control_flow.py 71.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
32 33
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
    'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
W
Wu Yi 已提交
34
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
35 36
]

Y
Yu Yang 已提交
37

38
def split_lod_tensor(input, mask, level=0):
39 40 41 42
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
43 44
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
45 46 47 48 49

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
50
        level(int): The specific lod level to split.
51 52

    Returns:
Q
qiaolongfei 已提交
53 54 55 56
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
57 58 59 60

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
61
          x = fluid.layers.data(name='x', shape=[1])
62 63
          x.persistable = True

Q
qiaolongfei 已提交
64
          y = fluid.layers.data(name='y', shape=[1])
65 66
          y.persistable = True

Q
qiaolongfei 已提交
67
          out_true, out_false = fluid.layers.split_lod_tensor(
68
                input=x, mask=y, level=level)
69

70
    """
71
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
72 73
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
74 75 76 77 78 79 80 81 82 83 84 85
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


86
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
87 88 89 90 91
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
92 93 94
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
95 96 97 98 99 100 101

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
102
        level(int): The specific lod level to merge.
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
122
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
123
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
124 125 126 127 128 129 130 131 132 133 134
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
135 136 137 138 139 140 141
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
142 143
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
154 155 156 157 158 159 160 161 162
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
163
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
164 165
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
166 167

    Returns:
Y
yangyaming 已提交
168
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
169

Y
Yan Chunwei 已提交
170

Y
Yan Chunwei 已提交
171
    Examples:
Y
Yan Chunwei 已提交
172

Y
Yan Chunwei 已提交
173 174
        .. code-block:: python

Y
Yan Chunwei 已提交
175 176 177
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
178 179 180 181
    '''
    helper = LayerHelper('print', **locals())
    helper.append_op(
        type='print',
Y
yangyaming 已提交
182
        inputs={'In': input},
Y
Yan Chunwei 已提交
183 184 185 186 187 188 189 190
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
191
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
192
        })
193
    return input
Y
Yan Chunwei 已提交
194 195


Y
Yu Yang 已提交
196 197
class BlockGuard(object):
    """
198 199 200 201
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
202 203
    """

204 205
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
206
            raise TypeError("BlockGuard takes a program")
207
        self.main_program = main_program
Y
Yu Yang 已提交
208 209

    def __enter__(self):
W
Wu Yi 已提交
210
        self.main_program._create_block()
Y
Yu Yang 已提交
211 212

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
213
        self.main_program._rollback()
Y
Yu Yang 已提交
214 215 216 217 218
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
219 220 221 222 223
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
224 225
    """

Y
Yu Yang 已提交
226
    def __init__(self, rnn):
X
Xin Pan 已提交
227
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
228
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
229
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
230 231 232 233
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
234
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
235 236

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
237 238
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
239
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
240
        self.rnn._complete_op()
Y
Yang Yang 已提交
241 242
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
243 244 245 246


class StaticRNNMemoryLink(object):
    """
247 248 249 250
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
251 252 253 254 255 256 257 258 259


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
260 261 262 263 264 265 266 267 268
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
269 270 271
    """
    StaticRNN class.

C
chengduo 已提交
272 273 274 275 276 277 278
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
            x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
                word = rnn.step_input(x_emb)
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                rnn.update_memory(prev, hidden)  # set prev to hidden
                rnn.step_output(hidden)

            result = rnn()
C
chengduo 已提交
302 303 304 305 306 307 308 309 310 311

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
312
    """
Y
Yu Yang 已提交
313 314 315 316
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

317 318
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
327 328 329
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
330
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
331 332 333 334 335

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

336 337 338 339 340 341 342
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
343
        """
C
chengduo 已提交
344 345 346 347 348 349
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

350
        Args:
C
chengduo 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
                x_emb = layers.embedding(
                    input=x,
                    size=[vocab_size, hidden_size],
                    dtype='float32',
                    is_sparse=False)
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                    word = rnn.step_input(x_emb)
                    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                    rnn.update_memory(prev, hidden)
387
        """
Y
Yu Yang 已提交
388 389
        self._assert_in_rnn_block_('memory')
        if init is None:
390
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
391
                raise ValueError(
392
                    "if init is None, memory at least need shape and batch_ref")
393
            parent_block = self._parent_block()
Y
Yu Yang 已提交
394 395
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
396
            boot_var = parent_block.create_var(
397 398
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
399
                dtype=batch_ref.dtype,
400
                persistable=False)
Y
Yu Yang 已提交
401 402

            parent_block.append_op(
403 404
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
405 406 407
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
408
                    'shape': boot_var.shape,
F
fengjiayi 已提交
409
                    'dtype': boot_var.dtype,
410 411
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
412 413 414 415 416
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
417
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
418
                dtype=init.dtype,
Y
Yu Yang 已提交
419 420 421 422 423 424
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
425 426 427 428 429 430 431 432 433 434
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
435 436 437 438
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
439 440
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
441 442 443
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
444
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
445 446 447 448
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
449 450 451 452 453 454 455 456 457
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
458 459 460 461
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
462
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
463 464 465 466
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
467
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
468

469
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
470 471
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
472
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
473 474 475 476

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
477 478 479 480 481 482 483 484 485
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
486 487 488 489
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
490 491 492 493 494 495 496 497 498 499 500
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
501 502 503 504
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

505
    def _parent_block(self):
506
        prog = self.helper.main_program
Y
Yu Yang 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

522
    def _complete_op(self):
523 524
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
525
        parent_block = self._parent_block()
Y
Yu Yang 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
540 541 542
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
559
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
560 561 562
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
563
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
564 565
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
566 567
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
568 569
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
570 571
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
572 573 574 575
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
576
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
590
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
591 592
                'ex_states': pre_memories,
                'states': memories,
593
                'sub_block': rnn_block
Y
Yu Yang 已提交
594
            })
Y
Yu Yang 已提交
595 596


Y
Yang Yang(Tony) 已提交
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
612
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
613 614 615 616
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
617 618 619 620
    """
    while loop control flow.

    Args:
621
        cond(Variable): condition used to compare.
C
chengduo 已提交
622
        is_test(bool): A flag indicating whether execution is in test phase.
623
        name(str): The name of this layer.
X
Xin Pan 已提交
624 625 626 627

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
628 629 630
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
631

X
Xin Pan 已提交
632 633 634 635 636 637 638
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
639 640
    """

Y
Yang Yang(Tony) 已提交
641 642 643 644
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
645
    def __init__(self, cond, is_test=False, name=None):
646
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
647 648 649 650
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
651
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
652 653 654 655
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
656
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
657 658 659 660

    def block(self):
        return WhileGuard(self)

661
    def _complete(self):
Y
Yang Yang(Tony) 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
681 682 683
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
684 685 686 687 688 689 690

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
691 692 693 694
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
695 696 697 698
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
699 700
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
701 702


703
def lod_rank_table(x, level=0):
704 705
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
706 707
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
708
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
709 710 711
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
712 713 714 715

        .. code-block:: text

            x is a LoDTensor:
716 717
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
718 719
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
720 721 722
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
723

Y
yangyaming 已提交
724 725 726 727 728 729 730 731 732
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
733 734 735 736

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
737 738
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
739 740 741 742 743 744 745 746

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
747
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
748
            out = layers.lod_rank_table(x=x, level=0)
749
    """
Y
Yu Yang 已提交
750 751 752
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
753
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
754 755 756 757 758 759
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
760 761


Y
yuyang18 已提交
762
@templatedoc()
763
def max_sequence_len(rank_table):
Y
yuyang18 已提交
764 765 766 767 768 769 770 771
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
772 773

    Args:
Y
yuyang18 已提交
774
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
775 776

    Returns:
Y
yuyang18 已提交
777
        ${out_comment}.
F
fengjiayi 已提交
778 779
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
780
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
781 782 783 784 785 786 787
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


788
def lod_tensor_to_array(x, table):
789
    """
F
fengjiayi 已提交
790 791
    Convert a LoDTensor to a LoDTensorArray.

792 793 794 795 796
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
797
    Users should not use it directly.
798 799

    Args:
F
fengjiayi 已提交
800
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
801 802
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
803
                                descending order. It is generally generated
F
fengjiayi 已提交
804
                                by `layers.lod_rank_table()` API.
805 806

    Returns:
F
fengjiayi 已提交
807
        Variable: The LoDTensorArray that has been converted from the input tensor.
808 809 810 811 812 813 814

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
815
    """
816 817
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
818
        name=unique_name.generate("lod_tensor_to_array"),
819
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
820
        dtype=x.dtype)
821 822 823 824 825 826 827 828
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


829
def array_to_lod_tensor(x, table):
830
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
831 832

    Args:
833
        x (Variable|list): The lod tensor array to be converted to a tensor.
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
849
    """
850
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
851
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
852 853 854 855 856 857 858 859
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


860
def increment(x, value=1.0, in_place=True):
861
    """
S
sneaxiy 已提交
862
    This function performs an operation that increments the value in the
863
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
864 865
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
866 867 868 869 870 871 872

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
873
        Variable: The elementwise-incremented object.
874 875 876 877

    Examples:
        .. code-block:: python

S
sneaxiy 已提交
878 879
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
880
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
881
    """
Y
Yu Yang 已提交
882
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
883
    if not in_place:
X
Xin Pan 已提交
884
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
885 886
    else:
        out = x
Y
Yu Yang 已提交
887 888 889
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
890
        outputs={'Out': [out]},
891
        attrs={'step': float(value)})
Y
Yang Yu 已提交
892
    return out
Y
Yu Yang 已提交
893 894


895
def array_write(x, i, array=None):
896 897 898 899 900
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
901 902 903

    Args:
        x (Variable|list): The input tensor from which the data will be read.
904 905 906 907 908 909 910 911
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

912
    Returns:
913
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
914 915

    Examples:
D
dzhwinter 已提交
916
        .. code-block:: python
917 918 919 920

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
921
    """
Y
Yu Yang 已提交
922 923 924 925 926
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
927
            dtype=x.dtype)
Y
Yu Yang 已提交
928 929 930 931 932 933 934 935
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


936
def create_array(dtype):
937
    """
Q
qiaolongfei 已提交
938
    **Create LoDTensorArray**
939

Q
qiaolongfei 已提交
940 941
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
942 943

    Args:
Q
qiaolongfei 已提交
944
        dtype (int|float): The data type of the elements in the lod_tensor_array.
945 946

    Returns:
947
        Variable: The lod_tensor_array variable storing the elements of data type.
948 949 950 951 952 953 954

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
955 956 957 958 959 960 961
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
962
@templatedoc()
963
def less_than(x, y, force_cpu=None, cond=None):
964
    """
Y
yuyang18 已提交
965
    ${comment}
966

Y
yuyang18 已提交
967 968
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
969 970

    Args:
Y
yuyang18 已提交
971 972 973
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
974 975 976
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
977
        ${out_comment}.
978
    """
Y
Yang Yang(Tony) 已提交
979 980
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
981
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
982 983
        cond.stop_gradient = True

Y
yuyang18 已提交
984 985 986 987 988 989
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
990
    helper.append_op(
J
JiayiFeng 已提交
991 992 993 994
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
995
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
996 997 998
    return cond


Z
zhoukunsheng 已提交
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
@templatedoc()
def less_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x <= y` elementwise, which is equivalent to the overloaded operator `<=`.

    Args:
        x(Variable): First operand of *less_equal*
        y(Variable): Second operand of *less_equal*
        cond(Variable|None): Optional output variable to store the result of *less_equal*

    Returns:
        Variable: The tensor variable storing the output of *less_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.less_equal(x=label, y=limit)
    """
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='less_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_than(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x > y` elementwise, which is equivalent to the overloaded operator `>`.

    Args:
        x(Variable): First operand of *greater_than*
        y(Variable): Second operand of *greater_than*
        cond(Variable|None): Optional output variable to store the result of *greater_than*

    Returns:
        Variable: The tensor variable storing the output of *greater_than*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_than(x=label, y=limit)
    """
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


@templatedoc()
def greater_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x >= y` elementwise, which is equivalent to the overloaded operator `>=`.

    Args:
        x(Variable): First operand of *greater_equal*
        y(Variable): Second operand of *greater_equal*
        cond(Variable|None): Optional output variable to store the result of *greater_equal*

    Returns:
        Variable: The tensor variable storing the output of *greater_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.greater_equal(x=label, y=limit)
    """
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()
    if force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

    helper.append_op(
        type='greater_equal',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs)
    return cond


1107
def equal(x, y, cond=None):
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
1126
        cond = helper.create_variable_for_type_inference(dtype='bool')
1127 1128 1129 1130 1131 1132 1133 1134
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


Z
zhoukunsheng 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
def not_equal(x, y, cond=None):
    """
    This layer returns the truth value of :math:`x != y` elementwise, which is equivalent to the overloader operator `!=`.

    Args:
        x(Variable): First operand of *not_equal*
        y(Variable): Second operand of *not_equal*
        cond(Variable|None): Optional output variable to store the result of *not_equal*

    Returns:
        Variable: The tensor variable storing the output of *not_equal*.

    Examples:
        .. code-block:: python

          out = fluid.layers.not_equal(x=label, y=limit)
    """
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='not_equal', inputs={'X': [x],
                                  'Y': [y]}, outputs={'Out': [cond]})
    return cond


1163
def array_read(array, i):
1164 1165
    """
    This function performs the operation to read the data in as an
1166
    LOD_TENSOR_ARRAY.
1167 1168 1169 1170 1171 1172

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1173

1174
        And:
1175

1176 1177 1178 1179 1180 1181
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1182
    Args:
1183 1184 1185
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1186 1187
    Returns:
        Variable: The tensor type variable that has the data written to it.
1188

K
kavyasrinet 已提交
1189
    Examples:
1190 1191
        .. code-block:: python

Z
zhaoyuchen 已提交
1192
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1193
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1194
          item = fluid.layers.array_read(array, i)
1195
    """
Y
Yu Yang 已提交
1196 1197 1198 1199 1200
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1201
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1202 1203 1204 1205 1206 1207
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1208 1209


1210
def shrink_memory(x, i, table):
1211
    """
Y
yuyang18 已提交
1212
    This function creates an operator to shrink rnn memory using the RankTable
1213
    as mentioned in the input parameter.
Y
yuyang18 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1234
    """
Y
Yang Yu 已提交
1235
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1236
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1237
    helper.append_op(
Y
Yang Yu 已提交
1238
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1239 1240 1241 1242 1243 1244
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1245 1246


1247
def array_length(array):
1248
    """
Q
qiaolongfei 已提交
1249
    **Get the Length of Input LoDTensorArray**
1250 1251

    This function performs the operation to find the length of the input
1252
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1253

1254 1255
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1256 1257 1258 1259 1260 1261 1262 1263
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1264
        .. code-block:: python
K
kavyasrinet 已提交
1265 1266 1267 1268 1269

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1270

1271
    """
Y
Yang Yu 已提交
1272
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1273
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1274 1275 1276 1277
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1278 1279 1280


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1281
    """
1282 1283 1284
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1285 1286 1287
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1329
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1330 1331 1332 1333
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1334
        self.is_scalar_condition = is_scalar_condition
1335
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1360
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1361 1362 1363
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1364 1365 1366 1367 1368
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1369 1370

        step_scope = parent_block.create_var(
1371
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1372 1373 1374
        parent_block.append_op(
            type='conditional_block',
            inputs={
1375 1376
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1377 1378 1379
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1380 1381 1382 1383 1384 1385 1386
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1387
    """
Q
qiaolongfei 已提交
1388 1389
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1390 1391 1392 1393

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1394

Q
qiaolongfei 已提交
1395
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1396 1397 1398 1399

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1400 1401 1402 1403

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1416
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1417 1418 1419
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1420 1421 1422

    """

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1452 1453
        """
        create a default case for this switch
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1513 1514 1515 1516 1517 1518 1519 1520 1521
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1522

X
improve  
Xin Pan 已提交
1523
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1524
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1525 1526
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1527 1528
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1529 1530
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1531 1532 1533 1534
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1535 1536 1537
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1538 1539 1540
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1541 1542 1543 1544
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1545
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1546 1547
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1548
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1560
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1561
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1562
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1563
                dtype=x.dtype)
Y
Yu Yang 已提交
1564 1565

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1566
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1567
                dtype=x.dtype)
Y
Yu Yang 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1586
    def _parent_block(self):
Y
Yu Yang 已提交
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1602
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1603 1604 1605 1606 1607
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1608 1609
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1610
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1611 1612 1613
            out_table.append(outside_out)

            # assign local var to outside
1614
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1615 1616 1617 1618

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1619
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1638
                    level=0))
Y
Yu Yang 已提交
1639
        return rlist
1640 1641 1642


class DynamicRNN(object):
Y
yuyang18 已提交
1643
    """
Y
yuyang18 已提交
1644 1645 1646
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
C
chengduoZH 已提交
1674 1675 1676 1677
    
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
Y
yuyang18 已提交
1678
    """
1679 1680 1681 1682
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1683 1684
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1685 1686 1687 1688
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1689
        self.zero_idx = None
1690 1691 1692
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1693
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1694 1695 1696 1697 1698
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1699
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1700 1701
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1702

Y
yuyang18 已提交
1703 1704
        Args:
            x(Variable): The input sequence.
1705
            level(int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1706 1707 1708 1709

        Returns:
            The current timestep in the input sequence.
        """
1710 1711 1712
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1713
                "step_input() can only take a Variable as its input.")
1714 1715 1716
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1717
                name=unique_name.generate('lod_rank_table'),
1718 1719 1720 1721 1722
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1723 1724
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1725
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1726 1727
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1738 1739
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1740 1741

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1742
            name=unique_name.generate('dynamic_rnn_input_array'),
1743 1744 1745 1746 1747 1748 1749 1750
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1751
        return array_read(array=input_array, i=self.step_idx)
1752

Y
yangyaming 已提交
1753
    def static_input(self, x):
Y
yuyang18 已提交
1754 1755 1756
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
H
haowang101779990 已提交
1757

Y
yuyang18 已提交
1758 1759 1760 1761 1762 1763
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1764 1765 1766 1767 1768 1769 1770 1771 1772
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1773
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1783
    @signature_safe_contextmanager
1784
    def block(self):
Y
yuyang18 已提交
1785
        """
1786
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1787
        """
1788 1789
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1790 1791
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1792 1793 1794 1795
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1796
            increment(x=self.step_idx, value=1.0, in_place=True)
1797 1798

            for new_mem, mem_array in self.mem_link:
1799 1800
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1801 1802 1803 1804 1805
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1806 1807 1808 1809 1810

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1811
                    x=each_array, table=self.lod_rank_table))
1812 1813

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1814 1815 1816
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1817
        if self.status != DynamicRNN.AFTER_RNN:
1818 1819
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1820 1821 1822 1823 1824
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1825 1826 1827 1828 1829 1830
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1831
        """
Y
yuyang18 已提交
1832
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

H
haowang101779990 已提交
1881
            shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
Y
yuyang18 已提交
1882 1883 1884

            value(float): the initalized value.

H
haowang101779990 已提交
1885
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1886 1887 1888 1889

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1890
            The memory variable.
Y
yuyang18 已提交
1891
        """
1892
        self._assert_in_rnn_block_('memory')
1893
        self._init_zero_idx_()
1894 1895 1896 1897 1898
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1899 1900 1901 1902 1903 1904 1905 1906
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1907
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1918
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1919
                name=unique_name.generate('dynamic_rnn_mem_array'),
1920 1921 1922 1923
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1924
                inputs={'X': init_tensor,
1925 1926
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1927
            retv = array_read(array=mem_array, i=self.step_idx)
1928
            retv = shrink_memory(
1929
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1930 1931 1932 1933 1934 1935 1936 1937 1938
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1939
                name=unique_name.generate('mem_init'), dtype=dtype)
1940
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1941 1942
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1960 1961 1962
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
1963
        
Y
yuyang18 已提交
1964 1965 1966 1967 1968 1969 1970
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1988
        """
1989
        Mark the RNN output variables.
Y
yuyang18 已提交
1990 1991 1992 1993 1994 1995 1996

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1997 1998 1999 2000
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
2001
                name=unique_name.generate("_".join(
2002 2003 2004 2005 2006 2007
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
2036 2037


2038
@autodoc()
Y
Yang Yu 已提交
2039 2040 2041 2042 2043
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
2044
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
2045 2046 2047 2048 2049 2050
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
2051 2052


2053
def is_empty(x, cond=None):
2054
    """
F
fengjiayi 已提交
2055
    Test whether a Variable is empty.
2056 2057

    Args:
F
fengjiayi 已提交
2058
        x (Variable): The Variable to be tested.
2059
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
2060
                              of given 'x'. Default: None
2061 2062

    Returns:
F
fengjiayi 已提交
2063
        Variable: A bool scalar. True if 'x' is an empty Variable.
2064 2065 2066

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
2067
                   not bool.
2068 2069 2070 2071

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
2072 2073 2074
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
2075 2076 2077
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
2078
        cond = helper.create_variable_for_type_inference(dtype='bool')
2079 2080 2081 2082 2083 2084 2085 2086 2087
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond