nn.py 227.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16
"""
P
peizhilin 已提交
17
import os
S
sneaxiy 已提交
18
import inspect
19 20 21 22 23
import warnings

import numpy as np

import paddle
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from paddle.fluid.framework import _in_legacy_dygraph
26
from ..initializer import Normal, Constant
27 28 29 30 31 32 33 34 35 36 37 38 39
from ..framework import (
    Variable,
    OpProtoHolder,
    _non_static_mode,
    dygraph_only,
    _dygraph_tracer,
    default_main_program,
    _varbase_creator,
    static_only,
    _global_flags,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
40
from ..framework import _current_expected_place
41
from .. import dygraph_utils
Y
yangyaming 已提交
42
from ..param_attr import ParamAttr
43 44 45 46 47
from .layer_function_generator import (
    autodoc,
    templatedoc,
    _generate_doc_string_,
)
48
from .tensor import concat, assign, fill_constant, zeros, tensor_array_to_tensor
49
from . import utils
F
fengjiayi 已提交
50
from .. import unique_name
51
from functools import reduce
52
from .. import core
53
from ...utils import deprecated
54 55 56 57 58 59
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
60
from paddle.utils import deprecated
61
from paddle import _C_ops, _legacy_C_ops
62 63
from collections.abc import Iterable

Y
Yu Yang 已提交
64 65

__all__ = [
X
Xin Pan 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    'fc',
    'embedding',
    'linear_chain_crf',
    'crf_decoding',
    'conv2d',
    'pool2d',
    'batch_norm',
    'dropout',
    'split',
    'l2_normalize',
    'matmul',
    'row_conv',
    'layer_norm',
D
dengkaipeng 已提交
79
    'spectral_norm',
X
Xin Pan 已提交
80 81 82 83 84 85
    'one_hot',
    'autoincreased_step_counter',
    'unsqueeze',
    'lod_reset',
    'image_resize',
    'resize_bilinear',
K
Kaipeng Deng 已提交
86
    'resize_trilinear',
87
    'resize_nearest',
X
Xin Pan 已提交
88 89 90 91 92 93 94 95 96 97 98
    'relu',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'gaussian_random',
    'sampling_id',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
M
minqiyang 已提交
99
    'hash',
D
dengkaipeng 已提交
100
    'grid_sampler',
G
gmcather 已提交
101
    'log_loss',
Q
Qiao Longfei 已提交
102
    'bilinear_tensor_product',
C
chengduo 已提交
103 104
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
105
    'unfold',
C
cjt222 已提交
106
    'deformable_roi_pooling',
107
    'shard_index',
H
huangjun12 已提交
108
    'hard_swish',
K
Kaipeng Deng 已提交
109
    'mish',
110
    'uniform_random',
myq406450149's avatar
myq406450149 已提交
111
    'unbind',
Y
Yu Yang 已提交
112 113
]

114
OP_NAMEMAPPING = {
115 116 117 118 119 120 121 122
    'elementwise_max': 'maximum',
    'elementwise_min': 'minimum',
    'elementwise_pow': 'elementwise_pow',
    'elementwise_floordiv': 'floor_divide',
    'elementwise_add': 'add',
    'elementwise_sub': 'subtract',
    'elementwise_mul': 'multiply',
    'elementwise_div': 'divide',
C
Chen Weihang 已提交
123
    'elementwise_mod': 'remainder',
124 125
}

Y
Yu Yang 已提交
126

127 128
def _get_reduce_dim(dim, input):
    """
129
    Internal function for reduce_sum, reduce_mean, reduce_prod.
130 131 132 133 134 135 136 137 138
    It computes the attribute reduce_all value based on axis.
    """
    if dim is not None and not isinstance(dim, list):
        if isinstance(dim, (tuple, range)):
            dim = list(dim)
        elif isinstance(dim, int):
            dim = [dim]
        else:
            raise TypeError(
139
                "The type of dim must be int, list, tuple or range, but received {}".format(
140
                    type(dim)
141 142
                )
            )
143 144 145 146 147 148 149 150 151 152
    if dim is None:
        dim = []
    if dim == [] or len(dim) == len(input.shape):
        reduce_all = True
    else:
        reduce_all = False

    return reduce_all, dim


153
@dygraph_only
154 155 156
def _elementwise_op_in_dygraph(
    x, y, axis=-1, act=None, use_mkldnn=False, op_name=None
):
157 158 159 160
    def is_inplace(op_name):
        return op_name[-1] == "_"

    if op_name not in OP_NAMEMAPPING.keys() or axis != -1:
161
        op = getattr(_legacy_C_ops, op_name)
162 163 164
        out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
    else:
        if in_dygraph_mode():
165 166
            op = getattr(
                _C_ops,
167 168
                OP_NAMEMAPPING[op_name] if not is_inplace(op_name) else op_name,
            )
169 170 171
            out = op(x, y)

        if _in_legacy_dygraph():
172
            op = getattr(_legacy_C_ops, op_name)
173
            out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)
174 175 176 177 178 179 180 181 182 183 184 185 186 187
    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn
    )


def fc(
    input,
    size,
    num_flatten_dims=1,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
188
    r"""
189 190
    :api_attr: Static Graph

191
    **Fully Connected Layer**
Y
Yu Yang 已提交
192

193 194 195
    This operator creates a fully connected layer in the network. It can take
    a Tensor(or LoDTensor) or a list of Tensor(or LoDTensor) as its inputs(see
    Args in detail). It creates a variable called weight for each input Tensor,
196
    which represents a fully connected weight matrix from each input unit to
197 198 199 200
    each output unit. The fully connected layer multiplies each input Tensor
    with its corresponding weight to produce an output Tensor with shape :math:`[M, size]` ,
    where M is batch size. If a list of Tensor is given, the results of
    multiple output Tensors with shape :math:`[M, size]` will be summed up. If :attr:`bias_attr`
201
    is not None, a bias variable will be created and added to the output.
202
    Finally, if :attr:`act` is not None, it will be applied to the output as well.
C
caoying03 已提交
203

204
    When the input is a single Tensor(or LoDTensor):
C
caoying03 已提交
205

206 207 208 209
    .. math::

        Out = Act({XW + b})

210
    When the input is a list of Tensor(or LoDTensor):
211 212 213

    .. math::

214
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
215 216 217

    In the above equation:

218 219 220
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
221
    * :math:`b`: The bias parameter created by this layer (if needed).
222
    * :math:`Act`: The activation function.
223
    * :math:`Out`: The output Tensor.
224 225 226

    .. code-block:: text

227 228 229 230 231 232 233 234 235 236 237 238 239 240
        Case 1:
        Given a single Tensor data_1, and num_flatten_dims = 2:
            data_1.data = [[[0.1, 0.2],
                            [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            out = fluid.layers.fc(input=data_1, size=1, num_flatten_dims=2)

        Then output is:
            out.data = [[0.83234344], [0.34936576]]
            out.shape = (1, 2, 1)

        Case 2:
        Given a list of Tensor:
241 242 243 244 245 246 247 248 249 250 251 252 253
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
254
    Args:
255 256 257
        input (Variable|list of Variable): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` or
            a list of Tensor(or LoDTensor). The dimensions of the input Tensor is at least 2 and the data
            type should be float32 or float64.
T
tianshuo78520a 已提交
258
        size(int): The number of output units in this layer, which also means the feature size of output
259 260
            Tensor(or LoDTensor).
        num_flatten_dims (int): The fc layer can accept an input Tensor with more than
R
ranqiu 已提交
261
            two dimensions. If this happens, the multidimensional tensor will first be flattened
262 263
            into a 2-D matrix. The parameter :attr:`num_flatten_dims` determines how the input
            Tensor is flattened: the first :attr:`num_flatten_dims` (inclusive, index starts from 1)
R
ranqiu 已提交
264
            dimensions will be flatten to form the first dimension of the final matrix (height of
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
            the matrix), and the rest :math:`rank(X) - num\_flatten\_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, assuming that
            X is a 5-dimensional Tensor with a shape [2, 3, 4, 5, 6], and :attr:`num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1.
        param_attr (ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        bias_attr (ParamAttr): To specify the bias parameter property. Default: None, which means the
            default bias parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        act (str): Activation to be applied to the output of this layer, such as tanh, softmax,
            sigmoid, relu. For more information, please refer to :ref:`api_guide_activations_en` . Default: None.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Variable: Tensor or LoDTensor calculated by fc layer. The data type is same with input.
280 281

    Raises:
282
        ValueError: If dimensions of the input Tensor is less than 2.
283 284 285 286

    Examples:
        .. code-block:: python

287
          import paddle.fluid as fluid
288 289
          import paddle
          paddle.enable_static()
290
          # when input is single tensor
291
          data = fluid.data(name="data", shape=[-1, 32], dtype="float32")
292
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
293 294

          # when input are multiple tensors
295 296
          data_1 = fluid.data(name="data_1", shape=[-1, 32], dtype="float32")
          data_2 = fluid.data(name="data_2", shape=[-1, 36], dtype="float32")
297
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
298
    """
C
caoying03 已提交
299
    helper = LayerHelper("fc", **locals())
300
    check_type(input, 'input', (list, tuple, Variable), 'fc')
301 302
    if isinstance(input, (list, tuple)):
        for i, input_x in enumerate(input):
303
            check_type(input_x, 'input[' + str(i) + ']', Variable, 'fc')
Y
Yu Yang 已提交
304
    dtype = helper.input_dtype()
305 306 307
    check_dtype(
        dtype, 'input', ['float16', 'uint16', 'float32', 'float64'], 'fc'
    )
Y
Yu Yang 已提交
308
    mul_results = []
309 310
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
311 312
        if num_flatten_dims == -1:
            num_flatten_dims = len(input_shape) - 1
Y
Yu Yang 已提交
313 314 315
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
316

317 318 319
        w = helper.create_parameter(
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False
        )
X
Xin Pan 已提交
320
        tmp = helper.create_variable_for_type_inference(dtype)
321 322 323 324 325 326
        helper.append_op(
            type="mul",
            inputs={"X": input_var, "Y": w},
            outputs={"Out": tmp},
            attrs={"x_num_col_dims": num_flatten_dims, "y_num_col_dims": 1},
        )
327 328 329 330
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
331
    else:
X
Xin Pan 已提交
332
        pre_bias = helper.create_variable_for_type_inference(dtype)
333 334 335 336 337 338
        helper.append_op(
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
            attrs={"use_mkldnn": False},
        )
339 340 341 342
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
343 344


T
tangwei12 已提交
345
@deprecated(since="2.0.0", update_to="paddle.nn.functional.embedding")
346 347 348 349 350 351 352 353 354
def embedding(
    input,
    size,
    is_sparse=False,
    is_distributed=False,
    padding_idx=None,
    param_attr=None,
    dtype='float32',
):
355
    r"""
356
    :api_attr: Static Graph
357

358 359 360 361 362 363 364 365 366 367 368 369
    **WARING:** This OP will be deprecated in a future release. This OP requires the
    last dimension of Tensor shape must be equal to 1. It is recommended to use
    fluid. :ref:`api_fluid_embedding` .

    The operator is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

    This OP requires the last dimension of Tensor shape must be equal to 1. The shape
    of output Tensor is generated by replacing the last dimension of the input Tensor shape
    with emb_size.

370
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
            input.data = [[[1], [3]], [[2], [4]], [[4], [127]]]
            input.shape = [3, 2, 1]
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
388

389 390 391 392
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
393

394
        Case 2:
395

396 397 398 399 400 401 402 403 404 405 406 407 408 409
        input is a LoDTensor with 1-level LoD. padding_idx = 0
            input.lod = [[2, 3]]
            input.data = [[1], [3], [2], [4], [0]]
            input.shape = [5, 1]
        Given size = [128, 16]
        output is a LoDTensor:
            out.lod = [[2, 3]]
            out.shape = [5, 16]
            out.data = [[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654],
                        [0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]  # padding data
        It will pad all-zero data when ids is 0.
Y
Yu Yang 已提交
410 411

    Args:
412 413 414 415 416 417
        input(Variable): A Tensor or LoDTensor with type int64, which contains the id information.
            The last dimension of Tensor shape must be equal to 1. The value of the input id should
            satisfy :math:`0<= id < size[0]` .
        size(tuple|list): The shape of lookup table parameter. It should have two elements which
            indicates the size of the dictionary of embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
418
            affects the performance of the backwards gradient update. It is recommended to set
419
            True because sparse update is faster. But some optimizer does not support sparse update,
420
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
421 422 423 424 425
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
426
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
427 428 429 430 431 432
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
433
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
434
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
435
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
436 437 438
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(str|core.VarDesc.VarType): It refers to the data type of output Tensor.
            It must be float32 or float64. Default: float32.
Y
Yu Yang 已提交
439

440
    Returns:
441
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
Y
Yu Yang 已提交
442

443 444
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
445

B
bdzhuxiaoning 已提交
446
          import paddle.fluid as fluid
447
          import numpy as np
448 449
          import paddle
          paddle.enable_static()
450

451 452
          data = fluid.data(name='x', shape=[None, 1], dtype='int64')

T
tianshuo78520a 已提交
453
          # example 1
454 455 456 457 458 459 460 461 462
          emb_1 = fluid.embedding(input=data, size=[128, 64])

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
463
          emb_2 = fluid.layers.embedding(input=data, size=(128, 100), param_attr=w_param_attrs, dtype='float32')
Y
Yu Yang 已提交
464 465 466
    """

    helper = LayerHelper('embedding', **locals())
467 468 469 470 471 472 473 474 475
    check_variable_and_dtype(
        input, 'input', ['int64'], 'fluid.layers.embedding'
    )
    check_dtype(
        dtype,
        'dtype',
        ['uint16', 'float16', 'float32', 'float64'],
        'fluid.layers.embedding',
    )
476 477 478 479 480 481 482 483 484

    if is_distributed:
        is_distributed = False
        warnings.warn(
            "is_distributed is go out of use, `fluid.contrib.layers.sparse_embedding` is your needed"
        )

    remote_prefetch = True if is_sparse else False

485 486 487
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False
    )
X
Xin Pan 已提交
488
    tmp = helper.create_variable_for_type_inference(dtype)
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    padding_idx = (
        -1
        if padding_idx is None
        else padding_idx
        if padding_idx >= 0
        else (size[0] + padding_idx)
    )
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input, 'W': w},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx,
        },
    )
Y
Yu Yang 已提交
507 508 509
    return tmp


510 511 512 513 514 515 516 517 518 519 520
def _pull_sparse(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
521
    r"""
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the fleet table id of this embedding.
        accessor_class(str): the pslib accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
567
        'is_distributed': True,
568 569
    }
    # this is only for compatible with embedding op
570 571 572 573 574 575 576 577 578
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
579 580 581 582 583
    if len(outs) == 1:
        return outs[0]
    return outs


584 585 586 587 588 589 590 591 592 593 594
def _pull_sparse_v2(
    input,
    size,
    table_id,
    accessor_class,
    name="embedding",
    ctr_label_name="",
    padding_id=0,
    dtype='float32',
    scale_sparse_grad=True,
):
595
    r"""
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
    **Pull Fleet Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    Fleet lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int): The embedding size parameter, which indicates the size of
            each embedding vector respectively.
        table_id(int): the pslib table id of this embedding.
        accessor_class(str): the fleet accessor of the table, default is DownpourCtrAccessor.
        ctr_label_name(str): the layer name of click.
        padding_id(int): the padding id during lookup, default is 0.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
            float32 now.
        scale_sparse_grad(bool): whether to scale sparse gradient with batch size. default
            is True.

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          emb = fluid.layers.nn._pull_sparse_v2(
              input=data, size=11, table_id=0, accessor_class="DownpourCtrAccessor")
    """
    helper = LayerHelper(name, **locals())
    inputs = helper.multiple_input()
    outs = [helper.create_variable_for_type_inference(dtype)]
    input_names = [i.name for i in inputs]
    attrs = {
        'EmbeddingDim': size,
        'TableId': table_id,
        'AccessorClass': accessor_class,
        'CtrLabelName': ctr_label_name,
        'PaddingId': padding_id,
        'ScaleSparseGrad': scale_sparse_grad,
        'InputNames': input_names,
        # this is only for compatible with embedding op
641
        'is_distributed': True,
642 643
    }
    # this is only for compatible with embedding op
644 645 646 647 648 649 650 651 652
    w, _ = helper.create_or_get_global_variable(
        name=name, shape=[size], dtype=dtype, is_bias=False, persistable=True
    )
    helper.append_op(
        type='pull_sparse_v2',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs=attrs,
    )
653
    if len(outs) == 1:
Y
yaoxuefeng 已提交
654 655 656 657
        return outs[0]
    return outs


658 659 660
def _pull_gpups_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
Y
yaoxuefeng 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673
    r"""
    **Pull GpuPS Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    GpuPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
            contains the IDs information.
        size(int|list of int): The embedding size parameter of each input, which indicates the size of
            each embedding vector respectively.
        dtype(str): The dtype refers to the data type of output tensor. Only supports
674
        float32 now.
Y
yaoxuefeng 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs, whose size are indicated by size respectively.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          slots = []
          data_1 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_1)
          data_2 = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
          slots.append(data_2)
          embs = fluid.layers.pull_gpups_sparse(input=slots, size=[11, 35])
    """
    helper = LayerHelper('pull_gpups_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
694 695 696
            "GpuPS only support float type embedding now, and your type is: "
            + dtype
        )
Y
yaoxuefeng 已提交
697 698 699 700 701 702
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
703 704 705 706 707 708 709 710 711 712 713 714 715
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size[0]], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_gpups_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
Y
yaoxuefeng 已提交
716
    if len(outs) == 1:
717 718 719 720
        return outs[0]
    return outs


721 722 723
def _pull_box_sparse(
    input, size, dtype='float32', is_distributed=False, is_sparse=False
):
724
    r"""
H
hutuxian 已提交
725 726 727 728 729 730 731
    **Pull Box Sparse Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    BoxPS lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.

    Args:
732
        input(Variable|list of Variable): Input is a Tensor<int64> Variable, which
H
hutuxian 已提交
733
            contains the IDs information.
734
        size(int): The embedding size parameter, which indicates the size of
H
hutuxian 已提交
735
            each embedding vector respectively.
736
        dtype(str): The dtype refers to the data type of output tensor. Only supports
737
        float32 now.
H
hutuxian 已提交
738 739 740 741 742 743 744 745 746 747

    Returns:
        Variable|list of Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data = fluid.layers.data(name='sequence', shape=[1], dtype='int64', lod_level=1)
748
          emb = fluid.layers.pull_box_sparse(input=data, size=[11])
H
hutuxian 已提交
749 750 751 752
    """
    helper = LayerHelper('pull_box_sparse', **locals())
    if dtype != 'float32':
        raise ValueError(
753 754 755
            "BoxPS only support float type embedding now, and your type is: "
            + dtype
        )
H
hutuxian 已提交
756 757 758 759 760 761
    helper.input_dtype()
    inputs = helper.multiple_input()
    outs = [
        helper.create_variable_for_type_inference(dtype)
        for i in range(len(inputs))
    ]
762 763 764 765 766 767 768 769 770 771 772 773 774
    w = helper.create_parameter(
        attr=helper.param_attr, shape=[size], dtype=dtype, is_bias=False
    )
    helper.append_op(
        type='pull_box_sparse',
        inputs={'Ids': inputs, 'W': w},
        outputs={'Out': outs},
        attrs={
            'size': size,
            'is_distributed': is_distributed,
            'is_sparse': is_sparse,
        },
    )
H
hutuxian 已提交
775 776 777 778 779
    if len(outs) == 1:
        return outs[0]
    return outs


Y
yuyang18 已提交
780
@templatedoc()
781
def linear_chain_crf(input, label, param_attr=None, length=None):
Y
yuyang18 已提交
782
    """
783 784
    :api_attr: Static Graph

Y
yuyang18 已提交
785 786 787 788 789
    Linear Chain CRF.

    ${comment}

    Args:
790
        input(${emission_type}): ${emission_comment}
Y
yuyang18 已提交
791
        label(${label_type}): ${label_comment}
792
        Length(${length_type}): ${length_comment}
793
        param_attr(ParamAttr): The attribute of the learnable parameter for transition parameter.
Y
yuyang18 已提交
794 795

    Returns:
D
dzhwinter 已提交
796 797
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
798
        output(${log_likelihood_type}): ${log_likelihood_comment} \n
Y
yuyang18 已提交
799

J
JesseyXujin 已提交
800 801 802
    Examples:
        .. code-block:: python

803 804
            import paddle.fluid as fluid
            import numpy as np
805 806
            import paddle
            paddle.enable_static()
807 808 809 810 811

            #define net structure, using LodTensor
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
812 813
                input_data = fluid.data(name='input_data', shape=[-1,10], dtype='float32')
                label = fluid.data(name='label', shape=[-1,1], dtype='int')
814 815 816 817 818 819
                emission= fluid.layers.fc(input=input_data, size=10, act="tanh")
                crf_cost = fluid.layers.linear_chain_crf(
                    input=emission,
                    label=label,
                    param_attr=fluid.ParamAttr(
                    name='crfw',
820
                    learning_rate=0.01))
821 822 823
            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
824
            exe.run(startup_program)
825 826 827 828 829
            #define data, using LoDTensor
            a = fluid.create_lod_tensor(np.random.rand(12,10).astype('float32'), [[3,3,4,2]], place)
            b = fluid.create_lod_tensor(np.array([[1],[1],[2],[3],[1],[1],[1],[3],[1],[1],[1],[1]]),[[3,3,4,2]] , place)
            feed1 = {'input_data':a,'label':b}
            loss= exe.run(train_program,feed=feed1, fetch_list=[crf_cost])
830
            print(loss)
831 832 833 834 835

            #define net structure, using padding
            train_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(train_program, startup_program):
836 837 838
                input_data2 = fluid.data(name='input_data2', shape=[-1,10,10], dtype='float32')
                label2 = fluid.data(name='label2', shape=[-1,10,1], dtype='int')
                label_length = fluid.data(name='length', shape=[-1,1], dtype='int')
839 840 841 842 843 844
                emission2= fluid.layers.fc(input=input_data2, size=10, act="tanh", num_flatten_dims=2)
                crf_cost2 = fluid.layers.linear_chain_crf(
                    input=emission2,
                    label=label2,
                    length=label_length,
                    param_attr=fluid.ParamAttr(
J
JesseyXujin 已提交
845
                     name='crfw',
846 847 848 849 850 851
                     learning_rate=0.01))

            use_cuda = False
            place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_program)
J
JesseyXujin 已提交
852

853 854 855
            #define data, using padding
            cc=np.random.rand(4,10,10).astype('float32')
            dd=np.random.rand(4,10,1).astype('int64')
856
            ll=np.array([[3],[3],[4],[2]])
857 858
            feed2 = {'input_data2':cc,'label2':dd,'length':ll}
            loss2= exe.run(train_program,feed=feed2, fetch_list=[crf_cost2])
859
            print(loss2)
860 861 862 863 864
            #[array([[ 7.8902354],
            #        [ 7.3602567],
            #        [ 10.004011],
            #        [ 5.86721  ]], dtype=float32)]

865 866 867
            #you can use find_var to get transition parameter.
            transition=np.array(fluid.global_scope().find_var('crfw').get_tensor())
            print(transition)
868

Y
yuyang18 已提交
869
    """
870 871 872
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'linear_chain_crf'
    )
873
    check_variable_and_dtype(label, 'label', ['int64'], 'linear_chain_crf')
Y
Yu Yang 已提交
874
    helper = LayerHelper('linear_chain_crf', **locals())
875
    size = input.shape[2] if length else input.shape[1]
876 877 878 879 880
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype(),
    )
X
Xin Pan 已提交
881
    alpha = helper.create_variable_for_type_inference(
882 883
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
884
    emission_exps = helper.create_variable_for_type_inference(
885 886
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
887
    transition_exps = helper.create_variable_for_type_inference(
888 889
        dtype=helper.input_dtype()
    )
X
Xin Pan 已提交
890
    log_likelihood = helper.create_variable_for_type_inference(
891 892
        dtype=helper.input_dtype()
    )
893 894 895
    this_inputs = {
        "Emission": [input],
        "Transition": transition,
896
        "Label": [label],
897 898
    }
    if length:
899
        this_inputs['Length'] = [length]
900 901 902 903 904 905 906 907 908 909
    helper.append_op(
        type='linear_chain_crf',
        inputs=this_inputs,
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood,
        },
    )
Y
Yu Yang 已提交
910 911 912 913

    return log_likelihood


W
wopeizl 已提交
914
@templatedoc()
915
def crf_decoding(input, param_attr, label=None, length=None):
W
wopeizl 已提交
916
    """
917
    :api_attr: Static Graph
918

W
wopeizl 已提交
919
    ${comment}
Y
yi.wu 已提交
920

W
wopeizl 已提交
921
    Args:
922
        input(Tensor): ${emission_comment}
Y
yi.wu 已提交
923

924 925
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
926
            used. See usage for details in :ref:`api_paddle_fluid_param_attr_ParamAttr` .
Y
yuyang18 已提交
927

Y
Yibing Liu 已提交
928
        label(${label_type}, optional): ${label_comment}
929

Y
Yibing Liu 已提交
930
        length(${length_type}, optional): ${length_comment}
931

W
wopeizl 已提交
932
    Returns:
933
        Tensor: ${viterbi_path_comment}
Y
yi.wu 已提交
934

W
wopeizl 已提交
935 936
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
937

938 939
           import paddle
           paddle.enable_static()
940 941 942

           # LoDTensor-based example
           num_labels = 10
943 944 945
           feature = paddle.static.data(name='word_emb', shape=[-1, 784], dtype='float32', lod_level=1)
           label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64', lod_level=1)
           emission = paddle.static.nn.fc(feature, size=num_labels)
946

947 948 949 950
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label,
                     param_attr=paddle.ParamAttr(name="crfw"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission,
                     param_attr=paddle.ParamAttr(name="crfw"))
951 952 953

           # Common tensor example
           num_labels, max_len = 10, 20
954 955 956 957
           feature = paddle.static.data(name='word_emb_pad', shape=[-1, max_len, 784], dtype='float32')
           label = paddle.static.data(name='label_pad', shape=[-1, max_len, 1], dtype='int64')
           length = paddle.static.data(name='length', shape=[-1, 1], dtype='int64')
           emission = paddle.static.nn.fc(feature, size=num_labels,
958
                                      num_flatten_dims=2)
959

960 961 962 963
           crf_cost = paddle.fluid.layers.linear_chain_crf(input=emission, label=label, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
           crf_decode = paddle.static.nn.crf_decoding(input=emission, length=length,
                     param_attr=paddle.ParamAttr(name="crfw_pad"))
W
wopeizl 已提交
964
    """
965 966 967
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'crf_decoding'
    )
W
wopeizl 已提交
968 969 970
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
971 972
        dtype=core.VarDesc.VarType.INT64
    )
973 974 975
    inputs = {"Emission": [input], "Transition": transition, "Label": label}
    if length:
        inputs['Length'] = length
976 977 978 979 980
    helper.append_op(
        type='crf_decoding',
        inputs=inputs,
        outputs={"ViterbiPath": [viterbi_path]},
    )
Y
Yu Yang 已提交
981

W
wopeizl 已提交
982
    return viterbi_path
Y
Yu Yang 已提交
983 984


985
@deprecated(since="2.0.0", update_to="paddle.nn.functional.dropout")
986 987 988 989 990 991 992 993
def dropout(
    x,
    dropout_prob,
    is_test=None,
    seed=None,
    name=None,
    dropout_implementation="downgrade_in_infer",
):
994
    """
995

996 997 998 999
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1000
    training. The dropout operator randomly sets (according to the given dropout
1001 1002 1003
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1004 1005
    dropout op can be removed from the program to make the program more efficient.

1006
    Args:
L
lvmengsi 已提交
1007
        x (Variable): The input tensor variable. The data type is float16 or float32 or float64.
1008
        dropout_prob (float): Probability of setting units to zero.
1009
        is_test (bool): A flag indicating whether it is in test phrase or not.
1010
                        Default None, in dynamic graph, it use global tracer mode; in static graph, it means False.
1011 1012 1013
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
L
lvmengsi 已提交
1014
                    units will be dropped. DO NOT use a fixed seed in training.Default: None.
1015 1016
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1017 1018
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1019
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1020 1021

                                           - train: out = input * mask
C
ceci3 已提交
1022
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1023 1024 1025

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1026
                                        2. upscale_in_train, upscale the outcome at training time
1027

H
haowang101779990 已提交
1028 1029
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1030

H
haowang101779990 已提交
1031 1032
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1033

M
minqiyang 已提交
1034

1035
    Returns:
L
lvmengsi 已提交
1036
        A Variable holding Tensor representing the dropout, has same shape and data type with `x`.
1037 1038

    Examples:
1039

1040 1041
        .. code-block:: python

1042
            import paddle
1043
            import paddle.fluid as fluid
1044

1045
            paddle.enable_static()
L
lvmengsi 已提交
1046
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
T
tianshuo78520a 已提交
1047
            dropped = fluid.layers.dropout(x, dropout_prob=0.5)
1048
    """
1049 1050
    if not isinstance(dropout_prob, (float, int, Variable)):
        raise TypeError(
1051 1052
            "dropout_prob argument should be a number(int|float) or Variable"
        )
1053
    # fast return for p == 0
1054
    if isinstance(dropout_prob, (int, float)) and dropout_prob == 0:
1055
        return x
1056

J
Jiabin Yang 已提交
1057
    if _non_static_mode():
1058 1059 1060
        if (
            seed is None or seed == 0
        ) and default_main_program().random_seed != 0:
1061
            seed = default_main_program().random_seed
1062 1063
        if is_test is None:
            is_test = not _dygraph_tracer()._train_mode
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
        out, mask = _legacy_C_ops.dropout(
            x,
            'dropout_prob',
            dropout_prob,
            'is_test',
            is_test,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
            'dropout_implementation',
            dropout_implementation,
        )
1077
        return out
1078

W
wanghuancoder 已提交
1079 1080 1081
    def get_attrs(prog, dropout_prob, is_test, seed):
        if (seed is None or seed == 0) and prog.random_seed != 0:
            seed = prog.random_seed
1082 1083
        if isinstance(dropout_prob, Variable) and not dropout_prob.shape != [1]:
            raise TypeError(
1084 1085 1086 1087
                "Required dropout_prob.shape == [1] if type(dropout_prob) is Variable, but received dropout_prob.shape = {}".format(
                    dropout_prob.shape
                )
            )
W
wanghuancoder 已提交
1088 1089 1090 1091 1092 1093 1094 1095 1096
        attrs = {
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
        }
        return attrs

F
fengjiayi 已提交
1097
    helper = LayerHelper('dropout', **locals())
1098 1099 1100
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'dropout'
    )
1101

X
Xin Pan 已提交
1102 1103
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
1104 1105
        dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
    )
C
chengduo 已提交
1106

1107
    attrs = get_attrs(helper.main_program, dropout_prob, is_test, seed)
C
chengduo 已提交
1108

1109 1110 1111 1112 1113 1114
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out], 'Mask': [mask]},
        attrs=attrs,
    )
1115 1116 1117
    return out


1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
def conv2d(
    input,
    num_filters,
    filter_size,
    stride=1,
    padding=0,
    dilation=1,
    groups=None,
    param_attr=None,
    bias_attr=None,
    use_cudnn=True,
    act=None,
    name=None,
    data_format="NCHW",
):
1133
    r"""
1134 1135
    :api_attr: Static Graph

C
chengduoZH 已提交
1136
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1137
    and strides, paddings, dilations, groups parameters. Input and
L
liym27 已提交
1138
    Output are in NCHW or NHWC format, where N is batch size, C is the number of
1139
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1140 1141 1142 1143 1144 1145
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
1146
    for more details.
1147 1148 1149
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1150

1151
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1152

C
chengduoZH 已提交
1153 1154
    .. math::

C
refine  
chengduoZH 已提交
1155
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1156

T
tensor-tang 已提交
1157
    Where:
C
chengduoZH 已提交
1158

L
liym27 已提交
1159
    * :math:`X`: Input value, a tensor with NCHW or NHWC format.
1160 1161 1162 1163
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1164
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1165 1166 1167

    Example:

1168 1169
        - Input:

W
weixing02 已提交
1170
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1171

W
weixing02 已提交
1172
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1173

1174
        - Output:
T
tensor-tang 已提交
1175

W
weixing02 已提交
1176
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1177

C
chengduoZH 已提交
1178
        Where
1179 1180

        .. math::
C
chengduoZH 已提交
1181

W
weixing02 已提交
1182 1183
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1184 1185

    Args:
1186
        input (Tensor): The input is 4-D Tensor with shape [N, C, H, W], the data type
L
lvmengsi 已提交
1187
            of input is float16 or float32 or float64.
T
tensor-tang 已提交
1188
        num_filters(int): The number of filter. It is as same as the output
1189
            image channel.
1190 1191
        filter_size (int|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
L
lvmengsi 已提交
1192 1193
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
1194 1195
        stride (int|tuple): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
L
lvmengsi 已提交
1196 1197
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        padding (string|int|list|tuple): The padding size. It means the number of zero-paddings
T
tianshuo78520a 已提交
1198
            on both sides for each dimension.If `padding` is a string, either 'VALID' or
L
liym27 已提交
1199 1200
            'SAME' which is the padding algorithm. If padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
1201 1202
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when
            `data_format` is `"NCHW"`, `padding` can be in the form `[[0,0], [0,0],
L
lvmengsi 已提交
1203
            [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
L
liym27 已提交
1204 1205 1206
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            Default: padding = 0.
L
lvmengsi 已提交
1207
        dilation (int|tuple): The dilation size. It means the spacing between the kernel
1208 1209
            points. If dilation is a tuple, it must contain two integers, (dilation_height,
            dilation_width). Otherwise, dilation_height = dilation_width = dilation.
L
lvmengsi 已提交
1210
            Default: dilation = 1.
1211 1212 1213 1214
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1215 1216 1217 1218 1219
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1220
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1221 1222 1223 1224 1225
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1226 1227
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1228 1229
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1230 1231
        name(str|None): For detailed information, please refer
           to :ref:`api_guide_Name`. Usually name is no need to set and
L
lvmengsi 已提交
1232
           None by default.
1233
        data_format (str, optional): Specify the data format of the input, and the data format of the output
1234
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
L
liym27 已提交
1235 1236
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
C
chengduoZH 已提交
1237 1238

    Returns:
1239 1240 1241
        A Tensor representing the conv2d, whose data type is the
        same with input. If act is None, the tensor storing the convolution
        result, and if act is not None, the tensor storing convolution
L
lvmengsi 已提交
1242
        and non-linearity activation result.
C
refine  
chengduoZH 已提交
1243

1244 1245 1246 1247 1248
    Raises:
        ValueError: If the type of `use_cudnn` is not bool.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If the channel dimmention of the input is less than or equal to zero.
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
1249
        ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
1250 1251 1252 1253 1254 1255 1256
            or the element corresponding to the input's channel is not 0.
        ShapeError: If the input is not 4-D Tensor.
        ShapeError: If the input's dimension size and filter's dimension size not equal.
        ShapeError: If the dimension size of input minus the size of `stride` is not 2.
        ShapeError: If the number of input channels is not equal to filter's channels * groups.
        ShapeError: If the number of output channels is not be divided by groups.

C
chengduoZH 已提交
1257 1258 1259
    Examples:
        .. code-block:: python

1260 1261
          import paddle
          paddle.enable_static()
1262

1263 1264 1265
          data = paddle.static.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
          conv2d = paddle.static.nn.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
          print(conv2d.shape) # [-1, 2, 30, 30]
Y
Yu Yang 已提交
1266 1267
    """

1268 1269 1270
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'conv2d'
    )
1271
    if len(input.shape) != 4:
1272 1273 1274 1275
        raise ValueError(
            "Input size should be 4, "
            "but received {}".format(len(input.shape))
        )
1276
    num_channels = input.shape[1]
L
liym27 已提交
1277
    if not isinstance(use_cudnn, bool):
1278 1279 1280 1281
        raise ValueError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s. " % str(use_cudnn)
        )
L
liym27 已提交
1282 1283 1284 1285

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1286 1287
            "Attr(data_format): %s." % str(data_format)
        )
L
liym27 已提交
1288

1289
    channel_last = data_format == "NHWC"
L
liym27 已提交
1290 1291 1292 1293
    num_channels = input.shape[3] if channel_last else input.shape[1]
    if num_channels < 0:
        raise ValueError(
            "The channel dimmention of the input(%s) should be defined. "
1294 1295
            "Received: %s." % (str(input.shape), str(num_channels))
        )
C
chengduo 已提交
1296
    assert param_attr is not False, "param_attr should not be False here."
L
liym27 已提交
1297

1298 1299 1300
    if groups is None:
        num_filter_channels = num_channels
    elif groups <= 0:
1301 1302
        raise ValueError(
            "the groups of input must be greater than 0, "
1303 1304
            "but received the groups of input is {}".format(groups)
        )
1305 1306 1307 1308 1309
    else:
        if num_channels % groups != 0:
            raise ValueError(
                "the channel of input must be divisible by groups,"
                "received: the channel of input is {}, the shape of input is {}"
1310 1311
                ", the groups is {}".format(num_channels, input.shape, groups)
            )
1312 1313
        num_filter_channels = num_channels // groups

1314
    l_type = 'conv2d'
1315 1316 1317 1318 1319
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and not use_cudnn
    ):
1320
        l_type = 'depthwise_conv2d'
1321

1322 1323 1324 1325 1326
    if (
        num_channels == groups
        and num_filters % num_channels == 0
        and core.is_compiled_with_rocm()
    ):
1327 1328
        l_type = 'depthwise_conv2d'

1329 1330
    # NPU only supports depthwise_conv2d when  "input_channel = output_channel = groups"
    if core.is_compiled_with_npu():
1331
        if num_channels == groups and num_channels == num_filters:
1332 1333 1334 1335
            l_type = 'depthwise_conv2d'
        else:
            l_type = 'conv2d'

1336 1337 1338
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

C
chengduoZH 已提交
1339 1340
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
1341
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1342

L
liym27 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
    # padding
    def _update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1355 1356
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1357 1358 1359 1360 1361 1362
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero padding(%s) in the batch or channel dimensions "
1363 1364
                        "is not supported." % str(padding)
                    )
L
liym27 已提交
1365 1366 1367
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1368 1369 1370
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]

L
liym27 已提交
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
1381 1382 1383
                "Unknown padding: '%s'. It can only be 'SAME' or 'VALID'."
                % str(padding)
            )
L
liym27 已提交
1384 1385
        if padding == "VALID":
            padding_algorithm = "VALID"
1386
            padding = [0, 0]
L
liym27 已提交
1387 1388
        elif padding == "SAME":
            padding_algorithm = "SAME"
1389
            padding = [0, 0]
L
liym27 已提交
1390 1391

    padding = _update_padding(padding, data_format)
Y
Yu Yang 已提交
1392

M
minqiyang 已提交
1393
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1394 1395

    def _get_default_param_initializer():
C
chengduo 已提交
1396
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
1397 1398 1399 1400
        if filter_elem_num <= 0:
            raise ValueError(
                "Invalid filter number, excepted number is larger than 0, but"
                " received {}, please check the input shape and "
1401 1402 1403
                "filter size.".format(filter_elem_num)
            )
        std = (2.0 / filter_elem_num) ** 0.5
Y
Yu Yang 已提交
1404 1405 1406 1407 1408 1409
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
1410 1411
        default_initializer=_get_default_param_initializer(),
    )
Y
Yu Yang 已提交
1412

X
Xin Pan 已提交
1413
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1414

1415 1416 1417 1418 1419 1420
    if (
        core.is_compiled_with_cuda()
        and paddle.fluid.get_flags("FLAGS_conv2d_disable_cudnn")[
            "FLAGS_conv2d_disable_cudnn"
        ]
    ):
1421 1422
        use_cudnn = False

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False,
            'fuse_relu_before_depthwise_conv': False,
            "padding_algorithm": padding_algorithm,
            "data_format": data_format,
        },
    )
Y
Yu Yang 已提交
1442

1443 1444 1445 1446
    if data_format == 'NCHW':
        pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    else:
        pre_act = helper.append_bias_op(pre_bias, dim_start=3, dim_end=4)
Y
Yu Yang 已提交
1447 1448 1449 1450

    return helper.append_activation(pre_act)


F
fengjiayi 已提交
1451
@templatedoc()
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
def pool2d(
    input,
    pool_size=-1,
    pool_type="max",
    pool_stride=1,
    pool_padding=0,
    global_pooling=False,
    use_cudnn=True,
    ceil_mode=False,
    name=None,
    exclusive=True,
    data_format="NCHW",
):
Y
Yu Yang 已提交
1465
    """
1466

F
fengjiayi 已提交
1467
    ${comment}
1468 1469

    Args:
K
Kaipeng Deng 已提交
1470 1471 1472 1473 1474
        input (Variable): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
J
JiabinYang 已提交
1475
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
1476 1477
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
1478
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
1479 1480 1481
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
1482 1483 1484 1485 1486 1487 1488
        pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
            'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
            it could be in three forms: `[pad_height, pad_width]` or
            `[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
            `pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `"NHWC"`, `pool_padding` can be in the form
            `[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
J
JiabinYang 已提交
1489
            Otherwise, the pool padding size will be a square of an int.
1490 1491 1492
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
K
Kaipeng Deng 已提交
1493 1494 1495
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1496
        exclusive (bool): Whether to exclude padding points in average pooling
1497
                          mode, default is `true`.
1498
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
1499 1500
                The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                `[batch_size, input_channels, input_height, input_width]`.
F
fengjiayi 已提交
1501

1502
    Returns:
K
Kaipeng Deng 已提交
1503
        Variable: The output tensor of pooling result. The data type is same as input tensor.
F
fengjiayi 已提交
1504 1505

    Raises:
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
        ValueError: If `pool_type` is not "max" nor "avg".
        ValueError: If `global_pooling` is False and `pool_size` is -1.
        TypeError: If `use_cudnn` is not a bool value.
        ValueError: If `data_format` is not "NCHW" or "NHWC".
        ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
        ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
        ShapeError: If the input is not a 4-D or 5-D Tensor.
        ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
        ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
        ShapeError: If the output's shape calculated is not greater than 0.

