626
    """
Y
yuyang18 已提交
1627
    This function creates an operator to shrink rnn memory using the RankTable
1628
    as mentioned in the input parameter.
Y
yuyang18 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1649
    """
Y
Yang Yu 已提交
1650
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1651
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1652
    helper.append_op(
Y
Yang Yu 已提交
1653
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1654 1655 1656 1657 1658 1659
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1660 1661


1662
def array_length(array):
1663
    """
1664 1665 1666
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , 
    :ref:`api_fluid_layers_While` OP to traverse, read and wirte LoDTensorArray.
1667

K
kavyasrinet 已提交
1668
    Args:
1669
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
1670 1671

    Returns:
1672
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
1673 1674

    Examples:
Q
qiaolongfei 已提交
1675
        .. code-block:: python
K
kavyasrinet 已提交
1676

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
1693

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
            
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, 
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, 
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
1706
    """
Y
Yang Yu 已提交
1707
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1708
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1709 1710 1711 1712
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1713 1714 1715


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1716
    """
1717 1718 1719
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1720 1721 1722
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

1753
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1765
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1766 1767 1768 1769
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1770
        self.is_scalar_condition = is_scalar_condition
1771
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

1795 1796 1797
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
1798
        param_list = [
W
Wu Yi 已提交
1799
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1800 1801
        ]

X
Xin Pan 已提交
1802 1803 1804 1805 1806
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1807 1808

        step_scope = parent_block.create_var(
1809
            type=core.VarDesc.VarType.STEP_SCOPES)
1810
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
1811 1812
            type='conditional_block',
            inputs={
1813 1814
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1815 1816 1817
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1818 1819 1820 1821 1822
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx

        return grad_sub_block_idx != -1

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
            conditional_block_op.desc,
            cpt.to_text(set()), [grad_sub_block.desc])

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
            if grad_sub_block.desc.has_var_recursive(
                    cpt.to_bytes(grad_var_name)
            ) or grad_var_name == core.empty_var_name():
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

1907

1908 1909 1910 1911 1912 1913 1914 1915
def copy_var_to_parent_block(var, layer_helper):
    if var is None:
        return None
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

1916 1917
    parent_block_var = parent_block.create_var(
        dtype=var.dtype, shape=var.shape, type=var.type)
1918 1919 1920 1921 1922 1923
    assign(var, parent_block_var)
    return parent_block_var


def cond(pred, true_fn=None, false_fn=None, name=None):
    """
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
    
    Note: 
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

        2. Any tensors or operations created outside of ``true_fn`` and
        ``false_fn`` will be executed regardless of which branch is selected at
        runtime. This has frequently surprised users who expected a lazy
        semantics. For example:

        .. code-block:: python
        
            import paddle.fluid as fluid
            a = fluid.data(name='a', shape=[-1, 1], dtype='float32')
            b = fluid.data(name='b', shape=[-1, 1], dtype='float32')
            c = a * b
            out = fluid.layers.cond(a < b, lambda: a + c, lambda: b * b)

        No matter whether ``a < b`` , ``c = a * b`` will run.
1953 1954 1955 1956

    Args:
        pred(Variable): A boolean tensor whose numel should be 1. The boolean
            value determines whether to return the result of ``true_fn`` or
1957 1958 1959 1960 1961 1962
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
1963
             don't have to set this parameter. For more information, please
1964 1965 1966 1967 1968
             refer to :ref:`api_guide_Name` .

    Returns:
        Variable|list(Variable)|tuple(Variable): returns ``true_fn()`` if the
        predicate ``pred`` is true else ``false_fn()`` .
1969 1970 1971

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
1972 1973
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers
            from paddle.fluid.executor import Executor
            from paddle.fluid.framework import Program, program_guard

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
                return layers.fill_constant(
                    shape=[1, 2], dtype='int32', value=1), layers.fill_constant(
                        shape=[2, 3], dtype='bool', value=True)

            def false_func():
                return layers.fill_constant(
                    shape=[3, 4], dtype='float32', value=3), layers.fill_constant(
                        shape=[4, 5], dtype='int64', value=2)

            main_program = Program()
            startup_program = Program()
            with program_guard(main_program, startup_program):
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.23)
                pred = layers.less_than(x, y)            
                out = layers.cond(pred, true_func, false_func)
                # out is a tuple containing 2 tensors

            place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
            ) else fluid.CPUPlace()
            exe = fluid.Executor(place)
            ret = exe.run(main_program, fetch_list=out)
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
            #           [ True  True  True]]

2018 2019 2020 2021
    """
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2022
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2023 2024 2025 2026 2027 2028 2029
    if true_fn is not None:
        if not callable(true_fn):
            raise TypeError("The true_fn in cond must be callable")
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2030
                true_output = map_structure(copy_to_parent_func,
2031 2032 2033 2034 2035 2036 2037 2038 2039
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
            raise TypeError("The false_fn in cond must be callable")
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True)
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2040
                false_output = map_structure(copy_to_parent_func,
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
    try:
        assert_same_structure(true_output, false_output, check_types=False)
    except ValueError as e:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: {}".
            format(e))

    mask = cast(pred, dtype='int32')
    merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask)
    merged_output = map_structure(merge_func, false_output, true_output)
    return merged_output


L
liym27 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
def _error_message(what, arg_name, op_name, right_value, error_value):
    error_message = "{what} of '{arg_name}' in Op({op_name}) must be " \
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable|list(Variable): Tensors returned by the callable from the first pair whose pred is True,
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not Variable.
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
2107
            import paddle.fluid.layers as layers
L
liym27 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119

            def fn_1():
                return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

            def fn_2():
                return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

            def fn_3():
                return layers.fill_constant(shape=[3], dtype='int32', value=3)

            main_program = fluid.default_startup_program()
            startup_program = fluid.default_main_program()
2120
            with fluid.program_guard(main_program, startup_program):
L
liym27 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
                x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
                y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
                z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

                pred_1 = layers.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = layers.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = layers.equal(x, y)      # false: 0.3 == 0.1

                # Call fn_1 because pred_1 is True
                out_1 = layers.case(
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
                out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])

                exe = fluid.Executor(fluid.CPUPlace())
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
        if not isinstance(pred_fn_pairs, (list, tuple)):
            raise TypeError(
                _error_message("The type", "pred_fn_pairs", "case",
                               "list or tuple", type(pred_fn_pairs)))

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
                                   "case", "tuple", type(pred_fn)))
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
                                   "2", str(len(pred_fn)) + "-tuple"))
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2194
class Switch(object):
Q
qiaolongfei 已提交
2195 2196
    """

2197 2198 2199 2200 2201 2202 2203
    This class is used to implement Switch branch control function. 
    Switch branch contains several case branches and one default branch. 
    Switch control flow checks whether the case branch conditions are satisfied in turn, 
    and only executes the statement after the first case branch that satisfies the conditions. 
    If there is no case branch that satisfies the condition, 
    only the statement following the default branch is executed.

2204 2205 2206 2207
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
    Member Functions:
        case(cond): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
        
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
        
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2226

2227 2228
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2229 2230 2231

    Examples:
        .. code-block:: python
2232 2233
            
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2234

2235
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2236 2237 2238 2239 2240
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2241
            zero_var = fluid.layers.fill_constant(
2242
                shape=[1], dtype='float32', value=0.0)
2243
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2244
                shape=[1], dtype='float32', value=1.0)
2245
            two_var = fluid.layers.fill_constant(
2246
                shape=[1], dtype='float32', value=2.0)
2247

2248
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2249 2250

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2251
                with switch.case(global_step == zero_var):
2252
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2253
                with switch.default():
2254
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2255

2256 2257 2258 2259 2260
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2261 2262
    """

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
2348
    """
2349 2350 2351 2352
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

2353 2354 2355 2356
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
        
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
        
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] 

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
        print res
        # [array([-1.], dtype=float32)] 
X
Xin Pan 已提交
2400 2401

    Args:
2402 2403
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
2404

2405 2406
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
 
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
2418

X
Xin Pan 已提交
2419
    """
Y
Yu Yang 已提交
2420 2421 2422 2423
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

2424
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
2425 2426
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
2427
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
2439
            parent_block = self._parent_block()
Y
Yu Yang 已提交
2440
            out_true = parent_block.create_var(
2441 2442
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2443
                dtype=x.dtype)
Y
Yu Yang 已提交
2444 2445

            out_false = parent_block.create_var(
2446 2447
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
2448
                dtype=x.dtype)
Y
Yu Yang 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

