control_flow.py 171.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import autodoc, templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
H
hong 已提交
20
from ..framework import Program, Variable, Operator, _non_static_mode, static_only, _in_legacy_dygraph, in_dygraph_mode
21
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
22
from .nn import logical_and, logical_not, logical_or
23
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars, padding_to_same_structure, is_sequence, pack_sequence_as, flatten, to_sequence
Y
yuyang18 已提交
24
import numpy
25
import warnings
26
import six
L
liym27 已提交
27
from functools import reduce, partial
28
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
29 30
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
31
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
32

Q
QI JUN 已提交
33
__all__ = [
W
Wu Yi 已提交
34
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
35
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
36
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
37 38
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
39 40
]

Y
Yu Yang 已提交
41

42 43
def select_output(input, outputs, mask):
    """
44
    **select_output**
45 46 47 48 49 50 51 52 53 54 55 56 57 58
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
59 60 61 62
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

63 64 65 66 67 68
    helper.append_op(type='select_output',
                     inputs={
                         'X': input,
                         'Mask': mask
                     },
                     outputs={'Out': outputs})
69 70 71
    return outputs


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
        map(lambda a, b: a if a == b else -1, first_shape, second_shape))
    return out_shape


91 92 93
def select_input(inputs, mask):
    """
    **select_input**
94

95 96 97 98 99 100 101 102 103 104 105 106
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
107 108 109
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

110 111 112 113 114
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
    #assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
115

116 117 118
    out = helper.create_variable(dtype=output_dtype,
                                 shape=output_shape,
                                 type=output_type)
119 120 121 122 123 124
    helper.append_op(type='select_input',
                     inputs={
                         'X': inputs,
                         'Mask': mask
                     },
                     outputs={'Out': out})
125 126 127
    return out


128
def select_input_with_buildin_type(inputs, mask, name):
129
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import to_static_variable
130
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
131 132
    false_var, true_var = inputs

133 134 135 136 137 138
    if isinstance(false_var, UndefinedVar) and isinstance(
            true_var, UndefinedVar):
        """ None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None.
        """
        return None

139
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
140 141 142 143 144
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
                f"Exceptions throwed while doing select_input on {name}:\n{e}")
145

146 147
    elif (isinstance(false_var, (support_ret_buildin_type))
          and isinstance(false_var, type(true_var))):
148 149 150 151
        if false_var == true_var:
            return false_var
        else:
            inputs = [
152 153
                to_static_variable(false_var),
                to_static_variable(true_var)
154 155
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
156 157 158 159
    elif ((isinstance(false_var, support_ret_buildin_type)
           and isinstance(true_var, Variable))
          or (isinstance(true_var, support_ret_buildin_type)
              and isinstance(false_var, Variable))):
160 161 162 163 164
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
            "'{}'".format(type(false_var), type(true_var)))
165 166 167 168 169 170 171 172 173 174
    elif ((isinstance(false_var, UndefinedVar)
           and isinstance(true_var, (Variable, ) + support_ret_buildin_type))
          or (isinstance(true_var, UndefinedVar)
              and isinstance(false_var,
                             (Variable, ) + support_ret_buildin_type))):

        def create_var_if_not_undefined_var(a):
            if isinstance(a, UndefinedVar): return a
            return to_static_variable(a)

175 176 177
        true_var, false_var = to_static_variable(true_var), to_static_variable(
            false_var)
        inputs = [false_var, true_var]
178 179 180 181 182
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".
            format(type(false_var), type(true_var)))
183 184 185 186 187
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
            f"Exceptions throwed while doing select_input on {name}:\n{e}")
188 189


190
def split_lod_tensor(input, mask, level=0):
191 192 193 194
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
195 196
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
197 198

    Args:
199
        input(Variable|tuple|list|None): The input tensor that contains complete
200
                                lod information needed to construct the output.
201
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
202
        level(int): The specific lod level to split.
203 204

    Returns:
Q
qiaolongfei 已提交
205 206 207 208
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
209 210 211 212

    Examples:
        .. code-block:: python

213
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
214
          x = fluid.layers.data(name='x', shape=[1])
215 216
          x.persistable = True

Q
qiaolongfei 已提交
217
          y = fluid.layers.data(name='y', shape=[1])
218 219
          y.persistable = True

Q
qiaolongfei 已提交
220
          out_true, out_false = fluid.layers.split_lod_tensor(
221
                input=x, mask=y, level=level)
222