F
fengjiayi 已提交
1518 1519 1520 1521 1522

    Examples:

        .. code-block:: python

1523
          import paddle.fluid as fluid
1524 1525 1526
          import paddle

          paddle.enable_static()
1527

K
Kaipeng Deng 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
          data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')

          # max pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "max",
            pool_stride = 1,
            global_pooling=False)

          # average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=False)

          # global average pool2d
          pool2d = fluid.layers.pool2d(
            input = data,
            pool_size = 2,
            pool_type = "avg",
            pool_stride = 1,
            global_pooling=True)
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

          # Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
          out_1 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = [1, 2, 1, 0],
            data_format = "NCHW")

          # Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
          out_2 = fluid.layers.pool2d(
            input = data,
            pool_size = 3,
            pool_type = "avg",
            pool_stride = 1,
            pool_padding = "VALID",
            data_format = "NCHW")
Y
Yu Yang 已提交
1571 1572 1573
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
1574
            "Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'.",
1575 1576
            str(pool_type),
        )
C
chengduoZH 已提交
1577

C
chengduoZH 已提交
1578 1579
    if global_pooling is False and pool_size == -1:
        raise ValueError(
1580
            "When Attr(global_pooling) is False, Attr(pool_size) must be passed "
1581 1582
            "and be a valid value. Received pool_size: %s." % str(pool_size)
        )
1583 1584

    if not isinstance(use_cudnn, bool):
1585 1586 1587 1588
        raise TypeError(
            "Attr(use_cudnn) should be True or False. Received "
            "Attr(use_cudnn): %s." % str(use_cudnn)
        )
1589 1590 1591 1592

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1593 1594
            "Attr(data_format): %s." % str(data_format)
        )
C
chengduoZH 已提交
1595

C
chengduoZH 已提交
1596 1597 1598
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    def update_padding(padding, data_format):
        def is_list_or_tuple(ele):
            if isinstance(ele, list) or isinstance(ele, tuple):
                return True
            return False

        if is_list_or_tuple(padding) and len(padding) == 4:
            if is_list_or_tuple(padding[0]) and (data_format == "NCHW"):
                if not (padding[0] == [0, 0] and padding[1] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1610 1611
                        "is not supported." % str(padding)
                    )
1612 1613 1614 1615 1616 1617
                padding = padding[2:4]
                padding = [ele for a_list in padding for ele in a_list]
            elif is_list_or_tuple(padding[0]) and (data_format == "NHWC"):
                if not (padding[0] == [0, 0] and padding[3] == [0, 0]):
                    raise ValueError(
                        "Non-zero pool_padding(%s) in the batch or channel dimensions "
1618 1619
                        "is not supported." % str(padding)
                    )
1620 1621 1622
                padding = padding[1:3]
                padding = [ele for a_list in padding for ele in a_list]
            padding = utils.convert_to_list(padding, 4, 'padding')
1623

1624 1625
            if utils._is_symmetric_padding(padding, 2):
                padding = [padding[0], padding[2]]
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
        else:
            padding = utils.convert_to_list(padding, 2, 'padding')

        return padding

    padding_algorithm = "EXPLICIT"
    if isinstance(pool_padding, str):
        pool_padding = pool_padding.upper()
        if pool_padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
1637 1638
                % str(pool_padding)
            )
1639 1640
        if pool_padding == "VALID":
            padding_algorithm = "VALID"
1641
            pool_padding = [0, 0]
1642
            if ceil_mode is not False:
1643 1644
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode) must be False. "
1645 1646
                    "Received ceil_mode: True."
                )
1647 1648
        elif pool_padding == "SAME":
            padding_algorithm = "SAME"
1649
            pool_padding = [0, 0]
1650 1651

    pool_padding = update_padding(pool_padding, data_format)
1652
    if in_dygraph_mode():
1653
        input = input._use_gpudnn(use_cudnn)
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
        return _C_ops.pool2d(
            input,
            pool_size,
            pool_stride,
            pool_padding,
            ceil_mode,
            exclusive,
            data_format,
            pool_type,
            global_pooling,
            False,
            padding_algorithm,
        )
1667 1668
    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
1669
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1670
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
    helper.append_op(
        type=op_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
1690 1691 1692 1693

    return pool_out


1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
def batch_norm(
    input,
    act=None,
    is_test=False,
    momentum=0.9,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    data_layout='NCHW',
    in_place=False,
    name=None,
    moving_mean_name=None,
    moving_variance_name=None,
    do_model_average_for_mean_and_var=True,
    use_global_stats=False,
):
1710
    r"""
1711 1712
    :api_attr: Static Graph

Q
qiaolongfei 已提交
1713 1714
    **Batch Normalization Layer**

L
lvmengsi 已提交
1715
    Can be used as a normalizer function for convolution or fully_connected operations.
Q
qiaolongfei 已提交
1716
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
1717

Q
qiaolongfei 已提交
1718
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
1719

Q
qiaolongfei 已提交
1720 1721
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
1722 1723 1724
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
1737

L
lvmengsi 已提交
1738
        moving\_mean = moving\_mean * momentum + mini-batch\_mean * (1. - momentum) \\\\
1739
        moving\_var = moving\_var * momentum + mini-batch\_var * (1. - momentum)
L
lvmengsi 已提交
1740

1741

L
lvmengsi 已提交
1742
    moving_mean is global mean and moving_var is global variance.
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

L
lvmengsi 已提交
1756
    Note:
1757
        if build_strategy.sync_batch_norm=True, the batch_norm in network will use
L
lvmengsi 已提交
1758
        sync_batch_norm automatically.
1759
        `is_test = True` can only be used in test program and inference program, `is_test` CANNOT be set to True in train program, if you want to use global status from pre_train model in train program, please set `use_global_stats = True`.
L
lvmengsi 已提交
1760

1761
    Args:
1762
        input(Tensor): The rank of input Tensor can be 2, 3, 4, 5. The data type
L
lvmengsi 已提交
1763
            is float16 or float32 or float64.
Q
qiaolongfei 已提交
1764
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
1765 1766
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
1767 1768
        momentum(float|Tensor, Default 0.9): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
1769
            shape [1] and data type as float32. The updated formula is:
Q
qingqing01 已提交
1770 1771 1772 1773 1774
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
1775 1776
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
1777
	     will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
1778
	     If the Initializer of the param_attr is not set, the parameter is initialized
1779
	     with Xavier. Default: None.
C
chengduo 已提交
1780 1781
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
1782 1783
	     will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
	     If the Initializer of the bias_attr is not set, the bias is initialized zero.
1784
	     Default: None.
1785
        data_layout (str, optional): Specify the data format of the input, and the data format of the output
K
Kaipeng Deng 已提交
1786 1787 1788
             will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
             The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
             `[batch_size, input_channels, input_height, input_width]`.
1789
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
1790 1791 1792 1793
        name(str|None): For detailed information, please refer to :ref:`api_guide_Name`.
            Usually name is no need to set and None by default.
        moving_mean_name(str, Default None): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
1794
            will save global mean with the string.
L
lvmengsi 已提交
1795
        moving_variance_name(str, Default None): The name of the moving_variance which store the global Variance.
1796
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
1797
            will save global variance with the string.
1798 1799
        do_model_average_for_mean_and_var(bool, Default True): Whether parameter mean and variance should do model
            average when model average is enabled.
1800 1801 1802 1803 1804
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
1805
    Returns:
1806
        A Tensor which is the result after applying batch normalization on the input,
1807
        has same shape and data type with input.
Q
qiaolongfei 已提交
1808 1809 1810 1811 1812

    Examples:

        .. code-block:: python

1813
            import paddle
1814

1815
            paddle.enable_static()
1816 1817 1818 1819 1820 1821 1822
            x = paddle.static.data(name='x', shape=[3, 7, 3, 7], dtype='float32')
            hidden1 = paddle.static.nn.fc(x=x, size=200)
            print(hidden1.shape)
            # [3, 200]
            hidden2 = paddle.static.nn.batch_norm(input=hidden1)
            print(hidden2.shape)
            # [3, 200]
Y
Yu Yang 已提交
1823
    """
1824 1825 1826
    assert (
        bias_attr is not False
    ), "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
1827 1828
    helper = LayerHelper('batch_norm', **locals())

1829 1830 1831
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'batch_norm'
    )
1832
    dtype = helper.input_dtype()
1833

W
Wu Yi 已提交
1834 1835 1836 1837
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0),
    )
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
    )

    mean = helper.create_parameter(
        attr=ParamAttr(
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
1870 1871
    mean.stop_gradient = True

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
            trainable=False,
            do_model_average=do_model_average_for_mean_and_var,
        ),
        shape=param_shape,
        dtype=dtype,
    )
1882
    variance.stop_gradient = True
Y
Yu Yang 已提交
1883 1884 1885 1886

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
1887
    # variance and variance_out share the same memory
Y
Yu Yang 已提交
1888
    variance_out = variance
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

    if in_dygraph_mode():
        inputs_has_MomemtumTensor = False
        attrs_has_momentum = False
        tmp_tensor_type = core.eager.Tensor
        if isinstance(momentum, tmp_tensor_type):
            inputs_has_MomemtumTensor = True
        else:
            attrs_has_momentum = True

        attrs_ = ()
        if attrs_has_momentum:
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
            attrs_ = (
                'momentum',
                momentum,
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
1917
        else:
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
            attrs_ = (
                'epsilon',
                epsilon,
                'is_test',
                is_test,
                'data_layout',
                data_layout,
                'use_mkldnn',
                False,
                'fuse_with_relu',
                False,
                'use_global_stats',
                use_global_stats,
            )
1932
        if inputs_has_MomemtumTensor:
1933
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
                input,
                scale,
                bias,
                mean,
                variance,
                momentum,
                mean_out,
                variance_out,
                *attrs_,
            )
1944
        else:
1945
            batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
                input,
                scale,
                bias,
                mean,
                variance,
                None,
                mean_out,
                variance_out,
                *attrs_,
            )
1956

1957 1958 1959
        return dygraph_utils._append_activation_in_dygraph(
            batch_norm_out, act=act, use_mkldnn=False
        )
1960

1961 1962 1963
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
1964
    saved_variance = helper.create_variable_for_type_inference(
1965 1966
        dtype=dtype, stop_gradient=True
    )
1967
    reserve_space = None
1968
    if not is_test:
1969
        reserve_space = helper.create_variable_for_type_inference(
1970 1971
            dtype=helper.input_dtype(), stop_gradient=True
        )
1972

1973 1974 1975
    batch_norm_out = (
        input if in_place else helper.create_variable_for_type_inference(dtype)
    )
Y
Yu Yang 已提交
1976

1977 1978 1979 1980 1981
    inputs = {
        "X": input,
        "Scale": scale,
        "Bias": bias,
        "Mean": mean,
1982 1983
        "Variance": variance,
        "MeanOut": mean_out,
1984
        "VarianceOut": variance_out,
1985 1986 1987 1988 1989 1990 1991
    }
    attrs = {
        "epsilon": epsilon,
        "is_test": is_test,
        "data_layout": data_layout,
        "use_mkldnn": False,
        "fuse_with_relu": False,
1992
        "use_global_stats": use_global_stats,
1993 1994 1995 1996 1997
    }
    if isinstance(momentum, Variable):
        inputs['MomemtumTensor'] = momentum
    else:
        attrs['momentum'] = momentum
1998 1999 2000 2001 2002 2003

    outputs = {
        "Y": batch_norm_out,
        "MeanOut": mean_out,
        "VarianceOut": variance_out,
        "SavedMean": saved_mean,
2004
        "SavedVariance": saved_variance,
2005 2006 2007 2008
    }
    if reserve_space is not None:
        outputs["ReserveSpace"] = reserve_space

2009 2010 2011
    helper.append_op(
        type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
    )
Y
Yu Yang 已提交
2012 2013 2014 2015

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2016
@templatedoc()
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
def layer_norm(
    input,
    scale=True,
    shift=True,
    begin_norm_axis=1,
    epsilon=1e-05,
    param_attr=None,
    bias_attr=None,
    act=None,
    name=None,
):
2028
    r"""
2029 2030
    :api_attr: Static Graph

2031 2032 2033 2034
    **Layer Normalization Layer**

    The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
G
guosheng 已提交
2035 2036 2037

    The formula is as follows:

Y
yuyang18 已提交
2038
    ..  math::
G
guosheng 已提交
2039

2040
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
G
guosheng 已提交
2041

2042
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
Y
yuyang18 已提交
2043

2044
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
Y
yuyang18 已提交
2045

2046 2047 2048 2049 2050
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2051

G
guosheng 已提交
2052
    Args:
2053
        input(Tensor): A multi-dimension ``Tensor`` , and the data type is float32 or float64.
2054 2055 2056 2057 2058
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
            normalization. Default: True.
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
            normalization. Default: True.
        begin_norm_axis(int, optional): The normalization will be performed along
G
guosheng 已提交
2059
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
2060 2061 2062 2063
            Default: 1.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2064 2065
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2066
            a default :code:`ParamAttr` would be added as scale. The
2067 2068
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
S
sneaxiy 已提交
2069 2070
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2071
            a default :code:`ParamAttr` would be added as bias. The
2072
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
T
tianshuo78520a 已提交
2073
        act(str, optional): Activation to be applied to the output of layer normalization.
2074 2075
                  Default: None.
        name(str): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2076 2077

    Returns:
2078
        Tensor: ``Tensor``  indicating the normalized result, the data type is the same as  ``input`` , and the return dimension is the same as  ``input`` .
G
guosheng 已提交
2079 2080 2081

    Examples:

2082 2083
        .. code-block:: python

2084 2085
            import paddle
            paddle.enable_static()
2086 2087 2088
            x = paddle.static.data(name='x', shape=[8, 32, 32], dtype='float32')
            output = paddle.static.nn.layer_norm(input=x, begin_norm_axis=1)
            print(output.shape)  # [8, 32, 32]
G
guosheng 已提交
2089
    """
2090 2091 2092
    assert (
        _non_static_mode() is not True
    ), "please use LayerNorm instead of layer_norm in dygraph mode!"
G
guosheng 已提交
2093
    helper = LayerHelper('layer_norm', **locals())
2094 2095 2096
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'layer_norm'
    )
G
guosheng 已提交
2097 2098 2099 2100 2101 2102 2103
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
2104 2105 2106 2107 2108 2109 2110 2111 2112
        assert (
            param_attr is not False
        ), "param_attr should not be False when using scale."
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0),
        )
G
guosheng 已提交
2113
        inputs['Scale'] = scale
2114 2115
    else:
        if param_attr:
T
tianshuo78520a 已提交
2116
            warnings.warn("param_attr is only available with scale is True.")
G
guosheng 已提交
2117
    if shift:
2118 2119 2120 2121 2122 2123
        assert (
            bias_attr is not False
        ), "bias_attr should not be False when using shift."
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True
        )
G
guosheng 已提交
2124
        inputs['Bias'] = bias
2125 2126
    else:
        if bias_attr:
T
tianshuo78520a 已提交
2127
            warnings.warn("bias_attr is only available with shift is True.")
G
guosheng 已提交
2128 2129

    # create output
2130 2131 2132 2133 2134 2135
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True
    )
X
Xin Pan 已提交
2136
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2137

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon, "begin_norm_axis": begin_norm_axis},
    )
G
guosheng 已提交
2148 2149 2150 2151

    return helper.append_activation(layer_norm_out)


D
dengkaipeng 已提交
2152
@templatedoc()
2153
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
2154
    r"""
2155 2156
    :api_attr: Static Graph

D
dengkaipeng 已提交
2157 2158
    **Spectral Normalization Layer**

K
Kaipeng Deng 已提交
2159
    This operation calculates the spectral normalization value of weight parameters of
2160
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
K
Kaipeng Deng 已提交
2161 2162
    Parameters. Output tensor will be in same shape with input tensor.
    Calculations are showed as follows.
2163

D
dengkaipeng 已提交
2164 2165 2166
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
2167
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
2168 2169

    Step 2:
T
tianshuo78520a 已提交
2170
    :attr:`power_iters` should be a positive integer, do following
K
Kaipeng Deng 已提交
2171 2172
    calculations with U and V for :attr:`power_iters` rounds. Calculations
    as follows:
D
dengkaipeng 已提交
2173

2174
    .. math::
D
dengkaipeng 已提交
2175 2176 2177 2178 2179 2180

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
2181
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
2182 2183 2184 2185

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
2186

D
dengkaipeng 已提交
2187
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
2188

2189

D
dengkaipeng 已提交
2190 2191 2192
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
C
Chen Long 已提交
2193
        weight(Tensor): ${weight_comment}
D
dengkaipeng 已提交
2194 2195 2196
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
K
Kaipeng Deng 已提交
2197 2198 2199
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
2200 2201

    Returns:
C
Chen Long 已提交
2202
        Tensor: A tensor of weight parameters after spectral normalization.
K
Kaipeng Deng 已提交
2203
                  The data type and shape is same as input tensor.
D
dengkaipeng 已提交
2204 2205

    Examples:
K
Kaipeng Deng 已提交
2206
       .. code-block:: python
D
dengkaipeng 已提交
2207

2208
            import paddle
K
Kaipeng Deng 已提交
2209

2210
            paddle.enable_static()
C
Chen Long 已提交
2211
            weight = paddle.static.data(name='weight', shape=[2, 8, 32, 32], dtype='float32')
2212
            x = paddle.static.nn.spectral_norm(weight=weight, dim=1, power_iters=2)
C
Chen Long 已提交
2213
            print(x.shape) # [2, 8, 32, 32]
D
dengkaipeng 已提交
2214 2215
    """
    helper = LayerHelper('spectral_norm', **locals())
2216 2217 2218
    check_variable_and_dtype(
        weight, 'weight', ['float32', 'float64'], 'spectral_norm'
    )
2219 2220 2221
    check_type(dim, 'dim', int, 'spectral_norm')
    check_type(power_iters, 'power_iters', int, 'spectral_norm')
    check_type(eps, 'eps', float, 'spectral_norm')
2222
    dtype = weight.dtype
D
dengkaipeng 已提交
2223 2224

    # create intput and parameters
2225
    input_shape = weight.shape
2226
    assert weight.numel() > 0, "Any dimension of input cannot be equal to 0."
2227 2228 2229 2230 2231
    assert dim < len(input_shape), (
        "The input `dim` should be less than the "
        "rank of `weight`, but received dim="
        "{}".format(dim)
    )
2232 2233 2234
    h = input_shape[dim]
    w = np.prod(input_shape) // h

2235 2236 2237 2238 2239 2240
    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2241
    u.stop_gradient = True
2242 2243 2244 2245 2246 2247
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0.0, 1.0),
    )
2248
    v.stop_gradient = True
D
dengkaipeng 已提交
2249

2250 2251 2252 2253 2254 2255 2256
    if in_dygraph_mode():
        return _C_ops.spectral_norm(weight, u, v, dim, power_iters, eps)

    inputs = {'Weight': weight}
    inputs['U'] = u
    inputs['V'] = v

D
dengkaipeng 已提交
2257
    # create output
2258
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
2259

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
    helper.append_op(
        type="spectral_norm",
        inputs=inputs,
        outputs={
            "Out": out,
        },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        },
    )
D
Dun 已提交
2272

2273
    return out
D
Dun 已提交
2274 2275


C
caoying03 已提交
2276
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
2277
    """
2278

Y
yangyaming 已提交
2279
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
2280 2281

    Args:
2282 2283 2284
        input (Variable): The input variable which is a Tensor, the data type is float32,
            float64, int32, int64.
        dim (list|int, optional): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
2285 2286
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
2287 2288
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
2289
        keep_dim (bool, optional): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
2290
            output Tensor. The result tensor will have one fewer dimension
2291 2292 2293 2294
            than the :attr:`input` unless :attr:`keep_dim` is true, default
            value is False.
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
G
guosheng 已提交
2295 2296

    Returns:
2297 2298
        Variable: Tensor, results of summation operation on the specified dim of input tensor,
        it's data type is the same as input's Tensor.
F
fengjiayi 已提交
2299

2300 2301
    Raises:
        TypeError, if out data type is different with the input data type.
2302

G
guosheng 已提交
2303 2304 2305
    Examples:
        .. code-block:: python

2306
            import paddle.fluid as fluid
2307 2308
            import paddle
            paddle.enable_static()
G
guosheng 已提交
2309 2310 2311
            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
2312
            # Each example is followed by the corresponding output tensor.
2313
            x = fluid.data(name='x', shape=[2, 4], dtype='float32')
G
guosheng 已提交
2314 2315 2316 2317
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
2318

2319
            # y is a Tensor variable with shape [2, 2, 2] and elements as below:
W
whs 已提交
2320 2321
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
2322
            # Each example is followed by the corresponding output tensor.
2323
            y = fluid.data(name='y', shape=[2, 2, 2], dtype='float32')
2324 2325
            fluid.layers.reduce_sum(y, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(y, dim=[0, 1]) # [16, 20]
W
whs 已提交
2326

G
guosheng 已提交
2327
    """
2328 2329
    reduce_all, dim = _get_reduce_dim(dim, input)

2330
    if in_dygraph_mode():
2331
        return _C_ops.sum(input, dim, None, keep_dim)
2332
    elif _in_legacy_dygraph():
2333 2334 2335
        return _legacy_C_ops.reduce_sum(
            input, 'dim', dim, 'keep_dim', keep_dim, 'reduce_all', reduce_all
        )
2336
    attrs = {'dim': dim, 'keep_dim': keep_dim, 'reduce_all': reduce_all}
2337
    check_variable_and_dtype(
2338 2339 2340 2341 2342
        input,
        'input',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'reduce_sum',
    )
2343
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
2344
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
2345 2346 2347 2348 2349 2350
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs=attrs,
    )
G
guosheng 已提交
2351
    return out
G
guosheng 已提交
2352 2353


C
caoying03 已提交
2354
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
2355
    """
2356
    Split the input tensor into multiple sub-Tensors.
G
guosheng 已提交
2357 2358

    Args:
2359
        input (Tensor): A N-D Tensor. The data type is bool, float16, float32, float64, int32 or int64.
2360
        num_or_sections (int|list|tuple): If ``num_or_sections`` is int, then the ``num_or_sections``
2361
            indicates the number of equal sized sub-Tensors that the ``input``
2362
            will be divided into. If ``num_or_sections`` is a list or tuple, the length of it
2363 2364 2365 2366 2367
            indicates the number of sub-Tensors and the elements in it indicate the sizes of sub-Tensors'
            dimension orderly. The length of the list mustn't be larger than the ``input`` 's size of specified dim.
        dim (int|Tensor, optional): The dimension along which to split, it can be a scalar with type ``int`` or
            a ``Tensor`` with shape [1] and data type ``int32`` or ``int64``. If :math:`dim < 0`,
            the dimension to split along is :math:`rank(input) + dim`. Default is -1.
2368
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
2369
            For more information, please refer to :ref:`api_guide_Name` .
G
guosheng 已提交
2370 2371

    Returns:
2372
        list(Tensor): The list of segmented Tensors.
G
guosheng 已提交
2373

2374
    Example:
G
guosheng 已提交
2375 2376
        .. code-block:: python

2377 2378
            import paddle.fluid as fluid

2379
            # input is a Tensor which shape is [3, 9, 5]
2380
            input = fluid.data(
2381 2382
                 name="input", shape=[3, 9, 5], dtype="float32")

2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=1)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, 4], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]

            out0, out1, out2 = fluid.layers.split(input, num_or_sections=[2, 3, -1], dim=1)
            # out0.shape [3, 2, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 4, 5]
2397

2398 2399 2400 2401 2402 2403
            # dim is negative, the real dim is (rank(input) + axis) which real
            # value is 1.
            out0, out1, out2 = fluid.layers.split(input, num_or_sections=3, dim=-2)
            # out0.shape [3, 3, 5]
            # out1.shape [3, 3, 5]
            # out2.shape [3, 3, 5]
2404

G
guosheng 已提交
2405
    """
J
Jiabin Yang 已提交
2406
    if _non_static_mode():
2407 2408 2409
        num = None
        attrs = ()

S
songyouwei 已提交
2410 2411
        if isinstance(dim, Variable):
            dim = dim.numpy()
2412
            dim = dim.item(0)
W
wangzhen38 已提交
2413
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
S
songyouwei 已提交
2414
        dim = (len(input.shape) + dim) if dim < 0 else dim
2415
        attrs += ('axis', dim)
2416 2417 2418

        if isinstance(num_or_sections, int):
            num = num_or_sections
2419
            attrs += ('num', num_or_sections)
L
Leo Chen 已提交
2420
        elif isinstance(num_or_sections, (list, tuple)):
2421
            num = len(num_or_sections)
L
Leo Chen 已提交
2422
            if utils._contain_var(num_or_sections):
2423 2424
                for index, item in enumerate(num_or_sections):
                    if isinstance(item, Variable):
2425 2426 2427
                        num_or_sections[index] = num_or_sections[index].numpy()[
                            0
                        ]
2428
                attrs += ('sections', list(num_or_sections))
L
Leo Chen 已提交
2429
            else:
2430
                attrs += ('sections', list(num_or_sections))
2431 2432
        else:
            raise TypeError(
2433
                "The type of 'num_or_sections' in split must be int, list or tuple in imperative mode, but "
2434 2435
                "received %s." % (type(num_or_sections))
            )
2436
        if in_dygraph_mode():
C
Charles-hit 已提交
2437 2438 2439 2440
            if isinstance(num_or_sections, int):
                return _C_ops.split_with_num(input, num_or_sections, dim)
            else:
                return _C_ops.split(input, num_or_sections, dim)
2441 2442
        elif _in_legacy_dygraph():
            out = [_varbase_creator() for n in range(num)]
2443
            _legacy_C_ops.split(input, out, *attrs)
2444
            return out
L
Leo Chen 已提交
2445

2446
    check_variable_and_dtype(
2447 2448 2449 2450 2451
        input,
        'input',
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
        'split',
    )
2452 2453 2454 2455
    check_type(num_or_sections, 'num_or_sections', (list, int, tuple), 'split')
    check_type(dim, 'dim', (int, Variable), 'split')
    if isinstance(dim, Variable):
        check_dtype(dim.dtype, 'dim', ['int32', 'int64'], 'split')
2456

G
guosheng 已提交
2457
    helper = LayerHelper('split', **locals())
2458

G
guosheng 已提交
2459
    input_shape = input.shape
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    inputs = {'X': input}
    attrs = {'num': num_or_sections if isinstance(num_or_sections, int) else 0}

    def _get_SectionsTensorList(one_list):
        tensor_list = []
        unk_dim_idx = -1
        for idx, dim_size in enumerate(one_list):
            if isinstance(dim_size, Variable):
                dim_size.stop_gradient = True
                tensor_list.append(dim_size)
            else:
2471
                assert isinstance(dim_size, int)
2472 2473 2474
                if dim_size == -1:
                    assert unk_dim_idx == -1, (
                        "Only one value of 'num_or_section' in split can "
2475 2476 2477
                        "be -1. But received num_or_section[%d] is also -1."
                        % idx
                    )
2478 2479
                    unk_dim_idx = idx
                temp_out = helper.create_variable_for_type_inference('int32')
2480 2481 2482
                fill_constant(
                    [1], 'int32', dim_size, force_cpu=True, out=temp_out
                )
2483 2484 2485 2486 2487 2488 2489
                tensor_list.append(temp_out)
        return tensor_list

    if isinstance(dim, Variable):
        dim.stop_gradient = True
        inputs['AxisTensor'] = dim
    else:
W
wangzhen38 已提交
2490
        assert len(input.shape) + dim >= 0, "(rank(x) + axis) must >= 0"
2491 2492 2493
        dim = (len(input_shape) + dim) if dim < 0 else dim
        attrs['axis'] = dim

G
guosheng 已提交
2494 2495
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
2496
        if isinstance(dim, int) and input_shape[dim] > 0:
2497 2498 2499 2500 2501 2502
            assert input_shape[dim] % num_or_sections == 0, (
                "The input's size along the split dimension "
                "must be evenly divisible by Attr(num_or_sections). "
                "But %d is not evenly divisible by %d. "
                % (num_or_sections, input_shape[dim])
            )
G
guosheng 已提交
2503 2504
        num = num_or_sections
    else:
2505
        if isinstance(dim, int) and input_shape[dim] > 0:
2506 2507 2508
            assert (
                len(num_or_sections) <= input_shape[dim]
            ), 'len(num_or_sections) must not be more than input.shape[dim].'
G
guosheng 已提交
2509
        num = len(num_or_sections)
2510
        attrs['sections'] = list(
2511 2512 2513 2514 2515
            map(
                lambda ele: -1 if isinstance(ele, Variable) else ele,
                num_or_sections,
            )
        )
L
Leo Chen 已提交
2516
        if utils._contain_var(num_or_sections):
2517
            inputs['SectionsTensorList'] = _get_SectionsTensorList(
2518 2519
                num_or_sections
            )
2520

G
guosheng 已提交
2521
    outs = [
X
Xin Pan 已提交
2522
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
2523 2524
        for i in range(num)
    ]
2525 2526 2527
    helper.append_op(
        type='split', inputs=inputs, outputs={'Out': outs}, attrs=attrs
    )
G
guosheng 已提交
2528
    return outs
C
caoying03 已提交
2529 2530 2531


def l2_normalize(x, axis, epsilon=1e-12, name=None):
2532
    r"""
2533

R
ruri 已提交
2534
    This op normalizes `x` along dimension `axis` using an L2
C
caoying03 已提交
2535 2536
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

2537
    .. math::
2538 2539

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
2540 2541 2542 2543 2544

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
2545
        x(Variable|list): The input tensor could be N-D tensor, and the input data type could be float16, float32 or float64.
2546
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
2547 2548
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
2549
        epsilon(float): The epsilon value is used to avoid division by zero, \
翟飞跃 已提交
2550
            the default value is 1e-12.
2551
    name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
2552

C
caoying03 已提交
2553
    Returns:
R
ruri 已提交
2554
        Variable: The output has the same shape and data type with `x`.
C
caoying03 已提交
2555 2556

    Examples:
2557

2558 2559
    .. code-block:: python
        :name: code-example1
2560

2561
        import paddle
2562

2563 2564
        X = paddle.randn(shape=[3, 5], dtype='float64')
        out = paddle.fluid.layers.l2_normalize(X, axis=-1)
G
Guoxia Wang 已提交
2565
        print(out)
R
ruri 已提交
2566

2567 2568 2569
        # [[ 0.21558504  0.56360189  0.47466096  0.46269539 -0.44326736]
        #  [-0.70602414 -0.52745777  0.37771788 -0.2804768  -0.04449922]
        #  [-0.33972208 -0.43014923  0.31772556  0.76617881 -0.10761525]]
2570

C
caoying03 已提交
2571
    """
F
fengjiayi 已提交
2572 2573
    if len(x.shape) == 1:
        axis = 0
J
Jiabin Yang 已提交
2574
    if _non_static_mode():
2575 2576 2577
        if in_dygraph_mode():
            out, _ = _C_ops.norm(x, 1 if axis is None else axis, epsilon, False)
        elif _in_legacy_dygraph():
2578 2579 2580
            _, out = _legacy_C_ops.norm(
                x, 'axis', 1 if axis is None else axis, 'epsilon', epsilon
            )
2581 2582 2583
        return out

    check_variable_and_dtype(x, "X", ("float16", "float32", "float64"), "norm")
C
caoying03 已提交
2584

2585
    helper = LayerHelper("l2_normalize", **locals())
X
Xin Pan 已提交
2586 2587
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
2588 2589 2590 2591 2592 2593 2594 2595 2596
    helper.append_op(
        type="norm",
        inputs={"X": x},
        outputs={"Out": out, "Norm": norm},
        attrs={
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
        },
    )
C
caoying03 已提交
2597
    return out
2598 2599


S
ShenLiang 已提交
2600
@deprecated(since="2.0.0", update_to="paddle.matmul")
S
sneaxiy 已提交
2601
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
2602
    """
Y
ying 已提交
2603 2604 2605 2606
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
2607

C
chengduoZH 已提交
2608
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
2609
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
2610

2611 2612 2613 2614 2615
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
2616
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
2617

C
chengduoZH 已提交
2618
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
2619
      performs in the following way.
G
guosheng 已提交
2620

2621
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
2622
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
2623
        last two dimensions and a batched matrix multiply supporting broadcast
2624
        applies on the two tensors.
G
guosheng 已提交
2625

Y
ying 已提交
2626 2627
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
2628
    removed after matrix multiplication.
G
guosheng 已提交
2629 2630 2631

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
2632 2633 2634
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
2635
        alpha (float): The scale of output. Default 1.0.
2636
        name(str|None): A name for this layer(optional). If set None, the layer
2637
            will be named automatically.
G
guosheng 已提交
2638 2639

    Returns:
石晓伟 已提交
2640
        Variable: The product Tensor (or LoDTensor) variable.
G
guosheng 已提交
2641

G
guosheng 已提交
2642 2643 2644
    Examples:
        .. code-block:: python

2645
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
2646
            # x: [B, ..., M, K], y: [B, ..., K, N]
2647
            # fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
2648

2649
            # x: [B, M, K], y: [B, K, N]
2650
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2651

2652
            # x: [B, M, K], y: [K, N]
2653
            # fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
2654

2655
            # x: [M, K], y: [K, N]
2656
            # fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
2657 2658

            # x: [B, M, K], y: [K]
2659
            # fluid.layers.matmul(x, y)  # out: [B, M]
Y
ying 已提交
2660

2661
            # x: [K], y: [K]
2662
            # fluid.layers.matmul(x, y)  # out: [1]
2663

Y
ying 已提交
2664
            # x: [M], y: [N]
2665 2666
            # fluid.layers.matmul(x, y, True, True)  # out: [M, N]

2667
            import paddle
2668
            import paddle.fluid as fluid
2669 2670
            paddle.enable_static()

2671 2672 2673
            x = fluid.layers.data(name='x', shape=[2, 3], dtype='float32')
            y = fluid.layers.data(name='y', shape=[3, 2], dtype='float32')
            out = fluid.layers.matmul(x, y, True, True)
G
guosheng 已提交
2674
    """
J
Jiabin Yang 已提交
2675
    if _non_static_mode():
S
ShenLiang 已提交
2676
        out = _varbase_creator(dtype=x.dtype)
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        _legacy_C_ops.matmul(
            x,
            y,
            out,
            'transpose_X',
            transpose_x,
            'transpose_Y',
            transpose_y,
            'alpha',
            float(alpha),
        )
S
ShenLiang 已提交
2688 2689 2690 2691 2692
        return out

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
2693 2694 2695
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul'
            )
S
ShenLiang 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
2709 2710 2711 2712 2713 2714
            assert (x_shape[-1] == -1) or (y_shape[-2] == -1), (
                "After performing an optional transpose, Input X's width should be "
                "equal to Y's width for multiplication "
                "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                % (x_shape, y_shape)
            )
S
ShenLiang 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
2726 2727
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape)
                    )
S
ShenLiang 已提交
2728

W
wanghuancoder 已提交
2729 2730 2731 2732 2733 2734
    attrs = {
        'transpose_X': transpose_x,
        'transpose_Y': transpose_y,
        'alpha': float(alpha),
    }

S
ShenLiang 已提交
2735 2736 2737 2738
    __check_input(x, y)

    helper = LayerHelper('matmul', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2739 2740 2741 2742 2743 2744
    helper.append_op(
        type='matmul',
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs=attrs,
    )
S
ShenLiang 已提交
2745
    return out
2746 2747


Y
yuyang18 已提交
2748
@templatedoc()
2749
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
2750
    """
2751 2752
    :api_attr: Static Graph

Y
yuyang18 已提交
2753
    ${comment}
2754 2755

    Args:
Y
yuyang18 已提交
2756
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
2757 2758
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
2759 2760 2761 2762 2763
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
2764
        ${out_comment}.
2765 2766

    Examples:
B
Bai Yifan 已提交
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778

      .. code-block:: python

        # for LodTensor inputs
        import paddle
        paddle.enable_static()
        x = paddle.static.data(name='x', shape=[9, 16],
                               dtype='float32', lod_level=1)
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
        # for Tensor inputs
        x = paddle.static.data(name='x', shape=[9, 4, 16], dtype='float32')
        out = paddle.static.nn.row_conv(input=x, future_context_size=2)
2779 2780
    """
    helper = LayerHelper('row_conv', **locals())
2781
    check_variable_and_dtype(input, 'input', ['float32'], 'row_conv')
2782
    dtype = helper.input_dtype()
2783
    filter_shape = [future_context_size + 1, input.shape[-1]]
2784 2785 2786
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype
    )
X
Xin Pan 已提交
2787
    out = helper.create_variable_for_type_inference(dtype)
2788 2789 2790 2791 2792
    helper.append_op(
        type='row_conv',
        inputs={'X': [input], 'Filter': [filter_param]},
        outputs={'Out': [out]},
    )
Y
yangyaming 已提交
2793
    return helper.append_activation(out)
2794 2795


2796
@deprecated(since='2.0.0', update_to='paddle.nn.functional.one_hot')
2797
def one_hot(input, depth, allow_out_of_range=False):
2798
    """
2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836

    **WARING:** This OP requires the last dimension of Tensor shape must be equal to 1.
    This OP will be deprecated in a future release. It is recommended to use fluid. :ref:`api_fluid_one_hot` .

    The operator converts each id in the input to an one-hot vector with a
    :attr:`depth` length. The value in the vector dimension corresponding to the id
    is 1, and the value in the remaining dimension is 0.

    The shape of output Tensor or LoDTensor is generated by adding :attr:`depth` dimension
    behind the last dimension of the input shape.

    .. code-block:: text

        Example 1 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [3], [0]]
            depth = 4

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
                        [0., 1., 0., 0.],
                        [0., 0., 0., 1.],
                        [1., 0., 0., 0.]]

        Example 2 (allow_out_of_range=True):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = True

        output:
            Out.shape = [4, 4]
            Out.data = [[0., 1., 0., 0.],
2837
                        [0., 1., 0., 0.],
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
                        [0., 0., 0., 0.], # This id is 5, which goes beyond depth, so set it all-zeros data.
                        [1., 0., 0., 0.]]

        Example 3 (allow_out_of_range=False):

        input:
            X.shape = [4, 1]
            X.data = [[1], [1], [5], [0]]
            depth = 4
            allow_out_of_range = False

        output: Throw an exception for Illegal value
2850
            The second dimension in X is 5, which is greater than depth.
2851 2852
            Allow_out_of_range =False means that does not allow the word id to exceed depth,
            so it throws an exception.
2853 2854

    Args:
2855 2856 2857
        input(Variable): Tensor or LoDTensor with shape :math:`[N_1, N_2, ..., N_k, 1]` ,
            which contains at least one dimension and the last dimension must be 1.
            The data type is int32 or int64.
2858
        depth(scalar): An integer defining the :attr:`depth` of the one hot dimension. If input
2859
            is word id, depth is generally the dictionary size.
2860
        allow_out_of_range(bool): A bool value indicating whether the input
2861 2862 2863 2864
            indices could be out of range :math:`[0, depth)` . When input indices are
            out of range, exceptions :code:`Illegal value` is raised if :attr:`allow_out_of_range`
            is False, or zero-filling representations is created if it is set True.
            Default: False.
2865 2866

    Returns:
2867
        Variable: The one-hot representations of input. A Tensor or LoDTensor with type float32.
2868 2869

    Examples:
C
caoying03 已提交
2870
        .. code-block:: python
2871

2872
            import paddle
2873
            import paddle.fluid as fluid
2874 2875
            paddle.enable_static()

2876 2877 2878
            # Correspond to the first example above, where label.shape is [4, 1] and one_hot_label.shape is [4, 4].
            label = fluid.data(name="label", shape=[4, 1], dtype="int64")
            one_hot_label = fluid.layers.one_hot(input=label, depth=4)
2879
    """
J
Jiabin Yang 已提交
2880
    if _non_static_mode():
S
songyouwei 已提交
2881 2882 2883
        if isinstance(depth, Variable):
            depth = depth.numpy()
            assert depth.shape == (
2884 2885
                1,
            ), "depth of type Variable should have shape [1]"
2886
            depth = depth.item(0)
2887 2888 2889
        out = _legacy_C_ops.one_hot(
            input, 'depth', depth, 'allow_out_of_range', allow_out_of_range
        )
2890 2891
        out.stop_gradient = True
        return out
2892

2893
    helper = LayerHelper("one_hot", **locals())
2894
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'one_hot')
2895
    check_type(depth, 'depth', (int, Variable), 'one_hot')
X
Xin Pan 已提交
2896
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
2897

2898 2899
    if not isinstance(depth, Variable):
        # user attribute
2900
        inputs = {'X': input}
Y
Yi Liu 已提交
2901
        attrs = {'depth': depth, 'allow_out_of_range': allow_out_of_range}
2902
    else:
2903 2904 2905
        depth.stop_gradient = True
        inputs = {'X': input, 'depth_tensor': depth}
        attrs = {'allow_out_of_range': allow_out_of_range}
2906 2907 2908
    helper.append_op(
        type="one_hot", inputs=inputs, attrs=attrs, outputs={'Out': one_hot_out}
    )
2909
    one_hot_out.stop_gradient = True
2910
    return one_hot_out
Y
Yu Yang 已提交
2911 2912


Y
Yu Yang 已提交
2913
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
2914
    """
2915 2916
    :api_attr: Static Graph

2917 2918
    Create an auto-increase variable. which will be automatically increased
    by 1 in every iteration. By default, the first return of this counter is 1,
Y
Yibing Liu 已提交
2919
    and the step size is 1.
Y
Yu Yang 已提交
2920 2921

    Args:
Y
Yibing Liu 已提交
2922 2923 2924
        counter_name(str, optional): The counter name. Default '@STEP_COUNTER@'.
        begin(int, optional): The first return value of this counter. Default 1.
        step(int, optional): The step size. Default 1.
Y
Yu Yang 已提交
2925

2926
    Returns:
Y
Yibing Liu 已提交
2927
        Variable: The auto-increased Variable with data type int64.
Y
yi.wu 已提交
2928 2929 2930 2931

    Examples:
        .. code-block:: python

2932
           import paddle.fluid as fluid
2933 2934
           import paddle
           paddle.enable_static()
Y
yi.wu 已提交
2935
           global_step = fluid.layers.autoincreased_step_counter(
Y
Yibing Liu 已提交
2936
               counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Y
Yu Yang 已提交
2937 2938
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
2939 2940
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
2941
    counter, is_new_var = helper.create_or_get_global_variable(
H
hong 已提交
2942 2943 2944 2945
        name=counter_name,
        dtype='int64',
        shape=[1],
        persistable=True,
2946 2947
        belong_to_optimizer=True,
    )
Y
Yu Yang 已提交
2948
    if is_new_var:
2949 2950 2951
        helper.set_variable_initializer(
            counter, initializer=Constant(value=begin - 1, force_cpu=True)
        )
W
Wu Yi 已提交
2952
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
2953 2954
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
2955
            outputs={'Out': [counter]},
2956 2957
            attrs={'step': float(step)},
        )
Y
Yu Yang 已提交
2958 2959 2960
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
2961 2962


2963
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
2964
    """
2965
    Insert single-dimensional entries to the shape of a Tensor. Takes one
M
minqiyang 已提交
2966 2967
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
2968

M
minqiyang 已提交
2969
    For example:
H
haowang101779990 已提交
2970 2971 2972

    .. code-block:: text

M
minqiyang 已提交
2973
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
2974
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
2975

Y
Yibing Liu 已提交
2976
    Args:
2977
        input (Variable): The input Tensor to be unsqueezed. Supported data type: float32, float64, bool, int8, int32, int64.
2978
        axes (int|list|tuple|Variable): Indicates the dimensions to be inserted. The data type is ``int32`` . If ``axes`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``axes`` is an Variable, it should be an 1-D Tensor .
2979
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
2980 2981

    Returns:
2982
        Variable: Unsqueezed Tensor, with the same data type as input.
Y
Yibing Liu 已提交
2983 2984 2985 2986

    Examples:
        .. code-block:: python

2987 2988 2989
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[5, 10])
            y = fluid.layers.unsqueeze(input=x, axes=[1])
2990

Y
Yibing Liu 已提交
2991
    """
J
Jiabin Yang 已提交
2992
    if _non_static_mode():
L
Leo Chen 已提交
2993 2994 2995
        if isinstance(axes, int):
            axes = [axes]
        elif isinstance(axes, Variable):
2996
            axes = axes.numpy().tolist()
L
Leo Chen 已提交
2997 2998 2999 3000 3001
        elif isinstance(axes, (list, tuple)):
            axes = [
                item.numpy().item(0) if isinstance(item, Variable) else item
                for item in axes
            ]
3002
        if _in_legacy_dygraph():
3003
            out, _ = _legacy_C_ops.unsqueeze2(input, 'axes', axes)
3004
            return out
3005
        return _C_ops.unsqueeze(input, axes)
3006 3007

    check_type(axes, 'axis/axes', (int, list, tuple, Variable), 'unsqueeze')
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
    check_variable_and_dtype(
        input,
        'input',
        [
            'float16',
            'float32',
            'float64',
            'bool',
            'int8',
            'int16',
            'int32',
            'int64',
            'complex64',
            'complex128',
        ],
        'unsqueeze',
    )
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
    helper = LayerHelper("unsqueeze2", **locals())
    inputs = {"X": input}
    attrs = {}

    if isinstance(axes, int):
        axes = [axes]
    if isinstance(axes, Variable):
        axes.stop_gradient = True
        inputs["AxesTensor"] = axes
    elif isinstance(axes, (list, tuple)):
L
Leo Chen 已提交
3035
        if utils._contain_var(axes):
3036
            inputs["AxesTensorList"] = utils._convert_to_tensor_list(axes)
3037 3038 3039
        else:
            attrs["axes"] = axes

X
Xin Pan 已提交
3040 3041
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
3042 3043 3044 3045 3046 3047
    helper.append_op(
        type="unsqueeze2",
        inputs=inputs,
        attrs=attrs,
        outputs={"Out": out, "XShape": x_shape},
    )
Y
Yibing Liu 已提交
3048

3049 3050
    return out

3051

Y
yangyaming 已提交
3052
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
3053
    """
Y
Yibing Liu 已提交
3054
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
3055 3056 3057 3058
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
3059
    :attr:`y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
3060 3061 3062 3063 3064 3065

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
3066
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
3067 3068 3069
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

3070
            target_lod: [4, 2]
Y
yangyaming 已提交
3071 3072

            then we get a 1-level LoDTensor:
3073
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
3074 3075 3076 3077 3078 3079
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
3080
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3081 3082 3083 3084
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
3085
                y.data = [[2, 4]]
Y
yangyaming 已提交
3086 3087 3088
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
3089
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
3090 3091 3092 3093 3094 3095
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
3096
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
3097 3098 3099 3100
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
3101
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3102 3103 3104 3105
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
3106
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
3107 3108 3109 3110
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
3111
        x (Variable): Input variable which could be a Tensor or LoDTensor.
3112
                      The data type should be int32, int64, float32 or float64.
3113 3114
        y (Variable, optional): If provided, output's LoD would be derived from :attr:`y`.
                                If y's lod level>0, the data type can be any type.
3115 3116
                                If y's lod level=0, the data type should be int32.
        target_lod (list|tuple, optional): One level LoD which should be considered
Y
Yibing Liu 已提交
3117
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
3118 3119

    Returns:
Y
Yibing Liu 已提交
3120
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
3121 3122

    Raises:
Y
Yibing Liu 已提交
3123
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
3124 3125 3126 3127

    Examples:
        .. code-block:: python

3128
            import paddle.fluid as fluid
3129 3130 3131
            x = fluid.layers.data(name='x', shape=[10])
            y = fluid.layers.data(name='y', shape=[10, 20], lod_level=2)
            out = fluid.layers.lod_reset(x=x, y=y)
Y
yangyaming 已提交
3132
    """
3133 3134 3135
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'lod_reset'
    )
Y
yangyaming 已提交
3136
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
3137
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
3138
    if y is not None:
3139
        check_type(y, 'y', (Variable), 'lod_reset')
3140 3141 3142 3143
        # TODO: check y.lod_level = 0 dtype
        helper.append_op(
            type="lod_reset", inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
Y
yangyaming 已提交
3144
    elif target_lod is not None:
3145 3146 3147 3148 3149 3150
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out},
        )
Y
yangyaming 已提交
3151
    else:
3152 3153 3154 3155
        raise ValueError("y and target_lod should not be both none.")
    return out


3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
def image_resize(
    input,
    out_shape=None,
    scale=None,
    name=None,
    resample='BILINEAR',
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
3167
    """
3168

R
ruri 已提交
3169
    This op resizes a batch of images.
F
stash  
fengjiayi 已提交
3170

3171 3172
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
3173 3174
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
T
tianshuo78520a 已提交
3175
    and the resizing only applies on the three dimensions(depth, height and width).
3176

3177
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
3178 3179
    future and only use :attr:`out_shape` instead.

3180
    Supporting resample methods:
3181
        'LINEAR' : Linear interpolation
Q
update  
qiaolongfei 已提交
3182

3183
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
3184

K
Kaipeng Deng 已提交
3185 3186
        'TRILINEAR' : Trilinear interpolation

3187
        'NEAREST' : Nearest neighbor interpolation
3188

3189
        'BICUBIC' : Bicubic interpolation
3190 3191

    Linear interpolation is the method of using a line connecting two known quantities
3192
    to determine the value of an unknown quantity between the two known quantities.
3193

3194
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
3195
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
3196
    direction) on input tensor.
3197 3198 3199 3200 3201

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
3202 3203
    again in the other direction.

3204 3205 3206
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
3207
    The linear interpolation is performed on three directions.
3208

3209 3210 3211 3212
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
K
Kaipeng Deng 已提交
3213

3214
    Align_corners and align_mode are optional parameters,the calculation method
3215 3216 3217 3218
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
3219
    .. code-block:: text
3220

T
Tink_Y 已提交
3221
        For scale:
3222

T
Tink_Y 已提交
3223
            if align_corners = True && out_size > 1 :
3224

T
Tink_Y 已提交
3225
              scale_factor = (in_size-1.0)/(out_size-1.0)
3226

T
Tink_Y 已提交
3227
            else:
3228

T
Tink_Y 已提交
3229
              scale_factor = float(in_size/out_size)
3230 3231


T
Tink_Y 已提交
3232
        Nearest neighbor interpolation:
3233

T
Tink_Y 已提交
3234 3235
          if:
              align_corners = False
3236

T
Tink_Y 已提交
3237 3238
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3239

T
Tink_Y 已提交
3240 3241
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
3242

T
Tink_Y 已提交
3243 3244
          else:
              align_corners = True
3245

T
Tink_Y 已提交
3246 3247
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3248

T
Tink_Y 已提交
3249 3250
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
3251

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
        linear interpolation:

          if:
              align_corners = False , align_mode = 0

              input : (N,C,W_in)
              output: (N,C,W_out) where:

              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,W_in)
              output: (N,C,H_out,W_out) where:

              W_out = W_{in} * scale_{factor}

T
Tink_Y 已提交
3269 3270 3271 3272
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3273

T
Tink_Y 已提交
3274 3275
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3276

T
Tink_Y 已提交
3277 3278
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
3279

T
Tink_Y 已提交
3280
          else:
3281

T
Tink_Y 已提交
3282 3283
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3284

T
Tink_Y 已提交
3285 3286
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
3287

K
Kaipeng Deng 已提交
3288 3289 3290 3291
        Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3292

K
Kaipeng Deng 已提交
3293 3294
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
3295

K
Kaipeng Deng 已提交
3296 3297 3298 3299 3300 3301
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
3302

K
Kaipeng Deng 已提交
3303 3304 3305 3306
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
3307

3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
K
Kaipeng Deng 已提交
3320 3321
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
3322

3323

3324 3325
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
3326

3327
    For details of nearest neighbor interpolation, please refer to Wikipedia:
3328
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
3329

3330
    For details of bilinear interpolation, please refer to Wikipedia:
3331
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
3332

3333
    For details of trilinear interpolation, please refer to Wikipedia:
K
Kaipeng Deng 已提交
3334
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
3335

3336 3337
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
3338

R
ruri 已提交
3339
    Parameters:
3340
        input (Variable): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
3341
                          its data format is specified by :attr:`data_format`.
3342
        out_shape (list|tuple|Variable|None): Output shape of image resize
3343 3344
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
3345
             Default: None. If a list, each element can be an integer or a Tensor Variable of shape: [1].
3346
             If a Tensor Variable, its dimensions size should be a 1.
3347 3348 3349
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
3350
             Default: None.
3351 3352
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
3353
        resample(str): The resample method. It supports 'LINEAR', 'BICUBIC', 'BILINEAR', 'TRILINEAR'
K
Kaipeng Deng 已提交
3354
                       and 'NEAREST' currently. Default: 'BILINEAR'
3355 3356 3357
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
3358
                                :attr:`out_shape` and :attr:`scale` specifying
3359 3360
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
3361 3362 3363 3364 3365
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
3366
                                errors would be occurred in graph constructing stage.
3367
                                Default: None
3368 3369
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
3370 3371
                               corner pixels.
                               Default: True
3372 3373
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the fomula in the
                            the example code above, it can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 ,
3374
                            can be \'1\' for src_idx = scale*dst_index.
3375
        data_format (str, optional): Specify the data format of the input, and the data format of the output
3376
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
3377
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
3378
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
3379
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
3380 3381

    Returns:
3382
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
3383 3384
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
F
stash  
fengjiayi 已提交
3385

3386 3387 3388
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
3389 3390
        ValueError: The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR',
                    'TRILINEAR', 'BICUBIC' or 'NEAREST' currently.
3391
        ValueError: 'LINEAR' only support 3-D tensor.
3392
        ValueError: 'BICUBIC', 'BILINEAR' and 'NEAREST' only support 4-D tensor.
K
Kaipeng Deng 已提交
3393
        ValueError: 'TRILINEAR' only support 5-D tensor.
3394
        ValueError: One of out_shape and scale must not be None.
3395
        ValueError: out_shape length should be 1 for input 3-D tensor.
K
Kaipeng Deng 已提交
3396 3397
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
D
dengkaipeng 已提交
3398
        ValueError: scale should be greater than zero.
T
tianshuo78520a 已提交
3399
        TypeError: align_corners should be a bool value
3400
        ValueError: align_mode can only be '0' or '1'
3401
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
3402

3403 3404
    Examples:
        .. code-block:: python
3405

3406 3407 3408 3409 3410 3411
            #declarative mode
            import paddle
            import paddle.fluid as fluid
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
3412

3413 3414
            #1
            output = fluid.layers.image_resize(input=input,out_shape=[12,12])
R
ruri 已提交
3415

3416 3417 3418 3419 3420
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.image_resize(input=input,out_shape=[12,dim1])
R
ruri 已提交
3421

3422 3423 3424 3425 3426
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.image_resize(input=input,out_shape=shape_tensor)
R
ruri 已提交
3427

3428 3429 3430 3431 3432
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.image_resize(input=input,scale=scale_tensor)
R
ruri 已提交
3433

3434 3435 3436
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3437

3438
            input_data = np.random.rand(2,3,6,10).astype("float32")
3439

3440
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
3441 3442 3443
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
3444

3445
            print(output_data[0].shape)
3446

3447 3448 3449 3450 3451 3452 3453 3454
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
3455

3456 3457
            #imperative mode
            import paddle.fluid.dygraph as dg
3458

3459 3460 3461 3462
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.image_resize(input=input, out_shape=[12,12])
                print(output.shape)
3463

3464
                # [2L, 3L, 12L, 12L]
3465

3466
    """
3467
    resample_methods = {
3468
        'LINEAR': 'linear',
3469
        'BILINEAR': 'bilinear',
K
Kaipeng Deng 已提交
3470
        'TRILINEAR': 'trilinear',
3471
        'NEAREST': 'nearest',
3472
        'LINEAR': 'linear',
3473
    }
3474
    resample = resample.upper()
3475 3476
    if resample not in resample_methods:
        raise ValueError(
3477
            "The 'resample' of image_resize can only be 'LINEAR', 'BILINEAR', 'TRILINEAR' "
3478 3479
            "or 'NEAREST' currently."
        )
3480
    resample_type = resample_methods[resample]
3481

3482 3483 3484
    if resample == 'LINEAR' and len(input.shape) != 3:
        raise ValueError("'LINER only support 3-D tensor.")
    elif resample in ['BILINEAR', 'NEAREST'] and len(input.shape) != 4:
K
Kaipeng Deng 已提交
3485
        raise ValueError("'BILINEAR' and 'NEAREST' only support 4-D tensor.")
3486
    elif resample == 'TRILINEAR' and len(input.shape) != 5:
K
Kaipeng Deng 已提交
3487 3488
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

3489 3490 3491 3492 3493
    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

3494
    if out_shape is None and scale is None:
3495
        raise ValueError("One of out_shape and scale must not be None.")
3496
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
3497
    dtype = helper.input_dtype()
3498

3499
    if len(input.shape) == 3 and data_format not in ['NCW', 'NWC']:
3500
        raise ValueError(
3501 3502 3503 3504
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
3505
    elif len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
3506
        raise ValueError(
3507 3508 3509 3510
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
3511 3512
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
3513 3514 3515 3516
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
3517

3518
    def _is_list_or_turple_(data):
3519
        return isinstance(data, list) or isinstance(data, tuple)
3520

3521
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
3522
        data_layout = 'NCHW'
3523
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
3524 3525
        data_layout = 'NHWC'

3526
    inputs = {"X": input}
D
dengkaipeng 已提交
3527
    attrs = {
3528 3529 3530
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
D
dengkaipeng 已提交
3531 3532
        "interp_method": resample_type,
        "align_corners": align_corners,
3533
        "align_mode": align_mode,
3534
        "data_layout": data_layout,
D
dengkaipeng 已提交
3535 3536
    }

3537
    if out_shape is not None:
3538
        if isinstance(out_shape, Variable) and not _non_static_mode():
3539
            out_shape.stop_gradient = True
3540
            inputs['OutSize'] = out_shape
3541
        else:
3542 3543 3544 3545 3546 3547 3548 3549
            if _non_static_mode():
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
                else:
                    out_shape = list(out_shape)
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
3550
            if not (_is_list_or_turple_(out_shape)):
D
dengkaipeng 已提交
3551
                raise TypeError(
3552 3553
                    "out_shape should be a list or tuple or Variable."
                )
3554 3555 3556 3557 3558 3559
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
3560 3561 3562
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
3573
                        assert isinstance(dim, int)
3574
                        temp_out = helper.create_variable_for_type_inference(
3575 3576 3577 3578 3579
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
3580 3581 3582 3583
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

3584 3585
            if len(input.shape) == 3:
                if len(out_shape) != 1:
3586 3587 3588
                    raise ValueError(
                        "out_shape length should be 1 for " "input 3-D tensor."
                    )
3589 3590 3591 3592 3593 3594
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
            elif len(input.shape) == 4:
K
Kaipeng Deng 已提交
3595
                if len(out_shape) != 2:
3596 3597 3598
                    raise ValueError(
                        "out_shape length should be 2 for " "input 4-D tensor."
                    )
3599 3600 3601 3602 3603 3604 3605
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
K
Kaipeng Deng 已提交
3606 3607
            if len(input.shape) == 5:
                if len(out_shape) != 3:
3608 3609 3610
                    raise ValueError(
                        "out_shape length should be 3 for " "input 5-D tensor."
                    )
3611 3612 3613 3614 3615 3616 3617 3618 3619
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]
3620

3621
    else:
3622 3623 3624
        if _non_static_mode() and isinstance(scale, Variable):
            scale = scale.numpy()
        elif isinstance(scale, Variable):
3625 3626
            scale.stop_gradient = True
            inputs["Scale"] = scale
3627
        elif isinstance(scale, float) or isinstance(scale, int):
3628
            if scale <= 0:
3629
                raise ValueError("Attr(scale) should be greater than zero.")
3630
            attrs['scale'] = float(scale)
3631 3632
        else:
            raise TypeError(
3633 3634
                "Attr(scale)'s type should be float, int or Variable."
            )
3635

3636
    if isinstance(actual_shape, Variable):
3637 3638 3639 3640 3641
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
3642 3643 3644
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")
3645 3646 3647 3648 3649 3650 3651 3652 3653

    if _non_static_mode():
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
3654
            out = _legacy_C_ops.linear_interp(input, actual_shape, *dy_attr)
3655
        elif resample_type == "bilinear":
3656
            out = _legacy_C_ops.bilinear_interp(input, actual_shape, *dy_attr)
3657
        elif resample_type == "trilinear":
3658
            out = _legacy_C_ops.trilinear_interp(input, actual_shape, *dy_attr)
3659
        elif resample_type == "nearest":
3660
            out = _legacy_C_ops.nearest_interp(input, actual_shape, *dy_attr)
3661
        elif resample_type == "bicubic":
3662
            out = _legacy_C_ops.bicubic_interp(input, actual_shape, *dy_attr)
3663 3664
        return out

X
Xin Pan 已提交
3665
    out = helper.create_variable_for_type_inference(dtype)
3666 3667 3668 3669 3670 3671
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
3672
    return out
F
stash  
fengjiayi 已提交
3673 3674


3675
@templatedoc(op_type="bilinear_interp")
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685
def resize_bilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCHW',
):
3686
    """
3687

R
ruri 已提交
3688
    This op resizes the input by performing bilinear interpolation based on given
3689
    output shape which specified by actual_shape, out_shape and scale
3690 3691
    in priority order.

3692
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in
3693 3694
    the future and only use :attr:`out_shape` instead.

3695 3696 3697 3698
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
3699 3700
    again in the other direction.

3701
    For details of bilinear interpolation, please refer to Wikipedia:
3702
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
3703

3704
    Align_corners and align_mode are optional parameters,the calculation
3705 3706 3707 3708
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
3709
    .. code-block:: text
3710

T
Tink_Y 已提交
3711
        For scale:
3712

T
Tink_Y 已提交
3713
            if align_corners = True && out_size > 1 :
3714

T
Tink_Y 已提交
3715
              scale_factor = (in_size-1.0)/(out_size-1.0)
3716

T
Tink_Y 已提交
3717
            else:
3718

3719
              scale_factor = float(in_size/out_size)
3720

T
Tink_Y 已提交
3721 3722 3723 3724
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
3725

T
Tink_Y 已提交
3726 3727
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
3728

T
Tink_Y 已提交
3729 3730
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
3731

T
Tink_Y 已提交
3732
          else:
T
tink2123 已提交
3733

T
Tink_Y 已提交
3734 3735 3736 3737
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
3738

R
ruri 已提交
3739 3740
    Parameters:
        input(Variable): 4-D Tensor(NCHW), its data type is float32, float64, or uint8,
3741
                          its data format is specified by :attr:`data_format`.
D
dengkaipeng 已提交
3742
        out_shape(list|tuple|Variable|None): Output shape of resize bilinear
3743 3744
            layer, the shape is (out_h, out_w).Default: None. If a list, each
            element can be an integer or a Tensor Variable with shape: [1]. If a
3745
            Tensor Variable, its dimension size should be 1.
3746
        scale(float|Variable|None): The multiplier for the input height or width. At
3747 3748
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
D
dengkaipeng 已提交
3749
             Default: None.
3750 3751 3752
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
3753
                                :attr:`out_shape` and :attr:`scale` specifying
3754 3755
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
3756 3757 3758 3759 3760
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
3761
                                errors would be occurred in graph constructing stage.
3762
                                Default: None
3763 3764
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
3765
        data_format (str, optional): Specify the data format of the input, and the data format of the output
3766 3767 3768
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
R
ruri 已提交
3769
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Y
yuyang18 已提交
3770 3771

    Returns:
3772
        Variable: 4-D tensor(NCHW or NHWC).
3773

3774 3775
    Examples:
        .. code-block:: python
3776

3777 3778 3779 3780 3781 3782
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
3783

3784 3785
            #1
            output = fluid.layers.resize_bilinear(input=input,out_shape=[12,12])
R
ruri 已提交
3786

3787 3788 3789 3790 3791
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=[12,dim1])
R
ruri 已提交
3792

3793 3794 3795 3796 3797
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_bilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
3798

3799 3800 3801 3802 3803
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_bilinear(input=input,scale=scale_tensor)
R
ruri 已提交
3804

3805 3806 3807
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3808

3809
            input_data = np.random.rand(2,3,6,10).astype("float32")
3810

3811
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
3812 3813 3814
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
3815

3816
            print(output_data[0].shape)
3817

3818 3819 3820 3821 3822 3823 3824 3825
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
3826

3827 3828
            #imperative mode
            import paddle.fluid.dygraph as dg
3829

3830 3831 3832 3833
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_bilinear(input=input, out_shape=[12,12])
                print(output.shape)
3834

3835
                # [2L, 3L, 12L, 12L]
3836

3837 3838
    """

3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'BILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
3850 3851


K
Kaipeng Deng 已提交
3852
@templatedoc(op_type="trilinear_interp")
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
def resize_trilinear(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    align_mode=1,
    data_format='NCDHW',
):
K
Kaipeng Deng 已提交
3863
    """
3864

R
ruri 已提交
3865
    This op resizes the input by performing trilinear interpolation based on given
K
Kaipeng Deng 已提交
3866 3867 3868
    output shape which specified by actual_shape, out_shape and scale
    in priority order.

3869
    **Warning:** the parameter :attr:`actual_shape` will be deprecated
3870 3871
    in the future and only use :attr:`out_shape` instead.

3872 3873 3874
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
K
Kaipeng Deng 已提交
3875 3876 3877 3878 3879
    The linear interpolation is performed on three directions.

    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation

3880
    Align_corners and align_mode are optional parameters,the calculation
K
Kaipeng Deng 已提交
3881 3882 3883 3884 3885 3886 3887
    method of interpolation can be selected by them.

    Example:

    .. code-block:: text

        For scale:
3888

K
Kaipeng Deng 已提交
3889 3890 3891
            if align_corners = True && out_size > 1 :

              scale_factor = (in_size-1.0)/(out_size-1.0)
3892

K
Kaipeng Deng 已提交
3893
            else:
3894 3895

              scale_factor = float(in_size/out_size)
K
Kaipeng Deng 已提交
3896 3897 3898 3899

        Bilinear interpolation:

          if:
3900

K
Kaipeng Deng 已提交
3901
              align_corners = False , align_mode = 0
3902

K
Kaipeng Deng 已提交
3903 3904
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
3905

K
Kaipeng Deng 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

R
ruri 已提交
3919
    Parameters:
3920 3921
        input(${x_type}): 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
3922
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_d, out_h, out_w). Default: None. Every element should be an integer or a Tensor Variable with shape: [1] if it is a list. If it is a Tensor Variable, its dimension size should be 1.
3923
        scale(float|Variable|None): The multiplier for the input depth, height or width.
3924 3925
             At least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
K
Kaipeng Deng 已提交
3926
             Default: None.
R
ruri 已提交
3927
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
K
Kaipeng Deng 已提交
3928 3929 3930 3931 3932 3933
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
3934 3935 3936 3937 3938
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
3939
                                errors would be occurred in graph constructing stage.
K
Kaipeng Deng 已提交
3940 3941 3942
                                Default: None
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
3943
        data_format (str, optional): Specify the data format of the input, and the data format of the output
3944 3945 3946
            will be consistent with that of the input. An optional string from: `"NCDHW"`, `"NDHWC"`.
            The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_depth, input_height, input_width]`.
K
Kaipeng Deng 已提交
3947 3948

    Returns:
3949
        Variable: A 5-D Tensor(NCDHW or NDHWC)
K
Kaipeng Deng 已提交
3950 3951 3952

    Examples:
        .. code-block:: python
3953

3954 3955 3956 3957 3958 3959
            #declarative mode
            import paddle.fluid as fluid
            import paddle
            import numpy as np
            paddle.enable_static()
            input = fluid.data(name="input", shape=[None,3,6,8,10])
R
ruri 已提交
3960

3961 3962
            #1
            output = fluid.layers.resize_trilinear(input=input,out_shape=[12,12,12])
R
ruri 已提交
3963

3964 3965 3966 3967 3968
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=[12,dim1,4])
R
ruri 已提交
3969

3970 3971 3972 3973 3974
            #3
            #x = np.array([3,12,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[3], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_trilinear(input=input,out_shape=shape_tensor)
R
ruri 已提交
3975

3976 3977 3978 3979 3980
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_trilinear(input=input,scale=scale_tensor)
R
ruri 已提交
3981

3982 3983 3984
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
3985

3986
            input_data = np.random.rand(2,3,6,8,10).astype("float32")
K
Kaipeng Deng 已提交
3987

3988
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
3989 3990 3991
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
3992

3993
            print(output_data[0].shape)
R
ruri 已提交
3994

3995 3996 3997 3998 3999 4000 4001 4002
            #1
            # (2, 3, 12, 12, 12)
            #2
            # (2, 3, 12, 2, 4)
            #3
            # (2, 3, 3, 12, 12)
            #4
            # (2, 3, 3, 4, 5)
R
ruri 已提交
4003

4004 4005
            #imperative mode
            import paddle.fluid.dygraph as dg
4006

4007 4008 4009 4010
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_trilinear(input=input, out_shape=[12,12,12])
                print(output.shape)
4011

4012
                # [2L, 3L, 12L, 12L, 12L]
4013 4014 4015



K
Kaipeng Deng 已提交
4016 4017
    """

4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'TRILINEAR',
        actual_shape,
        align_corners,
        align_mode,
        data_format,
    )
K
Kaipeng Deng 已提交
4029 4030


4031
@templatedoc(op_type="nearest_interp")
4032 4033 4034 4035 4036 4037 4038 4039 4040
def resize_nearest(
    input,
    out_shape=None,
    scale=None,
    name=None,
    actual_shape=None,
    align_corners=True,
    data_format='NCHW',
):
4041
    """
4042

R
ruri 已提交
4043
    This op resizes the input by performing nearest neighbor interpolation in both the
4044
    height direction and the width direction based on given output shape
4045
    which is specified by actual_shape, out_shape and scale in priority order.
4046

4047
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
4048 4049
    future and only use :attr:`out_shape` instead.

4050 4051
    Example:

T
Tink_Y 已提交
4052 4053 4054
    .. code-block:: text

        For scale:
4055

T
Tink_Y 已提交
4056 4057
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
4058

T
Tink_Y 已提交
4059
            else:
4060

T
Tink_Y 已提交
4061
              scale_factor = float(in_size/out_size)
4062

T
Tink_Y 已提交
4063
        Nearest neighbor interpolation:
4064

T
Tink_Y 已提交
4065 4066
          if:
              align_corners = False
4067

T
Tink_Y 已提交
4068 4069
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4070

T
Tink_Y 已提交
4071 4072
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
4073

T
Tink_Y 已提交
4074 4075
          else:
              align_corners = True
4076

T
Tink_Y 已提交
4077 4078
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
4079

T
Tink_Y 已提交
4080 4081
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
4082 4083


4084
    For details of nearest neighbor interpolation, please refer to Wikipedia:
4085
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
4086

R
ruri 已提交
4087
    Parameters:
4088 4089
        input(${x_type}): 4-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
R
ruri 已提交
4090
        out_shape(list|tuple|Variable|None): The output shape of resized tensor, the shape is (out_h, out_w). Default: None. Every element should be an integer or a tensor Variable with shape: [1] if it is a list. If it is a tensor Variable, its dimension size should be 1.
4091
        scale(float|Variable|None): The multiplier for the input height or width. At
4092 4093 4094
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
R
ruri 已提交
4095
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`
4096
        actual_shape(Variable): An optional input to specify output shape
4097 4098
                                dynamically. If provided, image resize
                                according to this given shape rather than
4099
                                :attr:`out_shape` and :attr:`scale` specifying
4100 4101
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
4102 4103 4104 4105 4106
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
T
tianshuo78520a 已提交
4107
                                errors would be occurred in graph constructing stage.
4108
                                Default: None
4109
        align_corners(bool): ${align_corners_comment}
4110
        data_format (str, optional): Specify the data format of the input, and the data format of the output
4111 4112 4113
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`.
Y
yuyang18 已提交
4114 4115

    Returns:
4116
        Variable: 4-D tensor(NCHW or NHWC).
4117 4118 4119

    Examples:
        .. code-block:: python
4120

4121 4122 4123 4124 4125
            #declarative mode
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            paddle.enable_static()
4126

4127
            input = fluid.data(name="input", shape=[None,3,6,10])
R
ruri 已提交
4128

4129 4130
            #1
            output = fluid.layers.resize_nearest(input=input,out_shape=[12,12])
R
ruri 已提交
4131

4132 4133 4134 4135 4136
            #2
            #x = np.array([2]).astype("int32")
            #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
            #fluid.layers.assign(input=x, output=dim1)
            #output = fluid.layers.resize_nearest(input=input,out_shape=[12,dim1])
R
ruri 已提交
4137

4138 4139 4140 4141 4142
            #3
            #x = np.array([3,12]).astype("int32")
            #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
            #fluid.layers.assign(input=x, output=shape_tensor)
            #output = fluid.layers.resize_nearest(input=input,out_shape=shape_tensor)
R
ruri 已提交
4143

4144 4145 4146 4147 4148
            #4
            #x = np.array([0.5]).astype("float32")
            #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
            #fluid.layers.assign(x,scale_tensor)
            #output = fluid.layers.resize_nearest(input=input,scale=scale_tensor)
R
ruri 已提交
4149

4150 4151 4152
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
4153

4154
            input_data = np.random.rand(2,3,6,10).astype("float32")
4155

4156
            output_data = exe.run(fluid.default_main_program(),
R
ruri 已提交
4157 4158 4159
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)
4160

4161
            print(output_data[0].shape)
R
ruri 已提交
4162

4163 4164 4165 4166 4167 4168 4169 4170
            #1
            # (2, 3, 12, 12)
            #2
            # (2, 3, 12, 2)
            #3
            # (2, 3, 3, 12)
            #4
            # (2, 3, 3, 5)
4171

4172 4173
            #imperative mode
            import paddle.fluid.dygraph as dg
4174

4175 4176 4177 4178
            with dg.guard(place) as g:
                input = dg.to_variable(input_data)
                output = fluid.layers.resize_nearest(input=input, out_shape=[12,12])
                print(output.shape)
R
ruri 已提交
4179

4180
                # [2L, 3L, 12L, 12L]
4181 4182 4183



4184 4185
    """

4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196
    return image_resize(
        input,
        out_shape,
        scale,
        name,
        'NEAREST',
        actual_shape,
        align_corners,
        align_mode=1,
        data_format=data_format,
    )
4197 4198


4199
@deprecated(since="2.0.0", update_to="paddle.nn.functional.relu")
4200
def relu(x, name=None):
W
wanghaoshuang 已提交
4201
    """
Z
zhupengyang 已提交
4202
    ${comment}
W
wanghaoshuang 已提交
4203 4204

    Args:
Z
zhupengyang 已提交
4205 4206 4207 4208
        x(Variable): ${x_comment}
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
W
wanghaoshuang 已提交
4209 4210

    Returns:
Z
zhupengyang 已提交
4211
        Variable: ${out_comment}
W
wanghaoshuang 已提交
4212 4213 4214 4215 4216

    Examples:

        .. code-block:: python

4217
            import paddle.fluid as fluid
Z
zhupengyang 已提交
4218 4219 4220 4221 4222 4223 4224
            import numpy as np
            in1 = np.array([[-1,0],[1,2.6]])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.relu(x1)
                print(out1.numpy())
                # [[0.  0. ]
4225
                #  [1.  2.6]]"""
4226 4227

    if in_dygraph_mode():
W
wanghuancoder 已提交
4228
        return _C_ops.relu(x)
4229 4230
    if _in_legacy_dygraph():
        return _legacy_C_ops.relu(x)
4231

4232 4233
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'relu')

4234
    inputs = {'X': [x]}
W
wanghaoshuang 已提交
4235
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
4236
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
4237
    out = helper.create_variable_for_type_inference(dtype)
4238 4239 4240
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out}
    )
W
wanghaoshuang 已提交
4241
    return out
4242 4243


G
fix  
gongweibao 已提交
4244 4245 4246
from paddle.fluid.framework import convert_np_dtype_to_dtype_


4247
@deprecated(since="2.0.0", update_to="paddle.normal")
G
gongweibao 已提交
4248
@templatedoc()
4249 4250 4251
def gaussian_random(
    shape, mean=0.0, std=1.0, seed=0, dtype='float32', name=None
):
G
fix  
gongweibao 已提交
4252
    """
4253 4254
    This OP returns a Tensor filled with random values sampled from a Gaussian
    distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
4255 4256

    Args:
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        mean(float|int, optional): Mean of the output tensor, default is 0.0.
        std(float|int, optional): Standard deviation of the output tensor, default
            is 1.0.
        seed(int, optional): ${seed_comment}
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
G
fix  
gongweibao 已提交
4272 4273

    Returns:
4274 4275
        Tensor: A Tensor filled with random values sampled from a Gaussian
        distribution, with ``shape`` and ``dtype``.
G
fix  
gongweibao 已提交
4276

4277
    Examples:
4278
       .. code-block:: python
4279

4280
            import paddle
4281
            import paddle.fluid as fluid
4282
            paddle.enable_static()
4283 4284

            # example 1:
4285
            # attr shape is a list which doesn't contain Tensor.
4286
            result_1 = fluid.layers.gaussian_random(shape=[3, 4])
4287 4288 4289
            # [[-0.31261674,  1.8736548,  -0.6274357,   0.96988016],
            #  [-0.12294637,  0.9554768,   1.5690808,  -1.2894802 ],
            #  [-0.60082096, -0.61138713,  1.5345167,  -0.21834975]]
4290 4291

            # example 2:
4292 4293 4294
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
4295
            result_2 = fluid.layers.gaussian_random(shape=[dim_1, dim_2])
4296 4297
            # [[ 0.51398206, -0.3389769,   0.23597084],
            #  [ 1.0388143,  -1.2015356,  -1.0499583 ]]
4298 4299

            # example 3:
4300
            # attr shape is a Tensor, the data type must be int64 or int32.
4301 4302
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
            result_3 = fluid.layers.gaussian_random(var_shape)
4303 4304 4305 4306
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.12310527,  0.8187662,   1.923219  ]
            #  [ 0.70721835,  0.5210541,  -0.03214082]]
4307

4308
       .. code-block:: python
4309

4310 4311
           # declarative mode
           # required: skiptest
4312 4313
           import numpy as np
           from paddle import fluid
4314

4315
           x = fluid.layers.gaussian_random((2, 3), std=2., seed=10)
4316

4317 4318 4319 4320
           place = fluid.CPUPlace()
           exe = fluid.Executor(place)
           start = fluid.default_startup_program()
           main = fluid.default_main_program()
4321

4322 4323
           exe.run(start)
           x_np, = exe.run(main, feed={}, fetch_list=[x])
4324

4325 4326 4327 4328 4329 4330 4331 4332 4333 4334
           x_np
           # array([[2.3060477, 2.676496 , 3.9911983],
           #        [0.9990833, 2.8675377, 2.2279181]], dtype=float32)

       .. code-block:: python

           # imperative mode
           import numpy as np
           from paddle import fluid
           import paddle.fluid.dygraph as dg
4335

4336 4337 4338
           place = fluid.CPUPlace()
           with dg.guard(place) as g:
               x = fluid.layers.gaussian_random((2, 4), mean=2., dtype="float32", seed=10)
4339
               x_np = x.numpy()
4340 4341 4342
           x_np
           # array([[2.3060477 , 2.676496  , 3.9911983 , 0.9990833 ],
           #        [2.8675377 , 2.2279181 , 0.79029655, 2.8447366 ]], dtype=float32)
G
fix  
gongweibao 已提交
4343
    """
4344 4345
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
4346

4347 4348 4349
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
        place = _current_expected_place()
4350
        return _C_ops.gaussian(
4351 4352
            shape, float(mean), float(std), seed, dtype, place
        )
4353 4354

    if _in_legacy_dygraph():
4355
        shape = utils.convert_shape_to_list(shape)
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
        return _legacy_C_ops.gaussian_random(
            'shape',
            shape,
            'mean',
            float(mean),
            'std',
            float(std),
            'seed',
            seed,
            'dtype',
            dtype,
        )
4368 4369 4370

    check_type(shape, 'shape', (list, tuple, Variable), 'gaussian_random/randn')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'gaussian_random/randn')
4371 4372

    inputs = {}
4373 4374 4375 4376
    attrs = {
        'mean': mean,
        'std': std,
        'seed': seed,
4377
        'dtype': dtype,
4378
        'use_mkldnn': False,
4379
    }
4380 4381 4382
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='gaussian_random/randn'
    )
4383

4384 4385
    helper = LayerHelper('gaussian_random', **locals())
    out = helper.create_variable_for_type_inference(dtype)
4386 4387 4388
    helper.append_op(
        type='gaussian_random', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
G
fix  
gongweibao 已提交
4389 4390 4391 4392

    return out


G
gongweibao 已提交
4393
@templatedoc()
G
fix  
gongweibao 已提交
4394
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
4395
    """
R
ruri 已提交
4396
    This op is used for sampling id from multinomial distribution from the input, sampling one id for one sample.
G
fix  
gongweibao 已提交
4397

R
ruri 已提交
4398 4399 4400 4401
    Parameters:
        x (Variable): 2-D tensor, [batch_size, input_feature_dimensions]
        min (Float): minimum , default 0.0.
        max (Float): maximum, default 1.0.
4402
        seed (Float): Random seed, default 0. if seed is not 0, will generate same number every time.
G
fix  
gongweibao 已提交
4403
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
4404 4405

    Returns:
R
ruri 已提交
4406
        Variable: sampling tensor.
G
fix  
gongweibao 已提交
4407

4408 4409 4410
    Examples:
        .. code-block:: python

4411
            import paddle.fluid as fluid
R
ruri 已提交
4412
            x = fluid.data(
4413 4414
                name="X",
                shape=[13, 11],
R
ruri 已提交
4415
                dtype='float32')
4416

Y
Yibing Liu 已提交
4417
            out = fluid.layers.sampling_id(x)
G
fix  
gongweibao 已提交
4418 4419 4420
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
4421
    out = helper.create_variable_for_type_inference(dtype)
4422 4423 4424 4425 4426 4427
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min, 'max': max, 'seed': seed},
    )
G
fix  
gongweibao 已提交
4428 4429 4430 4431

    return out


S
sneaxiy 已提交
4432 4433 4434 4435
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
X
Xin Pan 已提交
4436

S
sneaxiy 已提交
4437 4438
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
4439
    check_variable_and_dtype(
4440 4441 4442 4443 4444
        x,
        'x',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
4445
    check_variable_and_dtype(
4446 4447 4448 4449 4450
        y,
        'y',
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
        op_type,
    )
4451

S
sneaxiy 已提交
4452 4453
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
4454
    name = helper.kwargs.get('name', None)
4455
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
4456

4457 4458 4459 4460 4461 4462
    helper.append_op(
        type=op_type,
        inputs={'X': x, 'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis, 'use_mkldnn': use_mkldnn},
    )
S
sneaxiy 已提交
4463 4464 4465
    return helper.append_activation(out)


X
Xin Pan 已提交
4466
def elementwise_add(x, y, axis=-1, act=None, name=None):
4467
    """
4468

4469
    Examples:
4470

4471
        .. code-block:: python
4472

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
            import paddle.fluid as fluid
            import numpy as np
            import paddle
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_add(x, y)
            # z = x + y
4486

4487 4488 4489 4490
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4491

4492
            print(z_value) # [3., 8., 6.]
4493 4494


4495
        .. code-block:: python
4496

4497 4498 4499
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4500

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=1)
            # z = x + y
4511

4512 4513
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4514

4515 4516
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4517

4518
            print(z_value) # z.shape=[2,3,4,5]
4519 4520


4521
        ..  code-block:: python
4522

4523 4524 4525
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4526

4527 4528 4529 4530 4531 4532 4533 4534 4535 4536
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_add(x, y, axis=3)
            # z = x + y
4537

4538 4539
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4540

4541 4542 4543
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4544 4545

    """
J
Jiabin Yang 已提交
4546
    if _non_static_mode():
4547
        return _elementwise_op_in_dygraph(
4548 4549 4550 4551 4552
            x,
            y,
            axis=axis,
            act=act,
            op_name='elementwise_add',
4553 4554
            use_mkldnn=_global_flags()["FLAGS_use_mkldnn"],
        )
4555

S
sneaxiy 已提交
4556 4557 4558
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


4559
@deprecated(since="2.0.0", update_to="paddle.divide")
X
Xin Pan 已提交
4560
def elementwise_div(x, y, axis=-1, act=None, name=None):
4561
    """
4562

4563
    Examples:
4564

4565
        .. code-block:: python
4566

4567 4568 4569
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4570

4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_div(x, y)
            # z = x / y
4581

4582 4583 4584 4585
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4586

4587
            print(z_value) # [2., 0.6, 2.]
4588 4589


4590
        .. code-block:: python
4591

4592 4593 4594
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4595

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=1)
            # z = x / y
4606

4607 4608
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4609

4610 4611
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4612

4613
            print(z_value) # z.shape=[2,3,4,5]
4614 4615


4616
        ..  code-block:: python
4617

4618 4619 4620
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4621

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_div(x, y, axis=3)
            # z = x / y
4632

4633 4634
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4635

4636 4637 4638
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4639 4640

    """
J
Jiabin Yang 已提交
4641
    if _non_static_mode():
4642 4643 4644
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_div'
        )
4645

S
sneaxiy 已提交
4646 4647 4648
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
4649
def elementwise_sub(x, y, axis=-1, act=None, name=None):
4650
    """
4651

4652
    Examples:
4653

4654
        .. code-block:: python
4655

4656 4657 4658
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4659

4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y)
            # z = x - y
4670

4671 4672 4673 4674
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4675

4676
            print(z_value) # [1., -2., 2.]
4677 4678


4679
        .. code-block:: python
4680

4681 4682 4683
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4684

4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=1)
            # z = x - y
4695

4696 4697
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4698

4699 4700
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4701

4702
            print(z_value) # z.shape=[2,3,4,5]
4703 4704


4705
        ..  code-block:: python
4706

4707 4708 4709
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4710

4711 4712 4713 4714 4715 4716 4717 4718 4719 4720
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_sub(x, y, axis=3)
            # z = x - y
4721

4722 4723
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4724

4725 4726 4727
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4728 4729

    """
J
Jiabin Yang 已提交
4730
    if _non_static_mode():
4731 4732 4733
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_sub'
        )
4734

S
sneaxiy 已提交
4735 4736 4737
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


4738
@deprecated(since="2.0.0", update_to="paddle.multiply")
X
Xin Pan 已提交
4739
def elementwise_mul(x, y, axis=-1, act=None, name=None):
4740
    """
4741

4742
    Examples:
4743

4744
        .. code-block:: python
4745

4746 4747 4748
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4749

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y)
            # z = x * y
4760

4761 4762 4763 4764
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4765

4766
            print(z_value) # [2., 15., 8.]
4767 4768


4769
        .. code-block:: python
4770

4771 4772 4773
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4774

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
            def gen_data():
                return {
                    "x": np.ones((2, 3, 4, 5)).astype('float32'),
                    "y": np.zeros((3, 4)).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[3,4], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=1)
            # z = x * y
4785

4786 4787
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4788

4789 4790
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
4791

4792
            print(z_value) # z.shape=[2,3,4,5]
4793 4794


4795
        ..  code-block:: python
4796

4797 4798 4799
            import paddle.fluid as fluid
            import numpy as np
            import paddle
4800

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
            def gen_data():
                return {
                    "x": np.random.randint(1, 5, size=[2, 3, 4, 5]).astype('float32'),
                    "y": np.random.randint(1, 5, size=[5]).astype('float32')
                }
            paddle.enable_static()
            x = fluid.data(name="x", shape=[2,3,4,5], dtype='float32')
            y = fluid.data(name="y", shape=[5], dtype='float32')
            z = fluid.layers.elementwise_mul(x, y, axis=3)
            # z = x * y
4811

4812 4813
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
4814

4815 4816 4817
            z_value = exe.run(feed=gen_data(),
                                fetch_list=[z.name])
            print(z_value) # z.shape=[2,3,4,5]
4818

4819
    """
J
Jiabin Yang 已提交
4820
    if _non_static_mode():
4821 4822 4823
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name='elementwise_mul'
        )
4824

S
sneaxiy 已提交
4825 4826 4827 4828
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


for func in [
4829 4830 4831 4832
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    elementwise_mul,
4833 4834
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
4835 4836

    # insert the c++ doc string on top of python doc string
4837 4838 4839 4840 4841
    func.__doc__ = (
        _generate_doc_string_(
            op_proto,
            additional_args_lines=[
                "axis (int32, optional): If X.dimension != Y.dimension, \
4842 4843
            Y.dimension must be a subsequence of x.dimension. \
            And axis is the start dimension index for broadcasting Y onto X. ",
4844
                "act (string, optional): Activation applied to the output. \
4845
            Default is None. Details: :ref:`api_guide_activations_en` ",
4846
                "name (string, optional): Name of the output. \
4847
            Default is None. It's used to print debug info for developers. Details: \
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
            :ref:`api_guide_Name` ",
            ],
            skip_attrs_set={
                "x_data_format",
                "y_data_format",
                "axis",
                "use_quantizer",
                "mkldnn_data_type",
                "Scale_x",
                "Scale_y",
                "Scale_out",
            },
        )
        + """\n"""
        + str(func.__doc__)
    )
4864

4865 4866 4867
    doc_list = func.__doc__.splitlines()

    for idx, val in enumerate(doc_list):
4868 4869 4870 4871 4872
        if (
            val.startswith("Warning: ")
            and val.endswith(" instead.")
            and "and will be removed in future versions." in val
        ):
4873 4874 4875 4876
            doc_list.insert(0, doc_list.pop(idx))
            func.__doc__ = "\n" + "\n".join(i for i in doc_list)
            break

4877
for func in []:
S
sneaxiy 已提交
4878 4879 4880 4881
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
4882
            "act (basestring|None): Activation applied to the output.",
4883 4884 4885 4886 4887 4888
            "name (basestring|None): Name of the output.",
        ],
    )
    func.__doc__ = (
        func.__doc__
        + """
4889 4890 4891

Examples:
  .. code-block:: python
4892

4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922
    import paddle.fluid as fluid
    # example 1: shape(x) = (2, 3, 4, 5), shape(y) = (2, 3, 4, 5)
    x0 = fluid.layers.data(name="x0", shape=[2, 3, 4, 5], dtype='float32')
    y0 = fluid.layers.data(name="y0", shape=[2, 3, 4, 5], dtype='float32')
    z0 = fluid.layers.%s(x0, y0)

    # example 2: shape(X) = (2, 3, 4, 5), shape(Y) = (5)
    x1 = fluid.layers.data(name="x1", shape=[2, 3, 4, 5], dtype='float32')
    y1 = fluid.layers.data(name="y1", shape=[5], dtype='float32')
    z1 = fluid.layers.%s(x1, y1)

    # example 3: shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
    x2 = fluid.layers.data(name="x2", shape=[2, 3, 4, 5], dtype='float32')
    y2 = fluid.layers.data(name="y2", shape=[4, 5], dtype='float32')
    z2 = fluid.layers.%s(x2, y2, axis=2)

    # example 4: shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    x3 = fluid.layers.data(name="x3", shape=[2, 3, 4, 5], dtype='float32')
    y3 = fluid.layers.data(name="y3", shape=[3, 4], dtype='float32')
    z3 = fluid.layers.%s(x3, y3, axis=1)

    # example 5: shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
    x4 = fluid.layers.data(name="x4", shape=[2, 3, 4, 5], dtype='float32')
    y4 = fluid.layers.data(name="y4", shape=[2], dtype='float32')
    z4 = fluid.layers.%s(x4, y4, axis=0)

    # example 6: shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
    x5 = fluid.layers.data(name="x5", shape=[2, 3, 4, 5], dtype='float32')
    y5 = fluid.layers.data(name="y5", shape=[2], dtype='float32')
    z5 = fluid.layers.%s(x5, y5, axis=0)
4923 4924 4925 4926 4927 4928 4929 4930 4931 4932
    """
        % (
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
            func.__name__,
        )
    )
M
minqiyang 已提交
4933 4934


4935
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
J
Jiabin Yang 已提交
4936
    if _non_static_mode():
4937
        op = getattr(_legacy_C_ops, op_name)
4938 4939 4940 4941
        if binary_op:
            return op(x, y)
        else:
            return op(x)
4942
    check_variable_and_dtype(
4943 4944
        x,
        "x",
4945
        ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
4946 4947
        op_name,
    )
4948
    if y is not None:
4949
        check_variable_and_dtype(
4950 4951
            y,
            "y",
4952
            ["bool", "int8", "int16", "int32", "int64", "float32", "float64"],
4953 4954
            op_name,
        )
4955
    if out is not None:
4956
        check_type(out, "out", Variable, op_name)
4957

M
minqiyang 已提交
4958 4959
    helper = LayerHelper(op_name, **locals())

4960 4961 4962
    if binary_op and x.dtype != y.dtype:
        raise ValueError(
            "(InvalidArgument) The DataType of %s Op's Variable must be consistent, but received %s and %s."
4963 4964
            % (op_name, x.dtype, y.dtype)
        )
M
minqiyang 已提交
4965 4966

    if out is None:
4967
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
4968 4969

    if binary_op:
4970 4971 4972
        helper.append_op(
            type=op_name, inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
M
minqiyang 已提交
4973 4974 4975 4976 4977 4978
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


4979 4980 4981
@templatedoc()
def clip(x, min, max, name=None):
    """
4982
        :old_api: paddle.fluid.layers.clip
4983

4984 4985 4986 4987
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
S
SunGaofeng 已提交
4988 4989
        min(float): ${min_comment}
        max(float): ${max_comment}
4990 4991
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
4992
                             For more information, please refer to :ref:`api_guide_Name`
4993 4994

    Returns:
S
SunGaofeng 已提交
4995 4996 4997 4998
        ${out_comment}

    Return Type:
        ${out_type}
4999 5000 5001 5002

    Examples:
        .. code-block:: python

S
SunGaofeng 已提交
5003
            import paddle.fluid as fluid
S
SunGaofeng 已提交
5004
            input = fluid.data(
5005 5006
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
5007 5008 5009
    """

    helper = LayerHelper("clip", **locals())
5010
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'clip')
5011 5012

    if name is None:
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min, "max": max},
        outputs={"Out": out},
    )
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
5039 5040 5041
        name(str, optional): For detailed information, please refer
            to :ref:`api_guide_Name`. Usually name is no need to set and
            None by default.
5042 5043

    Returns:
5044
        Tensor:
W
wangguanzhong 已提交
5045

5046
        out(${out_type}): ${out_comment}
5047

W
wangguanzhong 已提交
5048

5049 5050 5051
    Examples:
        .. code-block:: python

5052
            import paddle
5053
            import paddle.fluid as fluid
5054

5055 5056 5057
            input = paddle.to_tensor([[2.0, 2.0], [2.0, 2.0]], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
            # [[0.5, 0.5], [0.5, 0.5]]
5058 5059
    """

L
lyq 已提交
5060
    if in_dygraph_mode():
5061
        return _C_ops.clip_by_norm(x, max_norm)
J
Jiabin Yang 已提交
5062
    if _non_static_mode():
5063
        return _legacy_C_ops.clip_by_norm(x, 'max_norm', max_norm)
5064

5065
    helper = LayerHelper("clip_by_norm", **locals())
5066
    check_variable_and_dtype(x, 'X', ['float32', 'float16'], 'clip_by_norm')
5067
    check_type(max_norm, 'max_norm', (float), 'clip_by_norm')
5068 5069

    if name is None:
5070 5071 5072
        name = unique_name.generate_with_ignorable_key(
            ".".join([helper.name, 'tmp'])
        )
S
sneaxiy 已提交
5073

5074 5075 5076
    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False
    )
5077

5078 5079 5080 5081 5082 5083
    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out},
    )
5084 5085

    return out
X
Xin Pan 已提交
5086 5087


5088
@deprecated(since="2.0.0", update_to="paddle.mean")
X
Xin Pan 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5100 5101 5102 5103

    Examples:
        .. code-block:: python

5104
            import paddle
5105
            import paddle.fluid as fluid
5106 5107
            paddle.enable_static()

5108 5109
            input = fluid.layers.data(
                name='data', shape=[2, 3], dtype='float32')
5110
            mean = paddle.mean(input)
X
Xin Pan 已提交
5111
    """
5112

5113
    if _in_legacy_dygraph():
5114
        return _legacy_C_ops.mean(x)
5115
    if in_dygraph_mode():
5116
        return _C_ops.mean_all(x)
X
Xin Pan 已提交
5117 5118

    helper = LayerHelper("mean", **locals())
5119
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mean')
5120
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
5121

5122 5123 5124
    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out}
    )
X
Xin Pan 已提交
5125 5126 5127 5128

    return out


C
chengduo 已提交
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
5140 5141 5142 5143

    Examples:
        .. code-block:: python

5144
            import paddle.fluid as fluid
5145 5146 5147 5148 5149
            b = fluid.default_main_program().global_block()
            var = b.create_var(
                name="X", dtype="float32", persistable=True,
                type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            y = fluid.layers.merge_selected_rows(var)
C
chengduo 已提交
5150
    """
5151 5152 5153
    if in_dygraph_mode():
        return _C_ops.merge_selected_rows(x)

5154
    if _non_static_mode():
5155
        return _legacy_C_ops.merge_selected_rows(x)
C
chengduo 已提交
5156 5157 5158

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5159 5160 5161 5162 5163 5164
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out},
    )
C
chengduo 已提交
5165 5166 5167
    return out


X
Xin Pan 已提交
5168 5169
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
L
liu zhengxi 已提交
5170 5171 5172 5173 5174 5175 5176 5177
    Mul Operator.
    This operator is used to perform matrix multiplication for input $x$ and $y$.
    The equation is:

    ..  math::
        Out = x * y

    Both the input $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $x$.
X
Xin Pan 已提交
5178 5179

    Args:
L
liu zhengxi 已提交
5180 5181
        x (Variable): The first input Tensor/LoDTensor of mul_op.
        y (Variable): The second input Tensor/LoDTensor of mul_op.
5182 5183 5184
        x_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $x$ is a tensor with more than two dimensions, $x$ will be flattened into a two-dimensional matrix first. The flattening rule is: the first `num_col_dims` will be flattened to form the first dimension of the final matrix (the height of the matrix), and the rest `rank(x) - num_col_dims` dimensions are flattened to form the second dimension of the final matrix (the width of the matrix). As a result, height of the flattened matrix is equal to the product of $x$'s first `x_num_col_dims` dimensions' sizes, and width of the flattened matrix is equal to the product of $x$'s last `rank(x) - num_col_dims` dimensions' size. For example, suppose $x$ is a 6-dimensional tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default is 1.
        y_num_col_dims (int, optional): The mul_op can take tensors with more than two dimensions as its inputs. If the input $y$ is a tensor with more than two dimensions, $y$ will be flattened into a two-dimensional matrix first. The attribute `y_num_col_dims` determines how $y$ is flattened. See comments of `x_num_col_dims` for more details. Default is 1.
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.
X
Xin Pan 已提交
5185 5186

    Returns:
L
liu zhengxi 已提交
5187
        Variable(Tensor/LoDTensor): The output Tensor/LoDTensor of mul op.
5188 5189

    Examples:
L
liu zhengxi 已提交
5190
        ..  code-block:: python
5191

5192
            import paddle.fluid as fluid
5193 5194
            import paddle
            paddle.enable_static()
5195 5196 5197 5198 5199
            dataX = fluid.layers.data(name="dataX", append_batch_size = False, shape=[2, 5], dtype="float32")
            dataY = fluid.layers.data(name="dataY", append_batch_size = False, shape=[5, 3], dtype="float32")
            output = fluid.layers.mul(dataX, dataY,
                                      x_num_col_dims = 1,
                                      y_num_col_dims = 1)
5200

5201

X
Xin Pan 已提交
5202
    """
J
Jiabin Yang 已提交
5203
    if _non_static_mode():
5204 5205 5206 5207 5208 5209 5210 5211
        return _legacy_C_ops.mul(
            x,
            y,
            'x_num_col_dims',
            x_num_col_dims,
            'y_num_col_dims',
            y_num_col_dims,
        )
X
Xin Pan 已提交
5212

5213 5214
    inputs = {"X": [x], "Y": [y]}
    attrs = {"x_num_col_dims": x_num_col_dims, "y_num_col_dims": y_num_col_dims}
X
Xin Pan 已提交
5215
    helper = LayerHelper("mul", **locals())
5216 5217
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'mul')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64'], 'mul')
5218
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
5219

5220 5221 5222
    helper.append_op(
        type="mul", inputs={"X": x, "Y": y}, attrs=attrs, outputs={"Out": out}
    )
X
Xin Pan 已提交
5223 5224 5225
    return out


M
minqiyang 已提交
5226 5227
def hash(input, hash_size, num_hash=1, name=None):
    """
5228

Z
zhupengyang 已提交
5229
    This OP hash the input to an integer less than the hash_size.
M
minqiyang 已提交
5230 5231
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
5232 5233

    Args:
Z
zhupengyang 已提交
5234 5235 5236 5237 5238 5239
        input(Variable): A **Two-Dimensional** LoDTensor with type int32, int64.
             **Only support LoDTensor**.
        num_hash(int, optional): The times of hash, default is 1.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
M
minqiyang 已提交
5240 5241

    Returns:
Z
zhupengyang 已提交
5242
       Variable: A LoDTensor with the same data type as input.
M
minqiyang 已提交
5243 5244

    Examples:
Z
zhupengyang 已提交
5245
        .. code-block:: python
H
haowang101779990 已提交
5246

5247
            import paddle.fluid as fluid
Z
zhupengyang 已提交
5248
            import numpy as np
5249 5250
            import paddle
            paddle.enable_static()
5251

Z
zhupengyang 已提交
5252
            place = fluid.core.CPUPlace()
5253

5254 5255
            x = fluid.data(name="x", shape=[2,2], dtype="int32", lod_level=1)
            res = fluid.layers.hash(name="res", input=x, hash_size=1000, num_hash=4)
5256

Z
zhupengyang 已提交
5257 5258 5259 5260
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())
            in1 = np.array([[1,2],[3,4]]).astype("int32")
            print(in1)
5261
            x_i = fluid.create_lod_tensor(in1, [[0, 2]], place)
Z
zhupengyang 已提交
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
            res = exe.run(fluid.default_main_program(), feed={'x':x_i}, fetch_list=[res], return_numpy=False)
            print(np.array(res[0]))
            # [[[722]
            #   [407]
            #   [337]
            #   [395]]
            #  [[603]
            #   [590]
            #   [386]
            #   [901]]]
M
minqiyang 已提交
5272
    """
5273
    check_variable_and_dtype(input, 'input', ['int32', 'int64'], 'hash')
5274 5275
    check_type(hash_size, 'hash_size', int, 'hash')
    check_type(num_hash, 'num_hash', int, 'hash')
M
minqiyang 已提交
5276
    helper = LayerHelper('hash', **locals())
5277 5278 5279 5280 5281 5282 5283 5284 5285
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True
    )
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash, 'mod_by': hash_size},
    )
M
minqiyang 已提交
5286
    return out
G
gmcather 已提交
5287 5288


D
dengkaipeng 已提交
5289
@templatedoc()
5290 5291
def grid_sampler(x, grid, name=None):
    """
5292

5293
    This operation samples input X by using bilinear interpolation based on
T
tianshuo78520a 已提交
5294
    flow field grid, which is usually generated by :code:`affine_grid` . The grid of
K
Kaipeng Deng 已提交
5295 5296
    shape [N, H, W, 2] is the concatenation of (x, y) coordinates
    with shape [N, H, W] each, where x is indexing the 4th dimension
T
tianshuo78520a 已提交
5297 5298
    (in width dimension) of input data x and y is indexing the 3rd
    dimension (in height dimension), finally results is the bilinear
5299
    interpolation value of 4 nearest corner points. The output tensor
K
Kaipeng Deng 已提交
5300
    shape will be [N, C, H, W].
5301

H
haowang101779990 已提交
5302
    .. code-block:: text
5303

H
haowang101779990 已提交
5304 5305
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
5306

K
Kaipeng Deng 已提交
5307 5308 5309 5310
        .. code-block:: text

            grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
            grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
5311

H
haowang101779990 已提交
5312 5313 5314
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
5315

H
haowang101779990 已提交
5316 5317 5318 5319 5320 5321 5322 5323 5324
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
5325

H
haowang101779990 已提交
5326 5327 5328 5329
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
5330

H
haowang101779990 已提交
5331 5332 5333 5334
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
5335

H
haowang101779990 已提交
5336 5337 5338 5339
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
5340

H
haowang101779990 已提交
5341 5342
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
5343 5344

    Args:
K
Kaipeng Deng 已提交
5345 5346 5347 5348 5349 5350 5351 5352 5353
        x(Variable): The input tensor, which is a 4-D tensor with shape
                     [N, C, H, W], N is the batch size, C is the channel
                     number, H and W is the feature height and width.
                     The data type is float32 or float64.
        grid(Variable): Input grid tensor of shape [N, H, W, 2]. The
                        data type is float32 or float64.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
D
dengkaipeng 已提交
5354 5355

    Returns:
H
haowang101779990 已提交
5356
        Variable: Output of shape [N, C, H, W] data samples input X
K
Kaipeng Deng 已提交
5357 5358
                  using bilnear interpolation based on input grid.
                  The data type is same as input tensor.
5359

H
haowang101779990 已提交
5360 5361 5362 5363
    Examples:

        .. code-block:: python

K
Kaipeng Deng 已提交
5364
            import paddle.fluid as fluid
5365 5366
            import paddle.fluid as fluid
            import paddle
K
Kaipeng Deng 已提交
5367

5368
            paddle.enable_static()
K
Kaipeng Deng 已提交
5369 5370
            # use with affine_grid
            x = fluid.data(name='x', shape=[None, 10, 32, 32], dtype='float32')
K
Kaipeng Deng 已提交
5371 5372
            theta = fluid.layers.data(name='theta', shape=[2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(theta=theta, out_shape=[3, 10, 32, 32])
H
haowang101779990 已提交
5373
            out = fluid.layers.grid_sampler(x=x, grid=grid)
5374

D
dengkaipeng 已提交
5375 5376 5377
    """
    helper = LayerHelper("grid_sampler", **locals())

5378
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sampler')
5379 5380 5381
    check_variable_and_dtype(
        grid, 'grid', ['float32', 'float64'], 'grid_sampler'
    )
D
dengkaipeng 已提交
5382 5383 5384 5385 5386 5387
    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

5388
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
5389 5390
    ipts = {'X': x, 'Grid': grid}

5391 5392
    attrs = {'use_cudnn': False} if core.is_compiled_with_rocm() else {}

5393 5394 5395
    helper.append_op(
        type='grid_sampler', inputs=ipts, outputs={'Output': out}, attrs=attrs
    )
5396 5397 5398
    return out


G
gmcather 已提交
5399
def log_loss(input, label, epsilon=1e-4, name=None):
5400
    r"""
5401

G
gmcather 已提交
5402 5403 5404 5405 5406 5407 5408
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

5409 5410
        Out = -label * \log{(input + \epsilon)}
              - (1 - label) * \log{(1 - input + \epsilon)}
G
gmcather 已提交
5411 5412

    Args:
5413
        input (Tensor|list):  A 2-D tensor with shape [N x 1], where N is the
G
gmcather 已提交
5414
                                batch size. This input is a probability computed
Y
Yibing Liu 已提交
5415
                                by the previous operator. Data type float32.
5416
        label (Tensor|list):  The ground truth which is a 2-D tensor with
5417
                                shape [N x 1], where N is the batch size.
Y
Yibing Liu 已提交
5418 5419
                                Data type float32.
        epsilon (float, optional): A small number for numerical stability. Default 1e-4.
5420
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
5421
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
G
gmcather 已提交
5422 5423

    Returns:
5424
        Tensor, which shape is [N x 1], data type is float32.
G
gmcather 已提交
5425 5426 5427 5428

    Examples:
        .. code-block:: python

5429 5430 5431 5432 5433 5434
          import paddle
          import paddle.nn.functional as F

          label = paddle.randn((10,1))
          prob = paddle.randn((10,1))
          cost = F.log_loss(input=prob, label=label)
G
gmcather 已提交
5435
    """
5436
    return paddle.nn.functional.log_loss(input, label, epsilon, name)
G
gmcather 已提交
5437 5438


5439 5440 5441
def bilinear_tensor_product(
    x, y, size, act=None, name=None, param_attr=None, bias_attr=None
):
5442
    r"""
5443 5444
    :api_attr: Static Graph

Y
Yibing Liu 已提交
5445
    **Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
5446

Q
Qiao Longfei 已提交
5447
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
5448 5449 5450
    For example:

    .. math::
H
haowang101779990 已提交
5451
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
5452

Q
Qiao Longfei 已提交
5453
    In this formula:
5454 5455
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Y
Yibing Liu 已提交
5456
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N].
H
haowang101779990 已提交
5457
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
5458 5459 5460
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
5461
        x (Variable): 2-D input tensor with shape [batch_size, M]. Data type
Y
Yibing Liu 已提交
5462
            is float32 or float64.
5463
        y (Variable): 2-D input tensor with shape [batch_size, N]. Data type
Y
Yibing Liu 已提交
5464
            should be same as **x**.
Q
Qiao Longfei 已提交
5465
        size (int): The dimension of this layer.
Y
Yibing Liu 已提交
5466
        act (str|None): Activation to be applied to the output of this layer. Default None.
5467
        name(str|None): For detailed information, please refer to
Y
Yibing Liu 已提交
5468
            :ref:`api_guide_Name` . Usually name is no need to set and None by default.
5469 5470
        param_attr (ParamAttr|None): To specify the weight parameter attribute.
            Default: None, which means the default weight parameter property is
Y
Yibing Liu 已提交
5471
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
5472 5473
        bias_attr (ParamAttr|None): To specify the bias parameter attribute.
            Default: None, which means the default bias parameter property is
Y
Yibing Liu 已提交
5474
            used. See usage for details in :ref:`api_fluid_ParamAttr` .
Q
Qiao Longfei 已提交
5475
    Returns:
Y
Yibing Liu 已提交
5476
        Variable: A 2-D Tensor of shape [batch_size, size]. Data type is the same as input **x**.
Q
Qiao Longfei 已提交
5477 5478 5479 5480

    Examples:
        .. code-block:: python

5481 5482 5483 5484 5485
            import paddle
            paddle.enable_static()
            layer1 = paddle.static.data("t1", shape=[-1, 5], dtype="float32")
            layer2 = paddle.static.data("t2", shape=[-1, 4], dtype="float32")
            tensor = paddle.static.nn.bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
5486 5487
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
5488
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
5489 5490 5491

    param_shape = [size, x.shape[1], y.shape[1]]

5492 5493 5494
    w = helper.create_parameter(
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False
    )
5495
    out = helper.create_variable_for_type_inference(dtype=dtype)
Q
Qiao Longfei 已提交
5496 5497 5498 5499

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
5500 5501 5502
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
Q
Qiao Longfei 已提交
5503
        inputs["Bias"] = bias
5504 5505 5506
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
Q
Qiao Longfei 已提交
5507 5508 5509

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
5510 5511 5512 5513 5514


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
5515 5516 5517 5518 5519 5520 5521 5522 5523
    This operator gets tensor data from input with SelectedRows type, and outputs a LoDTensor.

    .. code-block:: text

        input x is SelectedRows:
           x.rows = [0, 5, 5, 4, 19]
           x.height = 20
           x.value = [[1, 1] [2, 2] [2, 2] [3, 3] [6, 6]]

5524
        Output is LoDTensor:
5525 5526 5527 5528 5529 5530
           out.shape = [5, 2]
           out.data = [[1, 1],
                       [2, 2],
                       [2, 2],
                       [3, 3],
                       [6, 6]]
C
chengduo 已提交
5531 5532

    Args:
5533 5534 5535
        x(SelectedRows): Input with SelectedRows type. The data type is float32, float64, int32 or int64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
C
chengduo 已提交
5536 5537

    Returns:
5538
        Variable: LoDTensor transformed from SelectedRows. The data type is same with input.
B
bdzhuxiaoning 已提交
5539 5540 5541

    Examples:
        .. code-block:: python
5542

B
bdzhuxiaoning 已提交
5543 5544 5545 5546
            import paddle.fluid as fluid
            b = fluid.default_main_program().global_block()
            input = b.create_var(name="X", dtype="float32", persistable=True, type=fluid.core.VarDesc.VarType.SELECTED_ROWS)
            out = fluid.layers.get_tensor_from_selected_rows(input)
C
chengduo 已提交
5547 5548
    """

5549 5550 5551 5552 5553
    check_type(x, 'x', Variable, 'get_tensor_from_selected_rows')
    if x.type != core.VarDesc.VarType.SELECTED_ROWS:
        raise TypeError(
            "The type of 'x' in get_tensor_from_selected_rows must be SELECTED_ROWS."
        )
C
chengduo 已提交
5554 5555
    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5556 5557 5558 5559 5560 5561
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={},
    )
C
chengduo 已提交
5562
    return out
5563 5564


5565
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
5566
    r"""
5567

S
SunGaofeng 已提交
5568
    This op returns a col buffer of sliding local blocks of input x, also known
5569
    as im2col for batched 2D image tensors. For each block under the convolution filter,
T
tianshuo78520a 已提交
5570
    all element will be rearranged as a column. While the convolution filter sliding over
5571 5572
    the input feature map, a series of such columns will be formed.

S
SunGaofeng 已提交
5573
    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
5574 5575 5576 5577
    can be calculated as following.

    .. math::

5578
        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1
5579

5580
        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1
5581

5582
        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1
5583

5584
        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1
5585

5586
        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]
5587

5588
        Lout &= hout \times wout
5589 5590


S
SunGaofeng 已提交
5591
    Parameters:
5592
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
S
SunGaofeng 已提交
5593
                                  data type can be float32 or float64
5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
T
tianshuo78520a 已提交
5606
        dilations(int|list):      the dilations of convolution kernel, should be
T
tianshuo78520a 已提交
5607
                                  [dilation_h, dilation_w], or an integer dilation treated as
5608
                                  [dilation, dilation]. For default, it will be [1, 1].
5609 5610
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
S
SunGaofeng 已提交
5611
                             For more information, please refer to :ref:`api_guide_Name`
5612

5613

5614
    Returns:
5615
        The tensor corresponding to the sliding local blocks.
5616 5617 5618
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
S
SunGaofeng 已提交
5619 5620 5621
        The data type of output is the same as the input :math:`x`

    Return Type:
5622
        Tensor
5623 5624 5625 5626 5627

    Examples:

        .. code-block:: python

5628 5629 5630 5631 5632
            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
5633 5634
    """

5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
    return paddle.nn.functional.unfold(
        x, kernel_sizes, strides, paddings, dilations, name
    )


def deformable_roi_pooling(
    input,
    rois,
    trans,
    no_trans=False,
    spatial_scale=1.0,
    group_size=[1, 1],
    pooled_height=1,
    pooled_width=1,
    part_size=None,
    sample_per_part=1,
    trans_std=0.1,
    position_sensitive=False,
    name=None,
):
5655
    r"""
5656

5657
    Deformable ROI Pooling Layer
5658

5659
    Performs deformable region-of-interest pooling on inputs. As described
5660
    in `Deformable Convolutional Networks <https://arxiv.org/abs/1703.06211>`_, it will get offset for each bin after
5661
    roi pooling so that pooling at correct region. Batch_size will change to the number of region bounding boxes after deformable_roi_pooling.
5662

5663
    The operation has three steps:
5664

5665
    1. Dividing each region proposal into equal-sized sections with the pooled_width and pooled_height.
5666

5667 5668
    2. Add offset to pixel in ROI to get new location and the new value which are computed directly through
       bilinear interpolation with four nearest pixel.
5669

5670
    3. Sample several points in each bin to get average values as output.
5671 5672


5673 5674 5675 5676 5677 5678 5679 5680 5681
    Args:
        input (Variable):The input of deformable roi pooling and it is tensor which value type is float32. The shape of input is
                         [N, C, H, W]. Where N is batch size, C is number of input channels,
                         H is height of the feature, and W is the width of the feature.
        rois (Variable): ROIs (Regions of Interest) with type float32 to pool over. It should be
                         a 2-D LoDTensor of shape (num_rois, 4), and the lod level
                         is 1. Given as [[x1, y1, x2, y2], ...], (x1, y1) is
                         the top left coordinates, and (x2, y2) is the bottom
                         right coordinates, which value type is float32.
5682 5683 5684
        trans (Variable): Offset of features on ROIs while pooling which value type is float32. The format is [N, C, H, W], where
                          N is number of ROIs, C is number of channels, which indicate the offset distance
                          in the x and y directions, H is pooled height, and W is pooled width.
5685 5686 5687 5688
        no_trans (bool): Whether to add offset to get new value or not while roi pooling, which value with type bool is True or False.
                         If value is True, no offset will be added in operation. Default: False.
        spatial_scale (float): Ratio of input feature map height (or width) to raw image height (or width), which value type is float32.
                         Equals the reciprocal of total stride in convolutional layers, Default: 1.0.
5689
        group_size (list|tuple): The number of groups which input channels are divided and the input is list or tuple, which value type is int32. (eg.number of input channels
5690
                          is k1 * k2 * (C + 1), which k1 and k2 are group width and height and C+1 is number of output
T
tianshuo78520a 已提交
5691
                          channels.) eg.(4, 6), which 4 is height of group and 6 is width of group. Default: [1, 1].
5692 5693 5694 5695 5696 5697 5698
        pooled_height (int): The pooled output height which value type is int32. Default: 1.
        pooled_width (int): The pooled output width which value type is int32. Default: 1.
        part_size (list|tuple): The height and width of offset which values in list or tuple is int32, eg.(4, 6), which height is 4 and width is 6, and values always equal to pooled_height \
                         and pooled_width. Default: if None, default value is [pooled_height, pooled_width].
        sample_per_part (int): The number of samples in each bin which value type is int32. If value is bigger, it will consume more performance. Default: 1.
        trans_std (float): Coefficient of offset which value type is float32. It controls weight of offset. Default: 0.1.
        position_sensitive (bool): Whether to choose deformable psroi pooling mode or not, and value type is bool(True or False). If value is False, input dimension equals to output dimension. \
T
tianshuo78520a 已提交
5699
                                   If value is True, input dimension should be output dimension * pooled_height * pooled_width. Default: False.
5700 5701 5702 5703
        name (str|None): Name of layer. Default: None.
    Returns:
        Variable: Output of deformable roi pooling is that, if position sensitive is False, input dimension equals to output dimension. If position sensitive is True,\
                  input dimension should be the result of output dimension divided by pooled height and pooled width.
C
cjt222 已提交
5704 5705 5706 5707

    Examples:
      .. code-block:: python

5708 5709
        # position_sensitive=True
        import paddle.fluid as fluid
C
chengjuntao 已提交
5710
        input = fluid.data(name="input",
5711 5712
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
5713 5714
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
5715
                          dtype='float32',
C
chengjuntao 已提交
5716 5717
                          lod_level=1)
        trans = fluid.data(name="trans",
5718 5719 5720 5721 5722
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
5723
                                                no_trans=False,
5724
                                                spatial_scale=1.0,
C
chengjuntao 已提交
5725 5726 5727 5728
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
5729
                                                sample_per_part=4,
C
chengjuntao 已提交
5730 5731
                                                trans_std=0.1,
                                                position_sensitive=True)
5732

5733
        # position_sensitive=False
5734
        import paddle.fluid as fluid
C
chengjuntao 已提交
5735
        input = fluid.data(name="input",
5736 5737
                           shape=[2, 192, 64, 64],
                           dtype='float32')
C
chengjuntao 已提交
5738 5739
        rois = fluid.data(name="rois",
                          shape=[-1, 4],
5740
                          dtype='float32',
C
chengjuntao 已提交
5741 5742
                          lod_level=1)
        trans = fluid.data(name="trans",
5743 5744 5745 5746 5747
                           shape=[2, 384, 64, 64],
                           dtype='float32')
        x = fluid.layers.deformable_roi_pooling(input=input,
                                                rois=rois,
                                                trans=trans,
C
chengjuntao 已提交
5748
                                                no_trans=False,
5749
                                                spatial_scale=1.0,
C
chengjuntao 已提交
5750 5751 5752 5753
                                                group_size=(1, 1),
                                                pooled_height=8,
                                                pooled_width=8,
                                                part_size=(8, 8),
5754
                                                sample_per_part=4,
C
chengjuntao 已提交
5755 5756
                                                trans_std=0.1,
                                                position_sensitive=False)
C
cjt222 已提交
5757 5758
    """

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770
    check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        rois, 'rois', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_variable_and_dtype(
        trans, 'trans', ['float32', 'float64'], 'deformable_roi_pooling'
    )
    check_type(
        group_size, 'group_size', (list, tuple), 'deformable_roi_pooling'
    )
5771
    if part_size is not None:
5772 5773 5774
        check_type(
            part_size, 'part_size', (list, tuple), 'deformable_roi_pooling'
        )
5775

C
cjt222 已提交
5776
    input_channels = input.shape[1]
5777
    if position_sensitive is False:
C
cjt222 已提交
5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791
        output_channels = input_channels
    else:
        output_channels = input_channels / pooled_height / pooled_width

    if part_size is None:
        part_height = pooled_height
        part_width = pooled_width
        part_size = [part_height, part_width]
    part_size = utils.convert_to_list(part_size, 2, 'part_size')
    group_size = utils.convert_to_list(group_size, 2, 'group_size')
    helper = LayerHelper('deformable_psroi_pooling', **locals())
    dtype = helper.input_dtype()
    output = helper.create_variable_for_type_inference(dtype)
    top_count = helper.create_variable_for_type_inference(dtype='int32')
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
    helper.append_op(
        type="deformable_psroi_pooling",
        inputs={"Input": input, "ROIs": rois, "Trans": trans},
        outputs={"Output": output, "TopCount": top_count},
        attrs={
            "no_trans": no_trans,
            "spatial_scale": spatial_scale,
            "output_dim": output_channels,
            "group_size": group_size,
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "part_size": part_size,
            "sample_per_part": sample_per_part,
            "trans_std": trans_std,
        },
    )
C
cjt222 已提交
5808
    return output
5809 5810


5811
@deprecated(since="2.0.0", update_to="paddle.shard_index")
5812 5813
def shard_index(input, index_num, nshards, shard_id, ignore_value=-1):
    """
L
lilong12 已提交
5814 5815 5816 5817 5818 5819 5820 5821 5822
    Reset the values of `input` according to the shard it beloning to.
    Every value in `input` must be a non-negative integer, and
    the parameter `index_num` represents the integer above the maximum
    value of `input`. Thus, all values in `input` must be in the range
    [0, index_num) and each value can be regarded as the offset to the beginning
    of the range. The range is further split into multiple shards. Specifically,
    we first compute the `shard_size` according to the following formula,
    which represents the number of integers each shard can hold. So for the
    i'th shard, it can hold values in the range [i*shard_size, (i+1)*shard_size).
5823 5824
    ::

5825
        shard_size = (index_num + nshards - 1) // nshards
5826

L
lilong12 已提交
5827 5828 5829
    For each value `v` in `input`, we reset it to a new value according to the
    following formula:
    ::
5830

L
lilong12 已提交
5831 5832 5833 5834
        v = v - shard_id * shard_size if shard_id * shard_size <= v < (shard_id+1) * shard_size else ignore_value

    That is, the value `v` is set to the new offset within the range represented by the shard `shard_id`
    if it in the range. Otherwise, we reset it to be `ignore_value`.
5835 5836

    Args:
L
lilong12 已提交
5837 5838
        input (Tensor): Input tensor with data type int64 or int32. It's last dimension must be 1.
        index_num (int): An integer represents the integer above the maximum value of `input`.
5839 5840 5841
        nshards (int): The number of shards.
        shard_id (int): The index of the current shard.
        ignore_value (int): An integer value out of sharded index range.
5842 5843

    Returns:
L
lilong12 已提交
5844
        Tensor.
5845 5846 5847 5848

    Examples:
        .. code-block:: python

5849 5850 5851 5852 5853 5854 5855 5856
            import paddle
            label = paddle.to_tensor([[16], [1]], "int64")
            shard_label = paddle.shard_index(input=label,
                                             index_num=20,
                                             nshards=2,
                                             shard_id=0)
            print(shard_label)
            # [[-1], [1]]
5857
    """
H
hong 已提交
5858
    if in_dygraph_mode():
5859 5860 5861
        return _C_ops.shard_index(
            input, index_num, nshards, shard_id, ignore_value
        )
H
hong 已提交
5862

B
Baibaifan 已提交
5863
    check_variable_and_dtype(input, 'input', ['int64', 'int32'], 'shard_index')
5864 5865 5866
    op_type = 'shard_index'
    helper = LayerHelper(op_type, **locals())
    if shard_id < 0 or shard_id >= nshards:
5867 5868 5869
        raise ValueError(
            'The shard_id(%d) should be in [0, %d)' % (shard_id, nshards)
        )
5870 5871

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
    helper.append_op(
        type=op_type,
        inputs={'X': [input]},
        outputs={'Out': out},
        attrs={
            'index_num': index_num,
            'nshards': nshards,
            'shard_id': shard_id,
            'ignore_value': ignore_value,
        },
        stop_gradient=True,
    )
5884
    return out
H
huangjun12 已提交
5885 5886 5887 5888


@templatedoc()
def hard_swish(x, threshold=6.0, scale=6.0, offset=3.0, name=None):
5889
    r"""
5890 5891 5892
    This operator implements the hard_swish activation function.
    Hard_swish is proposed in MobileNetV3, and performs better in computational stability and efficiency compared to swish function.
    For more details please refer to: https://arxiv.org/pdf/1905.02244.pdf
H
huangjun12 已提交
5893

5894
    The formula is as follows:
H
huangjun12 已提交
5895

5896
    .. math::
H
huangjun12 已提交
5897

5898
        out = \\frac{x * (min(max(0, x+offset), threshold))}{scale}
H
huangjun12 已提交
5899

5900 5901 5902 5903 5904 5905 5906 5907 5908
    In the above equation:

    ``threshold`` and ``scale`` should be positive, ``offset`` can be positive or negative. It is recommended to use default parameters.

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type should be float32 or float64.
        threshold (float, optional): The threshold in Relu function. Default: 6.0
        scale (float, optional): The scale factor. Default: 6.0
        offset (float, optional): The offset factor. Default: 3.0
5909 5910
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`

5911 5912
    Returns:
        Variable: The output tensor with the same shape and data type as input.
5913 5914


5915
    Examples:
5916

5917
    .. code-block:: python
5918

5919
        import paddle.fluid as fluid
5920
        import paddle
5921
        import numpy as np
5922
        paddle.enable_static()
5923

5924
        DATATYPE='float32'
5925

5926
        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)
5927

5928 5929
        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.hard_swish(x)
5930

5931 5932 5933 5934 5935
        place = fluid.CPUPlace()
        #place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667,3., 4.]]
H
huangjun12 已提交
5936
    """
J
Jiabin Yang 已提交
5937
    if _non_static_mode():
5938 5939 5940
        return _legacy_C_ops.hard_swish(
            x, 'threshold', threshold, 'scale', scale, 'offset', offset
        )
5941

5942 5943 5944
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'hard_swish'
    )
5945

H
huangjun12 已提交
5946 5947
    helper = LayerHelper('hard_swish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
5948 5949 5950 5951 5952 5953
    helper.append_op(
        type='hard_swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold, 'scale': scale, 'offset': offset},
    )
H
huangjun12 已提交
5954
    return out
R
ruri 已提交
5955 5956


K
Kaipeng Deng 已提交
5957 5958
@templatedoc()
def mish(x, threshold=20, name=None):
5959
    r"""
K
Kaipeng Deng 已提交
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974
    This operator implements the mish activation function.
    Refer to `Mish: A Self Regularized Non-Monotonic Neural
    Activation Function <https://arxiv.org/abs/1908.08681>`_


    The formula is as follows if :attr:`threshold` is :code:`None` or negative:

    .. math::

        out = x * \\tanh(\\ln(1 + e^{x}))

    The formula is as follows if :attr:`threshold` is set as positive value:

    .. math::

5975 5976 5977 5978 5979
    out = \\begin{cases}
        x \\ast \\tanh(x), \\text{if } x > \\text{threshold} \\\\
        x \\ast \\tanh(e^{x}), \\text{if } x < -\\text{threshold} \\\\
        x \\ast \\tanh(\\ln(1 + e^{x})),  \\text{otherwise}
          \\end{cases}
K
Kaipeng Deng 已提交
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000

    Args:
        x (Variable): Input feature, multi-dimensional Tensor. The data type
                      should be float16, float32 or float64.
        threshold (float|None): threshold for softplus in Mish operator.
                Approximate value of softplus will be used if absolute value
                of input is greater than :attr:threshold and :attr:threshold
                is set as positive value. For none or negative threshold,
                approximate value is not used. Default 20.
        name (str, optional): The default value is None. Normally there is no
                need for user to set this property. For more information, please
                refer to :ref:`api_guide_Name`

    Returns:
        Variable: The output tensor with the same shape and data type as input.


    Examples:

    .. code-block:: python

6001
        import paddle
K
Kaipeng Deng 已提交
6002 6003 6004
        import paddle.fluid as fluid
        import numpy as np

6005
        paddle.enable_static()
K
Kaipeng Deng 已提交
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018
        DATATYPE='float32'

        x_data = np.array([i for i in range(1,5)]).reshape([1,1,4]).astype(DATATYPE)

        x = fluid.data(name="x", shape=[None,1,4], dtype=DATATYPE)
        y = fluid.layers.mish(x)

        place = fluid.CPUPlace()
        # place = fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        out, = exe.run(feed={'x':x_data}, fetch_list=[y.name])
        print(out)  # [[0.66666667, 1.66666667, 3., 4.]]
    """
6019
    if in_dygraph_mode():
6020
        return _C_ops.mish(x, threshold)
6021
    if _in_legacy_dygraph():
6022
        return _legacy_C_ops.mish(x, 'threshold', threshold)
6023

K
Kaipeng Deng 已提交
6024 6025
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'mish')
    check_type(threshold, 'threshold', (float, int), 'mish')
6026 6027 6028 6029 6030
    assert (
        threshold > 0
    ), "threshold of mish should be greater than 0, " "but got {}".format(
        threshold
    )
K
Kaipeng Deng 已提交
6031 6032 6033

    helper = LayerHelper('mish', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6034 6035 6036 6037 6038 6039
    helper.append_op(
        type='mish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold},
    )
K
Kaipeng Deng 已提交
6040 6041 6042
    return out


6043
@deprecated(since="2.0.0", update_to="paddle.uniform")
6044
@templatedoc()
6045 6046 6047
def uniform_random(
    shape, dtype='float32', min=-1.0, max=1.0, seed=0, name=None
):
6048
    """
6049 6050
    This OP returns a Tensor filled with random values sampled from a uniform
    distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6051 6052 6053

    Examples:
    ::
6054

6055 6056
        Input:
          shape = [1, 2]
6057

6058 6059 6060 6061
        Output:
          result=[[0.8505902, 0.8397286]]

    Args:
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074
        shape(list|tuple|Tensor): The shape of the output Tensor. If ``shape``
            is a list or tuple, the elements of it should be integers or Tensors
            (with the shape [1], and the data type int32 or int64). If ``shape``
            is a Tensor, it should be a 1-D Tensor(with the data type int32 or
            int64).
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of
            the output Tensor. Supported data types: float32, float64.
            Default is float32.
        min(float|int, optional): The lower bound on the range of random values
            to generate, ``min`` is included in the range. Default is -1.0.
        max(float|int, optional): The upper bound on the range of random values
            to generate, ``max`` is excluded in the range. Default is 1.0.
        seed(int, optional): Random seed used for generating samples. 0 means
6075 6076
            use a seed generated by the system. Note that if seed is not 0,
            this operator will always generate the same random numbers every
6077
            time. Default is 0.
6078 6079 6080
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
6081

6082
    Returns:
6083 6084
        Tensor: A Tensor filled with random values sampled from a uniform
        distribution in the range [``min``, ``max``), with ``shape`` and ``dtype``.
6085

6086
    Raises:
6087 6088
        TypeError: If ``shape`` is not list, tuple, Tensor.
        TypeError: If ``dtype`` is not float32, float64.
6089

6090 6091 6092
    Examples:
        .. code-block:: python

6093
            import paddle
6094
            import paddle.fluid as fluid
6095
            paddle.enable_static()
6096 6097

            # example 1:
6098
            # attr shape is a list which doesn't contain Tensor.
6099
            result_1 = fluid.layers.uniform_random(shape=[3, 4])
6100 6101 6102
            # [[ 0.84524226,  0.6921872,   0.56528175,  0.71690357],
            #  [-0.34646994, -0.45116323, -0.09902662, -0.11397249],
            #  [ 0.433519,    0.39483607, -0.8660099,   0.83664286]]
6103 6104

            # example 2:
6105 6106 6107
            # attr shape is a list which contains Tensor.
            dim_1 = fluid.layers.fill_constant([1], "int64", 2)
            dim_2 = fluid.layers.fill_constant([1], "int32", 3)
6108
            result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
6109 6110
            # [[-0.9951253,   0.30757582, 0.9899647 ],
            #  [ 0.5864527,   0.6607096,  -0.8886161 ]]
6111 6112

            # example 3:
6113
            # attr shape is a Tensor, the data type must be int64 or int32.
6114
            var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
6115
            result_3 = fluid.layers.uniform_random(var_shape)
6116 6117 6118 6119
            # if var_shape's value is [2, 3]
            # result_3 is:
            # [[-0.8517412,  -0.4006908,   0.2551912 ],
            #  [ 0.3364414,   0.36278176, -0.16085452]]
6120

6121 6122 6123
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
6124

6125 6126
    if in_dygraph_mode():
        shape = utils.convert_shape_to_list(shape)
6127
        return _C_ops.uniform(
6128 6129 6130 6131 6132 6133 6134
            shape,
            dtype,
            float(min),
            float(max),
            seed,
            _current_expected_place(),
        )
6135
    elif _in_legacy_dygraph():
6136
        shape = utils.convert_shape_to_list(shape)
6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
        return _legacy_C_ops.uniform_random(
            'shape',
            shape,
            'min',
            float(min),
            'max',
            float(max),
            'seed',
            seed,
            'dtype',
            dtype,
        )
6149

6150
    check_type(shape, 'shape', (list, tuple, Variable), 'uniform_random/rand')
6151 6152 6153
    check_dtype(
        dtype, 'dtype', ('float32', 'float64', 'uint16'), 'uniform_random/rand'
    )
6154 6155
    check_type(min, 'min', (float, int, Variable), 'uniform_random/rand')
    check_type(max, 'max', (float, int, Variable), 'uniform_random/rand')
6156 6157

    inputs = dict()
6158
    attrs = {'seed': seed, 'min': min, 'max': max, 'dtype': dtype}
6159 6160 6161
    utils.get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='uniform_random/rand'
    )
6162

6163
    helper = LayerHelper("uniform_random", **locals())
6164
    out = helper.create_variable_for_type_inference(dtype)
6165 6166 6167
    helper.append_op(
        type="uniform_random", inputs=inputs, attrs=attrs, outputs={"Out": out}
    )
6168
    utils.try_set_static_shape_tensor(out, shape)
6169
    return out
myq406450149's avatar
myq406450149 已提交
6170 6171 6172 6173 6174 6175 6176


def unbind(input, axis=0):
    """
    Removes a tensor dimension, then split the input tensor into multiple sub-Tensors.
    Args:
        input (Variable): The input variable which is an N-D Tensor, data type being float32, float64, int32 or int64.
6177

myq406450149's avatar
myq406450149 已提交
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202
        axis (int32|int64, optional): A scalar with type ``int32|int64`` shape [1]. The dimension along which to unbind. If :math:`axis < 0`, the
            dimension to unbind along is :math:`rank(input) + axis`. Default is 0.
    Returns:
        list(Variable): The list of segmented Tensor variables.

    Example:
        .. code-block:: python
            import paddle
            # input is a variable which shape is [3, 4, 5]
            input = paddle.fluid.data(
                 name="input", shape=[3, 4, 5], dtype="float32")
            [x0, x1, x2] = paddle.tensor.unbind(input, axis=0)
            # x0.shape [4, 5]
            # x1.shape [4, 5]
            # x2.shape [4, 5]
            [x0, x1, x2, x3] = paddle.tensor.unbind(input, axis=1)
            # x0.shape [3, 5]
            # x1.shape [3, 5]
            # x2.shape [3, 5]
            # x3.shape [3, 5]

    """
    helper = LayerHelper("unbind", **locals())
    check_type(input, 'input', (Variable), 'unbind')
    dtype = helper.input_dtype()
6203 6204 6205
    check_dtype(
        dtype, 'unbind', ['float32', 'float64', 'int32', 'int64'], 'unbind'
    )
myq406450149's avatar
myq406450149 已提交
6206
    if not isinstance(axis, (int)):
6207 6208 6209
        raise TypeError(
            "The type of 'axis'  must be int, but received %s." % (type(axis))
        )
myq406450149's avatar
myq406450149 已提交
6210 6211 6212 6213 6214 6215 6216 6217 6218 6219
    if isinstance(axis, np.generic):
        axis = np.asscalar(axis)
    input_shape = input.shape
    axis_ = axis if axis >= 0 else len(input_shape) + axis
    num = input_shape[axis_]
    outs = [
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
        for i in range(num)
    ]

6220 6221 6222 6223 6224 6225
    helper.append_op(
        type="unbind",
        inputs={"X": input},
        outputs={"Out": outs},
        attrs={"axis": axis},
    )
myq406450149's avatar
myq406450149 已提交
6226
    return outs