framework.py 143.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
21
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
M
minqiyang 已提交
32
from .. import compat as cpt
33
from .proto import framework_pb2
34 35

from . import core
36
from . import unique_name
Y
Yu Yang 已提交
37

38
__all__ = [
39 40 41 42
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
43
    'name_scope',
S
sneaxiy 已提交
44 45 46
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
47
    'in_dygraph_mode',
C
chengduo 已提交
48
    'is_compiled_with_cuda',
49
    'Variable',
50
]
Y
Yu Yang 已提交
51

Q
qiaolongfei 已提交
52 53 54 55
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
56 57
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
58 59
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
60 61


L
lujun 已提交
62
def in_dygraph_mode():
L
lujun 已提交
63 64 65 66 67 68 69 70 71
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

72
            import paddle.fluid as fluid
L
lujun 已提交
73 74 75 76
            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
77
    return _dygraph_tracer_ is not None
78 79


80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
        assert not in_dygraph_mode(
        ), "We don't support %s in Dygraph mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
        assert in_dygraph_mode(
        ), "We Only support %s in Dygraph mode, please use fluid.dygraph.guard() as context to run it in Dygraph Mode" % func.__name__
        return func(*args, **kwargs)

    return __impl__


dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)


L
lujun 已提交
102 103
def _dygraph_tracer():
    return _dygraph_tracer_
104

W
Wu Yi 已提交
105

M
minqiyang 已提交
106
def _current_expected_place():
L
lujun 已提交
107
    return _dygraph_current_expected_place_
M
minqiyang 已提交
108 109


S
sneaxiy 已提交
110
def _cpu_num():
111
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
112 113 114 115 116 117 118 119
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()))
C
chengduo 已提交
120
        os.environ['CPU_NUM'] = str(1)
121
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
122 123 124 125 126 127 128 129 130 131
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
132 133


C
chengduo 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

    Returns (bool): support gpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_gpu = fluid.is_compiled_with_cuda()
    """
    return core.is_compiled_with_cuda()


S
sneaxiy 已提交
149
def cuda_places(device_ids=None):
L
lujun 已提交
150
    """
S
add doc  
sneaxiy 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
170 171 172 173

    Examples:
        .. code-block:: python

174
            import paddle.fluid as fluid
L
lujun 已提交
175 176 177
            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
178 179 180
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
181
        device_ids = _cuda_ids()
S
sneaxiy 已提交
182 183 184 185 186 187
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
188
    """
S
add doc  
sneaxiy 已提交
189 190 191 192
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
C
chengduo 已提交
193 194
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
S
add doc  
sneaxiy 已提交
195 196 197 198 199 200

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
201 202 203 204

    Examples:
        .. code-block:: python

205
            import paddle.fluid as fluid
L
lujun 已提交
206 207 208
            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
209 210 211 212 213 214
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
215
    """
S
add doc  
sneaxiy 已提交
216 217 218 219 220 221 222 223 224 225 226 227
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
228 229 230 231

    Examples:
        .. code-block:: python

232
            import paddle.fluid as fluid
L
lujun 已提交
233 234 235 236 237
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
238 239 240 241 242 243 244
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
271
@signature_safe_contextmanager
272 273 274 275 276 277 278 279 280 281 282 283
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
284

285
          import paddle.fluid as fluid
286 287 288 289 290 291 292 293 294 295 296
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
297 298
    """
    # TODO(panyx0718): Only [0-9a-z].
299 300 301 302 303 304 305 306 307
    # in dygraph we don't need namescope since it will cause mem leak
    if not in_dygraph_mode():
        assert prefix, "namescope prefix cannot be empty."
        global _name_scope
        _name_scope = _name_scope.child(prefix)
        yield
        _name_scope = _name_scope.parent()
    else:
        yield
308 309 310 311 312 313 314 315 316 317 318 319


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
320 321 322
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
323 324 325 326


def grad_var_name(var_name):
    """
327 328
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
329 330 331
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
332

333
def convert_np_dtype_to_dtype_(np_dtype):
334 335
    """
    Convert the data type in numpy to the data type in Paddle
336

337
    Args:
338
        np_dtype(np.dtype): the data type in numpy.
339

340 341
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
342 343

    """
344 345
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
346
        return core.VarDesc.VarType.FP32
347
    elif dtype == np.float64:
348
        return core.VarDesc.VarType.FP64
349
    elif dtype == np.float16:
350
        return core.VarDesc.VarType.FP16
351
    elif dtype == np.int32:
352
        return core.VarDesc.VarType.INT32
353
    elif dtype == np.int16:
354
        return core.VarDesc.VarType.INT16
355
    elif dtype == np.int64:
356
        return core.VarDesc.VarType.INT64
357
    elif dtype == np.bool:
358
        return core.VarDesc.VarType.BOOL
359 360
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
361 362
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
363 364
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
365
    else:
M
minqiyang 已提交
366
        raise ValueError("Not supported numpy dtype %s" % dtype)
367 368 369


def dtype_is_floating(dtype):
370 371 372
    """
    Check the data type is floating or not.
    Args:
373
        dtype(np.dtype|core.VarDesc.VarType): data type.
374 375 376 377 378
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
379
    if not isinstance(dtype, core.VarDesc.VarType):
380 381
        dtype = convert_np_dtype_to_dtype_(dtype)

382 383 384 385
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
386 387


Y
Yang Yang(Tony) 已提交
388
def _debug_string_(proto, throw_on_error=True):
389 390 391 392 393 394 395 396 397 398 399
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
400
    error_fields = list()
Y
Yang Yang(Tony) 已提交
401
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
402 403
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
404 405 406
    return proto.__str__()


X
Xin Pan 已提交
407
class Variable(object):
408
    """
409 410 411 412 413
    **Notes:**
        **The constructor of Variable should not be invoked directly.**
        **In Static Graph Mode: Please use** `Block.create_var` **to create a Static variable which has no data until being feed.**
        **In Dygraph Mode: Please use** `fluid.dygraph.to_variable()` **to create a dygraph variable with real data**

414 415 416
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
417
    two variables in different blocks could have the same name.
418

419
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
420
    and usages. Please refer to the framework.proto for details.
421

422
    Most of a Variable's member variables can be setted to be None. It mean
423
    it is not available or will be specified later.
424

425
    Examples:
426 427
        In Static Graph Mode:

428 429
        .. code-block:: python

430
            import paddle.fluid as fluid
431
            cur_program = fluid.Program()
432 433 434 435
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
436 437 438 439 440 441 442 443 444 445
        In Dygraph Mode:

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

446 447
    """

Y
Yu Yang 已提交
448 449
    def __init__(self,
                 block,
Y
Yu Yang 已提交
450
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
451 452 453 454
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
455
                 capacity=None,
Q
QI JUN 已提交
456
                 persistable=None,
F
fengjiayi 已提交
457
                 error_clip=None,
Y
Yu Yang 已提交
458
                 stop_gradient=False,
F
fengjiayi 已提交
459
                 is_data=False,
H
Huihuang Zheng 已提交
460
                 need_check_feed=False,
Y
Yu Yang 已提交
461
                 **kwargs):
Y
Yu Yang 已提交
462 463
        self.block = block
        if name is None:
Y
Yu Yang 已提交
464
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
465

Y
Yu Yang 已提交
466
        if dtype is not None:
467
            if not isinstance(dtype, core.VarDesc.VarType):
468
                dtype = convert_np_dtype_to_dtype_(dtype)
469

L
lujun 已提交
470
        if in_dygraph_mode():
M
minqiyang 已提交
471
            # record vars in tracer rather than blocks
M
minqiyang 已提交
472
            self._ivar = kwargs.get("ivar", None)
473
            self.stop_gradient_ = kwargs.get("stop_gradient", True)
M
minqiyang 已提交
474
            if not self._ivar:
475
                self._ivar = core.VarBase(
J
Jiabin Yang 已提交
476 477 478
                    name, type
                    if type else core.VarDesc.VarType.LOD_TENSOR, dtype
                    if dtype else core.VarDesc.VarType.FP32,
479
                    list(shape) if shape else [], True
X
fix  
Xin Pan 已提交
480
                    if persistable else False)
M
minqiyang 已提交
481
            if persistable:
L
lujun 已提交
482
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
483
            self.op = None
M
minqiyang 已提交
484
        else:
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

H
Huihuang Zheng 已提交
549 550 551
            if need_check_feed and is_new_var:
                self.desc.set_need_check_feed(need_check_feed)

552 553 554 555 556 557 558 559
            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
560
            self.block.vars[name] = self
561
            self.op = None
562
            self._stop_gradient = stop_gradient
563
            self.is_data = is_data
Y
Yu Yang 已提交
564

565
    @dygraph_only
566 567
    def detach(self):
        """
568 569
        **Notes: This API is ONLY avaliable in Dygraph mode**

570
        Returns a new Variable, detached from the current graph.
571

572 573 574
        Returns:
            Variable: The detached Variable.

575 576 577
        Returns type:
            Variable(Tensor|LoDTensor) dtype is same as current Variable

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    y = x.detach()

        """
        if in_dygraph_mode():
            new_var = self._cloneVar()
            self.block.append_op(
                type="assign",
                inputs={'X': [self]},
                outputs={'Out': [new_var]},
                stop_gradient=True)
            return new_var
        else:
            raise AttributeError("static graph model DO NOT supprt detach")

605
    @dygraph_only
606
    def numpy(self):
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Returns a numpy array shows the value of current :ref:`api_guide_Variable`

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
            ndarray dtype is same as current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
                from paddle.fluid.dygraph import FC
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
                    fc = FC("fc", 64, num_flatten_dims=2)
                    data = to_variable(data)
                    x = fc(data)
                    print(x.numpy())

        """

        if not self._ivar.value().get_tensor()._is_initialized():
            raise ValueError("%s is Empty, Please check if it has no data in" %
                             self.name)
M
minqiyang 已提交
638
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
639
        return np.array(new_ivar.value().get_tensor())
640

641
    @dygraph_only
642
    def backward(self, backward_strategy=None):
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Run backward of current Graph which starts from current Variable

        Parameter:
            - **backward_strategy** : ( :ref:`api_fluid_dygraph_BackwardStrategy` ) - The Backward Strategy to run backward

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
J
Jiabin Yang 已提交
673 674 675 676 677
        if in_dygraph_mode():
            from .dygraph import BackwardStrategy
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False
678

J
Jiabin Yang 已提交
679 680 681 682
            self._ivar._run_backward(backward_strategy, _dygraph_tracer())
        else:
            raise ValueError(
                "Variable.backward() is only avaliable in DyGraph mode")
683

684
    @dygraph_only
685
    def gradient(self):
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Get the Gradient of Current Variable

        Returns:  Numpy value of the gradient of current Variable

        Returns type: ndarray

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._ivar._grad_ivar() is None:
            raise ValueError("%s has no grad, Please set Variable.stop_gradient=False, or " \
                             "check if this is the first and only variable need grad, if so, please set its pre-Variable's " \
                             "stop_gradient=False, to make sure it has gradient " % self.name)
        if not self._ivar._grad_ivar().value().get_tensor()._is_initialized():
            raise ValueError(
                "%s's Grad is Empty, Please check if it has no data in" %
                self.name)
724 725
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
726

727
    @dygraph_only
728
    def clear_gradient(self):
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        """
        **Notes: This API is ONLY avaliable in Dygraph mode**

        Clear  (set to zero) the Gradient of Current Variable

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
X
Xin Pan 已提交
759
        self._ivar._clear_gradient()
X
Xin Pan 已提交
760

761
    def __str__(self):
Y
Yang Yang(Tony) 已提交
762 763
        return self.to_string(True)

F
update  
fengjiayi 已提交
764
    def to_string(self, throw_on_error, with_details=False):
765 766 767
        """
        Get debug string.

768 769
        Parameters:
            - **throw_on_error** (bool): True if raise an exception when self is
770
                not initialized.
771
            - **with_details** (bool): more details about variables and parameters
772 773
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
774

775 776
        Returns:
            str: The debug string.
777

778 779 780
        Returns Type:
            str

781 782 783 784
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
785

786 787 788 789 790
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
791 792 793
                print(new_variable.to_string(True))
                print("\n=============with detail===============\n")
                print(new_variable.to_string(True, True))
794
        """
L
lujun 已提交
795
        if in_dygraph_mode():
L
lujun 已提交
796
            # TODO(panyx0718): add more dygraph debug info.
J
Jiabin Yang 已提交
797 798 799 800 801 802 803
            tensor = self._ivar.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)
804

F
update  
fengjiayi 已提交
805 806
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
807
        protostr = self.desc.serialize_to_string()
808
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
809 810 811 812
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
813 814 815
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))

F
update  
fengjiayi 已提交
816
        return res_str
817 818 819

    __repr__ = __str__

820
    @property
821
    def stop_gradient(self):
L
lujun 已提交
822
        if in_dygraph_mode():
M
minqiyang 已提交
823 824
            return self._ivar.stop_gradient
        else:
825
            return self._stop_gradient
826

827 828
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
829
        if in_dygraph_mode():
M
minqiyang 已提交
830
            self._ivar.stop_gradient = s
831
        else:
832
            self._stop_gradient = s
833

834 835
    @property
    def persistable(self):
L
lujun 已提交
836
        if in_dygraph_mode():
837 838 839
            return self._ivar.persistable
        else:
            return self.desc.persistable()
840

Y
Yu Yang 已提交
841 842
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
843
        if in_dygraph_mode():
844 845 846
            logging.warn(
                "There will be no use to set persistable in Dygraph Mode, since "
                "you can just do it by hold it as normal Python variable")
847 848
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
849

Y
Yu Yang 已提交
850 851
    @property
    def name(self):
L
lujun 已提交
852
        if in_dygraph_mode():
853 854 855
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
856

T
typhoonzero 已提交
857 858
    @name.setter
    def name(self, new_name):
L
lujun 已提交
859
        if in_dygraph_mode():
860 861 862
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
863

Y
Yu Yang 已提交
864 865 866
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
867
        if in_dygraph_mode():
868 869 870
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
871 872

    @property
F
fengjiayi 已提交
873
    def dtype(self):
L
lujun 已提交
874
        if in_dygraph_mode():
875 876 877
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
878 879

    @property
880
    @dygraph_not_support
Y
Yu Yang 已提交
881
    def lod_level(self):
L
lujun 已提交
882
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
883 884
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
885
        return self.desc.lod_level()
Y
Yu Yang 已提交
886

Y
Yu Yang 已提交
887 888
    @property
    def type(self):
L
lujun 已提交
889
        if in_dygraph_mode():
J
Jiabin Yang 已提交
890
            return self._ivar.type
891 892
        else:
            return self.desc.type()
Y
Yu Yang 已提交
893

W
Wu Yi 已提交
894
    def _set_error_clip(self, error_clip):
895 896 897 898 899 900 901 902 903
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
904 905
        self.error_clip = error_clip

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
993
    def _cloneVar(self, copy=False):
994 995
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
996 997
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
998 999 1000 1001
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
1002
        new_var = self._cloneVar()
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
1013
        new_var = self._cloneVar()
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
1024
                return self._cloneVar(True)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
1043
                return self._cloneVar(True)
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        def fill_constant(shape, dtype, value, force_cpu=False, out=None):
            self.block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [out]},
                attrs={
                    'shape': shape,
                    'dtype': out.dtype,
                    'value': float(value),
                    'force_cpu': force_cpu or force_init_on_cpu()
                },
                stop_gradient=True)
            out.stop_gradient = True
            return out

H
Hongyu Liu 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
1111
            else:
H
Hongyu Liu 已提交
1112 1113 1114
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
                if isinstance(slice_item, Variable):
                    temp_1 = self.block.create_var(dtype='int32')
                    fill_constant([1], 'int32', 1, force_cpu=True, out=temp_1)
                    temp_end = self.block.create_var(dtype='int32')
                    self.block.append_op(
                        type='elementwise_add',
                        inputs={'X': slice_item,
                                'Y': temp_1},
                        outputs={'Out': temp_end},
                        attrs={'axis': -1})
                    slice_end.append(temp_end)
                else:
                    slice_end.append(slice_item + 1
                                     if slice_item != -1 else 10000000)

        def contain_var(one_list):
            for ele in one_list:
                if isinstance(ele, Variable):
                    return True
            return False

        def get_new_list_tensor(old_list):
            new_list_tensor = []
            for dim in old_list:
                if isinstance(dim, Variable):
                    dim.stop_gradient = True
                    new_list_tensor.append(dim)
                else:
                    assert (isinstance(dim, int))
                    temp_out = self.block.create_var(dtype='int32')
                    fill_constant(
                        [1], 'int32', dim, force_cpu=True, out=temp_out)
                    new_list_tensor.append(temp_out)
            return new_list_tensor

        inputs = {'Input': [self]}
        attrs = {
            'axes': slice_axis,
            'starts': [],
            'ends': [],
            'decrease_axis': decrease_axis
        }
        infer_flags = list(1 for i in range(len(slice_axis)))

        # starts
        if not contain_var(slice_start):
            attrs['starts'] = slice_start
        else:
            inputs['StartsTensorList'] = get_new_list_tensor(slice_start)
            for i, dim in enumerate(slice_start):
                if isinstance(dim, Variable):
                    attrs['starts'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['starts'].append(dim)
        # ends
        if not contain_var(slice_end):
            attrs['ends'] = slice_end
        else:
            inputs['EndsTensorList'] = get_new_list_tensor(slice_end)
            for i, dim in enumerate(slice_end):
                if isinstance(dim, Variable):
                    attrs['ends'].append(-1)
                    infer_flags[i] = -1
                else:
                    attrs['ends'].append(dim)
        # infer_flags
        attrs['infer_flags'] = infer_flags
H
Hongyu Liu 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

        out = self
        if len(slice_axis) > 0:
            # append slice_op here
            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
1194
                inputs=inputs,
H
Hongyu Liu 已提交
1195
                outputs={'Out': [slice_out_var]},
1196
                attrs=attrs)
H
Hongyu Liu 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
1214

Y
Yu Yang 已提交
1215

F
fengjiayi 已提交
1216 1217 1218
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
1219

1220 1221
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
1222 1223 1224 1225
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
1226
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
1227 1228 1229 1230 1231
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
1232 1233 1234 1235
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
1245
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
1246 1247 1248 1249 1250 1251
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
1252 1253 1254 1255 1256 1257 1258 1259
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
1260 1261
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
1262 1263
        return self.op_proto_map[type]

1264 1265 1266 1267
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
1268
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
1269 1270
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
1271 1272
        }

F
fengjiayi 已提交
1273

X
Xin Pan 已提交
1274
class Operator(object):
1275
    """
1276 1277 1278 1279 1280 1281 1282
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
1283
        type(str): The type of operator. Default None.
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
1304
        Block.append_op or Block._prepend_op instead.
1305 1306 1307 1308

    Examples:
        .. code-block:: python

1309
            import paddle.fluid as fluid
1310
            cur_program = fluid.Program()
1311 1312 1313 1314 1315
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1316
    """
1317
    OP_WITHOUT_KERNEL_SET = {
1318 1319
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
1320 1321
        'fl_listen_and_serv', 'ncclInit', 'select', 'checkpoint_notify',
        'gen_nccl_id', 'c_gen_nccl_id', 'c_comm_init', 'c_sync_calc_stream',
1322
        'c_sync_comm_stream'
1323
    }
1324

Y
Yu Yang 已提交
1325 1326
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1327
                 desc,
Y
Yu Yang 已提交
1328 1329 1330
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1331
                 attrs=None):
L
lujun 已提交
1332
        if in_dygraph_mode():
1333 1334
            if type is None:
                raise ValueError(
1335
                    "`type` to initialized an Operator can not be None.")
J
Jiabin Yang 已提交
1336
            self._type = type
M
minqiyang 已提交
1337
            self.attrs = attrs if attrs else {}
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1352
                )] = self.block.program._op_role
1353 1354 1355

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1356 1357
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1358 1359 1360 1361 1362 1363 1364 1365

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1366
                    "`type` to initialized an Operator can not be None.")
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1398
                        for index, arg in enumerate(in_args):
1399 1400 1401 1402
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1403
                            elif isinstance(arg, Variable):
1404
                                in_arg_names.append(cpt.to_text(arg.name))
1405 1406 1407 1408
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1435
                        if not in_dygraph_mode():
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1455
    def _has_kernel(self, op_type):
1456 1457
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1458
    def to_string(self, throw_on_error):
1459
        """
1460 1461
        Get debug string.

1462
        Args:
1463 1464
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1465

1466 1467
        Returns:
            str: The debug string.
1468 1469

        """
1470
        protostr = self.desc.serialize_to_string()
1471
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1472 1473 1474 1475
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1476 1477 1478

    __repr__ = __str__

F
fengjiayi 已提交
1479 1480
    @property
    def type(self):
L
lujun 已提交
1481
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1482
            return self._type
1483 1484
        else:
            return self.desc.type()
F
fengjiayi 已提交
1485 1486

    def input(self, name):
1487
        """
1488
        Get the input arguments according to the input parameter name.
1489

1490 1491
        Args:
            name(str): The input parameter name.
1492

1493 1494 1495
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1496
        """
F
fengjiayi 已提交
1497 1498
        return self.desc.input(name)

W
Wu Yi 已提交
1499
    def _rename_input(self, old_name, new_name):
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1510
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1511

W
Wu Yi 已提交
1512
    def _rename_output(self, old_name, new_name):
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1523
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1524

F
fengjiayi 已提交
1525 1526 1527 1528
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1529 1530 1531 1532 1533 1534 1535 1536
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1537
    def output(self, name):
1538
        """
1539
        Get output arguments by the output parameter name.
1540

1541 1542
        Args:
            name(str): The output parameter name.
1543

1544 1545 1546
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1547
        """
F
fengjiayi 已提交
1548 1549 1550 1551 1552 1553
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1554 1555 1556 1557 1558 1559 1560 1561
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1562
    def has_attr(self, name):
1563
        """
1564 1565
        Whether this Operator has the attribute with name or not.

1566
        Args:
1567
            name(str): the attribute name.
1568

1569 1570
        Returns:
            bool: True if has this attribute.
1571 1572

        """
F
fengjiayi 已提交
1573 1574 1575
        return self.desc.has_attr(name)

    def attr_type(self, name):
1576
        """
1577
        Get the type of attribute by attribute's name.
1578

1579 1580
        Args:
            name(str): the attribute name.
1581

1582 1583
        Returns:
            core.AttrType: the attribute type.
1584
        """
F
fengjiayi 已提交
1585 1586
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1587
    def _set_attr(self, name, val):
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1598 1599
        self._update_desc_attr(name, val)

1600 1601 1602
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1614 1615
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1616 1617
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1618
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1619 1620 1621 1622
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1623
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1624

F
fengjiayi 已提交
1625 1626 1627 1628 1629
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1630
        """
1631 1632
        Get the attribute by name.

1633
        Args:
1634
            name(str): the attribute name.
1635

1636 1637
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1638 1639
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1640
        return self.desc.attr(name)
Y
Yu Yang 已提交
1641

W
Wu Yi 已提交
1642
    def _block_attr_id(self, name):
1643
        """
G
gongweibao 已提交
1644
        Get the block attribute's id by name.
1645

1646 1647
        Args:
            name(str): the attribute name.
1648

1649 1650
        Returns:
            int: the block index.
1651
        """
W
Wu Yi 已提交
1652
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1653

W
Wu Yi 已提交
1654
    def _block_attr(self, name):
G
gongweibao 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1665
        id = self._block_attr_id(name)
G
gongweibao 已提交
1666 1667 1668
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1669
    def _blocks_attr(self, name):
G
gongweibao 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1680
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1681 1682 1683 1684 1685
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1686
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1697
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1698

J
JiayiFeng 已提交
1699
    def all_attrs(self):
F
fengjiayi 已提交
1700
        """
1701 1702 1703
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1704
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1705 1706 1707 1708
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1709 1710
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1711
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1712 1713 1714
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1715
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1716 1717 1718 1719
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1720 1721
        return attr_map

Y
Yu Yang 已提交
1722

Y
Yu Yang 已提交
1723
class Block(object):
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1738
        use `Program._create_block()` to create a block.
1739 1740 1741 1742

    Examples:
        .. code-block:: python

1743 1744 1745
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1746 1747 1748 1749 1750 1751 1752 1753 1754
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1755
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1756
        self.desc = program.desc.block(idx)
1757
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1758
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1759
        self.program = program
1760
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1761

1762
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1763 1764
        return self.to_string(True)

F
fengjiayi 已提交
1765 1766
    def to_string(self, throw_on_error, with_details=False):
        """
1767 1768
        Get debug string.

F
fengjiayi 已提交
1769 1770
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1771
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1772
            with_details(bool): more details about variables and parameters
1773 1774
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1775

1776 1777
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1778 1779 1780 1781
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1782
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1783 1784
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1785
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1786
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1787
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1788
            for op in self.ops:
F
fengjiayi 已提交
1789 1790
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1791 1792 1793
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1794 1795
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1796 1797
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1798 1799 1800

    __repr__ = __str__

Y
Yu Yang 已提交
1801 1802
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1803
        return self.desc.parent
Y
Yu Yang 已提交
1804

Y
Yu Yang 已提交
1805 1806 1807 1808
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1809
    def _set_forward_block_idx(self, idx):
1810 1811 1812 1813 1814 1815 1816 1817 1818
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1819
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1820

Y
Yu Yang 已提交
1821 1822
    @property
    def idx(self):
Y
Yu Yang 已提交
1823
        return self.desc.id
Y
Yu Yang 已提交
1824

Q
Qiao Longfei 已提交
1825
    def var(self, name):
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1839
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1840 1841 1842
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1843 1844
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1845
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1846
        return v
Q
Qiao Longfei 已提交
1847

X
Xin Pan 已提交
1848
    def _find_var_recursive(self, name):
1849 1850 1851 1852 1853 1854 1855
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1856
            Variable: the Variable with the giving name. Or None if not found.
1857
        """
Y
Yu Yang 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1882
        return None
Y
Yu Yang 已提交
1883

X
Xin Pan 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1903

Q
Qiao Longfei 已提交
1904
    def all_parameters(self):
1905
        return list(self.iter_parameters())
1906

1907
    def iter_parameters(self):
M
minqiyang 已提交
1908
        return (item[1] for item in six.iteritems(self.vars)
1909
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1910

Y
Yu Yang 已提交
1911
    def create_var(self, *args, **kwargs):
1912
        var = Variable(block=self, *args, **kwargs)
1913 1914
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1915
        return var
Y
Yu Yang 已提交
1916

Q
Qiao Longfei 已提交
1917 1918 1919
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1920
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1921 1922
        """
        Rename variable in vars and ops' inputs and outputs
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1935
        """
M
minqiyang 已提交
1936 1937
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1938

T
typhoonzero 已提交
1939
        if not self.has_var(name):
1940
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1941 1942
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1943
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1944 1945 1946 1947 1948 1949 1950
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1951
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1952 1953 1954 1955
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1956
        orig_var_type = v.type
M
minqiyang 已提交
1957
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1958
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1959
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1960
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1961 1962 1963 1964
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1965
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1966 1967 1968 1969 1970 1971 1972
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1973
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1974 1975
            var = Variable(
                self,
T
typhoonzero 已提交
1976
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1977 1978 1979 1980
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1981
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1982 1983 1984
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1985
        self._sync_with_cpp()
1986
        return var
T
typhoonzero 已提交
1987

W
Wu Yi 已提交
1988 1989
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1990
        self.desc._remove_var(cpt.to_bytes(name))
1991 1992
        del self.vars[name]

Y
Yu Yang 已提交
1993 1994
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1995
        param = Parameter(global_block, *args, **kwargs)
1996
        if 'initializer' in kwargs:
1997 1998 1999 2000 2001

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
2002 2003 2004 2005 2006
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
                        # are treated as initialization ops that cause error. 
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
                        if op.type in ["c_broadcast", "c_sync_comm_stream"]:
                            continue
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
2022
        param.stop_gradient = False
Q
Qiao Longfei 已提交
2023
        return param
Y
Yu Yang 已提交
2024

Y
Yu Yang 已提交
2025
    def append_op(self, *args, **kwargs):
2026 2027 2028 2029 2030 2031
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
2032
        if in_dygraph_mode():
2033 2034 2035
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
2036 2037 2038 2039 2040
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
2041

J
Jiabin Yang 已提交
2042 2043
            type = kwargs.get("type", None)

2044 2045 2046
            op = Operator(
                block=self,
                desc=None,
J
Jiabin Yang 已提交
2047
                type=type,
M
minqiyang 已提交
2048 2049
                inputs=None,
                outputs=None,
2050
                attrs=attrs)
2051

M
minqiyang 已提交
2052 2053 2054
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
2055
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
2056 2057

            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2058
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2059 2060
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2061
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2062
        else:
2063 2064 2065 2066 2067 2068 2069 2070 2071
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
2072
            self.ops.append(op)
M
minqiyang 已提交
2073

2074 2075
        return op

W
Wu Yi 已提交
2076
    def _insert_op(self, index, *args, **kwargs):
2077 2078 2079 2080 2081 2082 2083 2084 2085
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
2086 2087
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
2088 2089 2090 2091
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
2092
    def _remove_op(self, index):
2093 2094 2095 2096 2097 2098 2099 2100 2101
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
2102 2103
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
2104 2105
        del self.ops[index]

W
Wu Yi 已提交
2106
    def _slice_ops(self, start, end):
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
2117
        return self.ops[start:end]
Y
Yancey1989 已提交
2118

W
Wu Yi 已提交
2119
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
2120
        if in_dygraph_mode():
J
Jiabin Yang 已提交
2121 2122
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
2123
            op = Operator(
J
Jiabin Yang 已提交
2124
                self, None, type=type, inputs=None, outputs=None, attrs=attrs)
M
minqiyang 已提交
2125

J
Jiabin Yang 已提交
2126
            _dygraph_tracer().trace_op(type,
M
minqiyang 已提交
2127
                                       kwargs.get("inputs", {}),
J
Jiabin Yang 已提交
2128 2129
                                       kwargs.get("outputs", {}), attrs
                                       if attrs else {},
M
minqiyang 已提交
2130
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
2131
        else:
2132 2133 2134 2135 2136 2137 2138 2139
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
2140
            self.ops.insert(0, op)
2141

Y
Yu Yang 已提交
2142 2143
        return op

W
Wu Yi 已提交
2144
    def _sync_with_cpp(self):
2145
        """
2146 2147
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
2148
        """
Q
Qiao Longfei 已提交
2149 2150 2151 2152 2153
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

2154
        # sync variables removed from c++ end
2155
        for var in list(self.vars.keys()):
M
minqiyang 已提交
2156
            if not self.desc.find_var(cpt.to_bytes(var)):
2157 2158
                self.vars.pop(var)

Q
Qiao Longfei 已提交
2159
        # sync operators from cpp
2160 2161 2162 2163
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
2180 2181 2182 2183 2184

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
2185
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
2186 2187 2188 2189 2190 2191 2192

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
2206 2207 2208 2209
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
2210
    def _copy_param_info_from(self, other):
2211
        """
2212 2213
        Copy the information of parameters from the other block.

2214
        Args:
2215 2216 2217 2218 2219
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
2220 2221 2222 2223 2224

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
2225 2226
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
2227
        for p in other.iter_parameters():
2228 2229 2230
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
2231
                raise ValueError("_copy_param_info_from should be invoked with "
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
2244
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
2245
                error_clip=p.error_clip,
2246 2247 2248
                name=v.name)
            self.vars[new_p.name] = new_p

2249
    def _clone_variable(self, var, force_persistable=True):
2250 2251
        """
        Clone a variable into current block.
2252

2253 2254
        Args:
            var: the variable to be cloned.
2255 2256 2257
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
2258 2259

        Returns:
2260
            Variable: the new  variable cloned from 'var' in current block.
2261 2262
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
2263 2264 2265 2266 2267
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
2268 2269
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
2270
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
2271 2272 2273 2274 2275 2276
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
2277
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2278 2279
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2280 2281 2282 2283 2284 2285 2286
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
2287
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
2288 2289
                is_data=var.is_data,
                need_check_feed=var.desc.need_check_feed())
T
update  
typhoonzero 已提交
2290
        return ret_var
2291

Y
Yu Yang 已提交
2292

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2388
    def remove_input_by_id(self, node_id):
2389 2390 2391 2392 2393 2394
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2395
        self.node.remove_input(node_id)
2396

2397
    def remove_input(self, node):
2398 2399 2400 2401
        """
        Remove a node from inputs.

        Args:
2402
            node(IrNode): the node being removed.
2403
        """
2404
        self.node.remove_input(node.node)
2405

2406
    def append_input(self, node):
2407 2408 2409 2410
        """
        Append a node in inputs.

        Args:
2411
            node(IrNode): the node being appended.
2412
        """
2413
        self.node.append_input(node.node)
2414 2415 2416 2417 2418 2419 2420 2421

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2422
    def remove_output_by_id(self, node_id):
2423 2424 2425 2426 2427 2428
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2429
        self.node.remove_output(node_id)
2430

2431
    def remove_output(self, node):
2432 2433 2434 2435
        """
        Remove a node from outputs.

        Args:
2436
            node(IrNode): the node being removed.
2437
        """
2438
        self.node.remove_output(node.node)
2439

2440
    def append_output(self, node):
2441 2442 2443 2444
        """
        Append a node in outputs.

        Args:
2445
            node(IrNode): the node being appended.
2446
        """
2447
        self.node.append_output(node.node)
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        print("op: {}, old: {}, new: {}\n".format(self.node.op().type(
        ), old_output_name, new_output_name))
        self.node.op()._rename_output(old_output_name, new_output_name)

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2716 2717
class IrGraph(object):
    """
2718
    Python IrGraph. Beneath it is a core.Graph, which is used for
2719
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2720 2721
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2722 2723 2724 2725
    """

    def __init__(self, graph, for_test=False):
        """
2726 2727
        Construct an IrGraph using core.Graph.

2728 2729 2730 2731 2732 2733 2734 2735 2736
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2737 2738 2739 2740
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2741 2742 2743
        Warns:
            The method only clones the graph structure, not its attributes.

2744 2745 2746
        Returns:
            IrGraph: A new and duplicated graph.
        """
2747
        g = self.graph.clone()
2748 2749
        return IrGraph(g, self._for_test)

2750
    def is_test(self):
2751 2752 2753
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2754 2755
        return self._for_test

W
WangZhen 已提交
2756
    def all_nodes(self):
2757 2758 2759
        """
        Return all nodes included in the graph as a set.
        """
2760
        return {IrNode(node) for node in self.graph.nodes()}
2761

2762
    def all_var_nodes(self):
2763 2764 2765
        """
        Return all variable nodes included in the graph as a set.
        """
2766
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2767

2768
    def all_persistable_nodes(self):
2769 2770 2771
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2772 2773 2774 2775 2776
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2777
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2778

2779
    def all_op_nodes(self):
2780 2781 2782
        """
        Return all operator nodes included in the graph as a set.
        """
2783
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2784

2785
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2797
            IrVarNode: the created persistable variable node.
2798
        """
2799 2800 2801 2802 2803
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2804
        return IrVarNode(self.graph.create_var_node(var_desc))
2805 2806

    def create_var_node(self, name, var_type, shape, var_dtype):
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2818
            IrVarNode: the created variable node.
2819 2820
        """

2821 2822 2823 2824
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2825
        return IrVarNode(self.graph.create_var_node(var_desc))
2826 2827

    def create_var_node_from_desc(self, var_desc):
2828 2829 2830 2831 2832 2833 2834 2835
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2836
            IrVarNode: the created variable node.
2837
        """
2838
        return IrVarNode(self.graph.create_var_node(var_desc))
2839 2840

    def create_op_node(self, op_type, attrs, inputs, outputs):
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2851
            IrOpNode: the created operator node.
2852
        """
2853 2854
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2855
        for attr, value in six.iteritems(attrs):
2856
            self._update_desc_attr(op_desc, attr, value)
2857
        for input_name, var_nodes in six.iteritems(inputs):
2858 2859 2860 2861
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2862
        for output_name, var_nodes in six.iteritems(outputs):
2863 2864 2865 2866
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2867
        return IrOpNode(self.graph.create_op_node(op_desc))
2868 2869

    def create_op_node_from_desc(self, op_desc):
2870 2871 2872 2873 2874 2875 2876
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2877
            IrOpNode: the created operator node.
2878
        """
2879
        return IrOpNode(self.graph.create_op_node(op_desc))
2880 2881

    def update_input_link(self, old_input_node, new_input_node, op_node):
2882 2883 2884 2885
        """
        Update the input's link of a operator node.

        Args:
2886 2887 2888
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2889
        """
2890 2891
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2892
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2893 2894 2895 2896
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2897
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2898

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
        assert old_output_node.node in self.graph.nodes() and new_output_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
        'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

2917
    def link_to(self, node_in, node_out):
2918 2919 2920 2921
        """
        Connect two nodes.

        Args:
2922 2923
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2924
        """
2925
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2926
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2927 2928
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2929 2930

    def safe_remove_nodes(self, remove_nodes):
2931 2932 2933 2934 2935 2936 2937
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2938
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2939 2940 2941 2942
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2943 2944
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2945

Z
Zhen Wang 已提交
2946 2947 2948 2949 2950 2951 2952 2953
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2954
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2955 2956 2957 2958
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2959
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2960 2961 2962
                        ]
                    else:
                        var_nodes[each_var_name].append(
2963 2964
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2965 2966
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2967
    def has_circle(self):
2968 2969 2970 2971 2972 2973
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2974 2975 2976
        return core.has_circle(self.graph)

    def graph_num(self):
2977 2978 2979 2980 2981 2982
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2983 2984 2985
        return core.graph_num(self.graph)

    def topology_sort(self):
2986 2987 2988 2989 2990 2991
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2992
            list(IrNode): nodes in topology order.
2993
        """
2994
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2995
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2996 2997

    def build_adjacency_list(self):
2998 2999 3000 3001
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
3002
            dict{IrNode: set(IrNode)}: the adjacency list.
3003
        """
3004 3005 3006 3007 3008
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
3009

3010 3011 3012 3013 3014 3015 3016 3017
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
3018
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
3019 3020 3021 3022 3023
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

3024 3025 3026 3027 3028 3029 3030 3031 3032
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

3033
        remove_ctr_vars = set()
3034
        if remove_ctr_var:
3035
            for node in self.all_var_nodes():
3036 3037 3038
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
3039 3040
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

3041 3042
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
3043 3044 3045 3046 3047 3048
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
3049 3050 3051 3052
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
3053 3054
        if not os.path.exists(save_path):
            os.makedirs(save_path)
3055 3056 3057 3058 3059 3060 3061
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
3062 3063 3064
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
3065
        WARN: When the graph includes backward operator nodes, the
3066 3067 3068 3069 3070 3071
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
3072
        convert_pass = core.get_pass('graph_to_program_pass')
3073 3074
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
3075 3076 3077 3078
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
3106
class Program(object):
D
dzhwinter 已提交
3107
    """
3108 3109
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
    control flow op like conditional_block, while :ref:`api_fluid_layers_While` is included,
J
Jiabin Yang 已提交
3110
    it will contain nested block.
3111

D
dzhwinter 已提交
3112 3113
    Please reference the framework.proto for details.

J
Jiabin Yang 已提交
3114 3115 3116 3117 3118 3119 3120 3121 3122
    A set of Program usually contains startup program and main program.
    A startup program is set to contain some initial work , and the main
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

D
dzhwinter 已提交
3123 3124 3125
    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
3126
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
3127 3128

    Returns:
3129 3130 3131
        An empty Program.

    Return type: Program
D
dzhwinter 已提交
3132 3133

    Examples:
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
3147 3148 3149

    """

3150 3151
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
3152 3153
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
3154
        self._seed = 0
Y
yuyang18 已提交
3155
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
3156
        self.__op_role_var = []
T
tangwei12 已提交
3157

3158 3159
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
3160
        self._is_distributed = False
3161
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
3162
        self._is_chief = False
3163 3164 3165
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
3166
        self._endpoints = []
3167 3168 3169
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
3170
        self._trainers_endpoints = []
3171
        # the distributed lookup table names
T
tangwei12 已提交
3172
        self._distributed_lookup_table = None
3173 3174 3175

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
3176 3177
        self._use_lamb = False

3178 3179 3180
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
3181

3182 3183 3184
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
3185
        self._program_config = None
3186

H
hutuxian 已提交
3187 3188 3189
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

3190 3191 3192
        # appending gradients times
        self._appending_grad_times = 0

Y
yuyang18 已提交
3193
    @property
3194
    def _op_role(self):
Y
yuyang18 已提交
3195 3196 3197 3198 3199 3200 3201 3202
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
3203
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
3204 3205 3206 3207
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
3208 3209
        return self._current_role

3210 3211
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
3212 3213 3214
        self._current_role = role

    @property
3215
    def _op_role_var(self):
Y
yuyang18 已提交
3216
        """
3217
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
3218

3219
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
3220 3221 3222

        Notes: This is a very low-level API. Users should not use it directly.
        """
3223
        return self.__op_role_var
Y
yuyang18 已提交
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
3234
    @signature_safe_contextmanager
W
Wu Yi 已提交
3235
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
3236 3237 3238 3239 3240 3241 3242
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
3243
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
3244 3245 3246

        Examples:

3247
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
3248
            >>> p, g = backward(...)
W
Wu Yi 已提交
3249
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
3250 3251
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
3252
        tmp_role = self._current_role
3253
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
3254

Y
yuyang18 已提交
3255 3256
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
3257
        self.__op_role_var = [
3258 3259 3260
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
3261
        yield
3262
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
3263
        self._current_role = tmp_role
Y
Yu Yang 已提交
3264

S
rename  
sneaxiy 已提交
3265
    @signature_safe_contextmanager
X
Xin Pan 已提交
3266
    def _lr_schedule_guard(self, is_with_opt=False):
3267 3268 3269 3270 3271 3272 3273
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
3274 3275 3276 3277
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
3278 3279 3280

        Examples:

3281
            >>> import paddle.fluid as fluid
3282 3283 3284 3285
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
3286 3287

        tmp_role = self._current_role
3288
        tmp_var = self.__op_role_var
3289

3290 3291
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
3292 3293
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
3294
        # TODO(typhoonzero): how to set target learning rate var
3295
        self.__op_role_var = []
3296
        yield
3297
        self.__op_role_var = tmp_var
3298
        self._current_role = tmp_role
3299

3300
    def __str__(self):
Y
yuyang18 已提交
3301 3302 3303 3304 3305 3306 3307 3308 3309
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
3310 3311
        return self.to_string(True)

F
fengjiayi 已提交
3312 3313 3314
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
3315

3316 3317
        Parameters:
            - **throw_on_error** (bool): raise Value error when any of required fields
Y
yuyang18 已提交
3318
                is not set.
F
fengjiayi 已提交
3319

3320
            - **with_details** (bool): True if more details about variables and
Y
yuyang18 已提交
3321 3322 3323
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
3324
        Returns:
3325
            The debug string describe current Program.
Y
yuyang18 已提交
3326 3327 3328 3329

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
3330

3331 3332 3333 3334 3335 3336 3337 3338 3339
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
3349 3350
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
3351 3352
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3353

W
Wu Yi 已提交
3354
    def _get_desc(self):
Y
yuyang18 已提交
3355 3356 3357 3358 3359 3360 3361
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3362 3363
        return self.desc

X
version  
Xin Pan 已提交
3364 3365 3366
    def _version(self):
        return self.desc._version()

3367
    @dygraph_not_support
3368
    def clone(self, for_test=False):
Y
yuyang18 已提交
3369
        """
3370 3371 3372 3373
        **Notes**:
            **1.** :code:`Program.clone()` **method DOES NOT clone** :code:`py_reader`.
            **2. Recommend you to use** :code:`clone` **before using** :code:`Opimizer.minimize`.**
            **3. This API has no effect in Dygraph Mode**
Y
yuyang18 已提交
3374

3375 3376
        Create a new Program with forward content of original one when ``for_test=True``.
        Create a new Program as the same as original one when ``for_test=False``
3377

3378 3379

        Some operators, e.g., :ref:`cn_api_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
3380 3381 3382
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3383

Y
yuyang18 已提交
3384
        * Set for_test to False when we want to clone the program for training.
3385
        * Set for_test to True when we want to clone the program for testing.
3386 3387
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
3388
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`. For example:
Y
yuyang18 已提交
3389

L
Luo Tao 已提交
3390

3391 3392 3393
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
3394
            # Here we use clone before Momentum
3395 3396
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3397

3398 3399
        Parameters:
            - **for_test** (bool) - True if change the :code:`is_test` attribute of
Y
yuyang18 已提交
3400
                operators to :code:`True`.
3401

3402 3403 3404
        Returns:   A new Program with forward content of original one when ``for_test=True``.  A new Program as the same as original one when ``for_test=False``

        Return type: Program
Y
yuyang18 已提交
3405 3406 3407

        Examples:

3408
        Notes: The Program's order maybe different after :code:`clone` and
3409 3410 3411 3412 3413
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
J
Jiabin Yang 已提交
3451 3452 3453

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
J
Jiabin Yang 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

                    # In Paddle Fluid we will share weights by using the same Variable name. In train and test program
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3521 3522
        """
        if for_test:
3523
            if self._appending_grad_times > 0:
3524 3525 3526 3527 3528 3529 3530
                forward_prog = Program()
                forward_prog.desc = core.prune_backward(self.desc)
                forward_prog.blocks = [
                    Block(forward_prog, i)
                    for i in six.moves.range(forward_prog.desc.num_blocks())
                ]
                forward_prog._sync_with_cpp()
3531 3532 3533
                p = forward_prog._inference_optimize(prune_read_op=False)
            else:
                p = self._inference_optimize(prune_read_op=False)
3534
        else:
3535
            p = Program()
G
gongweibao 已提交
3536 3537
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3538
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3539 3540 3541
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3542 3543

            p._current_role = self._current_role
3544
            p.__op_role_var = self.__op_role_var
3545
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3546

W
Wu Yi 已提交
3547
            p._sync_with_cpp()
3548

W
Wu Yi 已提交
3549
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3550
        p._copy_data_info_from(self)
3551
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3552
        return p
3553

3554
    def _prune(self, feeded_var_names, targets):
Y
yuyang18 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3570 3571
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
3572 3573
        if not isinstance(targets, list):
            targets = [targets]
3574 3575 3576 3577 3578 3579

        for var in feeded_var_names:
            if not isinstance(var, six.string_types):
                raise ValueError("All feeded_var_names of prune() can only be "
                                 "str.")

3580 3581 3582 3583
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3584 3585
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3586
                    # and we need to find the current op that generate this
3587 3588 3589 3590 3591 3592 3593 3594
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3595
                    t = t.op
3596 3597 3598 3599
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3600
                else:
3601 3602
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3603 3604 3605

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
3606
        res.desc = core.prune(self.desc, set(feeded_var_names), targets_idx)
M
minqiyang 已提交
3607 3608 3609
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3610
        res._sync_with_cpp()
3611 3612
        return res

X
Xin Pan 已提交
3613
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3614
        """
F
fengjiayi 已提交
3615 3616 3617 3618 3619
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3620
        3. change the :code:`is_test`
Y
yuyang18 已提交
3621 3622 3623
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3624
        Args:
X
Xin Pan 已提交
3625 3626
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3627

Y
yuyang18 已提交
3628 3629 3630 3631 3632 3633
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3634
        res = Program()
3635
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3636 3637 3638 3639

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3640
        if prune_read_op:
3641 3642 3643 3644 3645 3646 3647 3648 3649
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3650
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3651 3652

        # change all `is_test` attributes to True
M
minqiyang 已提交
3653
        for i in six.moves.range(res.desc.num_blocks()):
3654
            block = res.desc.block(i)
M
minqiyang 已提交
3655
            for j in six.moves.range(block.op_size()):
3656 3657
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3658
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3659 3660 3661
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3662
        res._sync_with_cpp()
3663 3664
        return res

3665 3666
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3667
        """
3668 3669 3670
        **Notes:**
            **- All information about parameters will be lost after serialization**
            **- This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3671

3672 3673
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
3674

3675 3676
        Parameters:
            - **binary_str_type** (str) - the binary prootbuf string.
Y
yuyang18 已提交
3677

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
        Returns: Program: A deserialized Program.

        Return type: Program

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    x = fluid.layers.data(
                        name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)

                    y = fluid.layers.data(
                        name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)

                    z = fluid.layers.mul(x=x, y=y)

                    binary_str = fluid.default_main_program().desc.serialize_to_string()
                    prog_restored = fluid.default_main_program().parse_from_string(binary_str)

                    print(fluid.default_main_program())
                    print(prog_restored)
Y
yuyang18 已提交
3703
        """
3704 3705
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3706
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3707
        p._sync_with_cpp()
3708
        return p
Y
Yu Yang 已提交
3709

3710
    @staticmethod
3711
    def _construct_from_desc(desc):
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3727 3728
    @property
    def random_seed(self):
Y
yuyang18 已提交
3729
        """
3730 3731
        **Notes: It must be set before the operators have been added.**

Y
yuyang18 已提交
3732 3733 3734
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

3735 3736 3737
        Returns: random seed in current Program

        Return type: int64
3738 3739 3740 3741 3742 3743 3744 3745

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
3746 3747 3748
                x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)

                # Here we need to set random seed before we use fluid.layers.dropout
3749 3750
                print(random_seed)
                prog.random_seed = 1
3751 3752
                z_var = fluid.layers.dropout(x_var, 0.7)

3753
                print(prog.random_seed)
Y
yuyang18 已提交
3754
        """
D
dzhwinter 已提交
3755 3756
        return self._seed

Q
qiaolongfei 已提交
3757 3758
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3759
        """
3760 3761 3762 3763 3764 3765 3766
        **Notes: This API has no effect in Dygraph mode**

        The number of :ref:`api_guide_Block_en`  in this Program.

        Returns: num of :ref:`api_guide_Block_en`  in current Program

        Return type: int(Platform-dependent size)
3767 3768 3769 3770 3771 3772 3773 3774 3775

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
3776 3777


Y
yuyang18 已提交
3778
        """
Q
qiaolongfei 已提交
3779 3780
        return self.desc.num_blocks()

D
dzhwinter 已提交
3781 3782 3783 3784 3785 3786
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3787
    def __repr__(self):
3788
        return self.__str__()
3789

Y
Yu Yang 已提交
3790
    def global_block(self):
Y
yuyang18 已提交
3791
        """
3792 3793 3794 3795 3796 3797 3798
        **Notes: This API has no effect in Dygraph mode**

        Get the first :ref:`api_guide_Block_en` of this Program.

        Returns: The first  :ref:`api_guide_Block_en`  of this Program.

        Return type: :ref:`api_guide_Block_en`
3799 3800 3801 3802 3803 3804 3805 3806 3807

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
3808

Y
yuyang18 已提交
3809
        """
Y
Yu Yang 已提交
3810 3811
        return self.blocks[0]

Q
Qiao Longfei 已提交
3812
    def block(self, index):
Y
yuyang18 已提交
3813
        """
3814
        **Notes: This API has no effect in Dygraph mode**
Y
yuyang18 已提交
3815

3816 3817 3818 3819 3820 3821 3822 3823
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

        Parameter:
            - **index** (int) - The index of  :ref:`api_guide_Block_en`  to get

        Returns: The :code:`index` block

        Return type:  :ref:`api_guide_Block_en`
3824 3825 3826 3827 3828 3829 3830 3831 3832

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3833
        """
Q
Qiao Longfei 已提交
3834 3835
        return self.blocks[index]

Y
Yu Yang 已提交
3836
    def current_block(self):
Y
yuyang18 已提交
3837
        """
3838 3839
        **Notes: This API has no effect in Dygraph mode**

Y
yuyang18 已提交
3840 3841
        Get the current block. The :code:`current` block is the block to append
        operators.
3842

3843 3844 3845 3846
        Returns: The :code:`index` block

        Return type: Block

3847 3848 3849 3850 3851 3852 3853 3854
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3855
        """
Y
Yu Yang 已提交
3856 3857
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3858
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3869
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3870 3871 3872
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3873 3874 3875 3876
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3877
    def _rollback(self):
Y
yuyang18 已提交
3878 3879 3880 3881 3882
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3883 3884
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3885
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3896 3897 3898
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3899
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3900

W
Wu Yi 已提交
3901
    def _copy_param_info_from(self, other):
3902
        """
3903
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3904

Y
yuyang18 已提交
3905 3906 3907
        Notes: This is a very low level API. Users should not invoke it
        directly.

3908 3909 3910 3911 3912 3913 3914
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3915
            raise TypeError("_copy_param_info_from should be invoked with "
3916 3917 3918
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3919
            raise ValueError("_copy_param_info_from should be invoked with two "
3920
                             "program, with represent the same topology")
W
Wu Yi 已提交
3921
        self.global_block()._copy_param_info_from(other.global_block())
3922

3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3938
        self._parameters_on_pservers = other._parameters_on_pservers
3939
        self._endpoints = other._endpoints
3940
        self._ps_endpoint = other._ps_endpoint
3941 3942
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3943
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3944 3945
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3946

Y
yuyang18 已提交
3947 3948 3949
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3950 3951 3952 3953 3954 3955 3956
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3957
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3958 3959 3960
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3961
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3962
                             "program, with represent the same topology")
3963
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3964 3965
            if var.is_data:
                self.global_block().var(var.name).is_data = True
H
Huihuang Zheng 已提交
3966 3967
            if var.desc.need_check_feed():
                self.global_block().var(var.name).desc.set_need_check_feed(True)
F
fengjiayi 已提交
3968

3969
    @dygraph_not_support
3970
    def list_vars(self):
Y
yuyang18 已提交
3971
        """
3972
        Get all :ref:`api_guide_Variable` from this Program. A iterable object is returned.
Y
yuyang18 已提交
3973

3974 3975 3976
        Returns: The Generator will yield every variable in this program.

        Return type: iterable :ref:`api_guide_Variable_en`
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3988
        """
3989
        for each_block in self.blocks:
3990
            for each_var in list(each_block.vars.values()):
3991 3992
                yield each_var

Y
Yu Yang 已提交
3993

Y
Yu Yang 已提交
3994
class Parameter(Variable):
3995
    """
3996
    Parameter is derived from Variable. A parameter is a persistable
3997
    Variable, and will be updated by optimizers after each iteration.
3998
    The training of a neural network is essentially the updating of
3999 4000
    its parameters.

4001
    Relative to a general Variable, a Parameter has several its own
4002 4003
    member variables:

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
4016 4017
    """

Y
Yu Yang 已提交
4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
4028 4029 4030

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
4031 4032 4033 4034
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

4035 4036
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
4037
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
4038

W
wanghaoshuang 已提交
4039
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
4040

4041 4042
        self.is_distributed = False

F
fengjiayi 已提交
4043 4044 4045
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
4046 4047 4048
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
4049

F
update  
fengjiayi 已提交
4050 4051 4052 4053 4054 4055 4056 4057
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

4058 4059 4060 4061 4062 4063 4064 4065 4066
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
4067 4068 4069 4070 4071 4072
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
4073
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
4074
            for attr_name in additional_attr:
4075 4076
                res_str += "%s: %s\n" % (attr_name,
                                         cpt.to_text(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
4077 4078
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
4079 4080 4081 4082
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
4083

Y
Yu Yang 已提交
4084
# program is a global instance.
Y
Yu Yang 已提交
4085 4086
_main_program_ = Program()
_startup_program_ = Program()
4087

4088

4089
def default_startup_program():
Y
Yu Yang 已提交
4090
    """
Y
yuyang18 已提交
4091 4092 4093 4094 4095 4096 4097 4098 4099
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
4100

4101 4102 4103
    Returns: current default startup program

    Returns type: Program
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
4119
    """
Y
Yu Yang 已提交
4120
    return _startup_program_
4121

4122

4123
def default_main_program():
Y
Yu Yang 已提交
4124
    """
Y
yuyang18 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
4134

Y
Yu Yang 已提交
4135 4136
    Returns:
        Program: main program
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
4165 4166
            print(fluid.default_main_program().num_blocks)
            print(fluid.default_main_program().blocks[0].var('image'))
Y
Yu Yang 已提交
4167
    """
Y
Yu Yang 已提交
4168
    return _main_program_
Y
Yu Yang 已提交
4169 4170 4171 4172 4173


def switch_main_program(program):
    """
    Switch the main program to a new program.
4174

Y
Yu Yang 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
4189
    Switch the startup program to a new program
Y
Yu Yang 已提交
4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
4202
@signature_safe_contextmanager
Y
Yu Yang 已提交
4203 4204
def program_guard(main_program, startup_program=None):
    """
4205 4206
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
4207
    variables to the new main programs.
4208

Y
Yu Yang 已提交
4209
    Examples:
4210 4211 4212
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
4213

4214 4215 4216 4217 4218
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
4219 4220 4221

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
4222

Y
Yu Yang 已提交
4223
    Examples:
4224
       .. code-block:: python
Y
yuyang18 已提交
4225

4226 4227 4228 4229 4230 4231
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
4232

Y
Yu Yang 已提交
4233
    Args:
4234 4235 4236
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
4249 4250


W
Wu Yi 已提交
4251
def _get_var(name, program=None):
X
xuwei06 已提交
4252
    """
Y
yuyang18 已提交
4253
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
4254

X
xuwei06 已提交
4255 4256 4257
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
4258
        If None, default_global_program() will be used.
X
xuwei06 已提交
4259 4260 4261 4262 4263 4264 4265

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
4266
    assert isinstance(program, Program)
X
xuwei06 已提交
4267 4268

    return program.global_block().var(name)
4269 4270


S
rename  
sneaxiy 已提交
4271
@signature_safe_contextmanager
L
lujun 已提交
4272 4273 4274 4275
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
4276

4277
    yield
P
Paddle CI 已提交
4278

L
lujun 已提交
4279
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
4280 4281


S
rename  
sneaxiy 已提交
4282
@signature_safe_contextmanager
L
lujun 已提交
4283 4284 4285 4286
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
4287

4288
    yield
M
minqiyang 已提交
4289

L
lujun 已提交
4290
    _dygraph_current_expected_place_ = tmp_place