2467
    def _parent_block(self):
Y
Yu Yang 已提交
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
2483
        parent_block = self._parent_block()
Y
Yu Yang 已提交
2484 2485 2486 2487 2488
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
2489
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
2490
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
2491
                dtype=each_out.dtype)
Y
Yu Yang 已提交
2492 2493 2494
            out_table.append(outside_out)

            # assign local var to outside
2495
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
2496 2497 2498 2499

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
2500
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
2519
                    level=0))
Y
Yu Yang 已提交
2520
        return rlist
2521 2522 2523


class DynamicRNN(object):
Y
yuyang18 已提交
2524
    """
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
    The input sequences will be shrinked because only sequences of which the
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
2550

2551 2552 2553 2554
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
2555 2556 2557 2558

    Examples:
        .. code-block:: python

2559
            import paddle.fluid as fluid
2560

2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
2587
    """
2588 2589 2590 2591
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

2592 2593
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
2594 2595 2596 2597
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
2598
        self.zero_idx = None
2599 2600 2601
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
2602
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
2603 2604 2605 2606 2607
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

2608
    def step_input(self, x, level=0):
Y
yuyang18 已提交
2609
        """
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
2653

Y
yuyang18 已提交
2654
        Args:
2655 2656 2657 2658 2659 2660 2661
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
2662 2663

        Returns:
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2698
        """
2699 2700 2701
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
2702
                "step_input() can only take a Variable as its input.")
2703 2704 2705
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
2706
                name=unique_name.generate('lod_rank_table'),
2707 2708 2709 2710 2711
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
2712 2713
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
2714
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
2715 2716
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
2727 2728
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
2729 2730

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
2731
            name=unique_name.generate('dynamic_rnn_input_array'),
2732 2733 2734 2735 2736 2737 2738 2739
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
2740
        return array_read(array=input_array, i=self.step_idx)
2741

Y
yangyaming 已提交
2742
    def static_input(self, x):
Y
yuyang18 已提交
2743
        """
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
2817

Y
yuyang18 已提交
2818
        Args:
2819 2820 2821 2822
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
2823 2824

        Returns:
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
            Variable: The input LoDTensor after sorted and shrinked. If there are :code:`num_sequences` \
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
2837 2838 2839 2840

        Examples:
            .. code-block:: python

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
2867
        """
Y
yangyaming 已提交
2868 2869 2870 2871 2872 2873 2874 2875 2876
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
2877
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
2878 2879 2880 2881 2882 2883 2884 2885 2886
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
2887
    @signature_safe_contextmanager
2888
    def block(self):
Y
yuyang18 已提交
2889
        """
2890 2891 2892 2893 2894 2895
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
2896
        """
2897 2898
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
2899 2900
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
2901 2902 2903 2904
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
2905
            increment(x=self.step_idx, value=1.0, in_place=True)
2906 2907

            for new_mem, mem_array in self.mem_link:
2908 2909
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
2910 2911 2912 2913 2914
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
2915 2916 2917 2918 2919

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
2920
                    x=each_array, table=self.lod_rank_table))
2921 2922

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
2923
        """
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
        This function is used to get the output  sequneces of DynamicRNN.

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
2934
        """
2935
        if self.status != DynamicRNN.AFTER_RNN:
2936 2937
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
2938 2939 2940 2941 2942
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

2943 2944 2945 2946 2947 2948
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
2949
        """
2950 2951 2952
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
2953

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
            value (float, optional): When init is None, it is used as initalized value
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
                the memory needs to reorder like the RNN's input sequeneces. It should be
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
            Variable: The memory LoDTensor after shrinked.  If there are :code:`num_sequences` \
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the memory Tensor also need to be shrinked and will only retain data \
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
2986

2987 2988 2989
        Examples:
            .. code-block:: python

2990
                import paddle.fluid as fluid
2991

2992 2993
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
2994

2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3006

3007 3008
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3009 3010


3011 3012
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3013

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3033
        """
3034
        self._assert_in_rnn_block_('memory')
3035
        self._init_zero_idx_()
3036 3037 3038 3039 3040
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
3041 3042 3043 3044 3045 3046 3047 3048
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3049
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
3060
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3061
                name=unique_name.generate('dynamic_rnn_mem_array'),
3062 3063 3064 3065
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
3066
                inputs={'X': init_tensor,
3067 3068
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
3069
            retv = array_read(array=mem_array, i=self.step_idx)
3070
            retv = shrink_memory(
3071
                x=retv, i=self.step_idx, table=self.lod_rank_table)
3072 3073 3074 3075 3076 3077 3078 3079 3080
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3081
                name=unique_name.generate('mem_init'), dtype=dtype)
3082
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
3083 3084
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3102
        """
3103 3104
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3105
        Args:
3106 3107 3108
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3109 3110 3111

        Returns:
            None
3112 3113 3114 3115 3116 3117
        
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3118
        """
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3136
        """
3137
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3138 3139

        Args:
3140 3141
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3142 3143 3144

        Returns:
            None
3145 3146 3147

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3148
        """
3149 3150 3151 3152
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
3153
                name=unique_name.generate_with_ignorable_key("_".join(
3154 3155 3156 3157 3158 3159
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
3188 3189


L
liym27 已提交
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
    This operator is like a C++ switch/case statement.

    Args:
        branch_index(Variable): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Variable|list(Variable): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
        TypeError: If the type of ``branch_index`` is not Variable.
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
3219 3220
            import paddle.fluid.layers as layers

L
liym27 已提交
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
            def fn_1():
                return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

            def fn_2():
                return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

            def fn_3():
                return layers.fill_constant(shape=[3], dtype='int32', value=3)

            main_program = fluid.default_startup_program()
            startup_program = fluid.default_main_program()
3232
            with fluid.program_guard(main_program, startup_program):
L
liym27 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
                index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
                index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

                out_1 = layers.switch_case(
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

                out_2 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
                out_3 = layers.switch_case(
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

                exe = fluid.Executor(fluid.CPUPlace())
                res_1, res_2, res_3 = exe.run(main_program,
                                              fetch_list=[out_1, out_2, out_3])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):
        if not isinstance(branch_index, Variable):
            raise TypeError(
                _error_message("The type", "branch_index", "switch_case",
                               "Variable", type(branch_index)))

        if convert_dtype(branch_index.dtype) not in ["uint8", "int32", "int64"]:
            raise TypeError(
                _error_message("The data type", "branch_index", "switch_case",
                               "uint8, int32 or int64",
                               convert_dtype(branch_index.dtype)))

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

        if not isinstance(branch_fns, (list, tuple, dict)):
            raise TypeError(
                _error_message("The type", "branch_fns", "switch_case",
                               "dict, tuple or list", type(branch_fns)))

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
                                   "switch_case", "tuple", type(branch_fns)))

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
                                   "switch_case", "int", type(key)))

            if key in keys_of_fns:
                raise ValueError(
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".
                    format(key))
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
                    _error_message("The type of function for key {}".format(
                        key), "branch_fns", "switch_case", "callable", type(
                            fn)))

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


3342
@templatedoc()
Y
Yang Yu 已提交
3343
def reorder_lod_tensor_by_rank(x, rank_table):
3344 3345 3346 3347
    """
    ${comment}

    Args:
3348 3349
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
3350 3351
    
    Returns:
3352
        out(${out_type}): ${out_comment}.
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
3366 3367 3368 3369
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
3370
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
3371 3372 3373 3374 3375 3376
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
3377 3378


3379
def is_empty(x, cond=None):
3380
    """
F
fengjiayi 已提交
3381
    Test whether a Variable is empty.
3382 3383

    Args:
F
fengjiayi 已提交
3384
        x (Variable): The Variable to be tested.
3385 3386
        cond (Variable, optional): Output parameter. Default: None. If this parameter is given, it
                              saves the test result of given 'x'.
3387 3388

    Returns:
F
fengjiayi 已提交
3389
        Variable: A bool scalar. True if 'x' is an empty Variable.
3390 3391 3392

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
3393
                   not bool.
3394 3395 3396 3397

    Examples:
        .. code-block:: python

3398 3399
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
3400 3401
          res = fluid.layers.is_empty(x=input)
          # or:
3402 3403
          # fluid.layers.is_empty(x=input, cond=res)

3404 3405 3406
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
3407
        cond = helper.create_variable_for_type_inference(dtype='bool')
3408 3409 3410 3411 3412 3413 3414 3415 3416
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond