control_flow.py 54.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
D
dzhwinter 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
yuyang18 已提交
16
from layer_function_generator import autodoc, templatedoc
Y
Yu Yang 已提交
17
from tensor import assign, fill_constant
18
from .. import core
19
from ..framework import Program, Variable, Operator
20
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
21
from ..initializer import force_init_on_cpu
22
from ops import logical_and, logical_not, logical_or
D
dzhwinter 已提交
23

Q
QI JUN 已提交
24
__all__ = [
Y
ying 已提交
25 26 27 28 29 30 31
    'split_lod_tensor',
    'merge_lod_tensor',
    'BlockGuard',
    'BlockGuardWithCompletion',
    'StaticRNNMemoryLink',
    'WhileGuard',
    'While',
32
    'Switch',
Y
ying 已提交
33 34 35 36 37 38 39 40
    'lod_rank_table',
    'max_sequence_len',
    'lod_tensor_to_array',
    'array_to_lod_tensor',
    'increment',
    'array_write',
    'create_array',
    'less_than',
41
    'equal',
Y
ying 已提交
42 43 44 45 46 47 48 49 50 51
    'array_read',
    'shrink_memory',
    'array_length',
    'IfElse',
    'DynamicRNN',
    'ConditionalBlock',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'ParallelDo',
    'Print',
52
    'is_empty',
D
dzhwinter 已提交
53 54
]

Y
Yu Yang 已提交
55

56
def split_lod_tensor(input, mask, level=0):
57 58 59 60 61 62 63 64
    """
    **split_lod_tensor**

    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
    the input at a certain level in the tensor.

65 66
    Mainly used in IfElse to split data into two parts. Related API: IfElse.

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The true branch of tensor as per the mask applied to input.
        Variable: The false branch of tensor as per the mask applied to input.

    Examples:
        .. code-block:: python

          x = layers.data(name='x', shape=[1])
          x.persistable = True

          y = layers.data(name='y', shape=[1])
          y.persistable = True

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
88

89
    """
90
    helper = LayerHelper('split_lod_tensor', **locals())
F
fengjiayi 已提交
91 92
    out_true = helper.create_tmp_variable(dtype=input.dtype)
    out_false = helper.create_tmp_variable(dtype=input.dtype)
93 94 95 96 97 98 99 100 101 102 103 104
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


105
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
    merges the True and False branches of the tensor into a single Output
    at a certain lod level indiacted by :math:`level`.

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
        level(int): The specific lod level to rank.

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
140
    helper = LayerHelper('merge_lod_tensor', **locals())
F
fengjiayi 已提交
141
    out = helper.create_tmp_variable(dtype=in_true.dtype)
142 143 144 145 146 147 148 149 150 151 152
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
153 154 155 156 157 158 159
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
160 161
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
162 163 164 165 166 167 168 169 170 171
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
172 173 174 175 176 177 178 179 180
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
181
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
182 183
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
184 185

    Returns:
Y
yangyaming 已提交
186
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
187 188 189 190 191 192 193 194 195

    Examples:
        .. code-block:: python

        value = some_layer(...)
        Print(value, summarize=10,
              message="The content of some_layer: ")
    '''
    helper = LayerHelper('print', **locals())
Y
yangyaming 已提交
196
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
Y
Yan Chunwei 已提交
197 198
    helper.append_op(
        type='print',
Y
yangyaming 已提交
199
        inputs={'In': input},
Y
Yan Chunwei 已提交
200 201 202 203 204 205 206 207
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
208 209 210
            'print_phase': print_phase.upper()
        },
        outputs={'Out': out})
Y
Yan Chunwei 已提交
211 212 213
    return out


Y
Yu Yang 已提交
214 215
class BlockGuard(object):
    """
216 217 218 219
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
220 221
    """

222 223
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
224
            raise TypeError("BlockGuard takes a program")
225
        self.main_program = main_program
Y
Yu Yang 已提交
226 227

    def __enter__(self):
228
        self.main_program.create_block()
Y
Yu Yang 已提交
229 230

    def __exit__(self, exc_type, exc_val, exc_tb):
231
        self.main_program.rollback()
Y
Yu Yang 已提交
232 233 234 235 236
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
237
class ParallelDo(object):
238
    """
Y
Yang Yang 已提交
239
    ParallelDo class.
240

Y
Yang Yang 已提交
241 242 243
    ParallelDo class is used to create a ParallelDo.
    """

Y
Yang Yang 已提交
244
    def __init__(self, places, use_nccl=False, name=None):
Y
Yang Yang 已提交
245 246 247 248 249
        self.helper = LayerHelper("parallel_do", name=name)
        self.inputs = []
        self.places = places
        self.outputs = []
        self.status = StaticRNN.BEFORE_RNN_BLOCK
Y
Yang Yang 已提交
250
        self.use_nccl = use_nccl
Y
Yang Yang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

    def do(self):
        return BlockGuardWithCompletion(self)

    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

    def read_input(self, var):
        self.inputs.append(var)
Y
Yang Yang 已提交
274
        return var
Y
Yang Yang 已提交
275 276 277 278 279 280 281 282 283 284

    def write_output(self, var):
        self.outputs.append(var)

    def get_parameters(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        local_inputs = set()
Y
Yang Yang(Tony) 已提交
285
        params = list()
Y
Yang Yang 已提交
286 287 288 289 290 291 292 293
        for var in self.inputs:
            local_inputs.add(var.name)

        for op in current_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)
Y
Yang Yang(Tony) 已提交
294 295 296 297 298

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

Y
Yang Yang 已提交
299
        params = list(set(params))
Y
Yang Yang 已提交
300 301 302 303 304 305 306 307 308 309 310

        return [parent_block.var(name) for name in params]

    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

Y
Yang Yang 已提交
311 312 313 314 315 316 317 318 319 320
        self.outputs = [
            parent_block.create_var(
                name=o.name,
                shape=o.shape,
                dtype=o.dtype,
                lod_level=o.lod_level,
                persistable=o.persistable,
                stop_gradient=o.stop_gradient) for o in self.outputs
        ]

Y
Yang Yang 已提交
321
        inputs = [parent_block.var(i.name) for i in self.inputs]
Y
Yang Yang 已提交
322
        outputs = [parent_block.var(o.name) for o in self.outputs]
Y
Yang Yang 已提交
323 324 325 326 327 328 329 330

        parent_block.append_op(
            type='parallel_do',
            inputs={
                'inputs': inputs,
                'parameters': self.get_parameters(),
                'places': self.places
            },
Y
Yang Yang 已提交
331
            outputs={'outputs': outputs,
Y
Yang Yang 已提交
332
                     'parallel_scopes': [step_scope]},
Y
Yang Yang 已提交
333 334
            attrs={'sub_block': current_block,
                   'use_nccl': self.use_nccl})
Y
Yang Yang 已提交
335 336 337 338 339 340 341


class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
342 343
    """

Y
Yu Yang 已提交
344
    def __init__(self, rnn):
Y
Yang Yang 已提交
345 346 347 348
        if not (isinstance(rnn, StaticRNN) or isinstance(rnn, ParallelDo)):
            raise TypeError(
                "BlockGuardWithCompletion takes a StaticRNN or ParallelDo")
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
349 350 351 352
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
353
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
354 355

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
356 357
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
358
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
Y
Yang Yang 已提交
359 360 361
        self.rnn.complete_op()
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
362 363 364 365


class StaticRNNMemoryLink(object):
    """
366 367 368 369 370 371 372 373 374 375 376 377
    StaticRNNMemoryLink class.

    Args:
        init: the initial variable for Memory
        init: Variable
        pre_mem: the memory variable in previous time step
        pre_mem: Variable
        mem: the memory variable in current time step
        mem: Variable

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
Yu Yang 已提交
378 379 380 381 382 383 384 385 386
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
387 388 389 390 391 392
    """
    StaticRNN class.

    StaticRNN class is used to create a StaticRNN. The RNN will have its
    own parameters like inputs, outputs, memories, status and length.
    """
Y
Yu Yang 已提交
393 394 395 396
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

397 398
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
399 400 401 402 403 404 405 406
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
Y
Yang Yang 已提交
407
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
408 409 410 411 412

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

413 414 415 416 417 418 419
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
420 421 422 423 424 425 426 427 428
        """
        Args:
            init: boot memory, if not set, a shape, batch_ref must be provided
            shape: shape of the boot memory
            batch_ref: batch size reference variable
            init_value: the init value of boot memory
            init_batch_dim_idx: the index of batch size in init's dimension
            ref_batch_dim_idx: the index of batch size in batch_ref's dimension
        """
Y
Yu Yang 已提交
429 430
        self._assert_in_rnn_block_('memory')
        if init is None:
431
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
432
                raise ValueError(
433
                    "if init is None, memory at least need shape and batch_ref")
Y
Yu Yang 已提交
434
            parent_block = self.parent_block()
Y
Yu Yang 已提交
435 436
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
437
            boot_var = parent_block.create_var(
438 439
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
440
                dtype=batch_ref.dtype,
441
                persistable=False)
Y
Yu Yang 已提交
442 443

            parent_block.append_op(
444 445
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
446 447 448
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
449
                    'shape': boot_var.shape,
F
fengjiayi 已提交
450
                    'dtype': boot_var.dtype,
451 452
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
453 454 455 456 457
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
458
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
459
                dtype=init.dtype,
Y
Yu Yang 已提交
460 461 462 463 464 465 466 467 468 469
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
470 471
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
472 473 474
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
475
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
476 477 478 479 480 481 482 483
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

F
fengjiayi 已提交
484
        tmp_o = self.helper.create_tmp_variable(dtype=o.dtype)
Y
Yu Yang 已提交
485 486 487 488
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
489
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
490

Y
Yu Yang 已提交
491
        out_var = self.parent_block().create_var(
Y
Yu Yang 已提交
492 493
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
494
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507

        self.outputs.append(out_var)

    def output(self, *outputs):
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

    def parent_block(self):
508
        prog = self.helper.main_program
Y
Yu Yang 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

Y
Yang Yang 已提交
524
    def complete_op(self):
525 526
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
Y
Yu Yang 已提交
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
        parent_block = self.parent_block()

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

        boot_memories = []
        pre_memories = []
        memories = []
        for _, mem in self.memories.iteritems():
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
F
fengjiayi 已提交
566
            new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype)
Y
Yu Yang 已提交
567 568 569 570 571

            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
572
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
                'ex_states': pre_memories,
                'states': memories,
588
                'sub_block': rnn_block
Y
Yu Yang 已提交
589
            })
Y
Yu Yang 已提交
590 591


Y
Yang Yang(Tony) 已提交
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
        self.while_op.complete()
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

616 617
    def __init__(self, cond, name=None):
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
618 619 620 621
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
622
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond

    def block(self):
        return WhileGuard(self)

    def complete(self):
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
            if inner_out_name in parent_block.vars:
                out_vars.append(parent_block.var(inner_out_name))

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
Y
Yu Yang 已提交
660 661
                'X':
                [parent_block.var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
662 663 664 665
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
666
            attrs={'sub_block': while_block})
Y
Yang Yang(Tony) 已提交
667 668


669
def lod_rank_table(x, level=0):
Y
yangyaming 已提交
670 671 672
    """LoD Rank Table Operator. Given an input variable **x** and a level number
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
673
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
674 675 676
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
677 678 679 680

        .. code-block:: text

            x is a LoDTensor:
Y
yangyaming 已提交
681
                x.lod = [[0,                2, 3],
Y
yangyaming 已提交
682 683 684
                         [0,             5, 6, 7]]
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
685 686 687
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
688

Y
yangyaming 已提交
689 690 691 692 693 694 695 696 697
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
698 699 700 701

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
702 703
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
704 705 706 707 708 709 710 711 712 713

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
                            dtype='float32', lod_level=1)
            out = layers.lod_rank_table(x=x, level=0)
714
    """
Y
Yu Yang 已提交
715 716 717
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
718
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
719 720 721 722 723 724
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
725 726


Y
yuyang18 已提交
727
@templatedoc()
728
def max_sequence_len(rank_table):
Y
yuyang18 已提交
729 730 731 732 733 734 735 736
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
737 738

    Args:
Y
yuyang18 已提交
739
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
740 741

    Returns:
Y
yuyang18 已提交
742
        ${out_comment}.
F
fengjiayi 已提交
743 744 745 746 747 748 749 750 751 752
    """
    helper = LayerHelper("max_seqence_len", **locals())
    res = helper.create_tmp_variable(dtype="int64")
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


753
def lod_tensor_to_array(x, table):
754
    """ Convert a LOD_TENSOR to an LOD_TENSOR_ARRAY.
755 756

    Args:
757
        x (Variable|list): The LOD tensor to be converted to a LOD tensor array.
758 759 760 761 762 763 764 765 766 767 768 769 770 771
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type array that has been converted from a
                  tensor.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
772
    """
773 774
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
775
        name=unique_name.generate("lod_tensor_to_array"),
776
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
777
        dtype=x.dtype)
778 779 780 781 782 783 784 785
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


786
def array_to_lod_tensor(x, table):
787
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
788 789

    Args:
790
        x (Variable|list): The lod tensor array to be converted to a tensor.
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
806
    """
807
    helper = LayerHelper("array_to_lod_tensor", **locals())
F
fengjiayi 已提交
808
    tmp = helper.create_tmp_variable(dtype=x.dtype)
809 810 811 812 813 814 815 816
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


817
def increment(x, value=1.0, in_place=True):
818 819
    """
    This function performs an operation that increments each value in the
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    input :math:`x` by an amount: :math:`value` as mentioned in the input
    parameter. This operation is performed in-place by default.

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
        Variable: The tensor variable storing the transformation of
                  element-wise increment of each value in the input.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32')
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
837
    """
Y
Yu Yang 已提交
838
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
839
    if not in_place:
F
fengjiayi 已提交
840
        out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
841 842
    else:
        out = x
Y
Yu Yang 已提交
843 844 845
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
846
        outputs={'Out': [out]},
847
        attrs={'step': float(value)})
Y
Yang Yu 已提交
848
    return out
Y
Yu Yang 已提交
849 850


851
def array_write(x, i, array=None):
852 853 854 855 856
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
857 858 859

    Args:
        x (Variable|list): The input tensor from which the data will be read.
860 861 862 863 864 865 866 867
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

868
    Returns:
869
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
870 871 872 873 874 875 876

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
877
    """
Y
Yu Yang 已提交
878 879 880 881 882
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
883
            dtype=x.dtype)
Y
Yu Yang 已提交
884 885 886 887 888 889 890 891
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


892
def create_array(dtype):
893 894 895 896 897 898
    """
    **Create LoDTensor Array**

    This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the
    LayerHelper. It is mainly used to implement RNN with array_write, array_read
    and While.
899 900 901 902 903

    Args:
        dtype (int|float): The data type of the elements in the array.

    Returns:
904
        Variable: The lod_tensor_array variable storing the elements of data type.
905 906 907 908 909 910 911

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
912 913 914 915 916 917 918
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


J
JiayiFeng 已提交
919
def less_than(x, y, force_cpu=True, cond=None, **ignored):
920 921 922 923 924 925 926 927
    """
    **Less than**

    This layer returns the truth value of :math:`x < y` elementwise.

    Args:
        x(Variable): First operand of *less_than*
        y(Variable): Second operand of *less_than*
J
JiayiFeng 已提交
928
        force_cpu(Bool|True): The output data will be on CPU if set true.
929 930 931 932 933 934 935 936 937 938
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
        Variable: The tensor variable storing the output of *less_than*.

    Examples:
        .. code-block:: python

          less = fluid.layers.less_than(x=label, y=limit)
    """
Y
Yang Yang(Tony) 已提交
939 940 941 942 943 944
    helper = LayerHelper("less_than", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
J
JiayiFeng 已提交
945 946 947 948 949
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
        attrs={'force_cpu': force_cpu or force_init_on_cpu()})
Y
Yang Yang(Tony) 已提交
950 951 952
    return cond


953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
def equal(x, y, cond=None, **ignored):
    """
    **equal**

    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


983
def array_read(array, i):
K
kavyasrinet 已提交
984
    """This function performs the operation to read the data in as an
985
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
986 987 988 989 990 991 992 993 994 995 996
    Args:
        array (Variable|list): The input tensor that will be written to an array.
        i (Variable|list): The subscript index in tensor array, that points the
                           place where data will be written to.
    Returns:
        Variable: The tensor type variable that has the data written to it.
    Examples:
        .. code-block::python
          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_read(tmp, i=i)
997
    """
Y
Yu Yang 已提交
998 999 1000 1001 1002
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
F
fengjiayi 已提交
1003
    out = helper.create_tmp_variable(dtype=array.dtype)
Y
Yu Yang 已提交
1004 1005 1006 1007 1008 1009
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1010 1011


1012
def shrink_memory(x, i, table):
1013 1014 1015 1016
    """
    This function creates an operator to shrink_rnn_memory using the RankTable
    as mentioned in the input parameter.
    """
Y
Yang Yu 已提交
1017
    helper = LayerHelper('shrink_memory', **locals())
F
fengjiayi 已提交
1018
    out = helper.create_tmp_variable(dtype=x.dtype)
Y
Yang Yu 已提交
1019
    helper.append_op(
Y
Yang Yu 已提交
1020
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1021 1022 1023 1024 1025 1026
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1027 1028


1029
def array_length(array):
1030 1031 1032 1033
    """
    **Get the length of Input LoDTensorArray**

    This function performs the operation to find the length of the input
1034
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1035

1036 1037
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
1052
    """
Y
Yang Yu 已提交
1053 1054 1055 1056 1057 1058
    helper = LayerHelper('array_length', **locals())
    tmp = helper.create_tmp_variable(dtype='int64')
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077


class ConditionalBlockGuard(BlockGuard):
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
1078
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1079 1080 1081 1082
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1083
        self.is_scalar_condition = is_scalar_condition
1084
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
Q
Qingsheng Li 已提交
1109
            parent_block.var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1110 1111 1112 1113 1114
            if each_name not in input_set
        ]

        out_list = [
            parent_block.var(var_name) for var_name in parent_block.vars
X
xuwei06 已提交
1115
            if var_name in intermediate
Y
Yu Yang 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
        ]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        parent_block.append_op(
            type='conditional_block',
            inputs={
                'X': self.inputs,
                'Params': param_list,
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        """create a default case for this switch
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1228
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1229 1230
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1231
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
            parent_block = self.parent_block()
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1245
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1246
                dtype=x.dtype)
Y
Yu Yang 已提交
1247 1248

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1249
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1250
                dtype=x.dtype)
Y
Yu Yang 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

    def parent_block(self):
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
        parent_block = self.parent_block()
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1291 1292
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1293
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1294 1295 1296
            out_table.append(outside_out)

            # assign local var to outside
1297
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
        false_len, true_len = map(len, self.output_table)
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1321
                    level=0))
Y
Yu Yang 已提交
1322
        return rlist
1323 1324 1325 1326 1327 1328 1329


class DynamicRNN(object):
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1330 1331
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1332 1333 1334 1335
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1336 1337
        self.zero_idx = fill_constant(
            shape=[1], value=0, dtype='int64', force_cpu=True)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
        self.cond = self.helper.create_tmp_variable(dtype='bool')
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

    def step_input(self, x):
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1351
                "step_input() can only take a Variable as its input.")
1352 1353 1354
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1355
                name=unique_name.generate('lod_rank_table'),
1356 1357 1358 1359 1360 1361 1362
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table})
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1363 1364
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1375 1376
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1377 1378

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1379
            name=unique_name.generate('dynamic_rnn_input_array'),
1380 1381 1382 1383 1384 1385 1386 1387
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1388
        return array_read(array=input_array, i=self.step_idx)
1389

Y
yangyaming 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
    def static_input(self, x):
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1400
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1401 1402 1403 1404 1405 1406 1407 1408 1409
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

1410 1411 1412 1413
    @contextlib.contextmanager
    def block(self):
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1414 1415
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1416 1417 1418 1419
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1420
            increment(x=self.step_idx, value=1.0, in_place=True)
1421 1422

            for new_mem, mem_array in self.mem_link:
1423 1424
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1425 1426 1427 1428 1429
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1430 1431 1432 1433 1434

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1435
                    x=each_array, table=self.lod_rank_table))
1436 1437 1438

    def __call__(self, *args, **kwargs):
        if self.status != DynamicRNN.AFTER_RNN:
1439 1440
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1441 1442 1443 1444 1445
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1446 1447 1448 1449 1450 1451
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
1452 1453 1454 1455 1456 1457
        self._assert_in_rnn_block_('memory')
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1458 1459 1460 1461 1462 1463 1464 1465
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1466
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1477
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1478
                name=unique_name.generate('dynamic_rnn_mem_array'),
1479 1480 1481 1482
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1483
                inputs={'X': init_tensor,
1484 1485
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1486
            retv = array_read(array=mem_array, i=self.step_idx)
1487
            retv = shrink_memory(
1488
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1489 1490 1491 1492 1493 1494 1495 1496 1497
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1498
                name=unique_name.generate('mem_init'), dtype=dtype)
1499
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1500 1501
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1540
                name=unique_name.generate("_".join(
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1559 1560


1561
@autodoc()
Y
Yang Yu 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

    out = helper.create_tmp_variable(dtype=x.dtype)
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610


def is_empty(x, cond=None, **ignored):
    """
    **Is Empty**

    This layer returns the truth value of whether the variable is empty.

    Args:
        x(Variable): Operand of *is_empty*
        cond(Variable|None): Optional output variable to store the result
                             of *is_empty*

    Returns:
        Variable: The tensor variable storing the output of *is_empty*.

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
                   not bool

    Examples:
        .. code-block:: python

          less = fluid.layers.is_empty(x=input)
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
        cond = helper.create_tmp_variable(dtype='bool')
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond