control_flow.py 73.8 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
61
          x = fluid.layers.data(name='x', shape=[1])
62 63
          x.persistable = True

Q
qiaolongfei 已提交
64
          y = fluid.layers.data(name='y', shape=[1])
65 66
          y.persistable = True

Q
qiaolongfei 已提交
67
          out_true, out_false = fluid.layers.split_lod_tensor(
68
                input=x, mask=y, level=level)
69

70
    """
71
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
72 73
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
74 75 76 77 78 79 80 81 82 83 84 85
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


86
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
87 88 89 90 91
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
92 93 94
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
95 96 97 98 99 100 101

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
102
        level(int): The specific lod level to merge.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
122
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
123
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
135 136 137 138 139 140 141
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
142 143
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
154 155 156 157 158 159 160 161 162
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
163
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
164 165
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
166 167

    Returns:
Y
yangyaming 已提交
168
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
169

Y
Yan Chunwei 已提交
170

Y
Yan Chunwei 已提交
171 172
    Examples:
        .. code-block:: python
173 174 175 176 177 178 179 180
           
           import paddle.fluid as fluid
           
           input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
           fluid.layers.Print(input, message = "The content of input layer:")
           # value = some_layer(...)
           # Print(value, summarize=10,
           #    message="The content of some_layer: ")
Y
Yan Chunwei 已提交
181 182 183 184 185

    '''
    helper = LayerHelper('print', **locals())
    helper.append_op(
        type='print',
Y
yangyaming 已提交
186
        inputs={'In': input},
Y
Yan Chunwei 已提交
187 188 189 190 191 192 193 194
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
195
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
196
        })
197
    return input
Y
Yan Chunwei 已提交
198 199


Y
Yu Yang 已提交
200 201
class BlockGuard(object):
    """
202 203 204 205
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
206 207
    """

208 209
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
210
            raise TypeError("BlockGuard takes a program")
211
        self.main_program = main_program
Y
Yu Yang 已提交
212 213

    def __enter__(self):
W
Wu Yi 已提交
214
        self.main_program._create_block()
Y
Yu Yang 已提交
215 216

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
217
        self.main_program._rollback()
Y
Yu Yang 已提交
218 219 220 221 222
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
223 224 225 226 227
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
228 229
    """

Y
Yu Yang 已提交
230
    def __init__(self, rnn):
X
Xin Pan 已提交
231
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
232
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
233
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
234 235 236 237
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
238
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
239 240

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
241 242
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
243
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
244
        self.rnn._complete_op()
Y
Yang Yang 已提交
245 246
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
247 248 249 250


class StaticRNNMemoryLink(object):
    """
251 252 253 254
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
255 256 257 258 259 260 261 262 263


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
264 265 266 267 268 269 270 271 272
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
273 274 275
    """
    StaticRNN class.

C
chengduo 已提交
276 277 278 279 280 281 282
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)

            result = rnn()
C
chengduo 已提交
306 307 308 309 310 311 312 313 314 315

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
316
    """
Y
Yu Yang 已提交
317 318 319 320
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

321 322
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
323 324 325 326 327 328 329 330
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
331 332 333
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
334
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
335 336 337 338 339

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

340 341 342 343 344 345 346
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
347
        """
C
chengduo 已提交
348 349 350 351 352 353
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

354
        Args:
C
chengduo 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
391
        """
Y
Yu Yang 已提交
392 393
        self._assert_in_rnn_block_('memory')
        if init is None:
394
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
395
                raise ValueError(
396
                    "if init is None, memory at least need shape and batch_ref")
397
            parent_block = self._parent_block()
Y
Yu Yang 已提交
398 399
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
400
            boot_var = parent_block.create_var(
401 402
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
403
                dtype=batch_ref.dtype,
404
                persistable=False)
Y
Yu Yang 已提交
405 406

            parent_block.append_op(
407 408
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
409 410 411
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
412
                    'shape': boot_var.shape,
F
fengjiayi 已提交
413
                    'dtype': boot_var.dtype,
414 415
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
416 417 418 419 420
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
421
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
422
                dtype=init.dtype,
Y
Yu Yang 已提交
423 424 425 426 427 428
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
429 430 431 432 433 434 435 436 437 438
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
439 440 441 442
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
443 444
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
445 446 447
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
448
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
449 450 451 452
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
453 454 455 456 457 458 459 460 461
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
462 463 464 465
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
466
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
467 468 469 470
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
471
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
472

473
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
474 475
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
476
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
477 478 479 480

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
481 482 483 484 485 486 487 488 489
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
490 491 492 493
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
494 495 496 497 498 499 500 501 502 503 504
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
505 506 507 508
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

509
    def _parent_block(self):
510
        prog = self.helper.main_program
Y
Yu Yang 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

526
    def _complete_op(self):
527 528
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
529
        parent_block = self._parent_block()
Y
Yu Yang 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
544 545 546
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
563
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
564 565 566
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
567
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
568 569
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
570 571
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
572 573
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
574 575
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
576 577 578 579
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
580
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
594
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
595 596
                'ex_states': pre_memories,
                'states': memories,
597
                'sub_block': rnn_block
Y
Yu Yang 已提交
598
            })
Y
Yu Yang 已提交
599 600


Y
Yang Yang(Tony) 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
616
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
617 618 619 620
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
621 622 623 624
    """
    while loop control flow.

    Args:
625
        cond(Variable): condition used to compare.
C
chengduo 已提交
626
        is_test(bool): A flag indicating whether execution is in test phase.
627
        name(str): The name of this layer.
X
Xin Pan 已提交
628 629 630 631

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
632 633 634
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
635

X
Xin Pan 已提交
636 637 638 639 640 641 642
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
643 644
    """

Y
Yang Yang(Tony) 已提交
645 646 647 648
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
649
    def __init__(self, cond, is_test=False, name=None):
650
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
651 652 653 654
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
655
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
656 657 658 659
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
660
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
661 662 663 664

    def block(self):
        return WhileGuard(self)

665
    def _complete(self):
Y
Yang Yang(Tony) 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
685 686 687
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
688 689 690 691 692 693 694

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
695 696 697 698
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
699 700 701 702
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
703 704
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
705 706


707
def lod_rank_table(x, level=0):
708 709
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
710 711
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
712
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
713 714 715
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
716 717 718 719

        .. code-block:: text

            x is a LoDTensor:
720 721
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
722 723
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
724 725 726
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
727

Y
yangyaming 已提交
728 729 730 731 732 733 734 735 736
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
737 738 739 740

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
741 742
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
743 744 745 746 747 748 749 750

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
751
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
752
            out = layers.lod_rank_table(x=x, level=0)
753
    """
Y
Yu Yang 已提交
754 755 756
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
757
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
758 759 760 761 762 763
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
764 765


Y
yuyang18 已提交
766
@templatedoc()
767
def max_sequence_len(rank_table):
Y
yuyang18 已提交
768 769 770 771 772 773 774 775
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
776 777

    Args:
Y
yuyang18 已提交
778
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
779 780

    Returns:
Y
yuyang18 已提交
781
        ${out_comment}.
F
fengjiayi 已提交
782 783
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
784
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
785 786 787 788 789 790 791
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


792
def lod_tensor_to_array(x, table):
793
    """
F
fengjiayi 已提交
794 795
    Convert a LoDTensor to a LoDTensorArray.

796 797 798 799 800
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
801
    Users should not use it directly.
802 803

    Args:
F
fengjiayi 已提交
804
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
805 806
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
807
                                descending order. It is generally generated
F
fengjiayi 已提交
808
                                by `layers.lod_rank_table()` API.
809 810

    Returns:
F
fengjiayi 已提交
811
        Variable: The LoDTensorArray that has been converted from the input tensor.
812 813 814 815 816 817 818

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
819
    """
820 821
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
822
        name=unique_name.generate("lod_tensor_to_array"),
823
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
824
        dtype=x.dtype)
825 826 827 828 829 830 831 832
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


833
def array_to_lod_tensor(x, table):
834
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
835 836

    Args:
837
        x (Variable|list): The lod tensor array to be converted to a tensor.
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
853
    """
854
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
855
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
856 857 858 859 860 861 862 863
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


864
def increment(x, value=1.0, in_place=True):
865
    """
S
sneaxiy 已提交
866
    This function performs an operation that increments the value in the
867
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
868 869
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
870 871 872 873 874 875 876

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
877
        Variable: The elementwise-incremented object.
878 879 880 881

    Examples:
        .. code-block:: python

S
sneaxiy 已提交
882 883
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
884
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
885
    """
Y
Yu Yang 已提交
886
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
887
    if not in_place:
X
Xin Pan 已提交
888
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
889 890
    else:
        out = x
Y
Yu Yang 已提交
891 892 893
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
894
        outputs={'Out': [out]},
895
        attrs={'step': float(value)})
Y
Yang Yu 已提交
896
    return out
Y
Yu Yang 已提交
897 898


899
def array_write(x, i, array=None):
900 901 902 903 904
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
905 906 907

    Args:
        x (Variable|list): The input tensor from which the data will be read.
908 909 910 911 912 913 914 915
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

916
    Returns:
917
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
918 919

    Examples:
D
dzhwinter 已提交
920
        .. code-block:: python
921 922 923 924

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
925
    """
Y
Yu Yang 已提交
926 927 928 929 930
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
931
            dtype=x.dtype)
Y
Yu Yang 已提交
932 933 934 935 936 937 938 939
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


940
def create_array(dtype):
941
    """
Q
qiaolongfei 已提交
942
    **Create LoDTensorArray**
943

Q
qiaolongfei 已提交
944 945
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
946 947

    Args:
Q
qiaolongfei 已提交
948
        dtype (int|float): The data type of the elements in the lod_tensor_array.
949 950

    Returns:
951
        Variable: The lod_tensor_array variable storing the elements of data type.
952 953 954 955 956 957 958

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
959 960 961 962 963 964 965
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
966
@templatedoc()
967
def less_than(x, y, force_cpu=None, cond=None):
968
    """
Y
yuyang18 已提交
969
    ${comment}
970

Y
yuyang18 已提交
971 972
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
973 974

    Args:
Y
yuyang18 已提交
975 976 977
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
978 979 980
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
981
        ${out_comment}.
982
    """
Y
Yang Yang(Tony) 已提交
983 984
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
985
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
986 987
        cond.stop_gradient = True

Y
yuyang18 已提交
988 989 990 991 992 993
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
994
    helper.append_op(
J
JiayiFeng 已提交
995 996 997 998
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
999
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
1000 1001 1002
    return cond


Z
zhoukunsheng 已提交
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_equal(x=label, y=limit)
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1111
def equal(x, y, cond=None):
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1130
        cond = helper.create_variable_for_type_inference(dtype='bool')
1131 1132 1133 1134 1135 1136 1137 1138
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1167
def array_read(array, i):
1168 1169
    """
    This function performs the operation to read the data in as an
1170
    LOD_TENSOR_ARRAY.
1171 1172 1173 1174 1175 1176

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1177

1178
        And:
1179

1180 1181 1182 1183 1184 1185
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1186
    Args:
1187 1188 1189
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1190 1191
    Returns:
        Variable: The tensor type variable that has the data written to it.
1192

K
kavyasrinet 已提交
1193
    Examples:
1194 1195
        .. code-block:: python

Z
zhaoyuchen 已提交
1196
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1197
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1198
          item = fluid.layers.array_read(array, i)
1199
    """
Y
Yu Yang 已提交
1200 1201 1202 1203 1204
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1205
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1206 1207 1208 1209 1210 1211
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1212 1213


1214
def shrink_memory(x, i, table):
1215
    """
Y
yuyang18 已提交
1216
    This function creates an operator to shrink rnn memory using the RankTable
1217
    as mentioned in the input parameter.
Y
yuyang18 已提交
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1238
    """
Y
Yang Yu 已提交
1239
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1240
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1241
    helper.append_op(
Y
Yang Yu 已提交
1242
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1243 1244 1245 1246 1247 1248
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1249 1250


1251
def array_length(array):
1252
    """
Q
qiaolongfei 已提交
1253
    **Get the Length of Input LoDTensorArray**
1254 1255

    This function performs the operation to find the length of the input
1256
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1257

1258 1259
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1260 1261 1262 1263 1264 1265 1266 1267
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1268
        .. code-block:: python
K
kavyasrinet 已提交
1269 1270 1271 1272 1273

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1274

1275
    """
Y
Yang Yu 已提交
1276
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1277
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1278 1279 1280 1281
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1282 1283 1284


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1285
    """
1286 1287 1288
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1289 1290 1291
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1333
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1334 1335 1336 1337
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1338
        self.is_scalar_condition = is_scalar_condition
1339
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1364
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1365 1366 1367
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1368 1369 1370 1371 1372
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1373 1374

        step_scope = parent_block.create_var(
1375
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1376 1377 1378
        parent_block.append_op(
            type='conditional_block',
            inputs={
1379 1380
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1381 1382 1383
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1384 1385 1386 1387 1388 1389 1390
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1391
    """
Q
qiaolongfei 已提交
1392 1393
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1394 1395 1396 1397

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1398

Q
qiaolongfei 已提交
1399
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1400 1401 1402 1403

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1404 1405 1406 1407

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1420
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1421 1422 1423
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1424 1425 1426

    """

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1456 1457
        """
        create a default case for this switch
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1517 1518 1519 1520 1521 1522 1523 1524 1525
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1526

X
improve  
Xin Pan 已提交
1527
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1528
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1529 1530
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1531 1532
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1533 1534
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1535 1536 1537 1538
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1539 1540 1541
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1542 1543 1544
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1545 1546 1547 1548
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1549
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1550 1551
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1552
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1564
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1565
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1566
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1567
                dtype=x.dtype)
Y
Yu Yang 已提交
1568 1569

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1570
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1571
                dtype=x.dtype)
Y
Yu Yang 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1590
    def _parent_block(self):
Y
Yu Yang 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1606
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1607 1608 1609 1610 1611
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1612 1613
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1614
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1615 1616 1617
            out_table.append(outside_out)

            # assign local var to outside
1618
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1619 1620 1621 1622

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1623
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1642
                    level=0))
Y
Yu Yang 已提交
1643
        return rlist
1644 1645 1646


class DynamicRNN(object):
Y
yuyang18 已提交
1647
    """
Y
yuyang18 已提交
1648 1649 1650
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1651

1652
    The input lod must be set. Please reference to `lod_tensor`.
Y
yuyang18 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
1662

C
chengduoZH 已提交
1663 1664 1665
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          sentence = fluid.layers.data(name='sentence', shape=[1], dtype='int64', lod_level=1)
          embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)
    
          drnn = fluid.layers.DynamicRNN()
          with drnn.block():
              word = drnn.step_input(embedding)
              prev = drnn.memory(shape=[200])
              hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
              drnn.update_memory(prev, hidden)  # set prev to hidden
              drnn.output(hidden)

          # Get the last time step of rnn. It is the encoding result.
          rnn_output = drnn()
          last = fluid.layers.sequence_last_step(rnn_output)
Y
yuyang18 已提交
1686
    """
1687 1688 1689 1690
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1691 1692
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1693 1694 1695 1696
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1697
        self.zero_idx = None
1698 1699 1700
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1701
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1702 1703 1704 1705 1706
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1707
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1708 1709
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1710

Y
yuyang18 已提交
1711
        Args:
1712 1713
            x (Variable): The input sequence which should have lod information.
            level (int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1714 1715 1716 1717

        Returns:
            The current timestep in the input sequence.
        """
1718 1719 1720
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1721
                "step_input() can only take a Variable as its input.")
1722 1723 1724
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1725
                name=unique_name.generate('lod_rank_table'),
1726 1727 1728 1729 1730
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1731 1732
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1733
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1734 1735
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1746 1747
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1748 1749

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1750
            name=unique_name.generate('dynamic_rnn_input_array'),
1751 1752 1753 1754 1755 1756 1757 1758
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1759
        return array_read(array=input_array, i=self.step_idx)
1760

Y
yangyaming 已提交
1761
    def static_input(self, x):
Y
yuyang18 已提交
1762 1763
        """
        Mark a variable as a RNN input. The input will not be scattered into
1764
        time steps. It is optional.
H
haowang101779990 已提交
1765

Y
yuyang18 已提交
1766
        Args:
1767
            x (Variable): The input variable.
Y
yuyang18 已提交
1768 1769 1770

        Returns:
            The input variable that can access in RNN.
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              encoder_proj = fluid.layers.data(name='encoder_proj', dtype='float32', shape=[32], lod_level=1)
              decoder_boot = fluid.layers.data(name='boot', dtype='float32', shape=[10], lod_level=1)

              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  current_word = drnn.step_input(sentence)
                  encoder_word = drnn.static_input(encoder_proj)
                  hidden_mem = drnn.memory(init=decoder_boot, need_reorder=True)
                  fc_1 = fluid.layers.fc(input=encoder_word, size=30, bias_attr=False)
                  fc_2 = fluid.layers.fc(input=current_word, size=30, bias_attr=False)
                  decoder_inputs = fc_1 + fc_2
                  h, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=hidden_mem, size=30)
                  drnn.update_memory(hidden_mem, h)
                  out = fluid.layers.fc(input=h, size=10, bias_attr=True, act='softmax') 
                  drnn.output(out)

              rnn_output = drnn()
Y
yuyang18 已提交
1795
        """
Y
yangyaming 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1805
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1815
    @signature_safe_contextmanager
1816
    def block(self):
Y
yuyang18 已提交
1817
        """
1818
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1819
        """
1820 1821
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1822 1823
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1824 1825 1826 1827
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1828
            increment(x=self.step_idx, value=1.0, in_place=True)
1829 1830

            for new_mem, mem_array in self.mem_link:
1831 1832
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1833 1834 1835 1836 1837
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1838 1839 1840 1841 1842

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1843
                    x=each_array, table=self.lod_rank_table))
1844 1845

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1846 1847 1848
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1849
        if self.status != DynamicRNN.AFTER_RNN:
1850 1851
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1852 1853 1854 1855 1856
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1857 1858 1859 1860 1861 1862
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1863
        """
Y
yuyang18 已提交
1864
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1865 1866 1867 1868 1869 1870

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid

              sentence = fluid.layers.data(name='sentence', shape=[32], dtype='float32', lod_level=1)
              boot_memory = fluid.layers.data(name='boot', shape=[10], dtype='float32', lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(init=boot_memory, need_reorder=True)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)

              rnn_output = drnn()
Y
yuyang18 已提交
1888 1889 1890 1891 1892


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

1893 1894
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
1895

1896
              import paddle.fluid as fluid
Y
yuyang18 已提交
1897

1898 1899 1900 1901 1902 1903 1904 1905 1906
              sentence = fluid.layers.data(name='sentence', dtype='float32', shape=[32], lod_level=1)
              
              drnn = fluid.layers.DynamicRNN()
              with drnn.block():
                  word = drnn.step_input(sentence)
                  memory = drnn.memory(shape=[10], dtype='float32', value=0)
                  hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                  drnn.update_memory(ex_mem=memory, new_mem=hidden)
                  drnn.output(hidden)
Y
yuyang18 已提交
1907

1908
              rnn_output = drnn()
Y
yuyang18 已提交
1909 1910


1911 1912 1913
        Args:
            init(Variable|None): The initialized variable.
            shape(list|tuple): The memory shape. The shape does not contain batch_size.
Y
yuyang18 已提交
1914
            value(float): the initalized value.
H
haowang101779990 已提交
1915
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1916 1917 1918
            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1919
            The memory variable.
Y
yuyang18 已提交
1920
        """
1921
        self._assert_in_rnn_block_('memory')
1922
        self._init_zero_idx_()
1923 1924 1925 1926 1927
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1928 1929 1930 1931 1932 1933 1934 1935
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1936
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1947
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1948
                name=unique_name.generate('dynamic_rnn_mem_array'),
1949 1950 1951 1952
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1953
                inputs={'X': init_tensor,
1954 1955
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1956
            retv = array_read(array=mem_array, i=self.step_idx)
1957
            retv = shrink_memory(
1958
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1959 1960 1961 1962 1963 1964 1965 1966 1967
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1968
                name=unique_name.generate('mem_init'), dtype=dtype)
1969
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1970 1971
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1989 1990 1991
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
1992
        
Y
yuyang18 已提交
1993 1994 1995 1996 1997 1998 1999
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
2017
        """
2018
        Mark the RNN output variables.
Y
yuyang18 已提交
2019 2020 2021 2022 2023 2024 2025

        Args:
            outputs: The output variables.

        Returns:
            None
        """
2026 2027 2028 2029
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
2030
                name=unique_name.generate("_".join(
2031 2032 2033 2034 2035 2036
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2065 2066


2067
@templatedoc()
Y
Yang Yu 已提交
2068
def reorder_lod_tensor_by_rank(x, rank_table):
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
    """
    ${comment}

    Args:
    
        x(${x_type}): ${x_comment}
        rank_table(${rank_table_type}): ${rank_table_type}
    
    Returns:
        out(${out_type}): ${out_comment} 

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
Y
Yang Yu 已提交
2092 2093 2094 2095
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2096
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2097 2098 2099 2100 2101 2102
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2103 2104


2105
def is_empty(x, cond=None):
2106
    """
F
fengjiayi 已提交
2107
    Test whether a Variable is empty.
2108 2109

    Args:
F
fengjiayi 已提交
2110
        x (Variable): The Variable to be tested.
2111
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2112
                              of given 'x'. Default: None
2113 2114

    Returns:
F
fengjiayi 已提交
2115
        Variable: A bool scalar. True if 'x' is an empty Variable.
2116 2117 2118

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2119
                   not bool.
2120 2121 2122 2123

    Examples:
        .. code-block:: python

2124 2125
          import paddle.fluid as fluid
          input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
F
fengjiayi 已提交
2126 2127
          res = fluid.layers.is_empty(x=input)
          # or:
2128 2129
          # fluid.layers.is_empty(x=input, cond=res)

2130 2131 2132
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2133
        cond = helper.create_variable_for_type_inference(dtype='bool')
2134 2135 2136 2137 2138 2139 2140 2141 2142
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond