optimizer.py 324.0 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

15
import numpy as np
16
import six
17
import os
18
import logging
19
from collections import defaultdict
20

21
import paddle
Q
Qiao Longfei 已提交
22
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
23
from paddle.fluid.framework import Program, Variable, Parameter, name_scope, default_main_program, default_startup_program, device_guard
24

25 26
from . import framework
from . import layers
27
from . import unique_name
28
from .backward import append_backward, _some_in_set_, _append_grad_suffix_, _get_no_grad_set_name
29
from .clip import GradientClipBase, GradientClipByNorm, error_clip_callback, append_gradient_clip_ops, ClipGradByGlobalNorm
30 31 32
from .framework import program_guard
from .initializer import Constant
from .layer_helper import LayerHelper
S
sneaxiy 已提交
33
from .layers import ops
34
from .dygraph import base as imperative_base
35
from .dygraph import no_grad
36
from .dygraph.learning_rate_scheduler import LearningRateDecay, _LearningRateEpochDecay
37 38 39
from paddle.fluid import core
from paddle.fluid.layers import tensor
from functools import reduce
40
from functools import cmp_to_key
41
from .wrapped_decorator import signature_safe_contextmanager
M
mapingshuo 已提交
42
from .. import compat as cpt
43
import warnings
44
from paddle import _C_ops, _legacy_C_ops
45
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _current_expected_place
46

47
__all__ = [
48 49 50 51
    'SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'Dpsgd', 'DecayedAdagrad',
    'Ftrl', 'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer',
    'AdamOptimizer', 'AdamaxOptimizer', 'DpsgdOptimizer',
    'DecayedAdagradOptimizer', 'RMSPropOptimizer', 'FtrlOptimizer', 'Adadelta',
Z
Zeng Jinle 已提交
52
    'AdadeltaOptimizer', 'ModelAverage', 'LarsMomentum',
53 54
    'LarsMomentumOptimizer', 'LambOptimizer', 'ExponentialMovingAverage',
    'PipelineOptimizer', 'LookaheadOptimizer', 'RecomputeOptimizer'
55
]
Q
Qiao Longfei 已提交
56 57 58 59 60 61


class Optimizer(object):
    """Optimizer Base class.

    Define the common interface of an optimizer.
62 63
    User should not use this class directly,
    but need to use one of it's implementation.
Q
Qiao Longfei 已提交
64 65
    """

66
    @imperative_base.no_grad
67 68 69 70
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
71
                 grad_clip=None,
72 73
                 flatten_param_grads=False,
                 align_size=-1,
74
                 name=None):
75 76
        """
        Args:
77 78
            flatten_param_grads (bool, optional): Whether to flatten all the parameters and grads.
                If true, the parameters and gradients will be coalesce to contiguous mempry,
79 80
                and the grad_clip ops / optimizer ops will be fuse to one operator.
        """
81
        # Because of the loop import, so place it in the function body
82
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
83 84
        self._parameter_list = list(
            parameter_list) if parameter_list is not None else None
85
        self._name = name
J
Jiabin Yang 已提交
86
        if framework._non_static_mode():
87
            if not isinstance(learning_rate,
88
                              (float, LearningRateDecay, LRScheduler)):
M
minqiyang 已提交
89
                raise TypeError(
90
                    "learning rate should be float or LRScheduler, got %s here"
M
minqiyang 已提交
91
                    % type(learning_rate))
92
            if self._parameter_list is None:
93 94 95
                raise AttributeError(
                    "parameter_list argument given to the Optimizer should not be None in dygraph mode."
                )
96 97 98 99 100 101 102 103
            if regularization is not None:
                for param in self._parameter_list:
                    if param.regularizer is not None:
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                        break
M
minqiyang 已提交
104
        else:
105
            if not isinstance(learning_rate,
106
                              (float, framework.Variable, LRScheduler)):
M
minqiyang 已提交
107
                raise TypeError(
108
                    "learning rate should be float or LRScheduler, got %s here"
109
                    % type(learning_rate))
M
minqiyang 已提交
110

111 112 113 114 115
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipBase):
                raise TypeError(
                    "'grad_clip' should be an instance of GradientClipBase's derived class"
                )
D
dzhwinter 已提交
116
        self.regularization = regularization
117
        self._grad_clip = grad_clip
118
        self._learning_rate = learning_rate
119 120
        self._flatten_param_grads = flatten_param_grads
        self._align_size = align_size
L
Leo Chen 已提交
121

D
dzhwinter 已提交
122
        self._dtype = None
L
Leo Chen 已提交
123 124 125 126
        # Infer the dtype form parameter
        if self._parameter_list:
            self._dtype = self._parameter_list[0].dtype

127
        # each program should have a independent learning rate
128
        # program -> Variable(learning_rate)
Q
qiaolongfei 已提交
129
        self._learning_rate_map = dict()
130
        if isinstance(self._learning_rate, framework.Variable):
131 132
            self._learning_rate_map[
                framework.default_main_program()] = self._learning_rate
133 134 135 136 137
        # Dictionary of accumulators. Some optimizer subclasses need to
        # allocate and manage extra variables associated with the parameters
        # to train. These variables are called accumulators.
        # {accum_name : { paramter_name : accumulator_for_parameter, ...}, ...}
        self._accumulators = defaultdict(lambda: dict())
138 139
        # global_accumulator dict, {accum_name : acc_variable, ...}
        self._global_accumulators = {}
140
        self.helper = LayerHelper(self.__class__.__name__)
141
        self._opti_name_list = []
H
hong 已提交
142
        self._accumulators_holder = {}
143
        self._param_device_map = dict()
144 145
        # NOTE(zhiqiu): sometimes we want to add some variables(Tenosr) to the optimizer for a specific optimization,
        # for example, we want to pass 'found_inf' to adam optimizer so it can skip update when found_inf is True.
146
        # And these variables should not be the parameters of Optimizer's construnctor (because not commonly used).
147 148
        # Use _auxiliary_vars together with _set_auxiliary_var/_get_auxiliary_var to achieve that.
        self._auxiliary_vars = dict()
H
hong 已提交
149 150 151 152

    @framework.dygraph_only
    def state_dict(self):
        '''
T
tianshuo78520a 已提交
153 154
        Get state dict information from optimizer. It contain all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be include in state dict.
        If the optimizer never be called(minimize function), the state_dict is empty.
H
hong 已提交
155 156 157

        Args: None
        Return:
T
tianshuo78520a 已提交
158
            state_dict(dict) : dict contains all the variable used by optimizer
159

H
hong 已提交
160 161 162 163
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
164 165 166 167 168 169

                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])

                    adam = fluid.optimizer.Adam(0.001, parameter_list=emb.parameters())
                    state_dict = adam.state_dict()
H
hong 已提交
170 171

        '''
172
        from paddle.optimizer.lr import LRScheduler
H
hong 已提交
173 174 175 176
        state_dict = {}
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                state_dict[var_tmp.name] = var_tmp
177 178
        for k, v in self._global_accumulators.items():
            state_dict[v.name] = v
H
hong 已提交
179
        # global step if use lr decay
180
        if isinstance(self._learning_rate, LRScheduler):
181 182
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()
            return state_dict
H
hong 已提交
183
        if isinstance(self._learning_rate, LearningRateDecay):
184 185 186 187
            state_dict["LR_Scheduler"] = self._learning_rate.state_dict()

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                var_tmp = None
188 189 190
                var_temp = framework._varbase_creator(None,
                                                      name='global_step',
                                                      dtype='int32')
191

192 193 194 195
                tensor.fill_constant([1],
                                     "int32",
                                     self._learning_rate.step_num,
                                     out=var_temp)
H
hong 已提交
196

197
                state_dict['global_step'] = var_temp
H
hong 已提交
198 199 200
        return state_dict

    @framework.dygraph_only
201
    def set_state_dict(self, state_dict):
H
hong 已提交
202
        '''
T
tianshuo78520a 已提交
203
        Load optimizer state dict. For Adam optimizer, contains beta1, beta2, momentum etc. If LearningRateDecay have been used, global_step will be changed.
H
hong 已提交
204

205
        Args:
H
hong 已提交
206 207 208
            state_dict(dict) : Dict contains all the Variable needed by optimizer
        Return:
            None
209

H
hong 已提交
210 211
        Examples:
            .. code-block:: python
212

213 214
                import paddle
                import paddle.fluid as fluid
215 216 217

                paddle.disable_static()

218
                emb = paddle.nn.Embedding(10, 10)
219

220
                state_dict = emb.state_dict()
221
                fluid.save_dygraph(state_dict, "paddle_dy")
222

223
                scheduler = paddle.optimizer.lr.NoamDecay(
224 225 226 227
                    d_model=0.01, warmup_steps=100, verbose=True)
                adam = paddle.optimizer.Adam(
                    learning_rate=scheduler,
                    parameters=emb.parameters())
228
                state_dict = adam.state_dict()
229
                fluid.save_dygraph(state_dict, "paddle_dy")
230

231
                para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
H
hong 已提交
232
        '''
233 234
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
235
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])
H
hong 已提交
236 237

        if isinstance(self._learning_rate, LearningRateDecay):
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
            self._learning_rate.set_dict(state_dict["LR_Scheduler"])

            if not isinstance(self._learning_rate, _LearningRateEpochDecay):
                assert 'global_step' in state_dict, \
                        'Global step not in state dict, Dygraph use LearningRateDecay, global_step must in state_dict'
                global_step = state_dict['global_step']

                if isinstance(global_step, Variable):
                    step_np = global_step
                    step_np = np.array(step_np.value().get_tensor())
                    assert step_np.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( step_np.shape )

                    self._learning_rate.step_num = int(step_np[0])
                elif isinstance(global_step, np.ndarray):
                    assert global_step.shape == (1,),  \
                            "global step shape is (1,), the shape is {}".format( global_step.shape )
                    self._learning_rate.step_num = global_step[0]
                else:
                    raise RuntimeError(
                        "Type not supprt, value in state dict must be [VarBase, Variable, numpy], the type is ",
                        type(global_step))
H
hong 已提交
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
        def _load_state_para(state_dict, param):
            var = param.value()
            tensor = var.get_tensor()
            model_np = np.array(tensor)
            load_para = state_dict[param.name]
            if isinstance(load_para, Variable):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, core.VarBase):
                load_para_np = load_para.numpy()
            elif isinstance(load_para, np.ndarray):
                load_para_np = load_para
            else:
                raise RuntimeError("State dict type {} not supprt".format(
                    str(type(load_para))))

            assert model_np.shape == load_para_np.shape,  \
                                        "Parameter shape not match, Dygraph Parameter [ {} ] need tensor with shape {} but load tensor with shape {}".format(
278
                                                param.name, model_np.shape, load_para_np.shape)
279 280 281

            assert model_np.dtype == load_para_np.dtype, \
                                        "Parameter dtype not match, Dygraph Parameter [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
282
                                            param.name, model_np.dtype, load_para_np.dtype)
283 284 285

            tensor.set(load_para_np, framework._current_expected_place())

H
hong 已提交
286 287 288 289 290
        self._accumulators_holder = state_dict
        for k, v in self._accumulators.items():
            for para_name, var_tmp in v.items():
                assert var_tmp.name in state_dict, \
                        "optimizer variable {} not found".format( var_tmp.name )
291
                _load_state_para(state_dict, var_tmp)
H
hong 已提交
292

293 294 295 296
        for k, v in self._global_accumulators.items():
            assert v.name in state_dict, \
                        "optimizer variable {} not found".format( v.name )
            _load_state_para(state_dict, v)
297

298 299 300
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

301 302
    def get_opti_var_name_list(self):
        return self._opti_name_list
Q
Qiao Longfei 已提交
303

304 305 306 307 308 309 310 311 312
    def _set_auxiliary_var(self, key, val):
        self._auxiliary_vars[key] = val

    def _get_auxiliary_var(self, key):
        if key in self._auxiliary_vars:
            return self._auxiliary_vars[key]
        else:
            return None

Q
Qiao Longfei 已提交
313
    def _create_global_learning_rate(self):
314 315
        from paddle.optimizer.lr import LRScheduler
        if isinstance(self._learning_rate, LRScheduler):
316 317 318 319 320 321 322 323 324 325 326 327 328 329
            lr_var = self._global_learning_rate()
            # only create global lr_var once
            if not isinstance(lr_var, framework.Variable):
                lr_name = unique_name.generate('learning_rate')
                self._learning_rate._var_name = lr_name
                lr_var = self.helper.create_global_variable(
                    name=lr_name,
                    shape=[1],
                    persistable=True,
                    stop_gradient=True,
                    dtype='float32' if self._dtype is None else self._dtype)
                main_prog = framework.default_main_program()
                main_prog.lr_sheduler = self._learning_rate
                main_prog.lr_var = lr_var
330 331
                self._learning_rate_map[
                    framework.default_main_program()] = lr_var
332 333 334 335 336 337

            lr_value = float(self._learning_rate())
            self.helper.set_variable_initializer(
                lr_var, initializer=Constant(value=lr_value))
            return

338 339 340
        if imperative_base.enabled():
            # create learning rate Variable
            if isinstance(self._learning_rate, float):
M
minqiyang 已提交
341 342 343 344 345 346 347 348 349 350 351 352
                lr = self._global_learning_rate()

                if isinstance(lr, framework.Variable):
                    return
                else:
                    self._learning_rate_map[framework.default_main_program(
                    )] = layers.create_global_var(
                        name=unique_name.generate("learning_rate"),
                        shape=[1],
                        value=float(self._learning_rate),
                        dtype='float32' if self._dtype is None else self._dtype,
                        persistable=True)
353
            # get learning rate Variable from LearningRateDecay
M
minqiyang 已提交
354
            elif isinstance(self._learning_rate, LearningRateDecay):
355 356
                self._learning_rate_map[
                    framework.default_main_program()] = self._learning_rate()
357
            else:
Q
qiaolongfei 已提交
358
                raise TypeError(
359 360
                    "optimizer's learning rate must be float or LearningRateDecay"
                )
361
        else:
362 363 364 365
            lr = self._global_learning_rate()

            if isinstance(lr, framework.Variable):
                return
M
minqiyang 已提交
366 367 368 369 370 371
            else:
                if not isinstance(self._learning_rate, float):
                    raise TypeError(
                        "learning rate variable is create outside optimizer,"
                        "can not create new learning rate variable for new program"
                    )
Q
Qiao Longfei 已提交
372

373
            # create learning rate in the current main program
374 375 376 377 378 379 380
            self._learning_rate_map[
                framework.default_main_program()] = layers.create_global_var(
                    name=unique_name.generate("learning_rate"),
                    shape=[1],
                    value=float(self._learning_rate),
                    dtype='float32' if self._dtype is None else self._dtype,
                    persistable=True)
381

382 383 384 385
    @framework.dygraph_only
    def set_lr(self, value):
        """
        :api_attr: imperative
386

387 388 389 390 391 392 393 394
        Set the value of the learning rate manually in the optimizer. If the optimizer use LearningRateDecay,
        this API cannot be invoked, because it will lead to conflict.

        Args:
            value (float|Variable): the value of learning rate

        Returns:
            None
395

396 397 398 399
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                with fluid.dygraph.guard():
                    linear = fluid.dygraph.nn.Linear(10, 10)

                    adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())

                    # set learning rate manually by python float value
                    lr_list = [0.2, 0.3, 0.4, 0.5, 0.6]
                    for i in range(5):
                        adam.set_lr(lr_list[i])
                        lr = adam.current_step_lr()
                        print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.2
                    #    current lr is 0.3
                    #    current lr is 0.4
                    #    current lr is 0.5
                    #    current lr is 0.6


                    # set learning rate manually by framework Variable
                    lr_var = fluid.layers.create_global_var(
                        shape=[1], value=0.7, dtype='float32')
                    adam.set_lr(lr_var)
                    lr = adam.current_step_lr()
                    print("current lr is {}".format(lr))
                    # Print:
                    #    current lr is 0.7



        """
        if not isinstance(value, (framework.Variable, float)):
            raise TypeError(
                "The type of 'value' in optimizer.set_lr must be (float, Variable), but received %s."
                % (type(value)))
        if isinstance(self._learning_rate, LearningRateDecay):
            raise RuntimeError(
                "optimizer's learning rate can't be LearningRateDecay when invoke this API, because this will lead to conflict."
            )
        if isinstance(value, float):
            self._learning_rate = value
            current_lr = self._global_learning_rate()
            if current_lr is not None:
444 445
                if in_dygraph_mode():
                    place = _current_expected_place()
446 447
                    _C_ops.full_(current_lr, list(current_lr.shape),
                                 float(value), current_lr.dtype, place)
448 449

                elif _in_legacy_dygraph():
450 451 452 453
                    _legacy_C_ops.fill_constant(current_lr, 'value',
                                                float(value), 'dtype',
                                                current_lr.dtype, 'shape',
                                                list(current_lr.shape))
454 455 456
                else:
                    global_block = framework.default_main_program(
                    ).global_block()
457 458 459 460 461 462 463 464
                    global_block.append_op(type='fill_constant',
                                           outputs={'Out': [current_lr]},
                                           attrs={
                                               'dtype': current_lr.dtype,
                                               'shape': list(current_lr.shape),
                                               'value': float(value)
                                           },
                                           stop_gradient=True)
465 466 467 468 469
        else:
            assert len(value.shape) == 1 and value.shape[
                0] == 1, "optimizer's learning rate must be 1-D Tensor with shape[1]"
            self._learning_rate_map[framework.default_main_program()] = value

470 471 472
    @framework.dygraph_only
    def current_step_lr(self):
        """
473
        :api_attr: imperative
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        Get current step learning rate. The return value is all the same When LearningRateDecay is not used,
        otherwise return the step learning rate.

        Returns:
            float: The learning rate of the current step.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                # example1: LearningRateDecay is not used, return value is all the same
                with fluid.dygraph.guard():
                    emb = fluid.dygraph.Embedding([10, 10])
                    adam = fluid.optimizer.Adam(0.001, parameter_list = emb.parameters())
                    lr = adam.current_step_lr()
                    print(lr) # 0.001

                # example2: PiecewiseDecay is used, return the step learning rate
                with fluid.dygraph.guard():
                    inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
                    linear = fluid.dygraph.nn.Linear(10, 10)
                    inp = fluid.dygraph.to_variable(inp)
                    out = linear(inp)
                    loss = fluid.layers.reduce_mean(out)
501

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
                    bd = [2, 4, 6, 8]
                    value = [0.2, 0.4, 0.6, 0.8, 1.0]
                    adam = fluid.optimizer.Adam(fluid.dygraph.PiecewiseDecay(bd, value, 0),
                                           parameter_list=linear.parameters())

                    # first step: learning rate is 0.2
                    np.allclose(adam.current_step_lr(), 0.2, rtol=1e-06, atol=0.0) # True

                    # learning rate for different steps
                    ret = [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0]
                    for i in range(12):
                        adam.minimize(loss)
                        lr = adam.current_step_lr()
                        np.allclose(lr, ret[i], rtol=1e-06, atol=0.0) # True

        """
        current_lr = self._global_learning_rate()
519
        if isinstance(current_lr, framework.Variable):
520 521 522 523
            return self._global_learning_rate().numpy()[0]

        if isinstance(self._learning_rate, float):
            return self._learning_rate
524 525 526
        elif isinstance(self._learning_rate, _LearningRateEpochDecay):
            step_lr = self._learning_rate()
            return step_lr.numpy()[0]
527 528 529 530 531 532 533
        else:
            step_lr = self._learning_rate.step()
            if isinstance(step_lr, (float, int)):
                return step_lr
            else:
                return step_lr.numpy()[0]

Y
yuyang18 已提交
534
    def _global_learning_rate(self, program=None):
Q
Qiao Longfei 已提交
535 536 537 538
        """
        get global decayed learning rate
        :return:
        """
539 540
        if program is None:
            program = framework.default_main_program()
Q
qiaolongfei 已提交
541
        return self._learning_rate_map.get(program, None)
Q
Qiao Longfei 已提交
542

Q
Qiao Longfei 已提交
543 544 545 546 547
    def _append_optimize_op(self, block, param_and_grad):
        """ append optimize operator to block and return all the added optimize_op
        """
        raise NotImplementedError()

548 549 550 551
    def _create_param_lr(self, param_and_grad):
        # create learning rate variable for every parameter
        param = param_and_grad[0]
        param_lr = param.optimize_attr['learning_rate']
W
Wu Yi 已提交
552 553
        if type(param_lr) == Variable:
            return param_lr
Q
qiaolongfei 已提交
554
        else:
W
Wu Yi 已提交
555
            if param_lr == 1.0:
Y
yuyang18 已提交
556
                return self._global_learning_rate()
W
Wu Yi 已提交
557
            else:
X
Xin Pan 已提交
558 559 560
                with default_main_program()._lr_schedule_guard(
                        is_with_opt=True), framework.name_scope(
                            'scale_with_param_lr'):
561
                    return self._global_learning_rate() * param_lr
562 563 564 565 566 567 568

    def _create_accumulators(self, block, parameters):
        """Create all accumulators needed by the parameters

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer
Q
Qiao Longfei 已提交
569
        """
570 571
        pass

572
    def _finish_update(self, block, parameters_and_grads):
573 574 575 576 577 578 579 580
        """Finish any custom updates needed
           before completing an optimization step

        Args:
            block: the block in which the loss variable is present
            parameters: list of parameter variables for the optimizer

        Returns:
Q
qiaolongfei 已提交
581
            None
582 583 584
        """
        pass

585 586 587 588 589
    def _add_accumulator(self,
                         name,
                         param,
                         dtype=None,
                         fill_value=0.0,
590
                         shape=None,
591
                         type=None,
592
                         device=None):
593 594 595 596 597 598 599 600 601
        """Utility function to add an accumulator for a parameter

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            param: parameter variable for which accumulator is to be added
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
        """
W
whs 已提交
602 603
        if self._name is not None:
            name = self._name + "_" + name
604 605
        if (name in self._accumulators
                and param.name in self._accumulators[name]):
J
Jiabin Yang 已提交
606
            if framework._non_static_mode():
X
polish  
Xin Pan 已提交
607
                return self._accumulators[name][param.name]
608 609 610
            raise Exception(
                "Accumulator {} already exists for parameter {}".format(
                    name, param.name))
611 612
        if shape == None:
            shape = param.shape
Q
Qiao Longfei 已提交
613
        assert isinstance(self.helper, LayerHelper)
614 615 616 617 618

        var_name = param.name + "_" + name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

Q
Qiao Longfei 已提交
619
        var = self.helper.create_global_variable(
620
            name=var_name,
Q
Qiao Longfei 已提交
621
            persistable=True,
F
fengjiayi 已提交
622
            dtype=dtype or param.dtype,
623
            type=core.VarDesc.VarType.LOD_TENSOR
624 625
            if framework._non_static_mode() else
            (param.type if type is None else type),
H
hong 已提交
626 627
            shape=shape,
            belong_to_optimizer=True)
628 629 630 631 632
        if device is None:
            device = self._get_device_for_param(param.name)
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))
H
hong 已提交
633

J
Jiabin Yang 已提交
634
        if framework._non_static_mode():
H
hong 已提交
635 636 637 638 639
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

Q
Qiao Longfei 已提交
640
        self._accumulators[name][param.name] = var
641
        return var
642

643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    def _add_global_accumulator(self,
                                name,
                                dtype=None,
                                fill_value=0.0,
                                shape=None,
                                type=None,
                                device=None):
        """Utility function to add a global accumulator for all parameters in the model

        Args:
            block: the block in which the loss variable is present
            name: name of the accumulator
            dtype: data type of the accumulator variable
            fill_value: value to initialize the accumulator variable
            shape: the shape of the accumulator
            type: the variable type of the accumulator
            device: the target place of the accumulator
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name in self._global_accumulators):
J
Jiabin Yang 已提交
664
            if framework._non_static_mode():
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
                return self._global_accumulators[name]
            raise Exception("Global accumulator {} already exists".format(name))
        if shape == None:
            shape = [1]  # most case, global accumulator is of shape [1]
        assert isinstance(self.helper, LayerHelper)

        var_name = name
        var_name = unique_name.generate(var_name)
        self._opti_name_list.append(var_name)

        var = self.helper.create_global_variable(
            name=var_name,
            persistable=True,
            dtype=dtype if dtype else self._dtype,
            type=type,
            shape=shape,
            belong_to_optimizer=True)
        if device is None:
            device = 'cpu'
        with device_guard(device):
            self.helper.set_variable_initializer(
                var, initializer=Constant(value=float(fill_value)))

J
Jiabin Yang 已提交
688
        if framework._non_static_mode():
689 690 691 692 693 694 695 696
            if len(self._accumulators_holder) > 0:
                assert var_name in self._accumulators_holder, \
                        "Optimizer set error, {} should in state dict".format( var_name )
                var.set_value(self._accumulators_holder[var_name])

        self._global_accumulators[name] = var
        return var

697 698 699 700 701 702 703 704
    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter

        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched

        Returns:
705
            accumulator variable
706
        """
W
whs 已提交
707 708
        if self._name is not None:
            name = self._name + "_" + name
709 710 711 712 713
        if (name not in self._accumulators
                or param.name not in self._accumulators[name]):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, param.name))
714 715
        return self._accumulators[name][param.name]

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    def _get_global_accumulator(self, name):
        """Utility function to fetch a global accumulator

        Args:
            name: name of the accumulator

        Returns:
            accumulator variable
        """
        if self._name is not None:
            name = self._name + "_" + name
        if (name not in self._global_accumulators):
            raise Exception("Global accumulator {} does not exist".format(name))
        return self._global_accumulators[name]

731 732 733 734 735 736 737 738 739 740 741 742
    def _update_param_device_map(self, parameters_and_grads, target_block):
        for param_and_grad in parameters_and_grads:
            if param_and_grad[0].trainable is True:
                param_name = param_and_grad[0].name
                ops = target_block.ops
                device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName(
                )
                for op in ops:
                    input_arg_names = op.input_arg_names
                    if param_name in input_arg_names:
                        self._param_device_map[param_name] = op.attr(
                            device_attr_name)
743
                        break
744 745 746 747 748 749 750

    def _get_device_for_param(self, param_name):
        device = None
        if param_name in self._param_device_map:
            device = self._param_device_map[param_name]
        return device

751
    def _create_optimization_pass(self, parameters_and_grads):
Q
Qiao Longfei 已提交
752 753 754
        """Add optimization operators to update gradients to variables.

        Args:
Q
qiaolongfei 已提交
755
          parameters_and_grads(list(tuple(Variable, Variable))):
756
            a list of (variable, gradient) pair to update.
Q
Qiao Longfei 已提交
757 758

        Returns:
759
          return_op_list: a list of operators that will complete one step of
760 761 762
            optimization. This will include parameter update ops, global step
            update ops and any other custom ops required by subclasses to manage
            their internal state.
Q
Qiao Longfei 已提交
763
        """
764 765 766 767 768
        # This is a default implementation of create_optimization_pass that
        # can be shared by most optimizers. This implementation assumes that
        # the subclass will implement the _append_optimize_op method and the
        #  _initialize_tensors method. The subclass can extend the
        # _create_accumulators method if it needs to create accumulators
769
        # for parameters and extend _finish_update method to add custom ops.
770

771
        # Allways called under program_guard use global block as loss block
772 773 774
        # But if current block is in control flow, append optimize op in the
        # grad block of current block

775
        global_block = framework.default_main_program().global_block()
776 777 778 779 780 781 782 783 784
        target_block = global_block
        current_block = framework.default_main_program().current_block()
        if current_block.idx != global_block.idx:
            assert current_block.backward_block_idx != -1, \
                "current block is not global_block, but it doesn't have backward block."
            target_block = framework.default_main_program().blocks[
                current_block.backward_block_idx]

        start = len(target_block.ops)
785

786
        self._update_param_device_map(parameters_and_grads, target_block)
C
chengduo 已提交
787
        self._create_accumulators(
788
            target_block,
C
chengduo 已提交
789
            [p[0] for p in parameters_and_grads if p[0].trainable])
790 791
        self._create_global_learning_rate()

J
Jiabin Yang 已提交
792
        if framework._non_static_mode():
793 794 795
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
796 797
                if param_and_grad[0].trainable is True:
                    self._append_optimize_op(target_block, param_and_grad)
798 799 800 801 802 803 804
        else:
            for param_and_grad in parameters_and_grads:
                if param_and_grad[1] is None:
                    continue
                with param_and_grad[0].block.program._optimized_guard(
                        param_and_grad), name_scope("optimizer"):
                    if param_and_grad[0].trainable is True:
805 806
                        device = self._get_device_for_param(
                            param_and_grad[0].name)
807 808 809
                        with device_guard(device):
                            optimize_op = self._append_optimize_op(
                                target_block, param_and_grad)
810 811 812

        # Get custom finish ops for subclasses
        # FIXME: Need to fix this once we figure out how to handle dependencies
813
        self._finish_update(target_block, parameters_and_grads)
814

815 816
        end = len(target_block.ops)
        return target_block._slice_ops(start, end)
817 818

    def _process_distribute_lookuptable(self, param_grads):
Q
Qiao Longfei 已提交
819 820 821 822 823 824 825 826 827
        """
        Because distribute lookup table only support SGD optimizer for now, not support
        other optimizer and regularization, so we should find the table parameter out,
        and avoid to add regularization and other op for it, and add sgd optimize op
        for it independently.
        :param param_grads(list((Var, Var))): list of (param, grad) pair.
        :param loss: the loss variable.
        :param startup_program: the startup program
        """
828 829
        program = framework.default_main_program()
        global_block = framework.default_main_program().global_block()
Q
Qiao Longfei 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
        table_name = find_distributed_lookup_table(program)
        table_param = None
        table_grad = None
        new_param_grads = []
        for p, g in param_grads:
            if p.name == table_name:
                if table_param is not None:
                    raise RuntimeError(
                        "multi dist table var found, only support one now!")
                table_param = p
                table_grad = g
            else:
                new_param_grads.append((p, g))
        sgd_op = None
        if table_param is not None:
845 846 847 848 849 850 851 852 853 854 855 856 857
            param_and_grad = [table_param, table_grad]
            with table_param.block.program._optimized_guard(param_and_grad), \
                    framework.name_scope("optimizer"):
                self._create_global_learning_rate()
                # create the optimize op
                sgd_op = global_block.append_op(
                    type='sgd',
                    inputs={
                        "Param": table_param,
                        "Grad": table_grad,
                        "LearningRate": self._create_param_lr(param_and_grad)
                    },
                    outputs={"ParamOut": param_and_grad[0]})
Q
Qiao Longfei 已提交
858 859
        return new_param_grads, (table_param, table_grad), sgd_op

860 861 862 863 864 865 866
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
                 callbacks=None):
        """
867
        The first part of ``minimize``, do auto-diff to append backward operations for
868 869 870
        the current program.

        Args:
871 872 873 874
            loss (Variable): ``loss`` variable to run optimizations.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
875
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
876 877
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
878
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
879 880 881
                to be updated. The default value is None.
            callbacks (list, optional): list of callable objects to run when appending backward
                operator for one parameter. The default value is None.
M
minqiyang 已提交
882

883
        Return:
884 885
            list: list of (param, grad) variable pairs, param is ``Parameter``,
                grad is the gradient value corresponding to the parameter.
M
minqiyang 已提交
886

887
        Examples:
888
            See examples in ``apply_gradients``.
889
        """
890
        act_no_grad_set = None
J
Jiabin Yang 已提交
891
        if framework._non_static_mode():
892
            pass
L
Leo Chen 已提交
893 894
        else:
            act_no_grad_set = self._get_no_grad_set(loss, no_grad_set)
G
gongweibao 已提交
895

L
Leo Chen 已提交
896 897 898 899
        # Infer dtype by loss if None
        if self._dtype is None:
            self._dtype = loss.dtype

J
Jiabin Yang 已提交
900
        if framework._non_static_mode():
901 902 903
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list

C
chengduo 已提交
904
            params_grads = []
905
            for param in parameter_list:
C
chengduo 已提交
906 907
                if not param.trainable:
                    continue
908
                if param._grad_ivar() is not None:
C
chengduo 已提交
909
                    # create gradient variable
910
                    grad_var = param._grad_ivar()
C
chengduo 已提交
911
                    params_grads.append((param, grad_var))
912
        else:
C
chengduo 已提交
913 914 915 916 917
            if callbacks is None:
                callbacks = [error_clip_callback]
            else:
                assert (isinstance(callbacks, list))
            program = loss.block.program
C
chengduo 已提交
918 919
            assert len(loss.shape) == 1 and loss.shape[0] == 1, \
                "The loss.shape should be (1L,), but the current loss.shape is {}. " \
920
                "Maybe that you should call paddle.mean to process the current loss.".format(
C
chengduo 已提交
921
                    loss.shape)
922 923
            parameter_list = parameter_list if parameter_list \
                else self._parameter_list
C
chengduo 已提交
924 925
            with program_guard(program, startup_program):
                params_grads = append_backward(loss, parameter_list,
926
                                               act_no_grad_set, callbacks)
C
chengduo 已提交
927
        return params_grads
928

929 930
    def _create_regularization_of_grad(self, param, grad, regularization=None):
        """ Create and add backward regularization Operators
931

932 933 934
        Function helper of append_regularization_ops.
        """
        # If no gradient or no regularization is specified,  then we don't need to do anything
935 936 937 938
        if grad is None or (
            (not hasattr(param, 'regularizer') or
             (hasattr(param, 'regularizer') and param.regularizer is None))
                and regularization is None):
939 940 941 942 943 944 945 946 947 948
            return grad
        regularization_term = None
        if hasattr(param, 'regularizer') and param.regularizer is not None:
            # Add variable for regularization term in grad block
            regularization_term = param.regularizer(param, grad, grad.block)
        elif regularization is not None:
            regularization_term = regularization(param, grad, grad.block)

        assert regularization_term is not None

J
Jiabin Yang 已提交
949
        if framework._non_static_mode():
950
            return _legacy_C_ops.sum([grad, regularization_term])
951

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
        new_grad = grad
        if grad.type == core.VarDesc.VarType.SELECTED_ROWS:
            # FIXME(zcd): If the grad is SELECTED_ROWS, after regularization,
            # the grad's type and name will be changed. But the gradient's name
            # is used in ParallelExecutor Reduce mode, so I add a flag for
            # the new_grad here.
            new_grad = grad.block.create_var(
                name=grad.name + core.kNewGradSuffix(),
                dtype=param.dtype,
                shape=param.shape,
                lod_level=param.lod_level,
                type=core.VarDesc.VarType.LOD_TENSOR)

        inputs = {"X": [grad, regularization_term]}
        outputs = {"Out": [new_grad]}
967
        grad.block.append_op(type='sum', inputs=inputs, outputs=outputs)
968 969 970 971 972 973 974

        return new_grad

    def append_regularization_ops(self,
                                  parameters_and_grads,
                                  regularization=None):
        r"""Create and add backward regularization Operators
975

976 977 978 979
        Creates and adds backward regularization operators in the BlockDesc.
        This will add gradients of the regularizer function to the gradients
        of the parameters and return these modified gradients. This is the
        same as implementing weight decay in optimizers for regularization.
980

981 982 983 984 985
        Args:
            parameters_and_grads: A list of (parameters, gradients) pairs
                                  that need to be regularized.
            regularization: A global regularizer. If the parameter is not
                            set. It will be applied with regularizer.
986

987 988 989
        Returns:
            list[(Variable, Variable)]: list of (parameters, gradients) \
            pair with the regularized gradient
990

991 992 993 994
        Raises:
            Exception: Unknown regularization type
        """
        params_and_grads = []
J
Jiabin Yang 已提交
995
        if framework._non_static_mode():
996
            for param, grad in parameters_and_grads:
997 998
                new_grad = self._create_regularization_of_grad(
                    param, grad, regularization)
999 1000 1001 1002 1003
                params_and_grads.append((param, new_grad))
        else:
            repeate_regularizer = False
            with framework.name_scope('regularization'):
                for param, grad in parameters_and_grads:
1004 1005 1006
                    if not repeate_regularizer and getattr(
                            param, 'regularizer',
                            None) is not None and regularization is not None:
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
                        repeate_regularizer = True
                        logging.info(
                            "If regularizer of a Parameter has been set by 'fluid.ParamAttr' or 'fluid.WeightNormParamAttr' already. "
                            "The Regularization[%s] in Optimizer will not take effect, and it will only be applied to other Parameters!"
                            % regularization.__str__())
                    with param.block.program._optimized_guard([param, grad]):
                        new_grad = self._create_regularization_of_grad(
                            param, grad, regularization)
                        params_and_grads.append((param, new_grad))
        return params_and_grads

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    def flatten_param_grads(self, params_grads):
        need_flatten_params = []
        need_flatten_grads = []
        for p, g in params_grads:
            if g is None:
                continue
            g.persistable = True
            if getattr(p, 'need_clip', True) is False or getattr(
                    p, 'regularizer', None) is not None:
                warnings.warn(
                    "flatten_param_grads=True will be discarded since paramter '{}''s need_clip is False or "
                    "the regularizer is set".format(p.name))
                self._flatten_param_grads = False
                return params_grads

            need_flatten_params.append(p)
            need_flatten_grads.append(g)

        shape = [np.prod(p.shape) for p in need_flatten_params]
        block = need_flatten_params[0].block

        flatten_param = self.helper.create_global_variable(
            name='flatten_param',
            persistable=True,
            dtype=need_flatten_params[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        flatten_param.trainable = True
        flatten_param.optimize_attr = need_flatten_params[0].optimize_attr
        flatten_param.regularizer = need_flatten_params[0].regularizer

        flatten_grad = self.helper.create_global_variable(
            name='flatten_grad',
            persistable=True,
            dtype=need_flatten_grads[0].dtype,
            shape=[np.sum(shape)],
            belong_to_optimizer=True)

        with program_guard(default_main_program()):
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
            block.append_op(type="coalesce_tensor",
                            inputs={"Input": need_flatten_params},
                            outputs={
                                "Output": need_flatten_params,
                                "FusedOutput": flatten_param
                            },
                            attrs={
                                "copy_data": True,
                                "use_align": True,
                                "align_size": self._align_size,
                                "dtype": need_flatten_params[0].dtype
                            })
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
            block.append_op(type="coalesce_tensor",
                            inputs={"Input": need_flatten_grads},
                            outputs={
                                "Output": need_flatten_grads,
                                "FusedOutput": flatten_grad
                            },
                            attrs={
                                "copy_data": True,
                                "use_align": True,
                                "align_size": self._align_size,
                                "dtype": need_flatten_grads[0].dtype
                            })
1083 1084 1085

        #NOTE(zhiqiu): the initializer should be set after coalesce_tensor op,
        # so the shape of flatten_param and flatten_grad will be inferred.
1086 1087 1088 1089
        self.helper.set_variable_initializer(flatten_param,
                                             initializer=Constant(0.0))
        self.helper.set_variable_initializer(flatten_grad,
                                             initializer=Constant(0.0))
1090 1091 1092

        return [(flatten_param, flatten_grad)]

1093 1094 1095 1096 1097 1098 1099
    def apply_gradients(self, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.
M
minqiyang 已提交
1100

1101 1102
        Returns:
            list: A list of operators appended to the current program.
M
minqiyang 已提交
1103

1104 1105 1106
        Examples:
            .. code-block:: python

1107
                import paddle.fluid as fluid
1108 1109 1110 1111 1112 1113 1114 1115 1116
                loss = network()
                optimizer = fluid.optimizer.SGD(learning_rate=0.1)
                params_grads = optimizer.backward(loss)
                # you may append operations for params_grads here
                # ...
                optimizer.apply_gradients(params_grads)
        """
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

1117 1118 1119 1120 1121 1122
        # NOTE(zhiqiu): currently, only support ClipGradByGlobalNorm and without regularization.
        if self._flatten_param_grads and self.regularization is None:
            if self._grad_clip == None or isinstance(self._grad_clip,
                                                     ClipGradByGlobalNorm):
                params_grads = self.flatten_param_grads(params_grads)

1123
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1124 1125 1126 1127
        if self._grad_clip is not None:
            params_grads = self._grad_clip(params_grads)
        else:
            params_grads = append_gradient_clip_ops(params_grads)
1128 1129

        # Add regularization if any
1130 1131
        params_grads = self.append_regularization_ops(params_grads,
                                                      self.regularization)
1132 1133 1134 1135

        optimize_ops = self._create_optimization_pass(params_grads)
        return optimize_ops

C
chengduo 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
    def apply_optimize(self, loss, startup_program, params_grads):
        """
        Second part of `minimize`, appending optimization operators for
        given `params_grads` pairs.
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Returns:
            list: A list of operators appended to the current program.
        """
J
Jiabin Yang 已提交
1148
        if framework._non_static_mode():
C
chengduo 已提交
1149 1150
            with program_guard(framework.default_main_program(),
                               framework.default_startup_program()):
1151 1152
                if self._grad_clip is not None:
                    params_grads = self._grad_clip(params_grads)
1153 1154
                params_grads = self.append_regularization_ops(
                    params_grads, self.regularization)
C
chengduo 已提交
1155 1156 1157 1158 1159 1160 1161
                optimize_ops = self._create_optimization_pass(params_grads)
        else:
            program = loss.block.program
            with program_guard(program, startup_program):
                optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

G
gongweibao 已提交
1162
    def _get_no_grad_set(self, loss, no_grad_set=None):
1163
        no_grad_set = _get_no_grad_set_name(no_grad_set)
G
gongweibao 已提交
1164 1165 1166 1167 1168 1169 1170 1171
        parameters = loss.block.program.global_block().all_parameters()
        param_no_trainable = set(
            [param.name for param in parameters if param.trainable is False])
        # If the parameter is no trainable, it should not have a gradient.
        no_grad_set.update(param_no_trainable)

        return no_grad_set

1172 1173 1174 1175
    @framework.dygraph_only
    def clear_gradients(self):
        """
        Clear the gradients of all optimized parameters for model.
1176 1177

        If not, new gradient will accumulat on previous gradient.
1178

1179 1180
        Returns:
            None
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                with fluid.dygraph.guard():
                    value = np.arange(26).reshape(2, 13).astype("float32")
                    a = fluid.dygraph.to_variable(value)
                    linear = fluid.Linear(13, 5, dtype="float32")
                    # This can be any optimizer supported by dygraph.
1193
                    adam = fluid.optimizer.Adam(learning_rate = 0.01,
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
                                                parameter_list = linear.parameters())
                    out = linear(a)
                    out.backward()
                    adam.minimize(out)
                    adam.clear_gradients()

        """
        for p in self._parameter_list:
            if p.trainable:
                p.clear_gradient()

1205
    @imperative_base.no_grad
Q
Qiao Longfei 已提交
1206 1207
    def minimize(self,
                 loss,
1208
                 startup_program=None,
Q
Qiao Longfei 已提交
1209
                 parameter_list=None,
1210
                 no_grad_set=None):
1211
        """
1212
        Add operations to minimize ``loss`` by updating ``parameter_list``.
M
minqiyang 已提交
1213

1214
        Args:
1215 1216 1217 1218
            loss (Variable): A ``Variable`` containing the value to minimize.
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
H
hong 已提交
1219
            parameter_list (Iterable, optional): Iterable of ``Variable`` or ``Variable.name`` to update
1220 1221
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1222
            no_grad_set (set, optional): Set of ``Variable``  or ``Variable.name`` that don't need
1223
                to be updated. The default value is None.
Q
Qiao Longfei 已提交
1224

1225
        Returns:
1226 1227 1228
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
            by minimize and a list of (param, grad) variable pairs, param is
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1229 1230
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1231
            ``fetch_list`` before run, see details in ``Executor``.
1232 1233 1234

        Examples:
            Please refer to the example of current Optimizer.
Q
Qiao Longfei 已提交
1235
        """
C
chengduo 已提交
1236
        assert isinstance(loss, Variable), "The loss should be an Variable."
1237

1238 1239
        parameter_list = parameter_list if parameter_list \
            else self._parameter_list
1240

1241 1242 1243 1244
        params_grads = self.backward(loss,
                                     startup_program=startup_program,
                                     parameter_list=parameter_list,
                                     no_grad_set=no_grad_set)
1245

1246 1247 1248
        optimize_ops = self.apply_optimize(loss,
                                           startup_program=startup_program,
                                           params_grads=params_grads)
M
minqiyang 已提交
1249

Q
Qiao Longfei 已提交
1250
        return optimize_ops, params_grads
Q
Qiao Longfei 已提交
1251 1252 1253


class SGDOptimizer(Optimizer):
1254
    r"""
Q
qiaolongfei 已提交
1255 1256 1257 1258 1259 1260
    Optimizer of the stochastic gradient descent algorithm.

    .. math::

        param\_out = param - learning\_rate * grad

1261 1262 1263
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
H
hong 已提交
1264
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1265 1266
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1267 1268 1269 1270 1271
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1272 1273 1274
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1275
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1276 1277
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1278 1279 1280 1281

    Examples:
        .. code-block:: python

1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
                sgd_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
Qiao Longfei 已提交
1307 1308
    """

1309 1310 1311 1312
    def __init__(self,
                 learning_rate,
                 parameter_list=None,
                 regularization=None,
1313
                 grad_clip=None,
1314
                 multi_precision=False,
1315
                 name=None):
Q
Qiao Longfei 已提交
1316
        assert learning_rate is not None
1317 1318 1319 1320 1321
        super(SGDOptimizer, self).__init__(learning_rate=learning_rate,
                                           parameter_list=parameter_list,
                                           regularization=regularization,
                                           grad_clip=grad_clip,
                                           name=name)
Q
Qiao Longfei 已提交
1322
        self.type = "sgd"
1323
        self._use_mkldnn = False
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
        self._multi_precision = multi_precision
        self._master_weights = {}

    def _create_master_weight(self, param):
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)

            var_name = param.name + "_fp32_master"
            var_name = unique_name.generate(var_name)
1335 1336 1337 1338 1339
            var = layers.create_global_var(name=var_name,
                                           shape=param.shape,
                                           value=0,
                                           dtype='float32',
                                           persistable=True)
1340
            block = self.helper.startup_program.global_block()
1341 1342 1343 1344 1345 1346 1347
            block.append_op(type="cast",
                            inputs={"X": [param]},
                            outputs={"Out": [var]},
                            attrs={
                                "in_dtype": param.dtype,
                                "out_dtype": core.VarDesc.VarType.FP32
                            })
1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
            self._master_weights[param.name] = var
        return var

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)
        if isinstance(parameters, dict):
            parameters = self._update_param_group(parameters)

        # Create accumulator tensors for first and second moments
        for p in parameters:
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Adam optimizer."
                )
Q
Qiao Longfei 已提交
1366

1367
    @no_grad
1368
    def _append_optimize_op(self, block, param_and_grad):
1369 1370 1371 1372 1373 1374

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

1375
        lr = self._create_param_lr(param_and_grad)
Z
zyfncg 已提交
1376
        if in_dygraph_mode():
1377 1378
            _C_ops.sgd_(param_and_grad[0], lr, param_and_grad[1], master_weight,
                        find_master)
Z
zyfncg 已提交
1379 1380
            return None
        if _in_legacy_dygraph():
1381 1382
            _legacy_C_ops.sgd(param_and_grad[0], lr, param_and_grad[1],
                              master_weight, param_and_grad[0], master_weight)
1383
            return None
1384

1385
        assert isinstance(block, framework.Block)
Q
Qiao Longfei 已提交
1386
        # create the optimize op
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0]}

        attrs = {"multi_precision": find_master}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

1401 1402 1403 1404 1405
        sgd_op = block.append_op(type=self.type,
                                 inputs=inputs,
                                 outputs=outputs,
                                 attrs=attrs,
                                 stop_gradient=True)
Q
Qiao Longfei 已提交
1406 1407

        return sgd_op
1408 1409 1410


class MomentumOptimizer(Optimizer):
1411
    r"""
Q
qiaolongfei 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424

    Simple Momentum optimizer with velocity state

    This optimizer has a flag for Nestrov Momentum.

    The update equations are as follows:

    .. math::

        & velocity = mu * velocity + gradient

        & if (use\_nesterov):

1425
        &\quad   param = param - (gradient + mu * velocity) * learning\_rate
Q
qiaolongfei 已提交
1426 1427 1428

        & else:

Q
qiaolongfei 已提交
1429
        &\quad   param = param - learning\_rate * velocity
Q
qiaolongfei 已提交
1430

1431 1432 1433 1434
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element.
        momentum (float): Momentum factor
H
hong 已提交
1435
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1436 1437
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1438
        use_nesterov (bool, optional): Enables Nesterov momentum, default is false.
1439 1440 1441 1442 1443
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1444 1445 1446
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
1447
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
1448 1449
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
1450 1451 1452 1453

    Examples:
        .. code-block:: python

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
                moment_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

1479 1480 1481
    """
    _velocity_acc_str = "velocity"

X
Xin Pan 已提交
1482 1483 1484
    def __init__(self,
                 learning_rate,
                 momentum,
1485
                 parameter_list=None,
X
Xin Pan 已提交
1486 1487
                 use_nesterov=False,
                 regularization=None,
1488
                 grad_clip=None,
X
Xin Pan 已提交
1489
                 name=None):
1490 1491
        assert learning_rate is not None
        assert momentum is not None
1492 1493 1494 1495 1496
        super(MomentumOptimizer, self).__init__(learning_rate=learning_rate,
                                                parameter_list=parameter_list,
                                                regularization=regularization,
                                                grad_clip=grad_clip,
                                                name=name)
1497 1498
        self.type = "momentum"
        self._momentum = momentum
1499
        self._use_nesterov = bool(use_nesterov)
1500 1501 1502 1503 1504

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
Q
Qiao Longfei 已提交
1505
            self._add_accumulator(self._velocity_acc_str, p)
1506 1507 1508 1509 1510 1511

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
1512
        lr = self._create_param_lr(param_and_grad)
1513
        master_weight = None
J
Jiabin Yang 已提交
1514
        if framework._non_static_mode():
1515 1516 1517 1518
            _, _, _ = _legacy_C_ops.momentum(
                param_and_grad[0], param_and_grad[1], velocity_acc, lr,
                master_weight, param_and_grad[0], velocity_acc, master_weight,
                'mu', self._momentum, 'use_nesterov', self._use_nesterov)
1519
            return None
1520

1521
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1522 1523 1524 1525
        inputs = {
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
            "Velocity": [velocity_acc],
1526
            "LearningRate": [lr]
1527 1528 1529 1530 1531 1532
        }

        outputs = {
            "ParamOut": [param_and_grad[0]],
            "VelocityOut": [velocity_acc]
        }
1533
        # create the momentum optimize op
1534 1535 1536 1537 1538
        momentum_op = block.append_op(type=self.type,
                                      inputs=inputs,
                                      outputs=outputs,
                                      attrs=attrs,
                                      stop_gradient=True)
1539 1540

        return momentum_op
1541 1542


1543
class DGCMomentumOptimizer(Optimizer):
1544
    r"""
1545
	:api_attr: Static Graph
S
swtkiwi 已提交
1546

1547
    DGC (Deep Gradient Compression) Momentum Optimizer. Original paper is https://arxiv.org/abs/1712.01887
1548

G
gongweibao 已提交
1549
    DGC reduces the communication bandwidth by sending only the important gradients (sparse update):\
1550 1551
        only gradients larger than a threshold are transmitted.

G
gongweibao 已提交
1552
    To avoid losing information, DGC accumulates the rest of the gradients locally.
1553 1554 1555

    Eventually, these gradients become large enough to be transmitted.

1556
    Thus, DGC sends the large gradients immediately but eventually sends all of the gradients over time.
1557

G
gongweibao 已提交
1558
    To ensure no loss of accuracy, DGC employs momentum correction and local gradient clipping on top of the gradient sparsification to maintain model performance.
1559 1560 1561 1562

    DGC also uses momentum factor masking and warmup training to overcome the staleness problem caused by reduced communication.

    This optimizer will do two things:
1563

1564 1565
        1. Compress the gradient by get TopK import value from tensor \
            and use it for allreduce to reduce network bandwidth.
1566

1567
        2. Call momentum to optimize the cost.
1568 1569

    Args:
1570 1571
        learning_rate (float|Variable): The learning rate used to update parameters. \
            It can be a float value or a Variable with one float value as a data element.
1572
        momentum (float): Momentum factor.
G
gongweibao 已提交
1573
        rampup_begin_step (int): The beginning step from which gradient compression is implemented.
1574 1575 1576 1577 1578 1579 1580
        rampup_step (int): Time steps used in sparsity warm-up periods. Default is 1.
            For example, if the sparsity is [0.75, 0.9375, 0.984375, 0.996, 0.999], and the rampup_step is 100, \
                it will use 0.75 at 0~19 steps, and 0.9375 at 20~39 steps, and so on. \
                And when reach sparsity array ends, it will use 0.999 then and after.
        sparsity (list[float]): Get top important element from gradient tensor, the ratio is (1 - current sparsity). \
            Default is [0.999]. For example, if the sparsity is [0.99, 0.999], \
                the top [1%, 0.1%] important element will be transmitted.
H
hong 已提交
1581
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1582 1583
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1584
        use_nesterov (bool): Enables Nesterov momentum. True means use Nesterov. Default is False.
1585 1586 1587 1588 1589
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
1590 1591
        grad_clip (GradientClipByNorm, optional): Gradient cliping strategy. ``DGCMomentumOptimizer`` only support
            :ref:`api_fluid_clip_GradientClipByNorm` , and if not, it will raise TypeError. Default None,
1592
            meaning there is no gradient clipping.
1593 1594
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
1595 1596 1597 1598

    Examples:
        .. code-block:: python

1599
            import paddle.fluid as fluid
1600
            optimizer = fluid.optimizer.DGCMomentumOptimizer(
G
gongweibao 已提交
1601 1602 1603 1604 1605
                        learning_rate=0.0001,
                        momentum=0.9,
                        rampup_step=1000,
                        rampup_begin_step=1252,
                        sparsity=[0.999, 0.999])
1606 1607

    """
1608 1609
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"
1610 1611 1612 1613 1614 1615 1616

    def __init__(self,
                 learning_rate,
                 momentum,
                 rampup_begin_step,
                 rampup_step=1,
                 sparsity=[0.999],
1617
                 parameter_list=None,
1618 1619 1620
                 use_nesterov=False,
                 num_trainers=None,
                 regularization=None,
1621
                 grad_clip=None,
1622
                 name=None):
J
Jiabin Yang 已提交
1623
        if framework._non_static_mode():
Z
zhongpu 已提交
1624
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")
1625 1626 1627 1628

        assert core.is_compiled_with_cuda(), \
            "Paddle is not compiled with CUDA. DGC is only support GPU for now."

1629 1630
        assert learning_rate is not None
        assert momentum is not None
1631 1632 1633 1634 1635 1636
        super(DGCMomentumOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             name=name)
1637 1638 1639
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)
1640

1641
        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
1642
        self._rampup_begin_step = rampup_begin_step
1643 1644
        self._rampup_step = rampup_step
        self._sparsity = sparsity
1645

1646
        self._rampup_begin_step_var = None
1647
        self._global_step_var = None
1648

1649 1650 1651 1652 1653 1654 1655 1656 1657
        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(
                num_trainers, int
            ), "The type of num_trainers should be 'int', but received %s" % type(
J
Jiangxinz 已提交
1658
                num_trainers)
1659
            assert num_trainers > 0, "The value of num_trainers should be greater than 0!"
1660 1661

            self._num_trainers = num_trainers
1662
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)
1663

1664 1665
        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization)
1666

1667 1668 1669
    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0
1670

1671 1672
        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
1673
            from .regularizer import L1Decay, L2Decay
1674 1675 1676 1677
            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
1678 1679
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
1680
        return regular_type, regular_coeff
1681

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if var_numel < 16384 or \
           param_var.type == core.VarDesc.VarType.SELECTED_ROWS  or \
           grad_var.type == core.VarDesc.VarType.SELECTED_ROWS  or  \
               param_var.dtype != core.VarDesc.VarType.FP32 :
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        velocity_acc = self._get_accumulator(self._u_velocity_acc_str,
                                             param_and_grad[0])
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}
1708 1709

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
1710 1711 1712
            type = "momentum"
        else:
            type = "dgc_momentum"
1713 1714 1715 1716 1717
            inputs.update({
                "current_step": self._global_step_var,
                "nranks": self._nranks_var
            })
            outputs.update({'Grad_out': param_and_grad[1]})
1718
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})
1719 1720

        # create the dgc momentum optimize op
1721 1722 1723 1724 1725
        dgc_momentum_op = block.append_op(type=type,
                                          inputs=inputs,
                                          outputs=outputs,
                                          attrs=attrs,
                                          stop_gradient=True)
1726 1727
        return dgc_momentum_op

1728 1729 1730 1731 1732
    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
1733 1734 1735 1736
            helper.set_variable_initializer(counter,
                                            initializer=Constant(
                                                value=float(begin - 1),
                                                force_cpu=True))
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True)
            counter.stop_gradient = True

        return counter

1747 1748 1749 1750 1751
    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True)
        if is_new_var:
1752 1753 1754 1755
            helper.set_variable_initializer(counter,
                                            initializer=Constant(
                                                value=float(value),
                                                force_cpu=True))
1756 1757 1758 1759
            counter.stop_gradient = True

        return counter

1760 1761 1762 1763 1764 1765
    def _append_dgc_ops(self, param_and_grads):
        main_program = default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
G
gongweibao 已提交
1766
            counter_name=core.dgc.kDGCCounterName(), begin=0)
1767

1768 1769
        self._nranks_var = self._add_nranks_var(name=core.dgc.kDGCNRanksName(),
                                                value=-1)
1770

1771 1772 1773 1774 1775
        # rampup begin step var for all_reduce_op_handle
        self._rampup_begin_step_var = tensor.create_global_var(
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
G
gongweibao 已提交
1776
            name=core.dgc.kDGCRampUpBeginStepName(),
1777 1778 1779
            value=self._rampup_begin_step * 1.0,
            force_cpu=True)

1780 1781
        self.helper = LayerHelper(self.__class__.__name__)

1782
        for param_var, grad_var in param_and_grads:
1783 1784 1785
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

1786
            if not self._is_use_dgc(param_var, grad_var):
1787 1788
                continue

1789
            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
            k_var = tensor.create_global_var(shape=[1],
                                             dtype=param_var.dtype,
                                             persistable=True,
                                             name=param_var.name +
                                             core.dgc.kDGCKName(),
                                             value=0.0,
                                             force_cpu=True)

            encoded_var = tensor.create_global_var(shape=[1],
                                                   dtype=param_var.dtype,
                                                   persistable=True,
                                                   name=param_var.name +
                                                   core.dgc.kDGCEncodedName(),
                                                   value=0.0,
                                                   force_cpu=False)

            gather_var = tensor.create_global_var(shape=[1],
                                                  dtype=param_var.dtype,
                                                  persistable=True,
                                                  name=param_var.name +
                                                  core.dgc.kDGCGatherName(),
                                                  value=0.0,
                                                  force_cpu=False)
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
1834 1835
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
1836
            self._dgc_op(param_var, clip_var, grad_var, u_var, v_var, k_var,
1837
                         encoded_var, gather_var)
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
1853 1854
            name = unique_name.generate_with_ignorable_key(".".join(
                [helper.name, 'tmp']))
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
        out = helper.create_variable(type=x.type,
                                     name=name,
                                     dtype=x.dtype,
                                     persistable=False)

        helper.append_op(type="dgc_clip_by_norm",
                         inputs={
                             "X": x,
                             "current_step": self._global_step_var
                         },
                         attrs={
                             "max_norm": max_norm,
                             "rampup_begin_step": float(self._rampup_begin_step)
                         },
                         outputs={"Out": out})
1871 1872 1873 1874
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
1875 1876 1877
            return self._clip_by_norm(x=grad_var,
                                      max_norm=clip_norm,
                                      name=grad_var.name)
1878 1879

    def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
1880
                encoded_var, gather_var):
1881 1882
        block = framework.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker
1883

1884 1885 1886 1887 1888 1889 1890
        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer)

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
        dgc_op = block.append_op(type="dgc",
                                 inputs={
                                     "U": u_var,
                                     "V": v_var,
                                     "Grad": clip_var,
                                     "Param": param_var,
                                     "current_step": self._global_step_var,
                                     "nranks": self._nranks_var,
                                 },
                                 outputs={
                                     "U_out": u_var,
                                     "V_out": v_var,
                                     "EncodeGrad": encoded_var,
                                     "k": k_var,
                                     "Grad_out": grad_var,
                                     "GatherBuff": gather_var,
                                 },
                                 attrs={
                                     "m":
                                     self._momentum,
                                     "sparsity":
                                     self._sparsity,
                                     "use_nesterov":
                                     self._use_nesterov,
                                     "rampup_begin_step":
                                     float(self._rampup_begin_step),
                                     "rampup_step":
                                     float(self._rampup_step),
                                     "regular_coeff":
                                     float(regular_coeff),
                                     "regular_type":
                                     int(regular_type),
                                 },
                                 stop_gradient=True)
1925 1926 1927 1928 1929 1930

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(op_maker.kOpRoleVarAttrName(),
                         [param_var.name, grad_var.name])

1931
    @imperative_base.no_grad
1932
    def apply_gradients(self, params_grads):
1933 1934 1935 1936 1937
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

1938 1939 1940 1941 1942 1943
        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        params_grads, table_param_and_grad, table_optimize_op = \
            self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
1944
        # DGC clip and regularization in optimizer.backward
1945 1946 1947 1948 1949 1950
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

1951
        # 'optimizer(grad_clip)' or 'set_gradient_clip'
1952 1953 1954 1955 1956
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads)
1957

1958 1959
        not_dgc_params_grads = self.append_regularization_ops(
            not_dgc_params_grads, self.regularization)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

1971

1972
class LarsMomentumOptimizer(Optimizer):
1973
    r"""
1974 1975 1976 1977 1978 1979 1980 1981 1982
    Momentum optimizer with LARS support

    The update equations are as follows:

    .. math::

        & local\_learning\_rate = learning\_rate * lars\_coeff * \\
          \\frac{||param||}{||gradient|| + lars\_weight\_decay * ||param||}

1983
        & velocity = mu * velocity + local\_learning\_rate * (gradient + lars\_weight\_decay * param + epsilon)
1984 1985 1986

        & param = param - velocity

1987 1988 1989 1990 1991 1992
    Parameters:
        learning_rate (float|Variable): The learning rate used to update parameters. \
            Can be a float value or a Variable with one float value as data element. \
            momentum (float): momentum factor
        lars_coeff (float): Defines how much we trust the layer to change its weights.
        lars_weight_decay (float): Weight decay coefficient for decaying using LARS.
H
hong 已提交
1993
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
1994 1995
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
1996 1997 1998 1999 2000
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2001 2002 2003
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2004
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2005 2006
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
2007 2008
        exclude_from_weight_decay (list[str], optional): Name string of layers which will be exclude from lars weight decay. Default is None.
        epsilon (float, optional): Epsilon to avoid Division by Zero when calculate local lr. Default is 0.
2009 2010 2011
        multi_precision (bool, optional): Whether to use multi-precision during weight updating.
        rescale_grad (float, optional): Multiply the gradient with `rescale_grad` \
            before updating. Often choose to be `1.0/batch_size`.
2012

2013 2014 2015
    Examples:
        .. code-block:: python

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
            import paddle.fluid as fluid
            import numpy as np

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
            inp = fluid.layers.data(
                name="inp", shape=[2, 2], append_batch_size=False)
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
            optimizer = fluid.optimizer.LarsMomentumOptimizer(learning_rate=0.001, momentum=0.9)
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2032 2033 2034 2035 2036 2037 2038 2039
    """
    _velocity_acc_str = "velocity"

    def __init__(self,
                 learning_rate,
                 momentum,
                 lars_coeff=0.001,
                 lars_weight_decay=0.0005,
2040
                 parameter_list=None,
2041
                 regularization=None,
2042
                 grad_clip=None,
2043 2044
                 name=None,
                 exclude_from_weight_decay=None,
2045 2046 2047
                 epsilon=0,
                 multi_precision=False,
                 rescale_grad=1.0):
2048 2049
        assert learning_rate is not None
        assert momentum is not None
2050 2051 2052 2053 2054 2055
        super(LarsMomentumOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             name=name)
2056 2057 2058 2059
        self.type = "lars_momentum"
        self._momentum = momentum
        self._lars_coeff = float(lars_coeff)
        self._lars_weight_decay = float(lars_weight_decay)
2060 2061 2062 2063 2064
        self._epsilon = float(epsilon)
        if exclude_from_weight_decay is None:
            self._exclude_from_weight_decay = []
        else:
            self._exclude_from_weight_decay = exclude_from_weight_decay
2065 2066 2067 2068 2069
        self._multi_precision = multi_precision
        self._rescale_grad = float(rescale_grad)
        self._master_weights = {}

    def _create_master_weight(self, param):
2070 2071 2072 2073
        if param.name in self._master_weights:
            var = self._master_weights[param.name]
        else:
            assert isinstance(self.helper, LayerHelper)
2074

2075 2076
            var_name = param.name + '_fp32_master'
            var_name = unique_name.generate(var_name)
2077 2078 2079 2080 2081
            var = layers.create_global_var(name=var_name,
                                           shape=param.shape,
                                           value=0,
                                           dtype='float32',
                                           persistable=True)
2082
            block = self.helper.startup_program.global_block()
2083 2084 2085 2086 2087 2088 2089
            block.append_op(type="cast",
                            inputs={"X": [param]},
                            outputs={"Out": [var]},
                            attrs={
                                "in_dtype": param.dtype,
                                "out_dtype": core.VarDesc.VarType.FP32
                            })
2090
            self._master_weights[param.name] = var
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
        return var

    def _get_accumulator(self, name, param):
        """Utility function to fetch an accumulator for a parameter
        Args:
            name: name of the accumulator
            param: parameter variable for which accumulator is to be fetched
        Returns:
            accumulator variable for the parameter
        """
        if self._name is not None:
            name = self._name + "_" + name
        find_master = self._multi_precision and param.dtype == core.VarDesc.VarType.FP16
        target_param = self._master_weights[
            param.name] if find_master else param
        target_name = target_param.name
2107 2108 2109 2110 2111
        if (name not in self._accumulators
                or target_name not in self._accumulators[name]):
            raise Exception(
                "Accumulator {} does not exist for parameter {}".format(
                    name, target_name))
2112
        return self._accumulators[name][target_name]
2113 2114 2115 2116 2117

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2118 2119 2120 2121 2122 2123 2124 2125 2126
            if self._multi_precision and p.dtype == core.VarDesc.VarType.FP16:
                master_p = self._create_master_weight(p)
                self._add_accumulator(self._velocity_acc_str, master_p)
                continue
            if p.dtype == core.VarDesc.VarType.FP16 and not self._multi_precision:
                warnings.warn(
                    "Accumulating with FP16 in optimizer can lead to poor accuracy or slow convergence."
                    "Consider using multi_precision=True option of the Lars optimizer."
                )
2127 2128 2129 2130
            self._add_accumulator(self._velocity_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
2131 2132 2133 2134 2135 2136 2137 2138
        _lars_weight_decay = self._lars_weight_decay
        param_name = param_and_grad[0].name
        if len(self._exclude_from_weight_decay) > 0:
            for name in self._exclude_from_weight_decay:
                if name in param_name:
                    _lars_weight_decay = 0.0
                    break

2139 2140
        velocity_acc = self._get_accumulator(self._velocity_acc_str,
                                             param_and_grad[0])
2141 2142 2143 2144 2145 2146 2147 2148 2149
        lr = self._create_param_lr(param_and_grad)

        find_master = self._multi_precision and param_and_grad[
            0].dtype == core.VarDesc.VarType.FP16
        master_weight = (self._master_weights[param_and_grad[0].name]
                         if find_master else None)

        attrs = {
            "mu": self._momentum,
2150
            "lars_coeff": self._lars_coeff,
L
limingshu 已提交
2151
            "lars_weight_decay": [_lars_weight_decay],
2152
            "multi_precision": find_master,
L
limingshu 已提交
2153
            "epsilon": self._epsilon,
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
            "rescale_grad": self._rescale_grad
        }

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": lr
        }

        outputs = {"ParamOut": param_and_grad[0], "VelocityOut": velocity_acc}

        if find_master:
            inputs["MasterParam"] = master_weight
            outputs["MasterParamOut"] = master_weight

J
Jiabin Yang 已提交
2170
        if framework._non_static_mode():
2171
            tmp, tmp2 = _legacy_C_ops.lars_momentum(
D
duanboqiang 已提交
2172 2173 2174 2175 2176
                [param_and_grad[0]], [param_and_grad[1]], [velocity_acc], [lr],
                [param_and_grad[0]], [velocity_acc], "mu", self._momentum,
                "lars_coeff", self._lars_coeff, "lars_weight_decay",
                [_lars_weight_decay], "multi_precision", find_master, "epsilon",
                self._epsilon, "rescale_grad", self._rescale_grad)
2177 2178
        else:
            # create the momentum optimize op
2179 2180 2181 2182 2183
            momentum_op = block.append_op(type=self.type,
                                          inputs=inputs,
                                          outputs=outputs,
                                          attrs=attrs,
                                          stop_gradient=True)
2184

2185
            return momentum_op
2186 2187


2188
class AdagradOptimizer(Optimizer):
2189
    r"""
2190 2191
    The Adaptive Gradient optimizer (Adagrad for short) can adaptively assign
    different learning rates to individual parameters.
Q
qiaolongfei 已提交
2192

2193
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2194 2195 2196 2197 2198 2199 2200

    .. math::

        moment\_out &= moment + grad * grad

        param\_out &= param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2201 2202 2203 2204 2205 2206
    Related paper: `Adaptive Subgradient Methods for Online Learning and
    Stochastic Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have the ``epsilon`` attribute. It is added here
    in our implementation as also proposed `Per-parameter adaptive learning rate
    methods <http://cs231n.github.io/neural-networks-3/#ada>`_
Q
qiaolongfei 已提交
2207 2208 2209
    for numerical stability to avoid the division by zero error.

    Args:
2210 2211 2212 2213
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
2214
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2215 2216
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2217 2218 2219 2220 2221
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2222 2223 2224
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2225
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2226 2227 2228 2229 2230
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        initial_accumulator_value (float, optional): Initial value for moment accumulator.
            The default value is 0.0.
Q
qiaolongfei 已提交
2231 2232 2233 2234

    Examples:
        .. code-block:: python

2235
            import numpy as np
2236
            import paddle.fluid as fluid
2237 2238

            np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
2239
            inp = fluid.data(name="inp", shape=[2, 2])
2240 2241
            out = fluid.layers.fc(inp, size=3)
            out = fluid.layers.reduce_sum(out)
2242
            optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
2243 2244 2245 2246 2247 2248 2249
            optimizer.minimize(out)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            exe.run(
                feed={"inp": np_inp},
                fetch_list=[out.name])
2250 2251 2252
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
2253 2254 2255
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
2256
                 parameter_list=None,
X
Xin Pan 已提交
2257
                 regularization=None,
2258
                 grad_clip=None,
2259
                 name=None,
X
xuezhong 已提交
2260
                 initial_accumulator_value=0.0):
2261 2262
        assert learning_rate is not None
        assert epsilon is not None
2263 2264 2265 2266 2267
        super(AdagradOptimizer, self).__init__(learning_rate=learning_rate,
                                               parameter_list=parameter_list,
                                               regularization=regularization,
                                               grad_clip=grad_clip,
                                               name=name)
2268 2269
        self.type = "adagrad"
        self._epsilon = epsilon
2270
        self.initial_accumulator_value = initial_accumulator_value
2271 2272 2273 2274 2275

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
2276 2277 2278
            self._add_accumulator(self._moment_acc_str,
                                  p,
                                  fill_value=self.initial_accumulator_value)
2279 2280 2281 2282 2283 2284

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])
C
caozhou 已提交
2285
        if in_dygraph_mode():
2286 2287 2288
            _C_ops.adagrad_(param_and_grad[0], param_and_grad[1], moment_acc,
                            self._create_param_lr(param_and_grad),
                            self._epsilon)
C
caozhou 已提交
2289 2290
            return None
        elif _in_legacy_dygraph():
2291 2292 2293 2294 2295
            _legacy_C_ops.adagrad(param_and_grad[0], param_and_grad[1],
                                  moment_acc,
                                  self._create_param_lr(param_and_grad),
                                  param_and_grad[0], moment_acc, "epsilon",
                                  self._epsilon)
C
caozhou 已提交
2296
            return None
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
        else:
            # Create the adagrad optimizer op
            adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
                    "LearningRate": self._create_param_lr(param_and_grad)
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment_acc
                },
                attrs={"epsilon": self._epsilon},
                stop_gradient=True)
2313

2314
            return adagrad_op
2315 2316 2317


class AdamOptimizer(Optimizer):
2318
    r"""
T
tianshuo78520a 已提交
2319
    The Adam optimizer uses an optimization described at the end
2320 2321 2322
    of section 2 of `Adam paper <https://arxiv.org/abs/1412.6980>`_ ,
    it can dynamically adjusts the learning rate of each parameter using
    the 1st moment estimates and the 2nd moment estimates of the gradient.
2323

2324
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338

    .. math::

        t & = t + 1

        moment\_1\_out & = {\\beta}_1 * moment\_1 + (1 - {\\beta}_1) * grad

        moment\_2\_out & = {\\beta}_2 * moment\_2 + (1 - {\\beta}_2) * grad * grad

        learning\_rate & = learning\_rate * \\
                          \\frac{\sqrt{1 - {\\beta}_2^t}}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_1}{\sqrt{moment\_2} + \epsilon}

2339 2340
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_

Q
qiaolongfei 已提交
2341
    Args:
2342 2343
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
2344 2345
        beta1 (float|Variable, optional): The exponential decay rate for the 1st moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2346
            The default value is 0.9.
2347 2348
        beta2 (float|Variable, optional): The exponential decay rate for the 2nd moment estimates.
            It should be a float number or a Variable with shape [1] and data type as float32.
2349
            The default value is 0.999.
2350 2351
        epsilon (float|Tensor, optional): A small float value for numerical stability.
            It should be a float number or a Variable with shape [1] and data type as float32.
2352
            The default value is 1e-08.
H
hong 已提交
2353
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2354 2355
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2356 2357 2358 2359 2360
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2361 2362 2363
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2364
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
        lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
            The accumulators are updated at every step. Every element of the two moving-average
            is updated in both dense mode and sparse mode. If the size of parameter is very large,
            then the update may be very slow. The lazy mode only update the element that has
            gradient in current mini-batch, so it will be much more faster. But this mode has
            different semantics with the original Adam algorithm and may lead to different result.
            The default value is False.
2375
        use_global_beta_pow (bool, optional): Whether to use global beta_pow. If true, Adam will use global beta_pow
2376
            for whole model instead of creating beta_pow for each parameter. Default is false.
2377 2378
        flatten_param_grads (bool, optional): Whether to flatten all parameters and gradients. Default is false.
        align_size (int, optional): The alignment size when flatten parameters and gradients. Default is -1, which means
2379
            use same align_size as allocator.
Q
qiaolongfei 已提交
2380 2381 2382 2383

    Examples:
        .. code-block:: python

2384 2385 2386 2387 2388 2389
            import paddle
            import paddle.fluid as fluid

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
2390 2391
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                adam_optimizer = fluid.optimizer.AdamOptimizer(0.01)
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
Q
qiaolongfei 已提交
2407

2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        .. code-block:: python

            # Adam with beta1/beta2 as Variable
            import paddle
            import paddle.fluid as fluid
            import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.data(name='x', shape=[None, 13], dtype='float32')
                y = fluid.data(name='y', shape=[None, 1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                # define beta decay variable
2425
                def get_decayed_betas(beta1_init, beta2_init, decay_steps, decay_rate, epsilon_init):
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
                    global_step = lr_scheduler._decay_step_counter()

                    beta1 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta1_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta1")
                    beta2 = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(beta2_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="beta2")
2442 2443 2444 2445 2446 2447 2448
                    epsilon = fluid.layers.create_global_var(
                        shape=[1],
                        value=float(epsilon_init),
                        dtype='float32',
                        # set persistable for save checkpoints and resume
                        persistable=True,
                        name="epsilon")
2449 2450 2451 2452 2453 2454 2455

                    div_res = global_step / decay_steps
                    decayed_beta1 = beta1_init * (decay_rate**div_res)
                    decayed_beta2 = beta2_init * (decay_rate**div_res)
                    fluid.layers.assign(decayed_beta1, beta1)
                    fluid.layers.assign(decayed_beta2, beta2)

2456
                    return beta1, beta2, epsilon
2457

2458
                beta1, beta2, epsilon = get_decayed_betas(0.9, 0.99, 1e5, 0.9, 1e-8)
2459 2460
                adam_optimizer = fluid.optimizer.AdamOptimizer(
                                                    learning_rate=0.01,
2461
                                                    beta1=beta1,
2462 2463
                                                    beta2=beta2,
                                                    epsilon=epsilon)
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
                adam_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
2474 2475 2476
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
Q
qiaolongfei 已提交
2477 2478
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"
2479 2480 2481 2482 2483

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2484
                 epsilon=1e-8,
2485
                 parameter_list=None,
X
Xin Pan 已提交
2486
                 regularization=None,
2487
                 grad_clip=None,
Q
Qiao Longfei 已提交
2488
                 name=None,
2489
                 lazy_mode=False,
2490 2491 2492
                 use_global_beta_pow=False,
                 flatten_param_grads=False,
                 align_size=-1):
2493 2494 2495 2496
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2497 2498 2499 2500 2501 2502 2503 2504
        super(AdamOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             flatten_param_grads=flatten_param_grads,
                             align_size=align_size,
                             name=name)
2505 2506 2507 2508
        self.type = "adam"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
Q
Qiao Longfei 已提交
2509
        self._lazy_mode = lazy_mode
2510
        self._use_global_beta_pow = use_global_beta_pow
2511 2512 2513 2514 2515 2516

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        # Create accumulator tensors for first and second moments
        for p in parameters:
Q
Qiao Longfei 已提交
2517 2518
            self._add_accumulator(self._moment1_acc_str, p)
            self._add_accumulator(self._moment2_acc_str, p)
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
            if not self._use_global_beta_pow:
                self._add_accumulator(
                    name=self._beta1_pow_acc_str,
                    param=p,
                    fill_value=0.9 if isinstance(self._beta1, Variable) \
                            else self._beta1,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
                self._add_accumulator(
                    name=self._beta2_pow_acc_str,
                    param=p,
                    fill_value=0.999 if isinstance(self._beta2, Variable) \
                            else self._beta2,
                    shape=[1],
                    type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
        if self._use_global_beta_pow:
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2536
                name=self._beta1_pow_acc_str,
2537 2538
                fill_value=0.9 if isinstance(self._beta1, Variable) \
                        else self._beta1,
2539
                shape=[1],
2540
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2541
            self._add_global_accumulator(
Q
qiaolongfei 已提交
2542
                name=self._beta2_pow_acc_str,
2543 2544
                fill_value=0.999 if isinstance(self._beta2, Variable) \
                        else self._beta2,
2545
                shape=[1],
2546
                type=core.VarDesc.VarType.LOD_TENSOR, device='cpu')
2547 2548 2549 2550 2551 2552 2553 2554

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)
        else:
            beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                  param_and_grad[0])
            beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                                  param_and_grad[0])
2565
        lr = self._create_param_lr(param_and_grad)
2566
        # create the adam optimize op
2567

J
Jiabin Yang 已提交
2568
        if framework._non_static_mode():
2569 2570 2571 2572
            _beta1 = self._beta1 if not isinstance(
                self._beta1, Variable) else self._beta1.numpy().item(0)
            _beta2 = self._beta2 if not isinstance(
                self._beta2, Variable) else self._beta2.numpy().item(0)
2573
            master_weight = None
2574
            _, _, _, _, _, _ = _legacy_C_ops.adam(
2575
                param_and_grad[0], param_and_grad[1], lr, moment1, moment2,
2576 2577 2578 2579 2580
                beta1_pow_acc, beta2_pow_acc, master_weight, param_and_grad[0],
                moment1, moment2, beta1_pow_acc, beta2_pow_acc, master_weight,
                'epsilon', self._epsilon, 'lazy_mode', self._lazy_mode,
                'min_row_size_to_use_multithread', 1000, 'beta1', _beta1,
                'beta2', _beta2, 'use_global_beta_pow',
2581
                self._use_global_beta_pow)
2582 2583 2584

            return None

2585
        inputs = {
2586 2587
            "Param": [param_and_grad[0]],
            "Grad": [param_and_grad[1]],
2588
            "LearningRate": [lr],
2589 2590 2591 2592
            "Moment1": [moment1],
            "Moment2": [moment2],
            "Beta1Pow": [beta1_pow_acc],
            "Beta2Pow": [beta2_pow_acc]
2593
        }
2594 2595 2596 2597 2598 2599 2600

        # Pass found_inf to adam, to skip update for not only param, but also momentum and beta_pow
        found_inf = self._get_auxiliary_var('found_inf')

        if found_inf:
            inputs['SkipUpdate'] = found_inf

2601
        outputs = {
2602 2603 2604 2605 2606
            "ParamOut": [param_and_grad[0]],
            "Moment1Out": [moment1],
            "Moment2Out": [moment2],
            "Beta1PowOut": [beta1_pow_acc],
            "Beta2PowOut": [beta2_pow_acc],
2607 2608 2609
        }
        attrs = {
            "lazy_mode": self._lazy_mode,
2610 2611
            "min_row_size_to_use_multithread": 1000,
            'use_global_beta_pow': self._use_global_beta_pow
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
        }

        if isinstance(self._beta1, Variable):
            inputs['Beta1Tensor'] = self._beta1
        else:
            attrs['beta1'] = self._beta1
        if isinstance(self._beta2, Variable):
            inputs['Beta2Tensor'] = self._beta2
        else:
            attrs['beta2'] = self._beta2
2622 2623 2624 2625
        if isinstance(self._epsilon, Variable):
            inputs['EpsilonTensor'] = self._epsilon
        else:
            attrs['epsilon'] = self._epsilon
2626

2627 2628 2629 2630 2631
        adam_op = block.append_op(type=self.type,
                                  inputs=inputs,
                                  outputs=outputs,
                                  attrs=attrs,
                                  stop_gradient=True)
2632 2633 2634

        return adam_op

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
    def _finish_update(self, block, parameters_and_grads):
        r"""Update beta1_pow and beta2_pow accumulator
        """
        assert isinstance(block, framework.Block)
        if self._use_global_beta_pow:
            beta1_pow_acc = self._get_global_accumulator(
                self._beta1_pow_acc_str)
            beta2_pow_acc = self._get_global_accumulator(
                self._beta2_pow_acc_str)

            with block.program._optimized_guard([]):
                inputs = {"X": beta1_pow_acc}
2647
                outputs = {"Out": beta1_pow_acc}
2648 2649
                attrs = {}
                if isinstance(self._beta1, Variable):
2650 2651
                    inputs["Y"] = self._beta1
                    # use elementwise_mul for better performance
2652 2653 2654 2655 2656
                    block.append_op(type="elementwise_mul",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2657 2658
                else:
                    attrs['scale'] = self._beta1
2659 2660 2661 2662 2663
                    block.append_op(type="scale",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2664 2665

                inputs = {"X": beta2_pow_acc}
2666
                outputs = {"Out": beta2_pow_acc}
2667 2668
                attrs = {}
                if isinstance(self._beta2, Variable):
2669 2670
                    inputs["Y"] = self._beta2
                    # use elementwise_mul for better performance
2671 2672 2673 2674 2675
                    block.append_op(type="elementwise_mul",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2676 2677
                else:
                    attrs['scale'] = self._beta2
2678 2679 2680 2681 2682
                    block.append_op(type="scale",
                                    inputs=inputs,
                                    outputs=outputs,
                                    attrs=attrs,
                                    stop_gradient=True)
2683

2684 2685

class AdamaxOptimizer(Optimizer):
2686
    r"""
2687
    The Adamax optimizer is implemented based on the Adamax Optimization
2688 2689 2690
    in Section 7 of `Adam paper <https://arxiv.org/abs/1412.6980>`_.
    The Adamax algorithm is a variant of the Adam algorithm based on the infinite norm,
    which makes the learning rate update algorithm more stable and simple.
Q
qiaolongfei 已提交
2691

2692
    The parameter ``param_out`` update rule with gradient ``grad``:
Q
qiaolongfei 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

    .. math::

        t & = t + 1

        moment\_out & = {\\beta}_1 * moment + (1 - {\\beta}_1) * grad

        inf\_norm\_out & = max({\\beta}_2 * inf\_norm + \epsilon, |grad|)

        learning\_rate & = \\frac{learning\_rate}{1 - {\\beta}_1^t}

        param\_out & = param - learning\_rate * \\frac{moment\_out}{inf\_norm\_out}

2706
    Related paper: `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_
Q
qiaolongfei 已提交
2707

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
    The original paper does not have an ``epsilon`` attribute,
    it is added here for numerical stability to prevent the division by 0 error.

    Args:
        learning_rate (float|Variable, optional): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type. The default value is 0.001.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            The default value is 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            The default value is 0.999.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-08.
H
hong 已提交
2720
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2721 2722
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2723 2724 2725 2726 2727
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
2728 2729 2730
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
2731
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
2732 2733 2734 2735 2736 2737
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, AdamaxOptimizer doesn't support sparse parameter optimization.**
Q
qiaolongfei 已提交
2738

2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
2752
              data = fluid.data(name='X', shape=[None, 1], dtype='float32')
2753 2754
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
2755
              adam = fluid.optimizer.AdamaxOptimizer(learning_rate=0.2)
2756 2757 2758 2759 2760 2761 2762 2763 2764
              adam.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])
2765 2766 2767
    """
    _moment_acc_str = "moment"
    _inf_norm_acc_str = "inf_norm"
Q
qiaolongfei 已提交
2768
    _beta1_pow_acc_str = "beta1_pow_acc"
2769 2770 2771 2772 2773

    def __init__(self,
                 learning_rate=0.001,
                 beta1=0.9,
                 beta2=0.999,
2774
                 epsilon=1e-8,
2775
                 parameter_list=None,
X
Xin Pan 已提交
2776
                 regularization=None,
2777
                 grad_clip=None,
X
Xin Pan 已提交
2778
                 name=None):
2779 2780 2781 2782
        assert learning_rate is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
2783 2784 2785 2786 2787
        super(AdamaxOptimizer, self).__init__(learning_rate=learning_rate,
                                              parameter_list=parameter_list,
                                              regularization=regularization,
                                              grad_clip=grad_clip,
                                              name=name)
2788 2789 2790 2791 2792 2793 2794 2795
        self.type = "adamax"
        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        # Create accumulator tensors for first moment and infinity norm
        for p in parameters:
Q
Qiao Longfei 已提交
2796 2797
            self._add_accumulator(self._moment_acc_str, p)
            self._add_accumulator(self._inf_norm_acc_str, p)
2798 2799 2800 2801
            self._add_accumulator(name=self._beta1_pow_acc_str,
                                  param=p,
                                  fill_value=self._beta1,
                                  shape=[1])
2802 2803 2804 2805 2806 2807 2808

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment = self._get_accumulator(self._moment_acc_str, param_and_grad[0])
        inf_norm = self._get_accumulator(self._inf_norm_acc_str,
                                         param_and_grad[0])
Q
qiaolongfei 已提交
2809 2810
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
2811 2812

        if framework.in_dygraph_mode():
2813 2814 2815 2816
            _C_ops.adamax_(param_and_grad[0], param_and_grad[1],
                           self._create_param_lr(param_and_grad), moment,
                           inf_norm, beta1_pow_acc, self._beta1, self._beta2,
                           self._epsilon)
2817
        elif framework._in_legacy_dygraph():
2818 2819 2820 2821 2822
            _legacy_C_ops.adamax(param_and_grad[0], param_and_grad[1],
                                 self._create_param_lr(param_and_grad), moment,
                                 inf_norm, beta1_pow_acc, param_and_grad[0],
                                 moment, inf_norm, "beta1", self._beta1,
                                 "beta2", self._beta2, "epsilon", self._epsilon)
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        else:
            # create the adamax optimize op
            adamax_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "LearningRate": self._create_param_lr(param_and_grad),
                    "Moment": moment,
                    "InfNorm": inf_norm,
                    "Beta1Pow": beta1_pow_acc
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment,
                    "InfNormOut": inf_norm
                },
                attrs={
                    "beta1": self._beta1,
                    "beta2": self._beta2,
                    "epsilon": self._epsilon
                },
                stop_gradient=True)
2846

2847
            return adamax_op
2848

2849
    def _finish_update(self, block, parameters_and_grads):
2850 2851 2852
        """Update Beta1 Power accumulator
        """
        assert isinstance(block, framework.Block)
2853
        for param, grad in parameters_and_grads:
C
chengduo 已提交
2854
            if grad is None or param.trainable is False:
2855
                continue
2856 2857
            with param.block.program._optimized_guard([param, grad
                                                       ]), name_scope('adamx'):
2858 2859
                beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                                      param)
J
Jiabin Yang 已提交
2860
                if framework._non_static_mode():
2861
                    if framework.in_dygraph_mode():
2862 2863
                        tmp = _C_ops.scale(beta1_pow_acc, self._beta1, 0.0,
                                           True)
2864
                    else:
2865 2866
                        tmp = _legacy_C_ops.scale(beta1_pow_acc, "scale",
                                                  self._beta1)
2867 2868
                    beta1_pow_acc.copy_(tmp, False)
                else:
2869 2870 2871 2872 2873
                    block.append_op(type="scale",
                                    inputs={"X": beta1_pow_acc},
                                    outputs={"Out": beta1_pow_acc},
                                    attrs={"scale": self._beta1},
                                    stop_gradient=True)
2874 2875


2876
class DpsgdOptimizer(Optimizer):
2877
    r"""
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
    We implement the Dpsgd optimizer according to CCS16 paper -
    Deep Learning with Differential Privacy.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          # First create the Executor.
          place = fluid.CPUPlace() # fluid.CUDAPlace(0)
          exe = fluid.Executor(place)

          train_program = fluid.Program()
          startup_program = fluid.Program()
          with fluid.program_guard(train_program, startup_program):
              data = fluid.layers.data(name='X', shape=[1], dtype='float32')
              hidden = fluid.layers.fc(input=data, size=10)
              loss = fluid.layers.mean(hidden)
              optimizer = fluid.optimizer.Dpsgd(learning_rate=0.01, clip=10.0, batch_size=16.0, sigma=1.0)
              optimizer.minimize(loss)

          # Run the startup program once and only once.
          exe.run(startup_program)

          x = numpy.random.random(size=(10, 1)).astype('float32')
          outs = exe.run(program=train_program,
                        feed={'X': x},
                         fetch_list=[loss.name])

    Args:
        learning_rate (float|Variable): the learning rate used to update parameters. \
        Can be a float value or a Variable with one float value as data element.
        clip (float): clipping threshold
        batch_size (float): batch size.
        sigma (float): for gaussian noise.
H
hong 已提交
2914
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
2915 2916
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
2917 2918 2919 2920 2921 2922 2923 2924
    Notes:
       Currently, DpsgdOptimizer doesn't support sparse parameter optimization.
    """

    def __init__(self,
                 learning_rate=0.001,
                 clip=0.9,
                 batch_size=0.999,
2925 2926
                 sigma=1e-8,
                 parameter_list=None):
2927 2928 2929 2930
        assert learning_rate is not None
        assert clip is not None
        assert batch_size is not None
        assert sigma is not None
2931 2932
        super(DpsgdOptimizer, self).__init__(learning_rate=learning_rate,
                                             parameter_list=parameter_list)
2933 2934 2935 2936
        self.type = "dpsgd"
        self._clip = clip
        self._batch_size = batch_size
        self._sigma = sigma
Z
zhongpu 已提交
2937 2938 2939 2940 2941 2942 2943
        '''
        Note(wangzhongpu):
        This property is only used for debugging, do not need to set it!
        Dpsgd operator use time(NULL) as random seed to generate random number.
        However, during debugging, we need determinated result, so we will set self._seed to a fixed number.
        '''
        self._seed = None
2944 2945 2946 2947 2948

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        # create the dpsgd optimize op
Z
zhongpu 已提交
2949 2950 2951
        if self._seed == None:
            self._seed = 0

J
Jiabin Yang 已提交
2952
        if framework._non_static_mode():
2953 2954 2955 2956 2957
            _legacy_C_ops.dpsgd(param_and_grad[0], param_and_grad[1],
                                self._create_param_lr(param_and_grad),
                                param_and_grad[0], "clip", self._clip,
                                "batch_size", self._batch_size, "sigma",
                                self._sigma, "seed", self._seed)
2958
        else:
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
            dpsgd_op = block.append_op(type=self.type,
                                       inputs={
                                           "Param":
                                           param_and_grad[0],
                                           "Grad":
                                           param_and_grad[1],
                                           "LearningRate":
                                           self._create_param_lr(param_and_grad)
                                       },
                                       outputs={"ParamOut": param_and_grad[0]},
                                       attrs={
                                           "clip": self._clip,
                                           "batch_size": self._batch_size,
                                           "sigma": self._sigma,
                                           "seed": self._seed
                                       },
                                       stop_gradient=True)
2976

2977
            return dpsgd_op
2978 2979


2980
class DecayedAdagradOptimizer(Optimizer):
2981
    r"""
2982 2983 2984
    The Decayed Adagrad optimizer can be seen as an Adagrad algorithm that introduces
    the decay rate to solve the problem of a sharp drop in the learning rate
    during model training when using the AdagradOptimizer.
2985

2986
    The parameter ``param_out`` update rule with gradient ``grad``:
2987 2988 2989 2990 2991 2992 2993

    .. math::

        moment\_out & = decay * moment + (1 - decay) * grad * grad

        param\_out & = param - \\frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon}

2994 2995 2996 2997
    Related paper: `Adaptive Subgradient Methods for Online Learning and Stochastic
    Optimization <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_.

    The original paper does not have an ``epsilon`` attribute. It is added here for numerical
2998 2999 3000
    stability to avoid the division by zero error.

    Args:
3001 3002 3003 3004 3005
        learning_rate (float|Variable): The learning rate used to update ``Parameter``.
            It can be a float value or a ``Variable`` with a float type.
        decay (float, optional): The decay rate. The default value is 0.95.
        epsilon (float, optional): A small float value for numerical stability.
            The default value is 1e-06.
H
hong 已提交
3006
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3007 3008
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3009 3010 3011 3012 3013
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3014 3015 3016
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3017
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3018 3019 3020 3021 3022 3023
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.

    **Notes**:
        **Currently, DecayedAdagradOptimizer doesn't support sparse parameter optimization.**
3024 3025 3026 3027

    Examples:
        .. code-block:: python

3028 3029
            import paddle.fluid as fluid

3030 3031 3032 3033
            x = fluid.data( name='x', shape=[None, 10], dtype='float32' )
            trans = fluid.layers.fc( x, 100 )
            cost = fluid.layers.reduce_mean( trans )
            optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
3034
            optimizer.minimize(cost)
3035 3036 3037
    """
    _moment_acc_str = "moment"

X
Xin Pan 已提交
3038 3039 3040 3041
    def __init__(self,
                 learning_rate,
                 decay=0.95,
                 epsilon=1.0e-6,
3042
                 parameter_list=None,
X
Xin Pan 已提交
3043
                 regularization=None,
3044
                 grad_clip=None,
X
Xin Pan 已提交
3045
                 name=None):
3046 3047 3048 3049
        assert learning_rate is not None
        assert decay is not None
        assert epsilon is not None

3050 3051 3052 3053 3054 3055
        super(DecayedAdagradOptimizer,
              self).__init__(learning_rate=learning_rate,
                             parameter_list=parameter_list,
                             regularization=regularization,
                             grad_clip=grad_clip,
                             name=name)
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
        self.type = "decayed_adagrad"
        self._decay = decay
        self._epsilon = epsilon

    def _create_accumulators(self, block, parameters):
        assert isinstance(block, framework.Block)

        for p in parameters:
            self._add_accumulator(self._moment_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)

        moment_acc = self._get_accumulator(self._moment_acc_str,
                                           param_and_grad[0])

J
Jiabin Yang 已提交
3072
        if framework._non_static_mode():
3073 3074 3075 3076 3077 3078
            _legacy_C_ops.decayed_adagrad(param_and_grad[0], param_and_grad[1],
                                          moment_acc,
                                          self._create_param_lr(param_and_grad),
                                          param_and_grad[0], moment_acc,
                                          "epsilon", self._epsilon, "decay",
                                          self._decay)
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
        else:
            # Create the decayed adagrad optimizer op
            decayed_adagrad_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": moment_acc,
                    "LearningRate": self._create_param_lr(param_and_grad)
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": moment_acc
                },
3093 3094 3095 3096
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._decay
                },
3097
                stop_gradient=True)
3098

3099
            return decayed_adagrad_op
3100 3101


3102
class AdadeltaOptimizer(Optimizer):
3103
    r"""
Z
Zeng Jinle 已提交
3104
    **Notes: This API does not support sparse parameter optimization.**
Q
qiaolongfei 已提交
3105

Z
Zeng Jinle 已提交
3106
    Adadelta Optimizer. Please refer to this for details:
Z
Zeng Jinle 已提交
3107 3108 3109
    `ADADELTA: AN ADAPTIVE LEARNING RATE METHOD <https://arxiv.org/abs/1212.5701>`_.

    The update is done as follows:
3110

Z
Zeng Jinle 已提交
3111 3112
    .. math::

Z
Zeng Jinle 已提交
3113
        E(g_t^2) &= \\rho * E(g_{t-1}^2) + (1-\\rho) * g^2
3114

Z
Zeng Jinle 已提交
3115
        learning\_rate &= \sqrt{ ( E(dx_{t-1}^2) + \\epsilon ) / ( E(g_t^2) + \\epsilon ) }
Z
Zeng Jinle 已提交
3116

Z
Zeng Jinle 已提交
3117
        E(dx_t^2) &= \\rho * E(dx_{t-1}^2) + (1-\\rho) * (-g*learning\_rate)^2
3118 3119

    Args:
Z
Zeng Jinle 已提交
3120 3121 3122
        learning_rate (float|Variable): global learning rate.
        epsilon (float): a small float number for numeric stability. Default 1.0e-6.
        rho (float): a floating point value indicating the decay rate. Default 0.95.
H
hong 已提交
3123
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3124 3125
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3126 3127 3128 3129 3130
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3131 3132 3133
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3134
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3135 3136 3137
        name (str, optional): The default value is None. Normally there is no need for user
                to set this property. For more information, please refer to
                :ref:`api_guide_Name` .
3138 3139 3140 3141

    Examples:
        .. code-block:: python

3142
            import paddle.fluid as fluid
Z
Zeng Jinle 已提交
3143

3144
            image = fluid.data(name='image', shape=[None, 28], dtype='float32')
Z
Zeng Jinle 已提交
3145 3146
            fc = fluid.layers.fc(image, size=10)
            cost = fluid.layers.reduce_mean(fc)
3147 3148
            optimizer = fluid.optimizer.Adadelta(
                learning_rate=0.0003, epsilon=1.0e-6, rho=0.95)
C
chengduo 已提交
3149

Z
Zeng Jinle 已提交
3150 3151 3152 3153
            # optimizer_ops is a list of optimizer operators to update parameters
            # params_grads is a list of (param, param_grad), where param is each
            # parameter and param_grad is the gradient variable of param.
            optimizer_ops, params_grads = optimizer.minimize(cost)
3154
    """
3155

3156 3157 3158
    _avg_squared_grad_acc_str = "_avg_squared_grad"
    _avg_squared_update_acc_str = "_avg_squared_update"

X
Xin Pan 已提交
3159 3160 3161 3162
    def __init__(self,
                 learning_rate,
                 epsilon=1.0e-6,
                 rho=0.95,
3163
                 parameter_list=None,
X
Xin Pan 已提交
3164
                 regularization=None,
3165
                 grad_clip=None,
X
Xin Pan 已提交
3166
                 name=None):
3167 3168 3169 3170 3171 3172
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
3173 3174 3175 3176 3177
        super(AdadeltaOptimizer, self).__init__(learning_rate=learning_rate,
                                                parameter_list=parameter_list,
                                                regularization=regularization,
                                                grad_clip=grad_clip,
                                                name=name)
3178 3179 3180 3181 3182
        self.type = "adadelta"
        self._epsilon = epsilon
        self._rho = rho

    def _create_accumulators(self, block, parameters):
3183 3184
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3185 3186 3187 3188 3189 3190

        for p in parameters:
            self._add_accumulator(self._avg_squared_grad_acc_str, p)
            self._add_accumulator(self._avg_squared_update_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
3191 3192
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")
3193 3194 3195 3196 3197 3198

        avg_squared_grad_acc = self._get_accumulator(
            self._avg_squared_grad_acc_str, param_and_grad[0])
        avg_squared_update_acc = self._get_accumulator(
            self._avg_squared_update_acc_str, param_and_grad[0])

3199
        if framework.in_dygraph_mode():
3200 3201 3202
            _C_ops.adadelta_(param_and_grad[0], param_and_grad[1],
                             avg_squared_grad_acc, avg_squared_update_acc,
                             self._rho, self._epsilon)
3203
        elif framework._in_legacy_dygraph():
3204 3205 3206 3207 3208
            _legacy_C_ops.adadelta(param_and_grad[0], param_and_grad[1],
                                   avg_squared_grad_acc, avg_squared_update_acc,
                                   param_and_grad[0], avg_squared_grad_acc,
                                   avg_squared_update_acc, "epsilon",
                                   self._epsilon, "rho", self._rho)
3209 3210
        else:
            # Create the adadelta optimizer op
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
            adadelta_op = block.append_op(type=self.type,
                                          inputs={
                                              "Param":
                                              param_and_grad[0],
                                              "Grad":
                                              param_and_grad[1],
                                              "AvgSquaredGrad":
                                              avg_squared_grad_acc,
                                              "AvgSquaredUpdate":
                                              avg_squared_update_acc
                                          },
                                          outputs={
                                              "ParamOut":
                                              param_and_grad[0],
                                              "AvgSquaredGradOut":
                                              avg_squared_grad_acc,
                                              "AvgSquaredUpdateOut":
                                              avg_squared_update_acc
                                          },
                                          attrs={
                                              "epsilon": self._epsilon,
                                              "rho": self._rho
                                          },
                                          stop_gradient=True)
3235

3236
            return adadelta_op
3237 3238


Q
qingqing01 已提交
3239
class RMSPropOptimizer(Optimizer):
3240
    r"""
Q
qingqing01 已提交
3241 3242 3243 3244 3245 3246 3247 3248
    Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning
    rate method. The original slides proposed RMSProp: Slide 29 of
    http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf .

    The original equation is as follows:

    ..  math::

Q
qiaolongfei 已提交
3249
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3250 3251 3252 3253

        w & = w - \\frac{\\eta} {\\sqrt{r(w,t) + \\epsilon}} \\nabla Q_{i}(w)

    The first equation calculates moving average of the squared gradient for
Q
qiaolongfei 已提交
3254
    each weight. Then dividing the gradient by :math:`sqrt{v(w,t)}`.
Q
qingqing01 已提交
3255 3256 3257 3258 3259 3260

    In some cases, adding a momentum term :math: `\\beta` is beneficial.
    In our implementation, Nesterov momentum is used:

    ..  math::

Q
qiaolongfei 已提交
3261
        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2
Q
qingqing01 已提交
3262

3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) +
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

    if centered is True:

    ..  math::

        r(w, t) & = \\rho r(w, t-1) + (1 - \\rho)(\\nabla Q_{i}(w))^2

        g(w, t) & = \\rho g(w, t-1) + (1 - \\rho)\\nabla Q_{i}(w)

        v(w, t) & = \\beta v(w, t-1) + \\frac{\\eta} {\\sqrt{r(w,t) - (g(w, t))^2 +
Q
qingqing01 已提交
3277 3278 3279 3280
            \\epsilon}} \\nabla Q_{i}(w)

        w & = w - v(w, t)

Q
qiaolongfei 已提交
3281
    where, :math:`\\rho` is a hyperparameter and typical values are 0.9, 0.95
Q
qingqing01 已提交
3282 3283 3284 3285 3286
    and so on. :math: `beta` is the momentum term. :math: `\\epsilon` is a
    smoothing term to avoid division by zero, usually set somewhere in range
    from 1e-4 to 1e-8.


3287 3288 3289
    Parameters:
        learning_rate(float): Global learning rate.
        rho(float): rho is :math: `\\rho` in equation, default is 0.95.
Q
qingqing01 已提交
3290
        epsilon(float): :math: `\\epsilon` in equation is smoothing term to
3291
            avoid division by zero, default is 1e-6.
Q
qiaolongfei 已提交
3292
        momentum(float): :math:`\\beta` in equation is the momentum term,
3293
            default is 0.0.
3294 3295 3296 3297
        centered(bool): If True, gradients are normalized by the estimated variance of
            the gradient; if False, by the uncentered second moment. Setting this to
            True may help with training, but is slightly more expensive in terms of
            computation and memory. Defaults to False.
H
hong 已提交
3298
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3299 3300
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3301 3302 3303 3304 3305
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3306 3307 3308
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3309
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3310 3311
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qingqing01 已提交
3312 3313 3314 3315 3316 3317 3318

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
                rms_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)

Q
qingqing01 已提交
3344 3345 3346 3347
    """

    _momentum_acc_str = "momentum"
    _mean_square_acc_str = "mean_square"
3348
    _mean_grad_acc_str = "mean_grad"
Q
qingqing01 已提交
3349 3350 3351 3352 3353 3354

    def __init__(self,
                 learning_rate,
                 rho=0.95,
                 epsilon=1.0e-6,
                 momentum=0.0,
3355
                 centered=False,
3356
                 parameter_list=None,
X
Xin Pan 已提交
3357
                 regularization=None,
3358
                 grad_clip=None,
X
Xin Pan 已提交
3359
                 name=None):
3360 3361 3362 3363 3364
        super(RMSPropOptimizer, self).__init__(learning_rate=learning_rate,
                                               parameter_list=parameter_list,
                                               regularization=regularization,
                                               grad_clip=grad_clip,
                                               name=name)
Q
qingqing01 已提交
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")
        if rho is None:
            raise ValueError("rho is not set.")
        if epsilon is None:
            raise ValueError("epsilon is not set.")
        if momentum is None:
            raise ValueError("momentum is not set.")

        self.type = "rmsprop"
        self._rho = rho
        self._epsilon = epsilon
        self._momentum = momentum
3378
        self._centered = centered
Q
qingqing01 已提交
3379 3380 3381 3382 3383 3384 3385 3386

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._momentum_acc_str, p)
            self._add_accumulator(self._mean_square_acc_str, p)
3387
            self._add_accumulator(self._mean_grad_acc_str, p)
Q
qingqing01 已提交
3388 3389 3390 3391 3392 3393 3394 3395 3396

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        momentum_acc = self._get_accumulator(self._momentum_acc_str,
                                             param_and_grad[0])
        mean_square_acc = self._get_accumulator(self._mean_square_acc_str,
                                                param_and_grad[0])
3397 3398
        mean_grad_acc = self._get_accumulator(self._mean_grad_acc_str,
                                              param_and_grad[0])
C
caozhou 已提交
3399
        if in_dygraph_mode():
3400 3401 3402 3403 3404
            _C_ops.rmsprop_(param_and_grad[0], mean_square_acc,
                            param_and_grad[1], momentum_acc,
                            self._create_param_lr(param_and_grad),
                            mean_grad_acc, self._epsilon, self._rho,
                            self._momentum, self._centered)
C
caozhou 已提交
3405 3406
            return None
        elif _in_legacy_dygraph():
3407 3408 3409 3410 3411 3412 3413
            _legacy_C_ops.rmsprop(param_and_grad[0], mean_square_acc,
                                  self._create_param_lr(param_and_grad),
                                  param_and_grad[1], momentum_acc,
                                  param_and_grad[0], momentum_acc,
                                  mean_square_acc, mean_grad_acc, "epsilon",
                                  self._epsilon, "decay", self._rho, "momentum",
                                  self._momentum, "centered", self._centered)
C
caozhou 已提交
3414
            return None
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438
        else:
            rmsprop_op = block.append_op(
                type=self.type,
                inputs={
                    "Param": param_and_grad[0],
                    "Grad": param_and_grad[1],
                    "Moment": momentum_acc,
                    "MeanSquare": mean_square_acc,
                    "MeanGrad": mean_grad_acc,
                    "LearningRate": self._create_param_lr(param_and_grad),
                },
                outputs={
                    "ParamOut": param_and_grad[0],
                    "MomentOut": momentum_acc,
                    "MeanSquareOut": mean_square_acc,
                    "MeanGradOut": mean_grad_acc
                },
                attrs={
                    "epsilon": self._epsilon,
                    "decay": self._rho,
                    "momentum": self._momentum,
                    "centered": self._centered
                },
                stop_gradient=True)
Q
qingqing01 已提交
3439

3440
            return rmsprop_op
Q
qingqing01 已提交
3441 3442


Q
qiaolongfei 已提交
3443
class FtrlOptimizer(Optimizer):
3444
    r"""
Q
qiaolongfei 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
    FTRL (Follow The Regularized Leader) Optimizer.

    The paper that proposed Follow The Regularized Leader (FTRL):
    (https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf)

    ..  math::

        &new\_accum = squared\_accum + grad^2

        &if (lr\_power == -0.5):

        &\quad  linear\_accum += grad - \\frac{\\sqrt{new\_accum} - \\sqrt{squared\_accum}}{learning\_rate * param}

        &else:

        &\quad   linear\_accum += grad - \\frac{new\_accum^{-lr\_power} - accum^{-lr\_power}}{learning\_rate * param}


        &x = l1 * sign(linear\_accum) - linear\_accum

        &if (lr\_power == -0.5):

        &\quad   y = \\frac{\\sqrt{new\_accum}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &else:

        &\quad   y = \\frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2)

        &\quad   pre\_shrink = \\frac{x}{y}

        &\quad   param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0)

        &squared\_accum += grad^2

3483 3484 3485 3486 3487
    Parameters:
        learning_rate (float|Variable): Global learning rate.
        l1 (float): L1 regularization strength, default is 0.0.
        l2 (float): L2 regularization strength, default is 0.0.
        lr_power (float): Learning Rate Power, default is -0.5.
H
hong 已提交
3488
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3489 3490
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3491 3492 3493 3494 3495
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3496 3497 3498
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
            ( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
3499
            :ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
3500 3501
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
Q
qiaolongfei 已提交
3502 3503 3504 3505 3506 3507 3508

    Raises:
        ValueError: If learning_rate, rho, epsilon, momentum are None.

    Examples:
          .. code-block:: python

3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            place = fluid.CPUPlace()
            main = fluid.Program()
            with fluid.program_guard(main):
                x = fluid.layers.data(name='x', shape=[13], dtype='float32')
                y = fluid.layers.data(name='y', shape=[1], dtype='float32')
                y_predict = fluid.layers.fc(input=x, size=1, act=None)
                cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                avg_cost = fluid.layers.mean(cost)

                ftrl_optimizer = fluid.optimizer.Ftrl(learning_rate=0.1)
                ftrl_optimizer.minimize(avg_cost)

                fetch_list = [avg_cost]
                train_reader = paddle.batch(
                    paddle.dataset.uci_housing.train(), batch_size=1)
                feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                for data in train_reader():
                    exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
C
chengduo 已提交
3533

3534
    NOTE:
C
chengduo 已提交
3535
       Currently, FtrlOptimizer doesn't support sparse parameter optimization.
Q
qiaolongfei 已提交
3536 3537 3538 3539 3540
    """

    _squared_acc_str = "squared"
    _linear_acc_str = "linear"

X
Xin Pan 已提交
3541 3542 3543 3544 3545
    def __init__(self,
                 learning_rate,
                 l1=0.0,
                 l2=0.0,
                 lr_power=-0.5,
3546
                 parameter_list=None,
X
Xin Pan 已提交
3547
                 regularization=None,
3548
                 grad_clip=None,
X
Xin Pan 已提交
3549
                 name=None):
3550 3551 3552 3553 3554
        super(FtrlOptimizer, self).__init__(learning_rate=learning_rate,
                                            parameter_list=parameter_list,
                                            regularization=regularization,
                                            grad_clip=grad_clip,
                                            name=name)
Q
qiaolongfei 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578
        if learning_rate is None:
            raise ValueError("learning_rate is not set.")

        self.type = "ftrl"
        self._l1 = l1
        self._l2 = l2
        self._lr_power = lr_power

    def _create_accumulators(self, block, parameters):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        for p in parameters:
            self._add_accumulator(self._squared_acc_str, p)
            self._add_accumulator(self._linear_acc_str, p)

    def _append_optimize_op(self, block, param_and_grad):
        if not isinstance(block, framework.Block):
            raise TypeError("block is not instance of framework.Block.")

        squared_acc = self._get_accumulator(self._squared_acc_str,
                                            param_and_grad[0])
        linear_acc = self._get_accumulator(self._linear_acc_str,
                                           param_and_grad[0])
J
Jiabin Yang 已提交
3579
        if framework._non_static_mode():
3580 3581 3582 3583 3584 3585
            _legacy_C_ops.ftrl(param_and_grad[0], squared_acc, linear_acc,
                               param_and_grad[1],
                               self._create_param_lr(param_and_grad),
                               param_and_grad[0], squared_acc, linear_acc, "l1",
                               self._l1, "l2", self._l2, "lr_power",
                               self._lr_power)
3586 3587

        else:
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
            ftrl_op = block.append_op(type=self.type,
                                      inputs={
                                          "Param":
                                          param_and_grad[0],
                                          "Grad":
                                          param_and_grad[1],
                                          "SquaredAccumulator":
                                          squared_acc,
                                          "LinearAccumulator":
                                          linear_acc,
                                          "LearningRate":
                                          self._create_param_lr(param_and_grad),
                                      },
                                      outputs={
                                          "ParamOut": param_and_grad[0],
                                          "SquaredAccumOut": squared_acc,
                                          "LinearAccumOut": linear_acc
                                      },
                                      attrs={
                                          "l1": self._l1,
                                          "l2": self._l2,
                                          "lr_power": self._lr_power
                                      },
                                      stop_gradient=True)
Q
qiaolongfei 已提交
3612

3613
            return ftrl_op
Q
qiaolongfei 已提交
3614 3615


Y
Yibing Liu 已提交
3616
class LambOptimizer(AdamOptimizer):
3617
    r"""
Y
Yibing Liu 已提交
3618 3619
    LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.

3620 3621 3622
    LAMB Optimizer is designed to scale up the batch size of training without losing
    accuracy, which supports adaptive element-wise updating and accurate layer-wise
    correction. For more information, please refer to `Large Batch Optimization for
Y
Yibing Liu 已提交
3623
    Deep Learning: Training BERT in 76 minutes <https://arxiv.org/abs/1904.00962>`_ .
Y
Yibing Liu 已提交
3624 3625 3626 3627 3628

    The updating of parameters follows:

    ..  math::

3629
        m_t &= \\beta_1 m_{t - 1}+ (1 - \\beta_1)g_t
Y
Yibing Liu 已提交
3630

Y
Yibing Liu 已提交
3631
        v_t &= \\beta_2 v_{t - 1}  + (1 - \\beta_2)g_t^2
Y
Yibing Liu 已提交
3632

3633 3634 3635 3636
        m_t &= \\frac{m_t}{\\beta_1^t}

        v_t &= \\frac{v_t}{\\beta_2^t}

Y
Yibing Liu 已提交
3637
        r_t &= \\frac{m_t}{\\sqrt{v_t}+\\epsilon}
Y
Yibing Liu 已提交
3638

Y
Yibing Liu 已提交
3639
        w_t &= w_{t-1} -\\eta_t \\frac{\\left \| w_{t-1}\\right \|}{\\left \| r_t + \\lambda w_{t-1}\\right \|} (r_t + \\lambda w_{t-1})
Y
Yibing Liu 已提交
3640 3641


3642
    where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
Y
Yibing Liu 已提交
3643 3644 3645
    learning rate, :math:`\\lambda` the LAMB weight decay rate.

    Args:
Y
Yibing Liu 已提交
3646 3647 3648 3649 3650 3651 3652 3653
        learning_rate (float|Variable, optional): the learning rate used to update parameters. \
            Can be a float value or a Variable with data type float32. Default 0.001.
        lamb_weight_decay (float, optional): The LAMB weight decay rate. Default 0.01.
        beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
            Default 0.9.
        beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
            Default 0.999.
        epsilon (float, optional): A small float value for numerical stability. Default 1e-6.
H
hong 已提交
3654
        parameter_list (Iterable, optional):  Iterable of ``Variable`` names to update to minimize ``loss``. \
3655 3656
            This parameter is required in dygraph mode. \
            The default value is None in static mode, at this time all parameters will be updated.
3657 3658 3659 3660 3661
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3662 3663
        grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
            some derived class of ``GradientClipBase`` . There are three cliping strategies
3664 3665 3666
            ( :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` , :ref:`api_paddle_fluid_clip_ClipGradByNorm` ,
            :ref:`api_paddle_fluid_clip_ClipGradByValue` ). If you want better convergence, it is recommended
            to use :ref:`api_paddle_fluid_clip_ClipGradByGlobalNorm` . Default None, meaning there is no gradient clipping.
3667 3668
        exclude_from_weight_decay_fn (function|None): Exclude a parameter from weight
            decay when **exclude_from_weight_decay_fn(parameter)** returns true.
Y
Yibing Liu 已提交
3669
            Default None.
3670
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
3671
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
Y
Yibing Liu 已提交
3672 3673 3674

    Examples:
        .. code-block:: python
3675 3676

            import paddle.fluid as fluid
Y
Yibing Liu 已提交
3677

Y
Yibing Liu 已提交
3678
            data = fluid.data(name='x', shape=[-1, 5], dtype='float32')
Y
Yibing Liu 已提交
3679 3680 3681
            hidden = fluid.layers.fc(input=data, size=10)
            cost = fluid.layers.mean(hidden)

Y
Yibing Liu 已提交
3682 3683 3684 3685 3686
            def exclude_fn(param):
                return param.name.endswith('.b_0')

            optimizer = fluid.optimizer.Lamb(learning_rate=0.002,
                                             exclude_from_weight_decay_fn=exclude_fn)
Y
Yibing Liu 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
            optimizer.minimize(cost)
    """
    _moment1_acc_str = "moment1"
    _moment2_acc_str = "moment2"
    _beta1_pow_acc_str = "beta1_pow_acc"
    _beta2_pow_acc_str = "beta2_pow_acc"

    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
3700
                 parameter_list=None,
Y
Yibing Liu 已提交
3701
                 regularization=None,
3702
                 grad_clip=None,
Y
Yibing Liu 已提交
3703
                 exclude_from_weight_decay_fn=None,
Y
Yibing Liu 已提交
3704 3705 3706 3707 3708 3709
                 name=None):
        assert learning_rate is not None
        assert lamb_weight_decay is not None
        assert beta1 is not None
        assert beta2 is not None
        assert epsilon is not None
3710 3711 3712 3713 3714 3715 3716 3717
        super(LambOptimizer, self).__init__(learning_rate=learning_rate,
                                            parameter_list=parameter_list,
                                            regularization=regularization,
                                            grad_clip=grad_clip,
                                            beta1=beta1,
                                            beta2=beta2,
                                            epsilon=epsilon,
                                            name=name)
Y
Yibing Liu 已提交
3718 3719
        self.type = "lamb"
        self._weight_decay = lamb_weight_decay
Y
Yibing Liu 已提交
3720
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
Y
Yibing Liu 已提交
3721 3722 3723

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, framework.Block)
3724
        block.program._use_lamb = True
Y
Yibing Liu 已提交
3725 3726 3727 3728 3729 3730 3731 3732 3733 3734

        moment1 = self._get_accumulator(self._moment1_acc_str,
                                        param_and_grad[0])
        moment2 = self._get_accumulator(self._moment2_acc_str,
                                        param_and_grad[0])
        beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
                                              param_and_grad[0])
        beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
                                              param_and_grad[0])

Y
Yibing Liu 已提交
3735 3736 3737 3738 3739
        if self._exclude_from_weight_decay_fn is not None \
            and self._exclude_from_weight_decay_fn(param_and_grad[0]):
            weight_decay = 0.0
        else:
            weight_decay = self._weight_decay
3740
        lr = self._create_param_lr(param_and_grad)
3741
        master_weight = None
J
Jiabin Yang 已提交
3742
        if framework._non_static_mode():
3743 3744 3745 3746 3747 3748 3749
            _legacy_C_ops.lamb(param_and_grad[0], param_and_grad[1], lr,
                               moment1, moment2, beta1_pow_acc, beta2_pow_acc,
                               master_weight, param_and_grad[0], moment1,
                               moment2, beta1_pow_acc, beta2_pow_acc,
                               master_weight, 'beta1', self._beta1, 'beta2',
                               self._beta2, 'epsilon', self._epsilon,
                               'weight_decay', weight_decay)
3750
            return None
Y
Yibing Liu 已提交
3751

Y
Yibing Liu 已提交
3752
        # create the lamb optimize op
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
        lamb_op = block.append_op(type=self.type,
                                  inputs={
                                      "Param": param_and_grad[0],
                                      "Grad": param_and_grad[1],
                                      "LearningRate": lr,
                                      "Moment1": moment1,
                                      "Moment2": moment2,
                                      "Beta1Pow": beta1_pow_acc,
                                      "Beta2Pow": beta2_pow_acc
                                  },
                                  outputs={
                                      "ParamOut": param_and_grad[0],
                                      "Moment1Out": moment1,
                                      "Moment2Out": moment2,
                                      "Beta1PowOut": beta1_pow_acc,
                                      "Beta2PowOut": beta2_pow_acc
                                  },
                                  attrs={
                                      "beta1": self._beta1,
                                      "beta2": self._beta2,
                                      "epsilon": self._epsilon,
                                      "weight_decay": weight_decay
                                  },
                                  stop_gradient=True)
Y
Yibing Liu 已提交
3777 3778 3779 3780

        return lamb_op


3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# sgd = fluid.optimizer.SGD(...)
#
# It is no need to add an `Optimizer` as the class suffix
SGD = SGDOptimizer
Momentum = MomentumOptimizer
Adagrad = AdagradOptimizer
Adam = AdamOptimizer
Adamax = AdamaxOptimizer
3794
Dpsgd = DpsgdOptimizer
3795
DecayedAdagrad = DecayedAdagradOptimizer
3796
Adadelta = AdadeltaOptimizer
Q
qingqing01 已提交
3797
RMSProp = RMSPropOptimizer
Q
qiaolongfei 已提交
3798
Ftrl = FtrlOptimizer
3799
LarsMomentum = LarsMomentumOptimizer
Y
Yibing Liu 已提交
3800
Lamb = LambOptimizer
3801 3802 3803


class ModelAverage(Optimizer):
3804
    r"""
3805
	:api_attr: Static Graph
S
swtkiwi 已提交
3806

3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
    The ModelAverage optimizer accumulates specific continuous historical parameters
    during training. The accumulated historical range can be controlled by the passed
    ``average_window_rate`` argument. The averaged ``Parameter`` are used in the prediction,
    which usually can improve the accuracy of the prediction.

    Accumulate the average of the ``Parameter`` in the sliding window, the result will be saved
    in a temporary variable, can be applied to the current model's ``Parameter`` by calling
    the ``apply()`` method, and the current model ``Parameter`` can be restored by calling
    the ``restore()`` method.

    The window size for calculating the average is determined by ``average_window_rate``,
    ``min_average_window``, ``max_average_window`` and the current ``Parameter`` update times (num_updates).

    When the cumulative times (num_accumulates) is greater than the specific window
    threshold (average_window), the accumulated ``Parameter`` temporary variable is set to 0.0.
    The following example will help to understand the role of these arguments:

    ::
3825

3826 3827 3828 3829 3830 3831 3832 3833 3834
        if num_accumulates >= min_average_window and num_accumulates >= min(max_average_window, num_updates * average_window_rate):
            num_accumulates = 0

    In the above conditional judgment statement, ``num_accumulates`` indicates the current
    accumulated number, which can be abstractly understood as the length of the cumulative window.
    The length of the window must be at least the length set by the ``min_average_window`` argument,
    and cannot exceed the length specified by the ``max_average_window`` argument or
    ``num_updates * average_window_rate``, where ``num_updates`` indicates the current ``Parameter``
    update times, ``average_window_rate`` is a coefficient that calculates the length of the window.
3835 3836

    Args:
3837 3838 3839
        average_window_rate (float): The calculate ratio of the window length relative to ``Parameter`` update times.
        min_average_window (int, optional): the minimum size of average window length. The default value is 10000.
        max_average_window (int, optional): The maximum size of average window length. The default value is 10000.
3840 3841 3842 3843 3844
        regularization (WeightDecayRegularizer, optional): The strategy of regularization. There are two method: \
             :ref:`api_fluid_regularizer_L1Decay` , :ref:`api_fluid_regularizer_L2Decay` . If a parameter has set \
            regularizer using :ref:`api_fluid_ParamAttr` already, the regularization setting here in optimizer will be \
            ignored for this parameter. Otherwise, the regularization setting here in optimizer will take effect.  \
            Default None, meaning there is no regularization.
3845 3846 3847
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`.
            The default value is None.
3848

3849
    Examples:
Q
qiaolongfei 已提交
3850 3851 3852

      .. code-block:: python

3853 3854 3855 3856 3857 3858
        import paddle.fluid as fluid
        import numpy

        # First create the Executor.
        place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
3859

3860 3861 3862 3863
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            # build net
3864
            data = fluid.data(name='X', shape=[None, 1], dtype='float32')
3865 3866 3867 3868 3869 3870 3871 3872
            hidden = fluid.layers.fc(input=data, size=10)
            loss = fluid.layers.mean(hidden)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
            optimizer.minimize(loss)

            # build ModelAverage optimizer
            model_average = fluid.optimizer.ModelAverage(0.15,
                                                         min_average_window=10000,
3873
                                                         max_average_window=12500)
3874 3875

            exe.run(startup_program)
3876 3877 3878 3879 3880
            for i in range(12500):
                x = numpy.random.random(size=(10, 1)).astype('float32')
                outs = exe.run(program=train_program,
                               feed={'X': x},
                               fetch_list=[loss.name])
3881 3882

            # apply ModelAverage
3883
            with model_average.apply(exe):
3884 3885 3886 3887
                x = numpy.random.random(size=(10, 1)).astype('float32')
                exe.run(program=train_program,
                        feed={'X': x},
                        fetch_list=[loss.name])
3888 3889 3890
    """

    def __init__(self,
W
wanghaoshuang 已提交
3891
                 average_window_rate,
3892 3893
                 min_average_window=10000,
                 max_average_window=10000,
X
Xin Pan 已提交
3894 3895
                 regularization=None,
                 name=None):
J
Jiabin Yang 已提交
3896
        if framework._non_static_mode():
Z
zhongpu 已提交
3897
            raise Exception("In dygraph, don't support ModelAverage.")
3898 3899 3900
        super(ModelAverage, self).__init__(0.0,
                                           regularization=regularization,
                                           name=name)
3901 3902 3903
        self.average_window = average_window_rate
        self.min_average_window = min_average_window
        self.max_average_window = max_average_window
3904

3905
        self.params_grads = []
3906 3907
        for param in framework.default_main_program().global_block(
        ).all_parameters():
3908
            if param.do_model_average != False:
3909
                grad = param.block.create_var(
3910 3911
                    name=unique_name.generate_with_ignorable_key(".".join(
                        [param.name, 'tmp'])),
3912 3913
                    dtype=param.dtype,
                    persistable=False,
W
wanghaoshuang 已提交
3914
                    stop_gradient=True)
3915
                self.params_grads.append((param, grad))
3916

3917
        for param, grad in self.params_grads:
3918 3919
            if grad is None:
                continue
X
Xin Pan 已提交
3920 3921
            with param.block.program._optimized_guard(
                [param, grad]), name_scope('move_average'):
3922
                self._append_average_accumulate_op(param)
3923

3924 3925 3926 3927
        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
            for param_grad in self.params_grads:
3928
                self._add_average_apply_op(block, param_grad)
3929 3930 3931 3932 3933

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
            for param_grad in self.params_grads:
3934
                self._add_average_restore_op(block, param_grad)
3935

3936
    def _add_average_apply_op(self, block, param_grad):
L
Luo Tao 已提交
3937 3938 3939 3940 3941 3942
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
        sum_1 = block._clone_variable(self._get_accumulator('sum_1', param))
        sum_2 = block._clone_variable(self._get_accumulator('sum_2', param))
        sum_3 = block._clone_variable(self._get_accumulator('sum_3', param))
        num_accumulates = block._clone_variable(
3943
            self._get_accumulator('num_accumulates', param))
L
Luo Tao 已提交
3944
        old_num_accumulates = block._clone_variable(
3945
            self._get_accumulator('old_num_accumulates', param))
L
Luo Tao 已提交
3946
        num_updates = block._clone_variable(
3947 3948 3949 3950 3951 3952
            self._get_accumulator('num_updates', param))
        # backup param value to grad
        layers.assign(input=param, output=grad)
        # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
        tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
        sum = layers.sum(x=[sum_1, sum_2, sum_3])
D
dzhwinter 已提交
3953 3954 3955 3956
        tmp = layers.cast(
            x=tmp, dtype='float32' if self._dtype == None else self._dtype)
        sum = layers.cast(
            x=sum, dtype='float32' if self._dtype == None else self._dtype)
S
sneaxiy 已提交
3957
        ops._elementwise_div(x=sum, y=tmp, out=param)
3958 3959

    def _add_average_restore_op(self, block, param_grad):
L
Luo Tao 已提交
3960 3961
        param = block._clone_variable(param_grad[0])
        grad = block._clone_variable(param_grad[1])
3962 3963 3964 3965 3966 3967 3968
        layers.assign(input=grad, output=param)

    def _append_average_accumulate_op(self, param):
        self.helper = LayerHelper("average_accumulate")
        sum_1 = self._add_accumulator('sum_1', param)
        sum_2 = self._add_accumulator('sum_2', param)
        sum_3 = self._add_accumulator('sum_3', param)
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
        num_accumulates = self._add_accumulator('num_accumulates',
                                                param,
                                                dtype='int64',
                                                shape=[1])
        old_num_accumulates = self._add_accumulator('old_num_accumulates',
                                                    param,
                                                    dtype='int64',
                                                    shape=[1])
        num_updates = self._add_accumulator('num_updates',
                                            param,
                                            dtype='int64',
                                            shape=[1])

        self.helper.append_op(type='average_accumulates',
                              inputs={
                                  "param": param,
                                  "in_sum_1": sum_1,
                                  "in_sum_2": sum_2,
                                  "in_sum_3": sum_3,
                                  "in_num_accumulates": num_accumulates,
                                  "in_old_num_accumulates": old_num_accumulates,
                                  "in_num_updates": num_updates
                              },
                              outputs={
                                  "out_sum_1": sum_1,
                                  "out_sum_2": sum_2,
                                  "out_sum_3": sum_3,
                                  "out_num_accumulates": num_accumulates,
                                  "out_old_num_accumulates":
                                  old_num_accumulates,
                                  "out_num_updates": num_updates,
                              },
                              attrs={
                                  "average_window": self.average_window,
                                  "min_average_window": self.min_average_window,
                                  "max_average_window": self.max_average_window,
                              },
                              stop_gradient=True)
4007

S
rename  
sneaxiy 已提交
4008
    @signature_safe_contextmanager
4009
    def apply(self, executor, need_restore=True):
4010 4011
        """
        Apply the average of the cumulative ``Parameter`` to the parameters of the current model.
4012 4013

        Args:
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
            executor(fluid.Executor): The current network executor.
            need_restore(bool): Restore flag variable, if set to True, the network will restore
                the parameters of the network to the default value, if set to False,
                it will not be restored. The default value is True.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])
4058
        """
4059 4060 4061 4062 4063 4064
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)
4065 4066

    def restore(self, executor):
4067 4068
        """
        Restore ``Parameter`` values of current model.
4069

4070
        Args:
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
            executor(fluid.Executor): The current network executor.

        Examples:

          .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            # First create the Executor.
            place = fluid.CPUPlace()  # fluid.CUDAPlace(0)
            exe = fluid.Executor(place)

            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
                # build net
                data = fluid.data(name='X', shape=[None, 1], dtype='float32')
                hidden = fluid.layers.fc(input=data, size=10)
                loss = fluid.layers.mean(hidden)
                optimizer = fluid.optimizer.Momentum(learning_rate=0.2, momentum=0.1)
                optimizer.minimize(loss)

                # build ModelAverage optimizer
                model_average = fluid.optimizer.ModelAverage(0.15,
                                                            min_average_window=10000,
                                                            max_average_window=12500)

                exe.run(startup_program)
                for i in range(12500):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    outs = exe.run(program=train_program,
                                feed={'X': x},
                                fetch_list=[loss.name])

                # apply ModelAverage
                with model_average.apply(exe, False):
                    x = numpy.random.random(size=(10, 1)).astype('float32')
                    exe.run(program=train_program,
                            feed={'X': x},
                            fetch_list=[loss.name])

                # restore Parameters
                model_average.restore(exe)
4115
        """
4116
        executor.run(self.restore_program)
4117 4118 4119


class ExponentialMovingAverage(object):
4120
    r"""
4121
	:api_attr: Static Graph
S
swtkiwi 已提交
4122

4123 4124 4125 4126 4127 4128
    Compute the moving average of parameters with exponential decay.
    Given a parameter :math:`\\theta`, its exponential moving average (EMA)
    will be

    ..  math::

4129
        \\text{EMA}_0 & = 0
4130

4131 4132
	\\text{EMA}_t & = \\text{decay} * \\text{EMA}_{t-1} + (1 - \\text{decay}) * \\theta_t

4133 4134 4135
    The average results calculated by **update()** method will be saved in
    temporary variables which are created and maintained by the object, and can
    be applied to parameters of current model by calling **apply()** method. And
Y
Yibing Liu 已提交
4136
    the **restore()** method is used to restore the parameters.
4137

4138 4139 4140 4141
    **Bias correction**. All EMAs are initialized to :math:`0` and hence they will be
    zero biased, which can be corrected by divided by a factor
    :math:`(1 - \\text{decay}^t)` , i.e., the actual EMAs applied to parameters
    when calling **apply()** method would be
4142 4143

    ..  math::
4144

4145 4146
        \\widehat{\\text{EMA}}_t = \\frac{\\text{EMA}_t}{1 - \\text{decay}^t}

4147 4148
    **Decay rate scheduling**. A large decay rate very close to 1 would result
    in that the averages move very slowly. And a better strategy is to set a
4149
    relative smaller decay rate in the very beginning. The argument **thres_steps**
4150
    allows users to pass a Variable to schedule the decay rate, in this case,
4151
    the actual decay rate becomes
4152

4153
    ..  math::
4154

4155 4156 4157
        \\min(\\text{decay}, \\frac{1 + \\text{thres_steps}}{10 + \\text{thres_steps}})

    Usually **thres_steps** can be the global training steps.
4158 4159 4160


    Args:
4161 4162 4163
        decay (float, optional): The exponential decay rate, usually close to 1, such as 0.999, 0.9999, ... . Default 0.999.
        thres_steps (Variable|None, optional): If not `None`, schedule the decay rate. Default None.
        name (str|None, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
4164 4165 4166 4167


    Examples:

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
        .. code-block:: python

            import numpy
            import paddle
            import paddle.static as static
            from paddle.static import ExponentialMovingAverage

            paddle.enable_static()

            data = static.data(name='x', shape=[-1, 5], dtype='float32')
            hidden = static.nn.fc(x=data, size=10)
            cost = paddle.mean(hidden)

            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Adam(learning_rate=0.001)
            optimizer.minimize(cost)

            ema = ExponentialMovingAverage(0.999)
            ema.update()

            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())

            for pass_id in range(3):
                for batch_id in range(6):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=static.default_main_program(),
4196
                    feed={'x': data},
4197 4198 4199 4200 4201 4202
                    fetch_list=[cost.name])

                # usage 1
                with ema.apply(exe):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4203
                        feed={'x': data},
4204 4205 4206 4207 4208 4209
                        fetch_list=[hidden.name])

                # usage 2
                with ema.apply(exe, need_restore=False):
                    data = numpy.random.random(size=(10, 5)).astype('float32')
                    exe.run(program=test_program,
4210
                        feed={'x': data},
4211 4212 4213
                        fetch_list=[hidden.name])
                ema.restore(exe)

4214 4215
    """

4216
    def __init__(self, decay=0.999, thres_steps=None, name=None):
J
Jiabin Yang 已提交
4217
        if framework._non_static_mode():
Z
zhongpu 已提交
4218 4219
            raise Exception(
                "In dygraph, don't support ExponentialMovingAverage.")
4220
        self._decay = decay
4221
        self._thres_steps = thres_steps
4222
        self._name = name if name is not None else ''
4223 4224
        self._decay_var = self._get_ema_decay()

4225
        self._step_counter_name = "@EMA_STEP_COUNTER@"
Y
Yibing Liu 已提交
4226
        self._params_tmps = []
4227
        for param in default_main_program().global_block().all_parameters():
4228
            if param.do_model_average != False:
4229 4230 4231 4232 4233
                tmp = param.block.create_var(name=unique_name.generate(".".join(
                    [self._name + param.name, 'ema_tmp'])),
                                             dtype=param.dtype,
                                             persistable=False,
                                             stop_gradient=True)
Y
Yibing Liu 已提交
4234
                self._params_tmps.append((param, tmp))
4235

Y
Yibing Liu 已提交
4236 4237
        self._ema_vars = {}
        for param, tmp in self._params_tmps:
4238 4239
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
Y
Yibing Liu 已提交
4240
                self._ema_vars[param.name] = self._create_ema_vars(param)
4241 4242 4243 4244

        self.apply_program = Program()
        block = self.apply_program.global_block()
        with program_guard(main_program=self.apply_program):
4245
            decay_pow, global_step = self._get_decay_pow(block)
Y
Yibing Liu 已提交
4246
            for param, tmp in self._params_tmps:
4247 4248
                param = block._clone_variable(param)
                tmp = block._clone_variable(tmp)
Y
Yibing Liu 已提交
4249
                ema = block._clone_variable(self._ema_vars[param.name])
4250
                layers.assign(input=param, output=tmp)
4251
                # bias correction
4252 4253
                with layers.control_flow.Switch() as switch:
                    with switch.case(global_step > 0):
4254 4255
                        layers.assign(output=param,
                                      input=ema / (1.0 - decay_pow))
4256 4257
                    with switch.default():
                        layers.assign(output=param, input=ema)
4258 4259 4260 4261

        self.restore_program = Program()
        block = self.restore_program.global_block()
        with program_guard(main_program=self.restore_program):
Y
Yibing Liu 已提交
4262
            for param, tmp in self._params_tmps:
4263 4264 4265 4266
                tmp = block._clone_variable(tmp)
                param = block._clone_variable(param)
                layers.assign(input=tmp, output=param)

4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
    def _get_ema_decay(self):
        with default_main_program()._lr_schedule_guard():
            decay_var = layers.tensor.create_global_var(
                shape=[1],
                value=self._decay,
                dtype='float32',
                persistable=True,
                name="scheduled_ema_decay_rate")

            if self._thres_steps is not None:
                decay_t = (self._thres_steps + 1.0) / (self._thres_steps + 10.0)
                with layers.control_flow.Switch() as switch:
                    with switch.case(decay_t < self._decay):
                        layers.tensor.assign(decay_t, decay_var)
                    with switch.default():
                        layers.tensor.assign(
4283
                            np.array([self._decay], dtype=np.float32),
4284 4285 4286 4287
                            decay_var)
        return decay_var

    def _get_decay_pow(self, block):
4288 4289 4290 4291 4292
        global_step = layers.create_global_var(name=self._step_counter_name,
                                               shape=[1],
                                               value=0,
                                               dtype='int64',
                                               persistable=True)
4293
        global_step = layers.cast(global_step, "float32")
4294
        decay_var = block._clone_variable(self._decay_var)
4295 4296
        decay_pow_acc = layers.elementwise_pow(decay_var, global_step)
        return decay_pow_acc, global_step
4297

Y
Yibing Liu 已提交
4298
    def _create_ema_vars(self, param):
4299 4300 4301 4302 4303 4304 4305 4306 4307
        param_ema = layers.create_global_var(
            name=unique_name.generate(self._name + param.name + '_ema'),
            shape=param.shape,
            value=0.0,
            dtype=param.dtype,
            persistable=True)

        return param_ema

Y
Yibing Liu 已提交
4308
    def update(self):
4309 4310
        """
        Update Exponential Moving Average. Should only call this method in
Y
Yibing Liu 已提交
4311 4312
        train program.
        """
4313 4314
        global_step = layers.autoincreased_step_counter(
            counter_name=self._step_counter_name)
4315
        param_master_emas = []
Y
Yibing Liu 已提交
4316 4317 4318 4319
        for param, tmp in self._params_tmps:
            with param.block.program._optimized_guard(
                [param, tmp]), name_scope('moving_average'):
                param_ema = self._ema_vars[param.name]
4320
                if param.name + '.master' in self._ema_vars:
4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337
                    master_ema = self._ema_vars[param.name + '.master']
                    param_master_emas.append([param_ema, master_ema])
                else:
                    ema_t = param_ema * self._decay_var + param * (
                        1 - self._decay_var)
                    layers.assign(input=ema_t, output=param_ema)

        # for fp16 params
        for param_ema, master_ema in param_master_emas:
            default_main_program().global_block().append_op(
                type="cast",
                inputs={"X": master_ema},
                outputs={"Out": param_ema},
                attrs={
                    "in_dtype": master_ema.dtype,
                    "out_dtype": param_ema.dtype
                })
Y
Yibing Liu 已提交
4338

4339 4340 4341 4342
    @signature_safe_contextmanager
    def apply(self, executor, need_restore=True):
        """
        Apply moving average to parameters for evaluation.
4343

4344 4345
        Args:
            executor (Executor): The Executor to execute applying.
4346
            need_restore (bool, optional): Whether to restore parameters after
Y
Yibing Liu 已提交
4347
                applying. Default True.
4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
        """
        executor.run(self.apply_program)
        try:
            yield
        finally:
            if need_restore:
                self.restore(executor)

    def restore(self, executor):
        """Restore parameters.
4358

4359 4360 4361 4362
        Args:
            executor (Executor): The Executor to execute restoring.
        """
        executor.run(self.restore_program)
H
hutuxian 已提交
4363 4364 4365


class PipelineOptimizer(object):
4366
    """
4367
	:api_attr: Static Graph
S
swtkiwi 已提交
4368

4369 4370 4371 4372
    Pipeline Optimizer: Make a program to run as pipeline, that is splitting a
    program into multiple sections (sub-programs) and each section run on a
    device to enable the training of large scale models and the use of
    heterogeneous devices. Meanwhile, all sections run in the stype of pipeline.
H
hutuxian 已提交
4373

4374
    Args:
4375 4376 4377
        optimizer (Optimizer): The optimizer to use, such as SGD.
        num_microbatches (int): Number of microbatches. [Optional. Default:1].
        start_cpu_core_id (int): The first cpu core id to use. [Optional. Default:0].
4378

4379 4380
    Examples:
        .. code-block:: python
H
hutuxian 已提交
4381

4382
            import paddle.fluid as fluid
H
hutuxian 已提交
4383 4384
            import paddle.fluid.layers as layers

4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
            with fluid.device_guard("gpu:0"):
                x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
                y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[x, y],
                    capacity=64,
                    use_double_buffer=True,
                    iterable=False)

                emb_x = layers.embedding(input=x, param_attr=fluid.ParamAttr(name="embx"), size=[10,2], is_sparse=False)
                emb_y = layers.embedding(input=y, param_attr=fluid.ParamAttr(name="emby",learning_rate=0.9), size=[10,2], is_sparse=False)

            with fluid.device_guard("gpu:1"):
                concat = layers.concat([emb_x, emb_y], axis=1)
                fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False)
                loss = layers.reduce_mean(fc)
H
hutuxian 已提交
4401
            optimizer = fluid.optimizer.SGD(learning_rate=0.5)
4402
            optimizer = fluid.optimizer.PipelineOptimizer(optimizer)
H
hutuxian 已提交
4403
            optimizer.minimize(loss)
4404 4405 4406 4407 4408 4409 4410 4411 4412

            def train_reader():
                for _ in range(4):
                    x = np.random.random(size=[1]).astype('int64')
                    y = np.random.random(size=[1]).astype('int64')
                    yield x, y
            data_loader.set_sample_generator(train_reader, batch_size=1)

            place = fluid.CUDAPlace(0)
H
hutuxian 已提交
4413 4414
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4415 4416
            batch_size = 1
            data_loader.start()
H
hutuxian 已提交
4417
            exe.train_from_dataset(
4418
                    fluid.default_main_program())
4419
            data_loader.reset()
4420 4421
    """

4422
    def __init__(self, optimizer, num_microbatches=1, start_cpu_core_id=0):
4423 4424 4425 4426 4427
        self._device = 'cpu'
        if core.is_compiled_with_npu():
            self._device = "npu"
        elif core.is_compiled_with_cuda():
            self._device = "gpu"
J
Jiabin Yang 已提交
4428
        if framework._non_static_mode():
Z
zhongpu 已提交
4429
            raise Exception("In dygraph, don't support PipelineOptimizer.")
4430 4431 4432 4433
        valid_optimizers = (Optimizer, paddle.optimizer.Optimizer,
                            paddle.fluid.contrib.mixed_precision.decorator.
                            OptimizerWithMixedPrecision)
        if not isinstance(optimizer, valid_optimizers):
4434 4435
            raise ValueError("The 'optimizer' parameter for "
                             "PipelineOptimizer must be an instance of "
4436 4437
                             "{}, but the given type is {}.".format(
                                 valid_optimizers, type(optimizer)))
H
hutuxian 已提交
4438
        self._optimizer = optimizer
4439 4440 4441 4442 4443 4444

        # Get the original optimizer defined by users, such as SGD
        self._origin_optimizer = self._optimizer
        while hasattr(self._origin_optimizer, "inner_opt"):
            self._origin_optimizer = self._origin_optimizer.inner_opt

4445 4446 4447 4448
        assert num_microbatches >= 1, (
            "num_microbatches must be a positive value.")
        self._num_microbatches = num_microbatches
        assert start_cpu_core_id >= 0, (
4449
            "start_cpu_core_id must be a non-negative integer.")
H
hutuxian 已提交
4450
        self._start_cpu_core_id = start_cpu_core_id
4451 4452 4453 4454 4455 4456
        self._place_list = None
        op_maker = core.op_proto_and_checker_maker
        self._op_role = op_maker.OpRole
        self._op_role_key = op_maker.kOpRoleAttrName()
        self._op_role_var_key = op_maker.kOpRoleVarAttrName()
        self._op_device_key = op_maker.kOpDeviceAttrName()
4457
        self._param_device_map = None
4458 4459
        self._pipeline_pair = []
        self._pp_ring_map = dict()
4460 4461
        self.output_var_to_op = None
        self.input_var_to_op = None
4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476

    # insert allreduce op to sync global information for global
    # gradient clip and amp
    def _insert_allreduce_op(self, op_idx, block):
        """
        Insert allreduce op to sync global information for global
        gradient clip and amp.
        """
        op = block.ops[op_idx]
        out_name = op.desc.output_arg_names()[0]
        out_var = block.var(out_name)
        offset = 0
        if op.type == "reduce_any":
            # cast the bool var to int32 to use allreduce_max op
            temp_var_name = unique_name.generate(out_name + "_cast_int32")
4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
            temp_var = block.create_var(name=temp_var_name,
                                        shape=[1],
                                        dtype="int32")
            block._insert_op(op_idx + 1 + offset,
                             type='cast',
                             inputs={'X': out_var},
                             outputs={'Out': temp_var},
                             attrs={
                                 'in_dtype': out_var.dtype,
                                 'out_dtype': temp_var.dtype,
                                 self._op_role_key: self._op_role.Optimize
                             })
4489 4490 4491 4492 4493 4494 4495 4496
            offset += 1
        block._insert_op(
            op_idx + 1 + offset,
            type='c_allreduce_max'
            if op.type == "reduce_any" else 'c_allreduce_sum',
            inputs={'X': temp_var if op.type == "reduce_any" else out_var},
            outputs={'Out': temp_var if op.type == "reduce_any" else out_var},
            attrs={
4497
                'ring_id': self.global_ring_id,
4498 4499 4500 4501 4502
                self._op_role_key: self._op_role.Optimize,
                'use_calc_stream': True
            })
        offset += 1
        if op.type == "reduce_any":
4503 4504 4505 4506 4507 4508 4509 4510 4511
            block._insert_op(op_idx + 1 + offset,
                             type='cast',
                             inputs={'X': temp_var},
                             outputs={'Out': out_var},
                             attrs={
                                 'in_dtype': temp_var.dtype,
                                 'out_dtype': out_var.dtype,
                                 self._op_role_key: self._op_role.Optimize
                             })
4512
            offset += 1
4513
        return offset
H
hutuxian 已提交
4514

4515
    def _create_vars(self, block, ori_block):
4516
        # Create vars for block, copied from ori_block
H
hutuxian 已提交
4517
        used_var_set = set()
4518 4519 4520 4521 4522 4523 4524 4525 4526
        added_op_num = 0
        op_idx = 0
        op_size = block.desc.op_size()
        while op_idx < op_size + added_op_num:
            # Whether to insert allreduce_sum or allreduce_max op.
            # For amp and global gradient clip strategies, we should
            # get the global information, so allreduce op is needed.
            should_insert = False
            op = block.ops[op_idx]
4527
            # For op process vars on all devices, remove its input
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
            # vars not in this block
            reserved_x = []
            if op.type == 'reduce_any' and self._is_optimize_op(op):
                should_insert = True
            elif op.type == 'concat' and self._is_optimize_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
            elif op.type == 'update_loss_scaling':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552
            elif op.type == 'check_finite_and_unscale':
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                op.desc.set_output('Out', reserved_x)
                if len(reserved_x) == 0:
                    block._remove_op(op_idx)
                    op_size -= 1
                    continue
4553 4554 4555 4556 4557 4558 4559 4560
            elif op.type == 'sum' and self._is_gradient_clip_op(op):
                for input_name in op.desc.input("X"):
                    if block._find_var_recursive(input_name):
                        reserved_x.append(input_name)
                op.desc.set_input('X', reserved_x)
                should_insert = True

            vars = op.desc.input_arg_names() + op.desc.output_arg_names()
H
hutuxian 已提交
4561
            for var in vars:
4562 4563
                # a var whose name contains "blocking_queue"
                # only exists in startup program
4564
                if var in used_var_set or "_blocking_queue" in var:
H
hutuxian 已提交
4565 4566
                    continue
                used_var_set.add(var)
4567 4568
                if block._find_var_recursive(str(var)): continue
                source_var = ori_block._var_recursive(str(var))
4569
                if source_var.type == core.VarDesc.VarType.READER:
4570
                    dest_var = block.create_var(
4571 4572 4573
                        name=var,
                        type=core.VarDesc.VarType.READER,
                        persistable=source_var.persistable)
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
                elif isinstance(source_var, Parameter):
                    dest_var = block.create_parameter(
                        name=source_var.name,
                        shape=source_var.shape,
                        dtype=source_var.dtype,
                        type=source_var.type,
                        lod_level=source_var.lod_level,
                        stop_gradient=source_var.stop_gradient,
                        trainable=source_var.trainable,
                        optimize_attr=source_var.optimize_attr,
                        regularizer=source_var.regularizer,
                        error_clip=source_var.error_clip)
4586
                else:
4587
                    dest_var = block._clone_variable(source_var, False)
4588
                self._clone_var_attr(dest_var, source_var)
4589 4590 4591 4592 4593 4594 4595 4596
            # When use with sharding, allreduce_sum and allreduce_max
            # used for global gradient clip and amp will be added by sharding.
            op_idx += 1
            if self.use_sharding or not should_insert: continue
            inserted_ops = self._insert_allreduce_op(op_idx - 1, block)
            added_op_num += inserted_ops
            op_idx += inserted_ops
        block._sync_with_cpp()
H
hutuxian 已提交
4597

4598
    def _is_loss_grad_op(self, op):
4599 4600
        assert self._op_role_key in op.attr_names
        op_role = int(op.attr(self._op_role_key))
4601 4602 4603
        return op_role & int(self._op_role.Backward) and op_role & int(
            self._op_role.Loss)

4604
    def _is_forward_op(self, op):
4605 4606
        return self._op_role_key in op.attr_names and (int(
            op.attr(self._op_role_key)) == int(self._op_role.Forward))
4607

4608
    def _is_backward_op(self, op):
4609 4610 4611 4612 4613 4614
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Backward))

    def _is_loss_op(self, op):
        assert self._op_role_key in op.attr_names
        return int(op.attr(self._op_role_key)) == int(self._op_role.Loss)
4615 4616

    def _is_optimize_op(self, op):
4617 4618
        return self._op_role_key in op.attr_names and (
            int(op.attr(self._op_role_key)) & int(self._op_role.Optimize))
4619 4620 4621 4622 4623

    def _is_update_op(self, op):
        return 'Param' in op.input_names and 'Grad' in op.input_names and (
            "LearningRate" in op.input_names)

4624
    def _split_program(self, main_program, devices):
H
hutuxian 已提交
4625
        """
4626
        Split a program into sections according to devices that ops run on.
4627
        The op whose op_device attr is "gpu:all" is copied to all sections.
4628 4629 4630

        Args:
            main_program (Program): the main program
4631
            devices: all used devices
H
hutuxian 已提交
4632
        """
4633
        # Map from device to its corresponding section program info
4634
        device_program_map = defaultdict(Program)
4635

4636
        block = main_program.block(0)
4637 4638
        for op in block.ops:
            device = op.attr(self._op_device_key)
4639
            # Copy ops whose op_device set to "gpu:all" to all sections.
4640
            if device == f"{self._device}:all":
4641
                for device in devices:
4642 4643
                    program = device_program_map[device]
                    op_desc = op.desc
4644
                    ap_op = program.global_block().desc.append_op()
4645
                    ap_op.copy_from(op_desc)
4646
                    ap_op._set_attr(self._op_device_key, "")
4647 4648 4649
            else:
                program = device_program_map[device]
                op_desc = op.desc
4650
                ap_op = program.global_block().desc.append_op()
4651
                ap_op.copy_from(op_desc)
4652
                ap_op._set_attr(self._op_device_key, "")
4653

4654
        program_list = []
4655
        for key in devices:
4656
            program = device_program_map[key]
4657 4658
            program._sync_with_cpp()
            program_list.append(program)
H
hutuxian 已提交
4659

4660
        return program_list
H
hutuxian 已提交
4661

4662 4663 4664 4665 4666 4667 4668
    def _get_op_device_for_startup_program(self, var_name):
        """
        For adam optimizer, it will add accumulators and initialize them
        with fill_constant, and force the op device to cpu. Hence, we should
        get the real op_device attribute of the fill_constant as the device
        where the corresponding parameters on.
        """
4669 4670 4671
        assert "beta1_pow_acc" in var_name or "beta2_pow_acc" in var_name, \
            'For accumulators for Adam, the name must contain beta1_pow_acc ' \
            'or beta2_pow_acc.'
4672 4673 4674 4675
        param_name = var_name[0:var_name.index('_beta')]
        device = self._param_device_map[param_name]
        return device

4676 4677
    def _split_startup_program(self, startup_program, device_id):
        block = startup_program.global_block()
4678 4679 4680
        new_startup_program = Program()
        for op in block.ops:
            device = op.attr(self._op_device_key)
4681 4682
            if device == "cpu":
                assert op.type == "fill_constant", (
4683 4684
                    "For ops in startup program with the op_device attribute "
                    "of cpu, they must be of type fill_constant.")
4685 4686 4687
                output_var = op.output_arg_names[0]
                device = self._get_op_device_for_startup_program(output_var)

4688
            if device:
4689
                device_index = int(device.split(':')[1])
4690
            else:
4691 4692
                # LR related ops
                device = None
4693
            if device and device_index != device_id: continue
4694
            op_desc = op.desc
4695
            ap_op = new_startup_program.global_block().desc.append_op()
4696 4697 4698
            ap_op.copy_from(op_desc)
            ap_op._set_attr(self._op_device_key, "")
        new_startup_program._sync_with_cpp()
4699
        self._create_vars(new_startup_program.global_block(), block)
4700 4701
        return new_startup_program

4702
    def _find_post_op(self, index, var_name):
H
hutuxian 已提交
4703
        """
4704
        Find the post op that has variable named var_name as input.
H
hutuxian 已提交
4705
        """
4706 4707 4708 4709 4710 4711
        # bugfix for uniform hybrid parallelism
        if '.cast_fp32' in var_name:
            var_name = var_name.replace('.cast_fp32', '')
        if '.cast_fp16' in var_name:
            var_name = var_name.replace('.cast_fp16', '')

4712 4713 4714 4715 4716 4717 4718 4719
        post_ops = self.input_var_to_op[var_name]
        if post_ops == None: return None
        result_op = None
        for post_op, post_idx in reversed(post_ops):
            if post_idx > index:
                result_op = post_op
                break
        return result_op
4720

4721
    def _find_prev_op(self, index, var_name):
H
hutuxian 已提交
4722
        """
4723 4724
        Find the previous op of op with index that outputs
        variable named var_name.
H
hutuxian 已提交
4725
        """
4726 4727 4728 4729 4730 4731
        prev_ops = self.output_var_to_op[var_name]
        if prev_ops == None: return None
        result_op = None
        for prev_op, prev_idx in reversed(prev_ops):
            if prev_idx < index:
                result_op = prev_op
4732
                break
4733
        return result_op
4734 4735

    def _rename_arg(self, op, old_name, new_name):
4736 4737
        op._rename_input(old_name, new_name)
        op._rename_output(old_name, new_name)
4738

4739
    def _create_var(self, block, ref_var, name, dtype=None):
4740 4741 4742 4743 4744 4745 4746 4747
        """
        Create a new var for block, which has the same type,
        shape and dtype as ref_var, then rename it with the
        name `name`.
        """
        new_var = block.create_var(
            name=name,
            shape=ref_var.shape,
4748
            dtype=ref_var.dtype if dtype is None else dtype,
4749 4750
            type=ref_var.type,
            lod_level=ref_var.lod_level,
4751 4752
            persistable=ref_var.persistable,
            is_data=ref_var.is_data,
4753
            need_check_feed=ref_var.desc.need_check_feed())
4754
        self._clone_var_attr(new_var, ref_var)
4755 4756
        return new_var

4757 4758 4759 4760 4761
    def _clone_var_attr(self, dest, src):
        dest.stop_gradient = src.stop_gradient
        if hasattr(src, 'is_distributed'):
            dest.is_distributed = src.is_distributed

4762 4763 4764 4765 4766 4767
    def _strip_grad_suffix(self, name):
        """
        Strip the grad suffix from the given variable name
        """
        pos = name.find(core.grad_var_suffix())
        return name[:pos] if pos != -1 else name
H
hutuxian 已提交
4768

4769 4770 4771 4772 4773 4774
    def _append_grad_suffix(self, name):
        """
        Append grad suffix to the given variable name
        """
        return name + core.grad_var_suffix()

4775
    def _get_op_device_attr(self, op):
H
hutuxian 已提交
4776
        """
4777
        Get the op_device attribute of a op.
H
hutuxian 已提交
4778
        """
4779 4780 4781
        device = op.attr(self._op_device_key) \
            if op.has_attr(self._op_device_key) else None
        if device:
B
Baibaifan 已提交
4782
            assert device[0:3] == 'gpu' or device[0:3] == 'npu', "Now, only gpu and npu devices are " \
4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
                "supported in pipeline parallemism."
        return device

    def _add_op_device_attr_for_op(self, op, idx, block):
        """
        Add op_device attrribute for ops that have not that attribute set.
        We use "gpu:all" to represent the op should be put on all
        sub-programs, such as lr-related ops. Note that: "gpu:all"
        is only used by pipeline as an indicator.
        """
        lrsched_role = int(self._op_role.LRSched)
        if op.attr(self._op_role_key) == lrsched_role:
            # For LRSched ops, we should put them on all sub-programs to
            # make sure each sub-program update the lr correctly
4797
            op._set_attr(self._op_device_key, f"{self._device}:all")
4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
        # bugfix in hybrid parallelism
        elif op.type == "sum" and self._is_backward_op(op):
            # For sum ops that compute the sum of @RENAMED@ vars
            for name in op.desc.input_arg_names():
                assert '@RENAME@' in name, \
                    "The op must be sum used to accumulate renamed vars."
            assert len(op.desc.output_arg_names()) == 1
            out_name = op.desc.output_arg_names()[0]
            post_op = self._find_post_op(idx, out_name)
            assert post_op.has_attr(
                'op_device'), "{} has no op_device attr for var {}".format(
                    post_op.type, out_name)
            device = post_op.attr(self._op_device_key)
            assert device, "The post op must have op_device set."
            op._set_attr(self._op_device_key, device)
4813 4814
        elif (op.type == "cast"
              or op.type == "scale") and self._is_backward_op(op):
4815
            prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4816 4817
            op._set_attr(self._op_device_key, prev_op.attr(self._op_device_key))
        elif op.type == "memcpy" and not self._is_optimize_op(op):
4818
            # for checkpoint offloading
4819 4820 4821 4822 4823
            assert len(op.input_arg_names) == 1 and len(
                op.output_arg_names) == 1
            input_name = op.input_arg_names[0]
            output_name = op.output_arg_names[0]
            if '@Fetch' in output_name:
4824
                post_op = self._find_post_op(idx, output_name)
4825 4826 4827
                op._set_attr(self._op_device_key,
                             post_op.attr(self._op_device_key))
            else:
4828
                prev_op = self._find_prev_op(idx, op.desc.input("X")[0])
4829 4830 4831 4832 4833
                op._set_attr(self._op_device_key,
                             prev_op.attr(self._op_device_key))
        elif self._is_loss_op(op):
            # For loss * loss_scaling op added by AMP
            offset = 1
4834 4835
            while (not block.ops[idx + offset].has_attr(self._op_device_key)
                   or not block.ops[idx + offset].attr(self._op_device_key)):
4836 4837 4838 4839 4840 4841 4842 4843 4844
                offset += 1
            device = block.ops[idx + offset].attr(self._op_device_key)
            assert device, "Please put you program within device_guard scope."
            for i in range(offset):
                block.ops[idx + i]._set_attr(self._op_device_key, device)
        elif self._is_optimize_op(op) and op.type == "cast":
            # For fp16-->fp32 cast added by AMP
            grad_name = op.output('Out')
            assert len(grad_name) == 1
4845
            param_name = self._strip_grad_suffix(grad_name[0])
4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857
            device = self._param_device_map[param_name]
            op._set_attr(self._op_device_key, device)
        elif self._is_gradient_clip_op(op) or self._is_regularization_op(op):
            # For gradient clip and regularization ops, we set their op_device
            # attribute to the device where their corresponding parameters on.
            assert self._op_role_var_key in op.attr_names, "gradient_clip " \
                "and regularization ops must have op_role_var attribute."
            op_role_var = op.attr(self._op_role_var_key)
            assert len(op_role_var) == 2, "op_role_var for gradient_clip " \
                "regularization ops must have two elements."
            param_name = op_role_var[0]
            device = self._param_device_map[param_name]
4858
            # For sum op added by global gradient clip, it must be
4859
            # put on all devices
4860 4861 4862 4863
            if (op.type == 'sum' or op.type == 'sqrt'
                    or op.type == 'fill_constant'
                    or op.type == 'elementwise_max'
                    or op.type == 'elementwise_div'):
4864
                device = f"{self._device}:all"
4865
            op._set_attr(self._op_device_key, device)
R
Roc 已提交
4866
        elif op.type == "alloc_float_status" or op.type == "clear_float_status":
4867
            op._set_attr(self._op_device_key, f"{self._device}:all")
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
            # NOTE(wangxi): NPU should only clear the float status
            # once at each batch step
            op._set_attr(self._op_role_key, self._op_role.LRSched)

            float_status_name = op.output_arg_names[0]
            float_status_var = block.var(float_status_name)
            # FIXME(wangxi): pipeline lr schedule will exec on sub_scope(0)
            # while update will exec on sub_scope(last_micro_step), should
            # set persistable to use global scope
            float_status_var.persistable = True
4878 4879
        else:
            other_known_ops = [
R
Roc 已提交
4880
                'update_loss_scaling', 'reduce_any', 'concat', 'sum',
4881
                'check_finite_and_unscale', 'memcpy'
4882 4883 4884 4885 4886
            ]
            assert op.type in other_known_ops, "For other ops without " \
                "op_device set, they must be one of {}, but it " \
                "is {}".format(other_known_ops, op.type)
            assert self._is_optimize_op(op)
4887
            op._set_attr(self._op_device_key, f"{self._device}:all")
4888 4889

    def _add_op_device_attr(self, block):
4890
        """
4891
        Add op_device attrribute for ops in block that have
4892
        not that attribute set.
4893
        """
4894
        for idx, op in enumerate(list(block.ops)):
4895 4896 4897
            if (op.type == "create_py_reader" or op.type == "read"
                    or op.type == "create_double_buffer_reader"):
                # Copy read related ops to all section to make them exit
4898 4899 4900 4901
                # after each epoch.
                # We use "gpu:all" to represent the op should be put on all
                # sub-programs, such as lr-related ops. Note that: "gpu:all"
                # is only used by pipeline as an indicator.
4902
                op._set_attr(self._op_device_key, f"{self._device}:all")
4903 4904 4905 4906
                continue
            # op_device attribute has been set
            if self._get_op_device_attr(op): continue
            self._add_op_device_attr_for_op(op, idx, block)
H
hutuxian 已提交
4907

4908 4909
    def _check_validation(self, block):
        """
4910
        Check whether ops in a block have both the op_device and the
4911 4912
        op_role attributes set.
        Then, return all devices in order.
4913
        """
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
        device_list = []
        # Section worker only supports the following op_role
        valid_op_role_value = [
            int(self._op_role.LRSched),
            int(self._op_role.Forward),
            int(self._op_role.Backward),
            int(self._op_role.Loss),
            int(self._op_role.Optimize),
            int(self._op_role.Backward) | int(self._op_role.Loss),
        ]
4924
        for op in block.ops:
4925
            if not op._has_kernel(op.type):
4926 4927
                assert op.type == "conditional_block" and (op.attr(
                    self._op_role_key) == int(self._op_role.LRSched)), (
4928 4929
                        "Now, the only supported op without kernel is "
                        "conditional_block, and its op role must be LRSched.")
4930 4931 4932
            assert op.has_attr(
                self._op_role_key), ("op ({}) has no {} attribute.".format(
                    op.type, self._op_role_key))
4933 4934
            op_role = op.attr(self._op_role_key)
            assert int(op_role) in valid_op_role_value, \
4935
                "op_role {} for op {} must be one of {}".format(
4936
                    op_role,
4937 4938
                    op.type,
                    valid_op_role_value)
4939

4940 4941 4942
            assert op.has_attr(
                self._op_device_key), ("op ({}) has no {} attribute.".format(
                    op.type, self._op_device_key))
4943 4944 4945 4946

            device = op.attr(self._op_device_key)
            assert device, ("op_device attribute for op "
                            "{} has not been set.".format(op.type))
4947
            if device == f"{self._device}:all": continue
4948

4949
            dev_type = device.split(':')[0]
B
Baibaifan 已提交
4950 4951 4952
            assert dev_type == "gpu" or dev_type == 'npu', (
                "Now only gpu and npu devices are supported "
                "for pipeline parallelism.")
4953 4954

            if device not in device_list:
4955
                device_list.append(device)
4956

4957
        return device_list
4958

4959
    def _insert_sendrecv_ops_for_boundaries(self, block):
4960
        """
4961
        Insert a pair of send and recv ops for every two
4962 4963
        consecutive ops on different devices.
        """
4964
        # A map from var to device where op takes it as input,
4965
        # avoiding multiple send and recv ops.
4966
        input_var_to_device = dict()
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976
        # bugfix hybrid parallelism
        first_optimize_index = None
        for index, op in enumerate(list(block.ops)):
            if self._is_optimize_op(op):
                first_optimize_index = index
                break
        extra_index_info = {
            'index': 0,
            'first_optimize_index': first_optimize_index
        }
4977

4978
        for index, op in enumerate(list(block.ops)):
4979
            cur_device = op.attr(self._op_device_key)
4980
            if cur_device == f"{self._device}:all": continue
4981 4982
            for var_name in op.input_arg_names:
                var = block.var(var_name)
4983
                # skip data var
4984
                if var.is_data: continue
4985
                prev_device = None
4986 4987 4988

                prev_op = self._find_prev_op(index, var_name)
                if prev_op is None:
4989 4990
                    if var_name not in self._param_device_map:
                        continue
4991
                    prev_device = self._param_device_map[var_name]
4992

4993 4994 4995
                if not prev_device:
                    prev_device = prev_op.attr(self._op_device_key) \
                        if prev_op else None
4996

4997 4998
                if prev_device is None or prev_device == f"{self._device}:all":
                    continue
4999 5000

                if prev_device == cur_device: continue
5001

5002 5003 5004 5005 5006 5007 5008
                if var_name not in input_var_to_device:
                    input_var_to_device[var_name] = []
                if (cur_device, prev_device) in input_var_to_device[var_name]:
                    continue

                device_type = cur_device.split(':')[0] + ':'

5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027
                def _check_stage(cur_id, prev_id):
                    # check send/recv stage valid
                    is_forward = self._is_forward_op(op)
                    is_backward = self._is_backward_op(op)
                    assert is_forward or is_backward, \
                        'send/recv in pipeline should only be inserted in forward or backward,' \
                        'please check the op_role of op={}'.format(op)

                    if is_forward:
                        assert prev_id < cur_id, \
                            "In forward, send/recv can only be passed forward, but now " \
                            "prev_stage={} great than cur_stage={}, please check op_device of op={}".format(
                                prev_id, cur_id, op)
                    elif is_backward:
                        assert prev_id > cur_id, \
                            "In backward, send/recv can only be passed backward, but now " \
                            "prev_stage={} less than cur_stage={}, please check op_device of op={}".format(
                                prev_id, cur_id, op)

5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050
                def _insert_send_recv(cur_id, prev_id):
                    cur_dev = device_type + str(cur_id)
                    prev_dev = device_type + str(prev_id)
                    if (cur_dev, prev_dev) in input_var_to_device[var_name]:
                        return

                    if cur_id - prev_id > 1:
                        _insert_send_recv(cur_id - 1, prev_id)
                        _insert_send_recv(cur_id, cur_id - 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return
                    elif cur_id - prev_id < -1:
                        _insert_send_recv(cur_id + 1, prev_id)
                        _insert_send_recv(cur_id, cur_id + 1)
                        input_var_to_device[var_name].append(
                            (cur_dev, prev_dev))
                        return

                    assert abs(cur_id - prev_id) == 1
                    input_var_to_device[var_name].append((cur_dev, prev_dev))

                    op_role = op.attr(self._op_role_key)
5051
                    var = block.vars[var_name]
5052 5053 5054
                    pair = (prev_id, cur_id)
                    # 1000 is just a magic number
                    pair_key = prev_id * 1000 + cur_id
5055 5056 5057 5058 5059 5060 5061
                    if pair not in self._pipeline_pair:
                        self._pipeline_pair.append(pair)
                        self._pp_ring_map[pair_key] = self.ring_id
                        ring_id = self.ring_id
                        self.ring_id += 1
                    else:
                        ring_id = self._pp_ring_map[pair_key]
5062

5063
                    if self.schedule_mode == 'F-then-B':  # F-then-B
F
fangshuixun007 已提交
5064
                        block._insert_op_without_sync(
5065
                            index=index + extra_index_info['index'],
5066 5067 5068
                            type='send_v2',
                            inputs={'X': var},
                            attrs={
5069
                                self._op_device_key: prev_dev,
5070 5071 5072 5073 5074
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 1,
                                'ring_id': ring_id
                            })
5075
                        extra_index_info['index'] += 1
5076 5077 5078
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]
F
fangshuixun007 已提交
5079
                        block._insert_op_without_sync(
5080
                            index=index + extra_index_info['index'],
5081 5082 5083
                            type='recv_v2',
                            outputs={'Out': [var]},
                            attrs={
5084
                                'out_shape': var_shape,
5085
                                'dtype': var.dtype,
5086
                                self._op_device_key: cur_dev,
5087 5088 5089 5090 5091
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
                                'ring_id': ring_id
                            })
5092
                        extra_index_info['index'] += 1
5093
                    elif self.schedule_mode == '1F1B':  # 1F1B
5094 5095 5096 5097
                        var_shape = list(var.shape)
                        var_shape[0] = self.micro_batch_size if var_shape[
                            0] < 0 else var_shape[0]

5098
                        numel = np.prod(var_shape)
5099 5100
                        use_mp = (self.mp_degree > 1) and (numel %
                                                           self.mp_degree == 0)
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126

                        if 'subprog' in var.name:
                            # For recompute, if the checkpoints var is layer_norm_6.tmp_2
                            # this var will be sent twice, layer_norm_6.tmp_2 for forward pass,
                            # layer_norm_6.tmp_2.subprog_* for recompute pass.
                            # We can store the first sent var and copy the value to the
                            # second one to reduce one send/recv op.
                            # The origin_ckpt_name is layer_norm_6.tmp_2, which will be used
                            # to find the stored var for the forward pass.
                            origin_name = var.name.split('subprog')[0][0:-1]
                            associate_var = block.var(origin_name)
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='assign',
                                inputs={'X': [associate_var]},
                                outputs={'Out': [var]},
                                attrs={
                                    'out_shape': var_shape,
                                    'dtype': var.dtype,
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                })
                            extra_index_info['index'] += 1
                            return

5127 5128
                        _check_stage(cur_id, prev_id)

5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
                        block._insert_op_without_sync(index=index +
                                                      extra_index_info['index'],
                                                      type='c_sync_calc_stream',
                                                      inputs={'X': [var]},
                                                      outputs={'Out': [var]},
                                                      attrs={
                                                          self._op_device_key:
                                                          prev_dev,
                                                          self._op_role_key:
                                                          op_role,
                                                      })
5140
                        extra_index_info['index'] += 1
5141 5142 5143 5144
                        prefix_name = var.name.split('@')[0]
                        prefix_var = block.var(prefix_name)
                        is_param = True if isinstance(prefix_var,
                                                      Parameter) else False
F
fangshuixun007 已提交
5145
                        block._insert_op_without_sync(
5146
                            index=index + extra_index_info['index'],
5147 5148
                            type='send_v2'
                            if not use_mp or is_param else 'partial_send',
5149 5150
                            inputs={'X': var},
                            attrs={
5151
                                self._op_device_key: prev_dev,
5152 5153 5154 5155
                                self._op_role_key: op_role,
                                'use_calc_stream': False,
                                'ring_id': ring_id,
                                'peer': 1,
5156 5157 5158
                                # if send_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5159
                            })
5160
                        extra_index_info['index'] += 1
5161 5162 5163 5164 5165 5166 5167 5168
                        insert_index = None
                        if int(op_role) == int(self._op_role.Backward):
                            insert_index = extra_index_info[
                                'first_optimize_index']
                            new_op_role = self._op_role.Optimize
                        else:
                            insert_index = index
                            new_op_role = self._op_role.Backward
5169
                        sync_comm_op = block._insert_op_without_sync(
5170
                            index=insert_index + extra_index_info['index'],
5171 5172 5173 5174
                            type='c_sync_comm_stream',
                            inputs={'X': [var]},
                            outputs={'Out': [var]},
                            attrs={
5175
                                self._op_device_key: prev_dev,
5176
                                self._op_role_key: new_op_role,
5177 5178
                                'ring_id': ring_id,
                            })
5179
                        if int(op_role) == int(self._op_role.Forward):
5180
                            sync_comm_op._set_attr('pipeline_flag', '')
5181
                            extra_index_info['index'] += 1
F
fangshuixun007 已提交
5182
                        block._insert_op_without_sync(
5183
                            index=index + extra_index_info['index'],
5184 5185
                            type='recv_v2'
                            if not use_mp or is_param else 'partial_recv',
5186 5187 5188 5189
                            outputs={'Out': [var]},
                            attrs={
                                'out_shape': var_shape,
                                'dtype': var.dtype,
5190
                                self._op_device_key: cur_dev,
5191 5192 5193
                                self._op_role_key: op_role,
                                'use_calc_stream': True,
                                'peer': 0,
5194 5195 5196 5197
                                'ring_id': ring_id,
                                # if recv_v2, num&id attr is not in op_attrs, will not insert
                                'num': self.mp_degree,
                                'id': self.mp_rank,
5198
                            })
5199
                        extra_index_info['index'] += 1
5200
                        if use_mp and not is_param:
5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
                            block._insert_op_without_sync(
                                index=index + extra_index_info['index'],
                                type='partial_allgather',
                                inputs={'X': [var]},
                                outputs={'Out': [var]},
                                attrs={
                                    self._op_device_key: cur_dev,
                                    self._op_role_key: op_role,
                                    'use_calc_stream': True,
                                    'ring_id': 0,
                                    # if recv_v2, num&id attr is not in op_attrs, will not insert
                                    'nranks': self.mp_degree,
                                    'rank': self.mp_rank,
                                })
                            extra_index_info['index'] += 1
5216 5217 5218 5219 5220
                    else:
                        raise ValueError(
                            "Now only 'F-then-B' and '1F1B' are supported."
                            "The given value is {}.".format(self.schedule_mode))

5221 5222
                _insert_send_recv(int(cur_device.split(':')[1]),
                                  int(prev_device.split(':')[1]))
5223 5224
        block._sync_with_cpp()

5225
    def _insert_loss_scale(self, block):
5226
        """
5227
        Scale the loss corresponding to number of micro-batches.
5228
        """
5229
        if self._num_microbatches == 1: return
5230
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
5231
            if self._is_loss_grad_op(op):
5232 5233 5234 5235 5236 5237 5238
                assert op.type == 'fill_constant', \
                    "loss_grad_op must be fill_constant op, " \
                    "but this op is {}".format(op.type)
                assert op.has_attr('value')
                loss_scale = float(op.attr('value'))
                loss_scale = loss_scale / self._num_microbatches
                op._set_attr('value', loss_scale)
5239 5240
                break

5241 5242 5243 5244 5245 5246
    def _rename_gradient_var_name(self, block):
        for index, op in enumerate(block.ops):
            if not self._is_optimize_op(op): continue
            input_names = op.input_arg_names
            output_names = op.output_arg_names
            in_out_names = input_names + output_names
L
lilong12 已提交
5247
            if op.type == 'cast' or op.type == "c_sync_comm_stream": continue
5248 5249 5250 5251 5252 5253 5254 5255
            # append "MERGED" to the names of parameter gradients,
            # and mofify the op_role_var attribute (by rename_arg func).
            for name in in_out_names:
                if not core.grad_var_suffix() in name: continue
                param_name = name.strip(core.grad_var_suffix())
                new_grad_name = name + "@MERGED"
                self._rename_arg(op, name, new_grad_name)

5256 5257 5258
    def _accumulate_gradients(self,
                              block,
                              pp_allreduce_in_optimize=False,
5259 5260
                              strategy=None,
                              shard=None):
5261 5262 5263 5264
        """
        Create a new merged gradient for each parameter and accumulate the
        corresponding gradient to it.
        """
5265 5266
        fp16_allreduce = strategy.fp16_allreduce if strategy else False
        if strategy and strategy.fuse_grad_merge:
5267
            fused_gradient_names = self._accumulate_gradients_with_fuse(
5268
                block, fp16_allreduce, strategy.fuse_grad_size_in_MB, shard)
5269 5270
            return fused_gradient_names

5271 5272 5273
        merged_gradient_names = []
        first_opt_op_idx = None

5274 5275 5276
        merged_suffix = '@MERGED@FP16' if fp16_allreduce else '@MERGED'
        dtype = paddle.float16 if fp16_allreduce else None

5277 5278 5279 5280 5281 5282 5283 5284
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    block._remove_op(index)
5285
                    continue
5286

5287
            if self._is_backward_op(op) and first_opt_op_idx is None:
5288
                first_opt_op_idx = index + 1
5289 5290
                # maybe have no optimize
                # if first_opt_op_idx == len(block.ops): return
5291

5292 5293
            if self._is_backward_op(op) and (self._op_role_var_key
                                             in op.attr_names):
5294 5295
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0: continue
5296 5297
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
5298 5299 5300 5301
                    offset = 0
                    param_name = op_role_var[i]
                    if not block.has_var(param_name): continue
                    if '@BroadCast' in param_name: continue
5302

5303
                    param_grad_name = param_name + core.grad_var_suffix()
5304
                    merged_param_grad_name = param_grad_name + merged_suffix
5305 5306
                    if not block.has_var(merged_param_grad_name):
                        self._create_var(block, block.vars[param_name],
5307
                                         merged_param_grad_name, dtype)
5308
                    assert block.has_var(merged_param_grad_name)
5309

5310 5311 5312
                    param_grad_var = block.var(param_grad_name)
                    merged_param_grad_var = block.var(merged_param_grad_name)
                    merged_param_grad_var.persistable = True
5313
                    block._insert_op(
5314 5315 5316 5317
                        index=first_opt_op_idx + offset,
                        type='fill_constant',
                        inputs={},
                        outputs={'Out': [merged_param_grad_var]},
5318
                        attrs={
5319 5320 5321 5322 5323 5324
                            'shape':
                            merged_param_grad_var.shape,
                            'dtype':
                            merged_param_grad_var.dtype,
                            'value':
                            float(0),
5325
                            # a trick to run this op once per mini-batch
5326 5327
                            self._op_role_key:
                            self._op_role.Optimize.LRSched,
5328 5329
                        })
                    offset += 1
5330 5331
                    grad_name = op_role_var[i + 1]
                    grad_var = block.vars[grad_name]
5332 5333 5334 5335 5336 5337 5338 5339 5340

                    is_fp16_grad = 'cast_fp16' in grad_name
                    need_cast = (is_fp16_grad is not fp16_allreduce)

                    if need_cast:
                        # if fp16_allreduce:
                        #     cast grad to fp16 to accumulate to merged gradient
                        # else:
                        #     cast grad to fp32 to accumulate to merged gradient
5341
                        cast_grad_var_name = param_grad_name + '@TMP'
5342 5343
                        cast_grad_var = self._create_var(
                            block, param_grad_var, cast_grad_var_name, dtype)
5344
                        cast_grad_var.persistable = False
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356
                        block._insert_op(index=first_opt_op_idx + offset,
                                         type='cast',
                                         inputs={'X': grad_var},
                                         outputs={'Out': cast_grad_var},
                                         attrs={
                                             'in_dtype':
                                             grad_var.dtype,
                                             'out_dtype':
                                             cast_grad_var.dtype,
                                             self._op_role_key:
                                             self._op_role.Backward,
                                         })
5357
                        offset += 1
5358 5359 5360 5361 5362 5363 5364
                        grad_var = cast_grad_var

                    block._insert_op(
                        index=first_opt_op_idx + offset,
                        type='sum',
                        inputs={'X': [merged_param_grad_var, grad_var]},
                        outputs={'Out': merged_param_grad_var},
5365 5366 5367
                        attrs={
                            self._op_role_key: self._op_role.Backward,
                        })
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394
                    offset += 1
                    merged_gradient_names.append(merged_param_grad_name)

        if not fp16_allreduce: return merged_gradient_names

        first_opt_op_idx = None
        for index, op in reversed(tuple(enumerate(list(block.ops)))):
            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                break
        assert first_opt_op_idx is not None

        # insert cast op from fp16->fp32
        # FIXME(wangxi): maybe put in sharding is better, for some grad
        #                is not in sharding device.
        for fp16_grad_name in merged_gradient_names:
            grad_name = fp16_grad_name.replace('@FP16', '')
            param_name = fp16_grad_name.replace('@GRAD@MERGED@FP16', '')

            if not block.has_var(grad_name):
                self._create_var(block, block.vars[param_name], grad_name)
            assert block.has_var(grad_name)

            fp16_grad_var = block.var(fp16_grad_name)
            grad_var = block.var(grad_name)
            grad_var.persistable = False

5395 5396 5397 5398 5399 5400 5401 5402 5403
            block._insert_op(index=first_opt_op_idx,
                             type='cast',
                             inputs={'X': fp16_grad_var},
                             outputs={'Out': grad_var},
                             attrs={
                                 'in_dtype': fp16_grad_var.dtype,
                                 'out_dtype': grad_var.dtype,
                                 self._op_role_key: self._op_role.Optimize,
                             })
5404

5405
        return merged_gradient_names
5406

5407 5408 5409
    def _insert_accumulate_gradients_with_fuse(self, main_block, fp16,
                                               fused_size, grad_param_pairs,
                                               first_opt_op_idx):
5410 5411
        grad_param_pairs = self._sort_grad_param_by_dtype(
            main_block, grad_param_pairs)
5412

5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428
        grad_param_segments = []
        merged_suffix = '@MERGED@FP16' if fp16 else '@MERGED'
        dtype = paddle.float16 if fp16 else paddle.float32
        cur_size = 0.
        last_dtype = None
        # split the grad based on dtype and fused size
        for grad, param in grad_param_pairs:
            real_grad = main_block.var(grad)
            # create the gradient merged var for each grad
            merged_grad_var = main_block.create_var(
                name=param + core.grad_var_suffix() + merged_suffix,
                dtype=dtype,
                shape=real_grad.shape,
                persistable=True,
                stop_gradient=False)
            real_param = main_block.var(param)
5429 5430
            if hasattr(real_param, 'is_distributed'):
                merged_grad_var.is_distributed = real_param.is_distributed
5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
            tmp_size = self._get_var_size(real_grad)
            # two strategies for splitting the grad
            # 1. the current segment's size reach the user defined grad_size_in_MB
            # 2. the upcoming grad holds different dtype compared with grads in current segment
            if len(grad_param_segments) == 0 \
                    or cur_size + tmp_size > fused_size \
                    or real_grad.dtype != last_dtype:
                grad_param_segments.append(
                    ([real_grad], [real_param], [merged_grad_var]))
                last_dtype = real_grad.dtype
                cur_size = 0.
            else:
                grad_param_segments[-1][0].append(real_grad)
                grad_param_segments[-1][1].append(real_param)
                grad_param_segments[-1][2].append(merged_grad_var)
                cur_size += tmp_size

        fused_gradients = []
        fused_merged_gradients = []
        # create fused vars for grad and param
        for grad_param_segment in grad_param_segments:
            grad_segment = grad_param_segment[0]
            merged_grad_segment = grad_param_segment[2]
5454 5455 5456 5457 5458
            fused_grad = main_block.create_var(name='FusedGrad_{}'.format(
                grad_segment[0].name),
                                               dtype=grad_segment[0].dtype,
                                               persistable=False,
                                               stop_gradient=False)
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493
            # keep the '.cast_fp16' info in the fuse var name
            fused_merged_grad_name_prefix = 'FusedMergedGrad.cast_fp16.' if \
                merged_grad_segment[0].dtype == paddle.float16 else 'FusedMergedGrad'
            fused_merged_grad_name = fused_merged_grad_name_prefix + '_{}'.format(
                merged_grad_segment[0].name)
            fused_merged_grad = main_block.create_var(
                name=fused_merged_grad_name,
                dtype=merged_grad_segment[0].dtype,
                persistable=True,
                stop_gradient=False)
            fused_gradients.append(fused_grad)
            fused_merged_gradients.append(fused_merged_grad)

        assert len(fused_gradients) == len(grad_param_segments)
        assert len(fused_merged_gradients) == len(grad_param_segments)

        # insert coalesce op at the start of the backward pass
        # use param as the coalesce input to make sure the two Fused vars are in same shape
        first_back_op_idx = None
        for index, op in enumerate(main_block.ops):
            if self._is_backward_op(op) and first_back_op_idx is None:
                first_back_op_idx = index
                break
        assert first_back_op_idx is not None
        offset = 0
        for i in range(len(grad_param_segments)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            grads = grad_param_segments[i][0]
            params = grad_param_segments[i][1]
            merged_grads = grad_param_segments[i][2]
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
5494 5495 5496 5497
                outputs={
                    "Output": grads,
                    "FusedOutput": fused_grad
                },
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
                attrs={
                    # Explanation of user_defined_size_of_dtype:
                    # In coalesce op, the align size is 256 bytes
                    # the float takes 4 bytes while fp16 takes 2 bytes.
                    # To meet the requirement, 128 fp16 or 64 float will be aligned
                    # Think the total shape of the input tensors if [64],
                    # if the dtype is float, then the shape of the fuse var is [64]
                    # however if the dytpe if fp16, the shape of the fuse var is [128],
                    # which will cause the fused vars' shape vary between each other.
                    # To make sure the shape of the fused vars are identical,
                    # we set the dtype of float and fp16 both to 2.
                    # Under this way, the fused vars' shape for float and fp16 are all [128]
                    "user_defined_size_of_dtype": 2,
                    "copy_data": False,
                    "use_align": True,
                    "dtype": grads[0].dtype,
5514 5515 5516 5517 5518 5519 5520
                    self._op_role_key: self._op_role.Backward,
                    # On npu, the nan/inf check login is different with gpu.
                    # If there are some not initialized sections in the fused var,
                    # and the value in those sections are nan/inf, it will trigger the nan/inf check.
                    # To avoid these problematic triggers, set constant is needed for npu
                    "set_constant": core.is_compiled_with_npu(),
                    "constant": float(0.0),
5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556
                })
            offset += 1
            # For the gradient_merged_fused_var, given a init value during the coalesce op
            # this will remove a problematic fill_constant op. This op role of this coalesce
            # is set to be LRSched to make this coalesce (with init) only run once
            main_block._insert_op_without_sync(
                first_back_op_idx + offset,
                type="coalesce_tensor",
                inputs={"Input": params},
                outputs={
                    "Output": merged_grads,
                    "FusedOutput": fused_merged_grad
                },
                attrs={
                    "user_defined_size_of_dtype": 2,
                    "set_constant": True,
                    "constant": float(0.0),
                    "copy_data": False,
                    "use_align": True,
                    "dtype": merged_grads[0].dtype,
                    self._op_role_key: self._op_role.Optimize.LRSched
                })
            offset += 1

        # insert gradient merge relating ops
        first_opt_op_idx += offset
        offset = 0
        for i in range(len(fused_gradients)):
            fused_grad = fused_gradients[i]
            fused_merged_grad = fused_merged_gradients[i]
            is_fp16_grad = 'cast_fp16' in fused_grad.name
            need_cast = (is_fp16_grad is not fp16)
            if need_cast:
                # for fp16 allreduce, cast fp32 grad to fp16
                # for fp32 allreduce, cast fp16 grad to fp32
                cast_grad_var_name = fused_grad.name + '@TMP'
5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570
                cast_grad_var = main_block.create_var(name=cast_grad_var_name,
                                                      dtype=dtype,
                                                      persistable=False,
                                                      stop_gradient=False)
                main_block._insert_op(index=first_opt_op_idx + offset,
                                      type='cast',
                                      inputs={'X': fused_grad},
                                      outputs={'Out': cast_grad_var},
                                      attrs={
                                          'in_dtype': fused_grad.dtype,
                                          'out_dtype': cast_grad_var.dtype,
                                          self._op_role_key:
                                          self._op_role.Backward,
                                      })
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588
                offset += 1
                fused_grad = cast_grad_var
            main_block._insert_op(
                index=first_opt_op_idx + offset,
                type='sum',
                inputs={'X': [fused_merged_grad, fused_grad]},
                outputs={'Out': fused_merged_grad},
                attrs={self._op_role_key: self._op_role.Backward})
            offset += 1

        if fp16:
            # if using fp16 allreduce, the optimizer needs fp32 grads, cast them back to fp32
            for grad, param in grad_param_pairs:
                real_grad = main_block.var(grad)
                fp16_grad_name = param + core.grad_var_suffix() + '@MERGED@FP16'
                assert main_block.has_var(fp16_grad_name)
                fp16_grad = main_block.var(fp16_grad_name)
                fp32_grad_name = param + core.grad_var_suffix() + '@MERGED'
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603
                fp32_grad = main_block.create_var(name=fp32_grad_name,
                                                  dtype=paddle.float32,
                                                  shape=real_grad.shape,
                                                  persistable=False,
                                                  stop_gradient=False)
                main_block._insert_op(index=first_opt_op_idx + offset,
                                      type='cast',
                                      inputs={'X': fp16_grad},
                                      outputs={'Out': fp32_grad},
                                      attrs={
                                          'in_dtype': paddle.float16,
                                          'out_dtype': paddle.float32,
                                          self._op_role_key:
                                          self._op_role.Optimize,
                                      })
5604 5605 5606 5607 5608 5609
                offset += 1

        # replace the var with it's name, which will be used for inserting allreduce
        for i in range(len(fused_merged_gradients)):
            fused_merged_gradients[i] = fused_merged_gradients[i].name

5610
        return fused_merged_gradients, first_opt_op_idx
5611

5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
    def _accumulate_gradients_with_fuse(self,
                                        main_block,
                                        fp16,
                                        fused_size,
                                        shard=None):
        first_opt_op_idx = None
        grad_param_pairs = []
        # obtain all param/grad pairs that needed to be fused
        for index, op in reversed(tuple(enumerate(list(main_block.ops)))):
            # remove the cast op of fp16 grad to fp32 grad
            if self._is_optimize_op(op) and op.type == 'cast':
                in_name = op.input_arg_names[0]
                out_name = op.output_arg_names[0]
                if out_name.strip('@GRAD') in self._param_device_map:
                    assert in_name.replace('.cast_fp16', '') == out_name
                    main_block._remove_op(index)
                    continue

            if self._is_backward_op(op) and first_opt_op_idx is None:
                first_opt_op_idx = index + 1
                # no optimize phase
                if first_opt_op_idx == len(main_block.ops):
                    return

5636 5637
            if self._is_backward_op(op) and (self._op_role_var_key
                                             in op.attr_names):
5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669
                op_role_var = op.attr(self._op_role_var_key)
                if len(op_role_var) == 0:
                    continue
                assert len(op_role_var) % 2 == 0
                for i in range(0, len(op_role_var), 2):
                    param_name = op_role_var[i]
                    if not main_block.has_var(param_name):
                        continue
                    if '@BroadCast' in param_name:
                        continue
                    grad_param_pairs.append(
                        (op_role_var[i + 1], op_role_var[i]))

        if len(grad_param_pairs) == 0:
            return

        nranks = shard.worker_num if shard else 1
        device_to_pairs = [[] for _ in range(nranks)]
        for pair in grad_param_pairs:
            root_id = shard.device(pair[1]) if shard else 0
            assert 0 <= root_id < nranks
            device_to_pairs[root_id].append(pair)

        all_fused_merged_gradients = []
        for pairs in device_to_pairs:
            fused_merged_gradients, first_opt_op_idx = \
                self._insert_accumulate_gradients_with_fuse(
                    main_block, fp16, fused_size, pairs, first_opt_op_idx)
            all_fused_merged_gradients += fused_merged_gradients

        main_block._sync_with_cpp()
        return all_fused_merged_gradients
5670

5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
    def _sort_grad_param_by_dtype(self, main_block, grad_param_pairs):
        # sort the grad param paris by the dtype
        fp16_pairs = []
        fp32_pairs = []
        other_pairs = []
        for pairs in grad_param_pairs:
            dtype = main_block.var(pairs[0]).dtype
            if dtype == paddle.float32:
                fp32_pairs.append(pairs)
            elif dtype == paddle.float16:
                fp16_pairs.append(pairs)
            else:
                other_pairs.append(pairs)
        sorted_pairs = fp16_pairs
        sorted_pairs.extend(fp32_pairs)
        sorted_pairs.extend(other_pairs)
        return sorted_pairs

5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
    def _get_var_size(self, var):
        dtype_to_size = {
            core.VarDesc.VarType.FP16: 2,
            core.VarDesc.VarType.FP32: 4,
            core.VarDesc.VarType.FP64: 8,
            core.VarDesc.VarType.INT16: 2,
            core.VarDesc.VarType.INT32: 4,
            core.VarDesc.VarType.INT64: 8,
            core.VarDesc.VarType.BOOL: 1,
            core.VarDesc.VarType.UINT8: 1,
        }
        assert -1 not in var.shape
        return reduce(lambda x, y: x * y,
                      var.shape) * dtype_to_size[var.dtype] / 1024.0 / 1024.0

5704 5705
    def _add_sub_blocks(self, main_block, program_list):
        main_program = main_block.program
5706
        for prog in program_list:
5707 5708 5709 5710 5711 5712
            for op in prog.block(0).ops:
                if not op.has_attr('sub_block'):
                    continue
                origin_sub_block_id = op.attr('sub_block').id
                origin_sub_block = main_program.block(origin_sub_block_id)
                new_sub_block = prog._create_block(parent_idx=0)
5713 5714
                for sub_op in origin_sub_block.ops:
                    op_desc = sub_op.desc
5715 5716 5717
                    ap_op = new_sub_block.desc.append_op()
                    ap_op.copy_from(op_desc)
                new_sub_block._sync_with_cpp()
5718
                self._create_vars(new_sub_block, origin_sub_block)
5719
                op._set_attr('sub_block', new_sub_block)
5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735

    def _get_device_info(self, block):
        for op in block.ops:
            if not op._has_kernel(op.type): continue
            op_device = op.attr(self._op_device_key)
            return op_device

    def _process_persistable_vars_in_multi_sections(self, main_program,
                                                    startup_prog, program_list):
        """
        Special Case: process persistable vars that exist in
        multiple sections, e.g., shared weight
        """
        # var_info = {var_name: [program1, program2...]},
        # persistable var only
        var_info = dict()
5736
        for prog in program_list:
5737 5738
            block = prog.block(0)
            for var_name in block.vars:
5739
                if var_name == "double_buffer_0": continue
5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756
                var = block.var(var_name)
                if not var.persistable: continue
                if not var_name in var_info:
                    var_info[var_name] = []
                if not prog in var_info[var_name]:
                    var_info[var_name].append(prog)
        for var_name in list(var_info.keys()):
            if len(var_info[var_name]) == 1:
                var_info.pop(var_name)

        # write_info = {var_name: program}, where program is the only program
        # in which the var named var_name is written.
        write_info = dict()
        for var_name in var_info.keys():
            for prog in var_info[var_name]:
                block = prog.block(0)
                for op in block.ops:
5757
                    if op.type == "recv_v2" or op.type == "create_py_reader" or \
5758
                        op.type == "read" or op.type == "update_loss_scaling":
5759
                        continue
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778
                    # We have processed lr related vars
                    if op.attr(self._op_role_key) == int(
                            self._op_role.Optimize.LRSched):
                        continue
                    if var_name in op.desc.output_arg_names():
                        assert var_name not in write_info, (
                            "two sections write the same var({}): second "
                            "op {}.".format(var_name, op))
                        write_info[var_name] = prog
                        break

        for var_name in var_info.keys():
            # Case 1: read only variables, no special process
            if not var_name in write_info: continue

            # Case 2: one write multiple reads
            write_prog = write_info[var_name]
            write_block = write_prog.block(0)
            write_device = self._get_device_info(write_block)
5779
            write_dev_index = int(write_device.split(':')[1])
5780 5781 5782
            all_progs = var_info[var_name]
            for prog in all_progs:
                if prog == write_prog: continue
5783 5784 5785
                read_block = prog.block(0)
                read_device = self._get_device_info(read_block)
                read_dev_index = int(read_device.split(':')[1])
5786 5787 5788 5789 5790 5791 5792 5793 5794
                pair = (write_dev_index, read_dev_index)
                pair_key = write_dev_index * 1000 + read_dev_index
                if pair not in self._pipeline_pair:
                    self._pipeline_pair.append(pair)
                    self._pp_ring_map[pair_key] = self.ring_id
                    ring_id = self.ring_id
                    self.ring_id += 1
                else:
                    ring_id = self._pp_ring_map[pair_key]
5795 5796 5797

                write_block._insert_op(
                    index=0,
5798
                    type='send_v2',
5799 5800 5801
                    inputs={
                        'X': write_block.var(var_name),
                    },
5802
                    attrs={
5803 5804 5805 5806
                        self._op_device_key:
                        write_device,
                        'use_calc_stream':
                        False,
5807 5808
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5809 5810 5811 5812 5813 5814
                        self._op_role_key:
                        self._op_role.LRSched,
                        'peer':
                        read_dev_index,
                        'ring_id':
                        ring_id
5815 5816 5817
                    })
                read_block._insert_op(
                    index=0,
5818
                    type='recv_v2',
5819 5820
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5821 5822 5823 5824 5825 5826 5827 5828
                        'out_shape':
                        read_block.var(var_name).shape,
                        'dtype':
                        read_block.var(var_name).dtype,
                        self._op_device_key:
                        read_device,
                        'use_calc_stream':
                        False,
5829 5830
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5831 5832 5833 5834 5835 5836
                        self._op_role_key:
                        self._op_role.LRSched,
                        'peer':
                        write_dev_index,
                        'ring_id':
                        ring_id
5837
                    })
5838 5839 5840 5841 5842 5843
                read_block._insert_op(
                    index=1,
                    type='c_sync_comm_stream',
                    inputs={'X': [read_block.var(var_name)]},
                    outputs={'Out': [read_block.var(var_name)]},
                    attrs={
5844 5845
                        self._op_device_key:
                        read_device,
5846 5847
                        # A trick to make the role LRSched to avoid copy every
                        # microbatch
5848 5849 5850 5851
                        self._op_role_key:
                        self._op_role.LRSched,
                        'ring_id':
                        ring_id
5852 5853 5854 5855 5856 5857 5858 5859 5860
                    })

    def _is_gradient_clip_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/gradient_clip")

    def _is_regularization_op(self, op):
        return op.desc.has_attr("op_namescope") \
            and op.desc.attr("op_namescope").startswith("/regularization")
H
hutuxian 已提交
5861

5862 5863 5864 5865 5866
    def _is_weight_decay_op(self, op):
        # in AdamW namescope is /optimizer_*/weight decay/
        return op.desc.has_attr("op_namescope") \
            and 'weight decay' in op.desc.attr("op_namescope")

5867 5868 5869 5870 5871
    def _get_input_output_info(self, block):
        '''
        Get info of op input and output.
        '''
        # A map from output var to op which generate it.
5872
        output_var_to_op = defaultdict(list)
5873
        # A map from var to op which takes it as input.
5874
        input_var_to_op = defaultdict(list)
5875

5876
        for index, op in enumerate(block.ops):
5877
            for var_name in op.input_arg_names:
5878
                input_var_to_op[var_name].append([op, index])
5879
            for var_name in op.output_arg_names:
5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
                output_var_to_op[var_name].append([op, index])

        return output_var_to_op, input_var_to_op

    def _optimize_forward_send_sync(self, program):
        """
        optimize forward send's sync_comm_stream schedule
        """
        if self.schedule_mode != '1F1B': return

        block = program.block(0)

5892
        recv_type = 'recv_v2' if self.mp_degree == 1 else 'partial_recv'
5893 5894
        backward_recv_index = None
        for index, op in enumerate(block.ops):
5895
            if op.type == recv_type and self._is_backward_op(op):
5896 5897 5898
                backward_recv_index = index
                break

5899
        # last pipeline stage
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922
        if backward_recv_index is None: return

        offset = 0
        for index, op in enumerate(list(block.ops)):
            if index >= backward_recv_index: break
            if op.type == 'c_sync_comm_stream' and op.has_attr('pipeline_flag'):
                var_name = op.input_arg_names[0]
                var = block.var(var_name)
                block._remove_op(index + offset, sync=False)
                offset -= 1
                # NOTE:
                # 1. When the backward recv is completed, it indicates
                # that the forward send is completed too. So we only need
                # to use the NOP op to prevent memory release.
                # 2. Because we removed sync_comm_op,
                # we will insert NOP after recv_op.
                block._insert_op_without_sync(
                    index=backward_recv_index,
                    type='nop',
                    inputs={'X': [var]},
                    outputs={'Out': [var]},
                    attrs={self._op_role_key: self._op_role.Backward})
        block._sync_with_cpp()
5923

5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959
    def _mv_head_recv(self, program):
        """
        A pass to move the recv op to the beginning of
        the forward/backward phase
        """
        forward_insert_index = 0
        backward_insert_index = None
        block = program.global_block()
        num_ops = len(program.global_block().ops)
        for i in range(num_ops):
            insert_index = None
            op = program.global_block().ops[i]
            op_role = int(op.attr(self._op_role_key))
            if op_role == int(
                    self._op_role.Backward) and backward_insert_index is None:
                backward_insert_index = i
            if op.type != "partial_recv" and op.type != "partial_allgather" and op.type != "nop" and op.type != "recv_v2":
                continue
            if op_role == int(self._op_role.Forward):
                if i == forward_insert_index:
                    forward_insert_index += 1
                    continue
                insert_index = forward_insert_index
            elif op_role == int(self._op_role.Backward):
                if i == backward_insert_index:
                    backward_insert_index += 1
                    continue
                insert_index = backward_insert_index
            else:
                raise ValueError("Unknown op_role: {}".format(op_role))
            op_inputs = dict()
            for name in op.input_names:
                op_inputs[name] = op.input(name)
            op_outputs = dict()
            for name in op.output_names:
                op_outputs[name] = op.output(name)
5960 5961 5962 5963 5964
            block._insert_op_without_sync(index=insert_index,
                                          type=op.type,
                                          inputs=op_inputs,
                                          outputs=op_outputs,
                                          attrs=op.all_attrs())
5965 5966 5967 5968 5969 5970 5971
            block._remove_op(i + 1)
            if op_role == int(self._op_role.Forward):
                forward_insert_index += 1
            elif op_role == int(self._op_role.Backward):
                backward_insert_index += 1
        block._sync_with_cpp()

5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
    def _check_pipeline_persist_var(self, program):
        """
        Pipeline may need multiple forward before
        """
        block = program.global_block()

        persist_output = set()
        used_in_backward = set()
        for op in block.ops:
            if self._is_forward_op(op):
                for var_name in op.output_arg_names:
                    var = block.vars[var_name]
                    if var.persistable:
                        persist_output.add(var_name)
            elif self._is_backward_op(op):
                for var_name in op.input_arg_names:
                    if var_name in persist_output:
                        used_in_backward.add(var_name)
        if len(used_in_backward) == 0:
            return
        warnings.warn(
            "The pipeline requires multiple forward calculations before backward, "
            "so when the persistable var is changed in the forward, it may cause "
            "errors in the backward calculation who using this persistable var. "
            "However, some backward op don't need this var(NoNeedBufferVars), "
            "there will be no error at this time.\n"
            "So please check these persistable vars which changed in "
            "forward and used in backward:\n{}".format(used_in_backward))

H
hutuxian 已提交
6001 6002 6003 6004 6005
    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
6006
        main_block = loss.block
6007
        self.origin_main_block = main_block
6008
        main_program = main_block.program
6009 6010
        if startup_program is None:
            startup_program = default_startup_program()
6011

6012 6013
        pipeline_opt = main_program._pipeline_opt
        assert pipeline_opt, 'Please use pipeline with fleet.'
6014 6015 6016 6017 6018 6019 6020
        required_keys = [
            'local_rank',
            'schedule_mode',
            'micro_batch_size',
            'ring_id',
            'global_ring_id',
            'use_sharding',
6021 6022
            'mp_degree',
            'mp_rank',
6023 6024
        ]
        for key in required_keys:
6025
            assert key in pipeline_opt, \
6026
                'Please use pipeline with fleet to use {}.'.format(key)
6027 6028 6029 6030 6031 6032 6033 6034
        self.local_rank = pipeline_opt['local_rank']
        self.schedule_mode = pipeline_opt['schedule_mode']
        self.micro_batch_size = pipeline_opt['micro_batch_size']
        self.use_sharding = pipeline_opt['use_sharding']
        self.ring_id = pipeline_opt['ring_id']
        self.global_ring_id = pipeline_opt['global_ring_id']
        self.mp_degree = pipeline_opt['mp_degree']
        self.mp_rank = pipeline_opt['mp_rank']
6035
        self.scale_gradient = pipeline_opt.get('scale_gradient', False)
6036 6037
        assert self.mp_degree >= 1
        assert 0 <= self.mp_rank < self.mp_degree
6038 6039 6040 6041

        optimize_ops, params_grads = self._optimizer.minimize(
            loss, startup_program, parameter_list, no_grad_set)
        self._param_device_map = self._origin_optimizer._param_device_map
6042

6043 6044
        self.output_var_to_op, self.input_var_to_op = \
            self._get_input_output_info(main_block)
6045 6046 6047
        # Step1: add default op_device attribute for ops.
        self._add_op_device_attr(main_block)
        device_list = self._check_validation(main_block)
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058

        def device_cmp(device1, device2):
            dev1_id = int(device1.split(':')[1])
            dev2_id = int(device2.split(':')[1])
            if dev1_id < dev2_id:
                return -1
            elif dev1_id > dev2_id:
                return 1
            else:
                return 0

6059 6060 6061 6062 6063
        sorted_device_list = sorted(device_list, key=cmp_to_key(device_cmp))
        assert sorted_device_list == device_list, (
            "With pipeline parallelism, you must use gpu devices one after "
            "another in the order of their ids.")
        # Step2: add send and recv ops between section boundaries
6064
        self._insert_sendrecv_ops_for_boundaries(main_block)
6065

6066
        # Step3: split program into sections and add pairs of
6067 6068
        # send and recv ops for data var.
        main_program = main_block.program
6069
        program_list = self._split_program(main_program, device_list)
6070
        for p in program_list:
6071
            self._create_vars(p.global_block(), main_block)
6072

L
lilong12 已提交
6073 6074 6075 6076 6077 6078 6079 6080
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            self.local_rank = int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
            assert self.local_rank < len(device_list), (
                "Manually specified "
                "pipeline stage must be less than total number of pipeline "
                "stages.")
        else:
            self.local_rank %= len(device_list)
6081 6082 6083
        # Step3.5: optimize forward send sync_comm to overlap send and recv
        self._optimize_forward_send_sync(program_list[self.local_rank])

6084
        # Step4: Special Case: process persistable vars that exist in
6085
        # multiple sections
6086
        # FIXME
6087 6088
        # self._process_persistable_vars_in_multi_sections(
        #     main_program, startup_program, program_list)
6089

6090
        # Step5: Add sub blocks for section programs
6091 6092
        self._add_sub_blocks(main_block, program_list)

6093
        place_list = []
6094 6095
        for dev in device_list:
            dev_index = int(dev.split(":")[1])
6096 6097 6098 6099
            if core.is_compiled_with_cuda():
                place_list.append(core.CUDAPlace(dev_index % 1))
            elif core.is_compiled_with_npu():
                place_list.append(core.NPUPlace(dev_index % 1))
6100

6101
        # Step6: Split startup program
6102 6103
        new_startup_program = self._split_startup_program(
            startup_program, self.local_rank)
6104 6105 6106 6107

        startup_program._pipeline_opt = {
            "startup_program": new_startup_program,
        }
6108
        real_block = program_list[self.local_rank].global_block()
6109 6110
        if not self.scale_gradient:
            self._insert_loss_scale(real_block)
6111
        if not self.use_sharding:
6112
            # Step7: clear gradients before each mini-batch and
6113 6114 6115 6116 6117
            # accumulate gradients during backward
            self._rename_gradient_var_name(real_block)
            real_block._sync_with_cpp()
            self._accumulate_gradients(real_block)
            real_block._sync_with_cpp()
6118

6119 6120 6121 6122
        if core.is_compiled_with_cuda():
            place_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        elif core.is_compiled_with_npu():
            place_id = int(os.getenv("FLAGS_selected_npus", "0"))
6123 6124 6125
        # A pass to move the recv op to the beginning of
        # the forward/backward phase
        self._mv_head_recv(program_list[self.local_rank])
6126 6127 6128 6129 6130

        # A pass to check pipeline persist var which changed in
        # forward and used in backward
        self._check_pipeline_persist_var(program_list[self.local_rank])

6131
        main_program._pipeline_opt = {
H
hutuxian 已提交
6132 6133
            "trainer": "PipelineTrainer",
            "device_worker": "Section",
6134
            "pipeline_stage": self.local_rank,
6135
            "num_pipeline_stages": len(device_list),
6136
            "schedule_mode": self.schedule_mode,
6137
            "inner_parallelism": len(device_list),
6138 6139
            "section_program": program_list[self.local_rank],
            "place": place_list[self.local_rank],
6140
            "place_id": place_id,
6141
            "sync_steps": -1,
L
lilong12 已提交
6142
            "num_microbatches": self._num_microbatches,
H
hutuxian 已提交
6143 6144
            "start_cpu_core_id": self._start_cpu_core_id,
        }
6145
        return optimize_ops, params_grads, program_list, self._pipeline_pair, self._pp_ring_map
M
mapingshuo 已提交
6146 6147


M
mapingshuo 已提交
6148 6149
class RecomputeOptimizer(Optimizer):
    """
6150
	:api_attr: Static Graph
S
swtkiwi 已提交
6151

M
mapingshuo 已提交
6152 6153 6154
    Recompute Optimizer Wrapper

    Normally, a training step contains three sub-steps: first, run forward
6155
    Operators to calculate the loss; second, run backward Operators to
M
mapingshuo 已提交
6156 6157 6158
    calculate gradient of the parameters; third, apply optimization method
    to update the value of the parameters.

6159
    In the forward computation process, all variables that are needed by
M
mapingshuo 已提交
6160 6161 6162
    backward computation process will be kept in memory, which occupy a great
    amount of memory when the network becomes very deep.

6163
    Recompute split the network to k segments. In each segment, It will
M
mapingshuo 已提交
6164 6165
    recompute the forward Operators, before running backward operators. It is
    very helpful for saving memory.
6166

M
mapingshuo 已提交
6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
    The Variables that separate a network to segments are called as checkpoints,
    and users should set it manually. The usage is very simple:

    Args:
        optimizer (Optimizer): The optimizer that is applied to parameters.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
            def gen_data():
                return {"x": np.random.random(size=(32, 32)).astype('float32'),
                "y": np.random.randint(2, size=(32, 1)).astype('int64')}
            def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                print(input_x)
                fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                sum_cost = fluid.layers.reduce_mean(cost)
                return sum_cost, fc_1, prediction
            input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
            input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
            cost, fc_1, pred = mlp(input_x, input_y)

            sgd = fluid.optimizer.Adam(learning_rate=0.01)
            sgd = fluid.optimizer.RecomputeOptimizer(sgd)
            sgd._set_checkpoints([fc_1, pred])
            sgd.minimize(cost)

            print("Finished optimize")
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            step = 10

            for i in range(step):
                cost_val = exe.run(feed=gen_data(),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
                print("step=%d cost=%f" % (i, cost_val[0]))

    """

    def __init__(self, optimizer):
J
Jiabin Yang 已提交
6212
        if framework._non_static_mode():
Z
zhongpu 已提交
6213
            raise Exception("In dygraph, don't support RecomputeOptimizer.")
M
mapingshuo 已提交
6214 6215
        self._optimizer = optimizer
        self._checkpoints = None
M
mapingshuo 已提交
6216 6217
        self._learning_rate = self._optimizer._learning_rate
        self._learning_rate_map = self._optimizer._learning_rate_map
J
JZ-LIANG 已提交
6218
        self.enable_offload = False
M
mapingshuo 已提交
6219 6220

    def _set_checkpoints(self, checkpoints):
6221 6222
        """
        Args:
6223
            checkpoints (list): List of Variable or string
6224 6225 6226 6227 6228 6229
        """
        assert isinstance(
            checkpoints, list
        ), "_checkpoints should be a list of Variable or a list of String"
        for ckpt in checkpoints:
            assert (
6230 6231
                isinstance(ckpt, six.string_types)
                or isinstance(ckpt, Variable)
6232
            ), "_checkpoints should be a list of Variable or a list of String"
M
mapingshuo 已提交
6233 6234
        self._checkpoints = checkpoints

6235
    # should enable offload before calling backward
J
JZ-LIANG 已提交
6236 6237 6238
    def _enable_offload(self):
        self.enable_offload = True

6239 6240
    @framework.deprecate_stat_dict
    def load(self, state_dict):
M
mapingshuo 已提交
6241
        """
6242
	    :api_attr: Static Graph
S
swtkiwi 已提交
6243

M
mapingshuo 已提交
6244 6245 6246 6247
        load function is not supported by Recompute Optimizer for now.
        :return: None

        Args:
6248
            state_dict: the dict load by load_persistable method
M
mapingshuo 已提交
6249 6250 6251 6252 6253 6254

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.compat as cpt
6255

M
mapingshuo 已提交
6256 6257 6258 6259 6260 6261
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6262

M
mapingshuo 已提交
6263 6264 6265 6266
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6267

M
mapingshuo 已提交
6268 6269 6270 6271
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([fc_1, pred])
                try:
6272 6273
                    state_dict = {}
                    sgd.load(state_dict)
M
mapingshuo 已提交
6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
                except NotImplementedError as e:
                    print(cpt.get_exception_message(e))
        """
        raise NotImplementedError(
            "load function is not supported by Recompute Optimizer for now")

    def apply_gradients(self, params_grads):
        """
        call apply_gradients function of self._optimizer.

        Args:
            params_grads (list): list of (param, grad) pair to do optimization.

        Returns:
            list: A list of operators appended to the current program.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import paddle.fluid.framework as framework

                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction


                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")

                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6311
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6312 6313 6314 6315
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6316
                    no_grad_set=None)
M
mapingshuo 已提交
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326

                program = cost.block.program
                with framework.program_guard(program, None):
                    optimize_ops = sgd.apply_gradients(params_grads)

                print("Finished apply gradients")
        """

        return self._optimizer.apply_gradients(params_grads=params_grads)

J
JZ-LIANG 已提交
6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351
    def _creat_vars(self, varname):
        pinned_var_name = unique_name.generate(varname + "@Pinned")
        fetched_var_name = unique_name.generate(varname + "@Fetch")

        pinned_var = self._main_program.global_block().create_var(
            name=pinned_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=True)

        fetch_var = self._main_program.global_block().create_var(
            name=fetched_var_name,
            shape=self.checkpoint_shape,
            dtype=self._main_program.global_block().var(varname).dtype,
            persistable=False,
            stop_gradient=False)

        return pinned_var_name, fetched_var_name

    def _append_fill_constant_ops(self, startup_program):
        """
        add fill_constant_ops to the end of the prog

        we should fill the pinned vars before runing the main_prog
6352 6353 6354
        to instantiate their tensor hold_, which could tell us whether
        the host memory could hold all the checkpoints from all the
        GPU devices in this node.
J
JZ-LIANG 已提交
6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368
        """
        op_role = 0
        block = startup_program.global_block()
        fill_constant_vars = self.checkpoint_name2pinned_name.values()
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        for varname in fill_constant_vars:
            var = self._main_program.global_block().var(varname)
            # NOTE (JZ-LIANG) to pre-allocate the CUDAPinned MEM
            pinned_var = block.create_var(
                name=varname,
                shape=self.checkpoint_shape,
                dtype=self._main_program.global_block().var(var.name).dtype,
                persistable=False,
                stop_gradient=True)
6369 6370 6371 6372 6373 6374 6375 6376 6377
            block.append_op(type='fill_constant',
                            outputs={'Out': varname},
                            attrs={
                                "shape": var.shape,
                                "dtype": var.dtype,
                                "value": 0.0,
                                "place_type": 2,
                                OP_ROLE_KEY: op_role,
                            })
J
JZ-LIANG 已提交
6378 6379 6380 6381

        return

    def _insert_async_memcpy_op(self, insert_idx, src_varname, dst_varname,
6382
                                op_role, dst_place_type):
J
JZ-LIANG 已提交
6383 6384 6385 6386 6387 6388 6389 6390
        OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
        self.block._insert_op_without_sync(
            insert_idx,
            type='memcpy',
            inputs={'X': [self._main_program.global_block().var(src_varname)]},
            outputs={
                'Out': [self._main_program.global_block().var(dst_varname)]
            },
6391 6392 6393 6394
            attrs={
                "dst_place_type": int(dst_place_type),
                OP_ROLE_KEY: op_role
            })
J
JZ-LIANG 已提交
6395 6396 6397 6398 6399 6400 6401

    def _insert_fetch_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to fetch {} from Pinned Memory, but it is NOT a checkpoint".format(
            varname)

        pinned_varname = self.checkpoint_name2pinned_name[varname]
        fetch_varname = self.checkpoint_name2fetch_name[varname]
6402
        self._insert_async_memcpy_op(idx, pinned_varname, fetch_varname, 1, 1)
J
JZ-LIANG 已提交
6403 6404 6405 6406 6407

    def _insert_offload_op(self, idx, varname):
        assert varname in self.checkpoint_name2pinned_name, "Try to offload {} to Pinned Memory, but it is NOT a checkpoint".format(
            varname)
        pinned_varname = self.checkpoint_name2pinned_name[varname]
6408
        self._insert_async_memcpy_op(idx, varname, pinned_varname, 0, 2)
J
JZ-LIANG 已提交
6409 6410

    def _insert_sync_op(self, op_idx, checkpoint_name):
6411
        # single stream offload no need sync
J
JZ-LIANG 已提交
6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
        pass

    def _record_fetch_op(self, idx):
        assert len(self.un_fetch_checkpoint_names
                   ) > 0, "Could NOT found checkpoint to fetch"
        checkpoint_name = self.un_fetch_checkpoint_names.pop(-1)
        logging.debug("Record fetch [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("fetch", checkpoint_name)

        return checkpoint_name

    def _record_offload_op(self, idx, checkpoint_name):
        expected_checkpoint_name = self.un_offload_checkpoint_names.pop(0)
        assert checkpoint_name == expected_checkpoint_name, "expected to offload [{}] but got [{}]".format(
            expected_checkpoint_name, checkpoint_name)
        logging.debug("Record offload [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("offload", checkpoint_name)

    def _record_sync_op(self, idx, checkpoint_name):
        assert checkpoint_name not in self.synced_checkpoints, "Try to sync the checkpoint [{}] twice".format(
            checkpoint_name)
        self.synced_checkpoints.add(checkpoint_name)
        logging.debug("Record offload sync [{}]".format(checkpoint_name))
        self.idx2insertions[idx] = ("sync", checkpoint_name)

    def _parse_backward(self):

        self.idx2insertions = {}
6440
        # don't offload the last checkpoints, to favor throughput
J
JZ-LIANG 已提交
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472
        self.un_fetch_checkpoint_names = self.sorted_checkpoint_names[:]
        self.un_fetch_checkpoint_names.pop(-1)
        need_fetch_checkpoint_names = self.un_fetch_checkpoint_names[:]
        self.checkpoint_usage_count = {}
        for checkpoint_name in self.un_fetch_checkpoint_names:
            self.checkpoint_usage_count[checkpoint_name] = 0

        self.bw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 1:
                self.bw_strart_op_idx = idx
                break

        assert self.bw_strart_op_idx < len(
            self.block.ops), "Could NOT found backword op in prog"

        # fetch second to last checkpoint at the beginning of BW
        fetched_checkpoint_varname = self._record_fetch_op(
            self.bw_strart_op_idx)
        last_last_fetch_checkpoint = None

        for i, op in enumerate(self.block.ops[self.bw_strart_op_idx:]):
            idx = self.bw_strart_op_idx + i
            input_vars = op.desc.input_arg_names()

            for input_var in input_vars:
                if input_var in need_fetch_checkpoint_names:
                    if input_var not in self.un_fetch_checkpoint_names:
                        # fetch the  offloade checkpoint when the first usage of its previous one
                        if self.checkpoint_usage_count[input_var] == 0:
                            # TODO (JZ-LIANG) sync memcpy_stream if extra stream for memcpy
                            second_to_last_fetch_checkpoint = fetched_checkpoint_varname
6473
                            # there is NO fetch ahead the first checkpoint
J
JZ-LIANG 已提交
6474 6475 6476 6477
                            if input_var != self.sorted_checkpoint_names[0]:
                                fetched_checkpoint_varname = self._record_fetch_op(
                                    idx)

6478
                        # should check the current used checkpoint is ths last fetch one
J
JZ-LIANG 已提交
6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503
                        assert second_to_last_fetch_checkpoint == input_var, "Current recompute segment should use [{}] BUT got [{}]".format(
                            second_to_last_fetch_checkpoint, input_var)
                        # rename
                        self.block.ops[idx]._rename_input(
                            input_var,
                            self.checkpoint_name2fetch_name[input_var])
                        self.checkpoint_usage_count[input_var] += 1
                    else:
                        raise ValueError(
                            "use checkpoint [{}] before fetch in BW".format(
                                input_var))

        assert len(self.un_fetch_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)

    def _update_backward(self):
        if len(self.idx2insertions) == 0:
            return
        total_op = len(self.block.ops)
        for op_idx in reversed(range(self.bw_strart_op_idx, total_op)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "fetch":
                    self._insert_fetch_op(op_idx, checkpoint_name)
6504 6505
                    logging.debug(
                        "Insert [{}] fetch op.".format(checkpoint_name))
J
JZ-LIANG 已提交
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
                    logging.debug("Sync [{}] fetch op.".format(checkpoint_name))
        self.block._sync_with_cpp()
        assert len(
            self.idx2insertions) == 0, "{} checkpoints left un-Fecthed".format(
                [ele[1] for ele in self.idx2insertions.values()])

    def _parse_forward(self):

        self.idx2insertions = {}
6518
        # don't offload the last checkpoints, faster, less memory saving
J
JZ-LIANG 已提交
6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538
        self.un_offload_checkpoint_names = self.sorted_checkpoint_names[:]
        last_checkpoint = self.un_offload_checkpoint_names.pop(-1)
        need_offload_checkpoint_names = self.un_offload_checkpoint_names[:]
        self.checkpoint_usage_count_and_idx = {}
        for checkpoint_name in self.un_offload_checkpoint_names:
            self.checkpoint_usage_count_and_idx[checkpoint_name] = {
                'count': 0,
                'idx': -1
            }
        self.synced_checkpoints = set()
        self.fw_strart_op_idx = len(self.block.ops)
        for idx, op in enumerate(self.block.ops):
            if int(op.desc.attr("op_role")) == 0:
                self.fw_strart_op_idx = idx
                break

        assert self.fw_strart_op_idx < len(
            self.block.ops), "Could NOT found Forward op in prog"
        last_offload_checkpoint = None

6539 6540
        for i, op in enumerate(
                self.block.ops[self.fw_strart_op_idx:self.bw_strart_op_idx]):
J
JZ-LIANG 已提交
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571

            idx = self.fw_strart_op_idx + i
            output_vars = op.desc.output_arg_names()
            input_vars = op.desc.input_arg_names()

            for output_var in output_vars:
                if output_var in need_offload_checkpoint_names:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)

                    if output_var in self.un_offload_checkpoint_names:
                        # insert sync op if last checkpoint has not been sync
                        if last_offload_checkpoint != None:
                            if self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['count'] == 0:
                                self._record_sync_op(idx,
                                                     last_offload_checkpoint)
                            else:
                                last_usage_idx = self.checkpoint_usage_count_and_idx[
                                    last_offload_checkpoint]['idx']
                                assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                                    last_offload_checkpoint)
                                self._record_sync_op(last_usage_idx + 1,
                                                     last_offload_checkpoint)
                        # insert offload op after the checkpoint's generation op
                        self._record_offload_op(idx + 1, output_var)
                        last_offload_checkpoint = output_var
                    else:
                        raise ValueError(
6572 6573
                            "There should be just ONE op that output checkpoint [{}]"
                            .format(output_var))
J
JZ-LIANG 已提交
6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594
                # need to sync the last need to offload checkpoint before the last checkpoint as output op
                if output_var == last_checkpoint:
                    assert len(
                        output_vars
                    ) == 1, "chekpoint should be the only Output of a certain op, but [{}] is from [{}]".format(
                        output_var, op)
                    assert last_offload_checkpoint == self.sorted_checkpoint_names[
                        -2], "the last offload chekpoint before [{}] is suppose to be [{}], but got [{}]".format(
                            last_checkpoint, self.sorted_checkpoint_names[-2],
                            last_offload_checkpoint)
                    # sync if last checkpoint has not been sync
                    if self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx'] == 0:
                        self._record_sync_op(idx, last_offload_checkpoint)
                    else:
                        last_usage_idx = self.checkpoint_usage_count_and_idx[
                            last_offload_checkpoint]['idx']
                        assert last_usage_idx > 0, "last_usage_idx of checkpoint [{}] should large than 0".format(
                            last_offload_checkpoint)
                        self._record_sync_op(last_usage_idx + 1,
                                             last_offload_checkpoint)
6595
            # record checkpoint usage
J
JZ-LIANG 已提交
6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
            for input_var in input_vars:
                if input_var in need_offload_checkpoint_names:
                    assert input_var not in self.synced_checkpoints, "checkpoint [{}] used after sync".format(
                        input_var)
                    self.checkpoint_usage_count_and_idx[input_var]['count'] += 1
                    self.checkpoint_usage_count_and_idx[input_var]['idx'] = idx

        assert len(self.un_offload_checkpoint_names
                   ) == 0, "{} checkpoints have NOT been Recorded".format(
                       self.un_fetch_checkpoint_names)
        assert len(self.synced_checkpoints) == len(
            need_offload_checkpoint_names
        ), "{} checkpoints have NOT been Recorded".format(
            set(need_offload_checkpoint_names) - set(self.synced_checkpoints))

    def _update_forward(self):
        if len(self.idx2insertions) == 0:
            return
        for op_idx in reversed(
                range(self.fw_strart_op_idx, self.bw_strart_op_idx)):
            if op_idx in self.idx2insertions:
                operation, checkpoint_name = self.idx2insertions[op_idx]
                if operation == "offload":
                    self._insert_offload_op(op_idx, checkpoint_name)
6620 6621
                    logging.debug(
                        "Insert [{}] offload op.".format(checkpoint_name))
J
JZ-LIANG 已提交
6622 6623 6624
                    del self.idx2insertions[op_idx]
                elif operation == "sync":
                    self._insert_sync_op(op_idx, checkpoint_name)
6625 6626
                    logging.debug(
                        "Insert [{}] offload_sync op.".format(checkpoint_name))
J
JZ-LIANG 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
                    del self.idx2insertions[op_idx]

        self.block._sync_with_cpp()
        assert len(self.idx2insertions
                   ) == 0, "{} checkpoints left un-Offloaded".format(
                       [ele[1] for ele in self.idx2insertions.values()])

    def _check_offload_fetch(self):
        # TODO(JZ-LIANG) the single stream offload need no sync
        pass

    def _offload(self, loss, startup_program=None):
        """
        core steps for recompute offload
6641
        1. create pinned vars and temp vars
J
JZ-LIANG 已提交
6642 6643 6644 6645 6646 6647 6648
        2. parse & update Forward pass: offload, sync
        3. parse & update Backward pass: rename, fetch, sync
        4. verify the correctness
        """
        self._main_program = loss.block.program
        self.block = loss.block
        if startup_program == None:
J
JZ-LIANG 已提交
6649
            startup_program = paddle.static.default_startup_program()
J
JZ-LIANG 已提交
6650 6651 6652

        with program_guard(self._main_program, startup_program):
            assert len(self.checkpoint_shape) > 0, (
6653 6654
                "checkpoints shape {} should be an non empty list like: [12, 512, 1024]"
                .format(self.checkpoint_shape))
J
JZ-LIANG 已提交
6655
            assert all([ele > 0 for ele in self.checkpoint_shape]), (
6656 6657
                "all ele in checkpoints shape {} should be a determined integer larger than 0"
                .format(self.checkpoint_shape))
J
JZ-LIANG 已提交
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679
            self.checkpoint_name2pinned_name = dict()
            self.checkpoint_name2fetch_name = dict()
            for checkpoint_varname in self.sorted_checkpoint_names:
                pinned_var_name, fetch_var_name = self._creat_vars(
                    checkpoint_varname)
                self.checkpoint_name2pinned_name[
                    checkpoint_varname] = pinned_var_name
                self.checkpoint_name2fetch_name[
                    checkpoint_varname] = fetch_var_name
            self._append_fill_constant_ops(startup_program)
            # TODO (JZ-LIANG) to provide two offload stragtegy in future
            # step 2. parse & update FW: rename, offload, sync
            self._parse_backward()
            self._update_backward()
            # step 3. parse & update BW: rename, offload, sync
            self._parse_forward()
            self._update_forward()
            # step 4. verify the correctness
            self._check_offload_fetch()

        return

M
mapingshuo 已提交
6680 6681 6682 6683 6684
    def backward(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None,
6685
                 callbacks=None):
M
mapingshuo 已提交
6686 6687 6688 6689 6690 6691 6692
        """
        call append_backward with checkpoints.

        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
6693 6694
            parameter_list (list): list of Variables or Variable.names to update.
            no_grad_set (set|None): set of Variables or Variables.names should be ignored.
M
mapingshuo 已提交
6695 6696 6697 6698 6699 6700 6701 6702
            callbacks (list|None): list of callables to run when appending backward
                operator for one parameter.
            checkpoints (list): list of Variables as checkpoints

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
6703

M
mapingshuo 已提交
6704 6705 6706 6707 6708 6709
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
                    return sum_cost, fc_1, prediction
6710 6711


M
mapingshuo 已提交
6712 6713 6714 6715
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6716

M
mapingshuo 已提交
6717 6718
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6719
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6720 6721 6722 6723
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6724
                    no_grad_set=None)
M
mapingshuo 已提交
6725 6726
                print("Finished backward")
        """
6727 6728
        assert (self._checkpoints
                is not None), "You should call _set_checkpoints first"
M
mapingshuo 已提交
6729

J
Jiabin Yang 已提交
6730
        if framework._non_static_mode():
M
mapingshuo 已提交
6731 6732 6733 6734 6735 6736
            raise NotImplementedError(
                "DyGraph current does not support recompute")

        self._dtype = loss.dtype
        program = loss.block.program
        with program_guard(program, startup_program):
6737 6738 6739 6740 6741 6742 6743
            checkpoint_vars = []
            for ckpt in self._checkpoints:
                if isinstance(ckpt, Variable):
                    checkpoint_vars.append(ckpt)
                else:
                    checkpoint_vars.append(loss.block.var(ckpt))

J
JZ-LIANG 已提交
6744 6745 6746 6747 6748 6749 6750 6751
            # allow return to non-recompute when checkpoints is empty
            if len(checkpoint_vars) > 0:
                params_grads, sorted_checkpoint_names = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    checkpoints=checkpoint_vars)
            else:
6752 6753 6754 6755
                params_grads = append_backward(loss,
                                               parameter_list,
                                               no_grad_set,
                                               checkpoints=checkpoint_vars)
J
JZ-LIANG 已提交
6756 6757 6758 6759 6760

        if self.enable_offload:
            self.sorted_checkpoint_names = sorted_checkpoint_names
            self._offload(loss, startup_program=startup_program)

M
mapingshuo 已提交
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        """
        call the apply_optimize function of self._optimizer
        Args:
            loss (Variable): loss variable to run optimizations.
            startup_program (Program): startup_program for initializing parameters
                in `parameter_list`.
            params_grads (list): list of (param, grad) pair to do optimization.
        Examples:
            .. code-block:: python
                import paddle.fluid as fluid
6774

M
mapingshuo 已提交
6775 6776 6777 6778 6779
                def mlp(input_x, input_y, hid_dim=128, label_dim=2):
                    fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
                    prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
                    cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
                    sum_cost = fluid.layers.reduce_mean(cost)
6780 6781
                    return sum_cost, fc_1, prediction

M
mapingshuo 已提交
6782 6783 6784 6785
                input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                cost, fc_1, pred = mlp(input_x, input_y)
                print("Finished FF")
6786

M
mapingshuo 已提交
6787 6788
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
6789
                sgd._set_checkpoints([fc_1, pred])
M
mapingshuo 已提交
6790 6791 6792 6793
                params_grads = sgd.backward(
                    cost,
                    startup_program=None,
                    parameter_list=None,
6794
                    no_grad_set=None)
6795

M
mapingshuo 已提交
6796 6797
                optimize_ops = sgd.apply_optimize(
                    cost, startup_program=None, params_grads=params_grads)
6798

M
mapingshuo 已提交
6799 6800 6801
                print("Finished apply_optimize")
        """

Y
Yuang Liu 已提交
6802 6803 6804
        func = self._optimizer.apply_optimize if hasattr(
            self._optimizer,
            'apply_optimize') else self._optimizer._apply_optimize
6805 6806 6807
        return func(loss,
                    startup_program=startup_program,
                    params_grads=params_grads)
M
mapingshuo 已提交
6808 6809 6810 6811 6812

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
6813
                 no_grad_set=None):
6814
        assert isinstance(loss, Variable), "The loss should be an Variable."
6815 6816
        assert (self._checkpoints
                is not None), "You should call _set_checkpoints first"
J
Jiabin Yang 已提交
6817
        if framework._non_static_mode():
M
mapingshuo 已提交
6818 6819
            raise NotImplementedError(
                "DyGraph current does not support recompute")
6820 6821 6822 6823
        params_grads = self.backward(loss,
                                     startup_program=startup_program,
                                     parameter_list=parameter_list,
                                     no_grad_set=no_grad_set)
M
mapingshuo 已提交
6824

6825 6826 6827
        optimize_ops = self.apply_optimize(loss,
                                           startup_program=startup_program,
                                           params_grads=params_grads)
M
mapingshuo 已提交
6828 6829 6830 6831

        return optimize_ops, params_grads


M
mapingshuo 已提交
6832
class LookaheadOptimizer(object):
6833
    r"""
6834
	:api_attr: Static Graph
S
swtkiwi 已提交
6835

M
mapingshuo 已提交
6836 6837 6838 6839
    This implements the Lookahead optimizer of the
    paper : https://arxiv.org/abs/1907.08610.

    Lookahead keeps two sets of params: the fast_params and
6840 6841
    the slow_params. inner_optimizer update fast_params every
    training step. Lookahead updates the slow_params and fast_params
M
mapingshuo 已提交
6842 6843 6844
    every k training steps as follows:

    .. math::
6845

M
mapingshuo 已提交
6846
        slow\_param_t &= slow\_param_{t-1} + \\alpha * (fast\_param_{t-1} - slow\_param_{t-1})
6847

M
mapingshuo 已提交
6848 6849 6850
	fast\_param_t &=  slow\_param_t

    Args:
6851
        inner_optimizer (Optimizer): The optimizer that update fast params step by step.
M
mapingshuo 已提交
6852 6853 6854 6855 6856 6857 6858 6859 6860
        alpha (float): The learning rate of Lookahead.
        k (int): The slow params is updated every k steps.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np
6861
            import numpy.random as random
M
mapingshuo 已提交
6862

6863
            paddle.enable_static()
6864

6865 6866 6867 6868
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            label = fluid.layers.data(name="label", shape=[1], dtype="int64")
            y = fluid.layers.fc(input=[x], size=2, act="softmax")
            loss = fluid.layers.cross_entropy(input=y, label=label)
6869
            loss = paddle.mean(x=loss)
6870 6871 6872 6873 6874 6875 6876 6877 6878
            sgd = fluid.optimizer.SGD(learning_rate=0.01)
            optimizer = fluid.optimizer.LookaheadOptimizer(sgd,
                                                alpha=0.5,
                                                k=5)
            optimizer.minimize(loss)
            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
M
mapingshuo 已提交
6879

6880 6881 6882
            def train_reader(limit=5):
                for i in range(limit):
                    yield random.random([2]).astype('float32'), random.random([1]).astype('int64')
6883

6884 6885
            feeder = fluid.DataFeeder(feed_list=[x, label], place=place)
            reader = paddle.batch(paddle.reader.shuffle(train_reader, buf_size=50000),batch_size=1)
6886

6887 6888 6889
            for batch_data in reader():
                exe.run(fluid.default_main_program(),
                feed=feeder.feed(batch_data))
M
mapingshuo 已提交
6890 6891 6892 6893 6894

    """

    def __init__(self, inner_optimizer, alpha=0.5, k=5):

J
Jiabin Yang 已提交
6895
        if framework._non_static_mode():
Z
zhongpu 已提交
6896
            raise Exception("In dygraph, don't support LookaheadOptimizer.")
M
mapingshuo 已提交
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
        assert (inner_optimizer is not None), "inner optimizer can not be None"
        assert (
            0.0 <= alpha <= 1.0
        ), "alpha should be larger or equal to 0.0, and less or equal than 1.0"
        assert (isinstance(k, int) and k > 0), "k should be a positive integer"

        self.inner_optimizer = inner_optimizer
        self.alpha = alpha
        self.k = k
        self.type = "lookahead"

    def minimize(self, loss, startup_program=None):

        # Apply inner optimizer to the main_program
        mini_out = self.inner_optimizer.minimize(
            loss, startup_program=startup_program)

        # Get startup_program and main_program
        if startup_program is None:
            startup_program = default_startup_program()
        main_block = loss.block

        # add some vars to the main_program
        params = [param.name for param in main_block.all_parameters()]
        param_to_slow = {}
        for param in params:
            fast_var = main_block.var(param)
            assert (fast_var is not None)
6925 6926 6927 6928
            slow_var = main_block.create_var(name=param + "@SLOW",
                                             shape=fast_var.shape,
                                             dtype=fast_var.dtype,
                                             persistable=True)
M
mapingshuo 已提交
6929 6930 6931 6932 6933 6934 6935
            param_to_slow[param] = slow_var

        # add some vars to the startup_program
        startup_block = startup_program.global_block()
        for param in params:
            fast_var = startup_block.var(param)
            assert (fast_var is not None)
6936 6937 6938 6939
            slow_var = startup_block.create_var(name=param + "@SLOW",
                                                shape=fast_var.shape,
                                                dtype=fast_var.dtype,
                                                persistable=True)
M
mapingshuo 已提交
6940

6941 6942 6943
            startup_block.append_op(type="assign",
                                    inputs={"X": fast_var},
                                    outputs={"Out": slow_var})
M
mapingshuo 已提交
6944

6945 6946
        with framework.program_guard(main_block.program, startup_program):
            # Add Var k to main prog and startup prog
6947 6948 6949 6950 6951
            k = layers.create_global_var(name="lookahead_k",
                                         shape=[1],
                                         value=int(self.k),
                                         dtype='int32',
                                         persistable=True)
M
mapingshuo 已提交
6952

6953
            # Add Var alpha to main prog and startup prog
6954 6955 6956 6957 6958
            alpha = layers.create_global_var(name="lookahead_alpha",
                                             shape=[1],
                                             value=float(self.alpha),
                                             dtype='float32',
                                             persistable=True)
M
mapingshuo 已提交
6959

6960
            # Add Var step
6961 6962 6963 6964 6965
            step = layers.create_global_var(name="lookahead_step",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True)
6966 6967 6968
            layers.increment(x=step, value=1.0, in_place=True)

            # lookahead
6969 6970 6971
            zero_var = layers.fill_constant(shape=[1],
                                            dtype='float32',
                                            value=0.0)
6972

6973 6974 6975
            one_var = layers.fill_constant(shape=[1],
                                           dtype='float32',
                                           value=1.0)
6976 6977 6978

            mod = layers.elementwise_mod(step, k)
            with layers.control_flow.Switch() as switch:
6979 6980 6981 6982 6983
                with switch.case(step == one_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        layers.assign(input=fast_var, output=slow_var)
6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996
                with switch.case(mod == zero_var):
                    for param_name in params:
                        fast_var = main_block.var(param_name)
                        slow_var = param_to_slow[param_name]
                        tmp_var = layers.elementwise_add(
                            layers.elementwise_mul(fast_var, alpha),
                            layers.elementwise_mul(
                                slow_var,
                                layers.elementwise_sub(one_var, alpha)))
                        layers.assign(input=tmp_var, output=slow_var)
                        layers.assign(input=tmp_var, output=fast_var)
                with switch.default():
                    pass
M
mapingshuo 已提交
6997
        return mini_out
6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054


class GradientMergeOptimizer(object):
    """
    Gradient Merge, also called as Gradient Accumulation,
    is a training strategy for larger batches. With this strategy,
    the parameter will not be updated until specific steps.

    For each step, the forward network and the backward network
    will run to calculate the gradient of the parameters.

    For every k step, the optimization network will run,
    applying a specific optimization method (such as SGD, Adam)
    to the parameters.

    Args:
        inner_optimizer (Optimizer): The specific optimization (such as SGD, Adam)
            which update the parameters
        k_steps (int): the update period of the parameters
        avg (bool): whether to average the gradients of each mini-batch,
            the default value is `True`

    Examples:
        .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        def gen_data(batch_size):
            return {"x": np.random.random(size=(batch_size, 32)).astype('float32'),
                    "y": np.random.random(size=(batch_size, 1)).astype('int64')}

        def mlp(input_x, input_y, hid_dim=128, label_dim=2):
            fc_1 = fluid.layers.fc(input=input_x, size=hid_dim)
            prediction = fluid.layers.fc(input=[fc_1], size=label_dim, act='softmax')
            cost = fluid.layers.cross_entropy(input=prediction, label=input_y)
            sum_cost = fluid.layers.reduce_mean(cost)
            return sum_cost, fc_1, prediction

        input_x = fluid.layers.data(name="x", shape=[32], dtype='float32')
        input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
        cost, fc_1, pred = mlp(input_x, input_y)
        sgd = fluid.optimizer.Adam(learning_rate=0.01)
        sgd = fluid.optimizer.GradientMergeOptimizer(sgd, k_steps=4, avg=True)
        sgd.minimize(cost)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        for i in range(10):
            cost_val = exe.run(feed=gen_data(32),
                       program=fluid.default_main_program(),
                       fetch_list=[cost.name])
            print("step=%d, cost=%f" % (i, cost_val[0]))
    """

7055 7056
    GRAD_MERGE_COND_NAME = "grad_merge_cond_name"

7057
    def __init__(self, inner_optimizer, k_steps=1, avg=True):
J
Jiabin Yang 已提交
7058
        if framework._non_static_mode():
7059 7060 7061 7062 7063 7064
            raise Exception(
                "In dygraph, we don't support GradientMergeOptimizer."
                "You can do Gradient merge by yourself with k-times forward + backward, "
                "and one-time optimizer.minimize()")

        assert (inner_optimizer is not None), "inner optimizer can not be None"
7065 7066
        assert (isinstance(k_steps, int)
                and k_steps > 0), "k_steps should be a positive integer"
7067 7068 7069 7070 7071

        self.inner_optimizer = inner_optimizer
        self.k_steps = k_steps
        self.type = "gradient_merge"
        self.avg = avg
7072
        self._optimize_ops = None
7073

7074 7075 7076 7077 7078 7079
    def _set_k_steps(self, k_steps):
        self.k_steps = k_steps

    def _set_avg(self, avg):
        self.avg = avg

7080
    def backward(self,
7081 7082 7083
                 loss,
                 startup_program=None,
                 parameter_list=None,
7084 7085
                 no_grad_set=None,
                 callbacks=None):
7086 7087 7088 7089 7090 7091 7092 7093 7094 7095
        assert isinstance(loss, Variable), "The loss should be an Variable."
        assert (
            parameter_list is None
        ), "The parameter_list should be None when using GradientMergeOptimizer"
        assert (
            no_grad_set is None
        ), "The no_grad_set should be None when using GradientMergeOptimizer"

        params_grads = self.inner_optimizer.backward(
            loss, startup_program=startup_program)
7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152
        return params_grads

    def apply_optimize(self, loss, startup_program, params_grads):
        program = loss.block.program
        with program_guard(program, startup_program):
            optimize_ops = self.apply_gradients(params_grads)
        return optimize_ops

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and \
                int(op.all_attrs()[op_maker.kOpRoleAttrName()]) == int(backward):
            return True
        return False

    def _remove_op_role_var(self, param, grad):
        op_maker = core.op_proto_and_checker_maker
        op = grad.op
        assert self._is_the_backward_op(op), \
            'grad.op={} is not the backward op which produces the grad={}' \
            .format(op, grad.name)

        block = grad.block
        var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
        assert param.name in var_attr, \
            'when using GradientMergeOptimizer, param={} must be in var_attr={}' \
            .format(param.name, var_attr)
        assert grad.name in var_attr, \
            'when using GradientMergeOptimizer, grad={} must be in var_attr={}' \
            .format(param.name, var_attr)

        # remove (param, grad) from op_role_var
        var_attr.remove(param.name)
        var_attr.remove(grad.name)
        if len(var_attr) > 1:
            op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
        else:
            op._remove_attr(op_maker.kOpRoleVarAttrName())

    def _add_gm_op_role_var(self, op, param, grad, cond):
        grad.op = op
        op_maker = core.op_proto_and_checker_maker
        backward = op_maker.OpRole.Backward

        # NOTE(wangxi). When distributed, we will insert grad_merge_all_reduce_op_handle
        # in multi_devices_graph_pass, which will allreduce(grad) if cond is True, else
        # do nothing.
        # In this way, the gradient can be merged first, and then communicate when the
        # condition is met, reducing the number of communications to increase the
        # speed.
        op._set_attr(self.GRAD_MERGE_COND_NAME, cond.name)
        op._set_attr(op_maker.kOpRoleAttrName(), backward)
        op._set_attr(op_maker.kOpRoleVarAttrName(), [param.name, grad.name])

    def _get_gm_cond_var(self, main_block):
        # Add const var
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
        k_step_var = layers.create_global_var(name="gradient_merge_k",
                                              shape=[1],
                                              value=int(self.k_steps),
                                              dtype='int32',
                                              persistable=True,
                                              force_cpu=True)

        zero_var = layers.create_global_var(name="gradient_merge_zero",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True,
                                            force_cpu=True)
7166 7167

        # Add step var & cond var
7168 7169 7170 7171 7172 7173
        step_var = layers.create_global_var(name="gradient_merge_step",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True,
                                            force_cpu=True)
7174

7175 7176 7177
        cond_var = main_block.create_var(name="gradient_merge_cond",
                                         shape=[1],
                                         dtype='bool')
7178 7179 7180 7181

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
            layers.increment(x=step_var, value=1.0, in_place=True)
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191
            main_block.append_op(type='elementwise_mod',
                                 inputs={
                                     'X': step_var,
                                     'Y': k_step_var
                                 },
                                 outputs={'Out': step_var},
                                 attrs={
                                     'axis': -1,
                                     'use_mkldnn': False
                                 })
7192 7193

            # cond_var = (step_var == 0)
7194 7195 7196 7197 7198 7199
            main_block.append_op(type='equal',
                                 inputs={
                                     'X': step_var,
                                     'Y': zero_var
                                 },
                                 outputs={'Out': cond_var})
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209

        return cond_var

    def apply_gradients(self, params_grads):
        main_program = default_main_program()
        startup_program = default_startup_program()
        main_block = main_program.global_block()
        startup_block = startup_program.global_block()

        cond = self._get_gm_cond_var(main_block)
7210 7211

        #TODO(mapingshuo) support sparse embedding
7212 7213
        # step1: remove grad.op's op_role_var
        for param, grad in params_grads:
7214
            assert (
7215
                param.type != core.VarDesc.VarType.SELECTED_ROWS
7216 7217
            ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

7218
            self._remove_op_role_var(param, grad)
7219

7220
        param_to_grad = {k.name: v for (k, v) in params_grads}
7221 7222 7223
        param_names = param_to_grad.keys()
        param_to_gradient_merge = {}

7224 7225 7226 7227 7228
        new_params_grads = []
        # step2: create gradient_merge var and init with 0
        # and update op_role_var
        for param, grad in params_grads:
            param_name = param.name
7229 7230
            param_var = main_block.var(param_name)
            assert (param_var is not None)
7231 7232 7233 7234 7235
            gradient_merge_var = main_block.create_var(name=param_name +
                                                       "@GRAD@GradientMerge",
                                                       shape=param_var.shape,
                                                       dtype=param_var.dtype,
                                                       persistable=True)
7236
            param_to_gradient_merge[param_name] = gradient_merge_var
7237

7238 7239 7240 7241 7242
            startup_gradient_merge_var = startup_block.create_var(
                name=param_name + "@GRAD@GradientMerge",
                shape=param_var.shape,
                dtype=param_var.dtype,
                persistable=True)
7243 7244 7245 7246 7247 7248 7249
            startup_block.append_op(type="fill_constant",
                                    outputs={"Out": startup_gradient_merge_var},
                                    attrs={
                                        "shape": param_var.shape,
                                        "dtype": param_var.dtype,
                                        "value": float(0),
                                    })
7250

7251 7252 7253
            # grad_merge += grad
            new_grad_op = main_block.append_op(
                type="elementwise_add",
7254 7255 7256 7257
                inputs={
                    'X': grad,
                    'Y': gradient_merge_var
                },
7258
                outputs={'Out': gradient_merge_var},
7259 7260 7261 7262
                attrs={
                    'axis': -1,
                    'use_mkldnn': False
                })
7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
            self._add_gm_op_role_var(new_grad_op, param, gradient_merge_var,
                                     cond)
            new_params_grads.append([param, gradient_merge_var])

        def true_apply_gradient():
            cur_block_idx = main_program.current_block_idx
            cur_block = main_program.current_block()

            # cur_block's forward_block & backward_block is itself
            cur_block._set_forward_block_idx(cur_block_idx)
7273
            op_maker = core.op_proto_and_checker_maker
7274 7275 7276 7277

            if self.avg:
                for param, new_grad in new_params_grads:
                    # grad /= k_steps
7278 7279 7280 7281 7282 7283 7284 7285
                    cur_block.append_op(type='scale',
                                        inputs={'X': new_grad},
                                        outputs={'Out': new_grad},
                                        attrs={
                                            'scale': 1.0 / self.k_steps,
                                            'bias': 0.0,
                                            'bias_after_scale': False
                                        })
7286 7287
                    new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                          op_maker.OpRole.Backward)
7288

7289 7290 7291 7292 7293 7294
            for param, new_grad in new_params_grads:
                # NOTE. regularization will append ops to grad.block,
                # while new_grad's real block is global_block,
                # but we want append regularization ops to cur_block,
                # so we set new_grad.block = cur_block
                new_grad.block = cur_block
7295

7296 7297
            self._optimize_ops = self.inner_optimizer.apply_gradients(
                new_params_grads)
7298

7299 7300
            # clear gradient_merge_vars
            for param, new_grad in new_params_grads:
7301 7302 7303 7304
                layers.fill_constant(shape=new_grad.shape,
                                     dtype=new_grad.dtype,
                                     value=0.0,
                                     out=new_grad)
7305 7306
                new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                      op_maker.OpRole.Optimize)
7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319

        # step3. apply gradient
        layers.cond(cond, true_fn=true_apply_gradient, false_fn=None)

        return self._optimize_ops

    def minimize(self,
                 loss,
                 startup_program=None,
                 parameter_list=None,
                 no_grad_set=None):
        assert isinstance(loss, Variable), "The loss should be an Variable."

7320 7321 7322 7323
        params_grads = self.backward(loss,
                                     startup_program=startup_program,
                                     parameter_list=parameter_list,
                                     no_grad_set=no_grad_set)
7324

7325 7326 7327
        optimize_ops = self.apply_optimize(loss,
                                           startup_program=startup_program,
                                           params_grads=params_grads)
7328 7329

        return optimize_ops, params_grads