223
    """
224 225 226 227
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
228
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
229 230
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
231 232 233 234 235 236 237 238 239 240
    helper.append_op(type='split_lod_tensor',
                     inputs={
                         'X': input,
                         'Mask': mask,
                     },
                     outputs={
                         'OutTrue': out_true,
                         'OutFalse': out_false
                     },
                     attrs={'level': level})
241 242 243
    return out_true, out_false


244
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
245 246 247 248 249
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
250 251 252
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
253 254

    Args:
255 256 257
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
258
                            lod information needed to construct the output.
259
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
260
        level(int): The specific lod level to merge.
261 262 263 264 265 266 267

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

268
          import paddle.fluid as fluid
269 270 271 272 273 274 275 276 277 278 279 280
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
281
    helper = LayerHelper('merge_lod_tensor', **locals())
282 283 284 285 286 287 288
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
289
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
290 291 292 293 294 295 296 297 298
    helper.append_op(type='merge_lod_tensor',
                     inputs={
                         'X': x,
                         'Mask': mask,
                         'InTrue': in_true,
                         'InFalse': in_false
                     },
                     outputs={'Out': out},
                     attrs={'level': level})
299 300 301
    return out


302
@static_only
Y
Yan Chunwei 已提交
303 304 305
def Print(input,
          first_n=-1,
          message=None,
306
          summarize=20,
Y
Yan Chunwei 已提交
307 308 309
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
310
          print_tensor_layout=True,
Y
yangyaming 已提交
311 312
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
313
    '''
314 315
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
316 317 318 319 320 321 322 323 324
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
325
        input (Variable): A Tensor to print.
326
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
327
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
328 329
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
330 331 332
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
333
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
334
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
335
        print_phase (str): Which phase to displace, including 'forward',
336
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
337 338
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
339 340

    Returns:
341
        Variable: Output tensor.
Y
Yan Chunwei 已提交
342

343 344 345 346
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
347

Y
Yan Chunwei 已提交
348 349
    Examples:
        .. code-block:: python
350

351 352 353
           import paddle

           paddle.enable_static()
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
369
    '''
370 371 372
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
373

374 375
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
376 377 378 379 380 381 382 383 384 385 386 387 388 389
    helper.append_op(type='print',
                     inputs={'In': input},
                     outputs={'Out': output},
                     attrs={
                         'first_n': first_n,
                         'summarize': summarize,
                         'message': message or "",
                         'print_tensor_name': print_tensor_name,
                         'print_tensor_type': print_tensor_type,
                         'print_tensor_shape': print_tensor_shape,
                         'print_tensor_layout': print_tensor_layout,
                         'print_tensor_lod': print_tensor_lod,
                         'print_phase': print_phase.upper()
                     })
390
    return output
Y
Yan Chunwei 已提交
391 392


H
Huihuang Zheng 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

456 457 458 459 460 461
    op = helper.append_op(type="assert",
                          inputs={
                              "Cond": cond,
                              "Data": [] if data is None else list(data)
                          },
                          attrs={"summarize": summarize})
H
Huihuang Zheng 已提交
462 463 464 465

    return op


Y
Yu Yang 已提交
466 467
class BlockGuard(object):
    """
468 469 470 471
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
472 473
    """

474 475
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
476
            raise TypeError("BlockGuard takes a program")
477
        self.main_program = main_program
Y
Yu Yang 已提交
478 479

    def __enter__(self):
W
Wu Yi 已提交
480
        self.main_program._create_block()
Y
Yu Yang 已提交
481 482

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
483
        self.main_program._rollback()
Y
Yu Yang 已提交
484 485 486 487 488
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
489 490 491 492 493
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
494 495
    """

Y
Yu Yang 已提交
496
    def __init__(self, rnn):
X
Xin Pan 已提交
497
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
498
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
499
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
500 501 502 503
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
504
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
505 506

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
507 508
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
509
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
510
        self.rnn._complete_op()
511 512
        return super(BlockGuardWithCompletion,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
513 514 515 516


class StaticRNNMemoryLink(object):
    """
517 518 519 520
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
521 522 523 524 525 526 527 528 529


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
530 531 532 533 534 535 536 537 538
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
539
    """
540 541
    :api_attr: Static Graph

542 543
    StaticRNN class.

544 545 546 547 548 549 550
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
551 552

    Examples:
553 554 555 556 557 558
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
559 560
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
561 562 563 564 565
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
566
            # transform batch size to dim 1
567 568 569 570
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
571
                # mark created x_emb as input, each step process a word
572
                word = rnn.step_input(x_emb)
573
                # create prev memory parameter, batch size comes from word
574 575
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
576 577
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
578
                # mark hidden as output
579
                rnn.step_output(hidden)
580
            # get StaticrNN final output
581
            result = rnn()
C
chengduo 已提交
582

583
    """
Y
Yu Yang 已提交
584 585 586 587
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

588
    def __init__(self, name=None):
589
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
590
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
591 592 593 594 595 596 597 598
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
599
        """
600 601
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
602
        """
Y
Yang Yang 已提交
603
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
604 605 606 607 608

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

609 610 611 612 613 614 615
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
616
        """
C
chengduo 已提交
617 618 619
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
620 621
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
622

623
        Args:
624
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
625 626
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
627 628 629 630 631 632 633
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
634 635

        Returns:
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
667 668
            .. code-block:: python

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

692
        """
Y
Yu Yang 已提交
693
        self._assert_in_rnn_block_('memory')
694 695 696 697 698 699
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
700
        if init is None:
701
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
702
                raise ValueError(
703
                    "if init is None, memory at least need shape and batch_ref")
704
            parent_block = self._parent_block()
705
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
706
                [self.helper.name, "memory_boot"]))
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
            boot_var = parent_block.create_var(name=var_name,
                                               shape=shape,
                                               dtype=batch_ref.dtype,
                                               persistable=False)

            parent_block.append_op(type="fill_constant_batch_size_like",
                                   inputs={'Input': [batch_ref]},
                                   outputs={'Out': [boot_var]},
                                   attrs={
                                       'value': init_value,
                                       'shape': boot_var.shape,
                                       'dtype': boot_var.dtype,
                                       'input_dim_idx': ref_batch_dim_idx,
                                       'output_dim_idx': init_batch_dim_idx
                                   })
Y
Yu Yang 已提交
722 723 724 725

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
726 727
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
728
                dtype=init.dtype,
Y
Yu Yang 已提交
729
                shape=init.shape)
730 731
            self.memories[pre_mem.name] = StaticRNNMemoryLink(init=init,
                                                              pre_mem=pre_mem)
Y
Yu Yang 已提交
732 733 734
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
735 736 737 738 739 740 741 742
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
772
        """
Y
Yu Yang 已提交
773
        self._assert_in_rnn_block_('step_input')
774
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
775
        if self.seq_len is None:
Y
Yu Yang 已提交
776
            self.seq_len = x.shape[0]
777
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
778 779
            raise ValueError("Static RNN only take fix seq_len input")

780 781 782 783
        ipt = self.helper.create_variable(name=x.name,
                                          dtype=x.dtype,
                                          shape=list(x.shape[1:]),
                                          type=x.type)
Y
Yu Yang 已提交
784 785 786 787
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
788 789 790 791 792 793 794 795
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
827
        """
Y
Yu Yang 已提交
828
        self._assert_in_rnn_block_('step_output')
829
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
830

X
Xin Pan 已提交
831
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
832 833 834 835
        self.helper.append_op(type='rnn_memory_helper',
                              inputs={'X': [o]},
                              outputs={'Out': tmp_o},
                              attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
836

837 838 839 840
        out_var = self._parent_block().create_var(name=tmp_o.name,
                                                  shape=[self.seq_len] +
                                                  list(tmp_o.shape),
                                                  dtype=tmp_o.dtype)
Y
Yu Yang 已提交
841 842 843 844

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
845 846 847 848
        """
        Mark the StaticRNN output variables.

        Args:
849
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
850 851 852

        Returns:
            None
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
884
        """
Y
Yu Yang 已提交
885 886 887 888
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
889
        """
890
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
891 892 893

        Args:
            mem(Variable): the memory variable.
894
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
895
                           var and mem should have same dims and data type.
C
chengduo 已提交
896 897 898

        Returns:
            None
899

C
chengduo 已提交
900
        """
901 902
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
903 904
        self.memories[mem.name].mem = var

905
    def _parent_block(self):
906
        prog = self.helper.main_program
Y
Yu Yang 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

922
    def _complete_op(self):
923 924
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
925
        parent_block = self._parent_block()
Y
Yu Yang 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
940 941 942
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
943 944 945 946 947 948 949 950
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

951 952 953
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
954 955 956 957 958 959 960

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
961
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
962 963 964
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
965
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
966 967
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
968 969
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
970 971
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
972 973
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
974 975 976 977
            rnn_block.append_op(type='rnn_memory_helper',
                                inputs={'X': [mem_var]},
                                outputs={'Out': [new_mem]},
                                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
978 979 980

            memories.append(new_mem.name)

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
        parent_block.append_op(type='recurrent',
                               inputs={
                                   'inputs': inlinks,
                                   'initial_states': boot_memories,
                                   'parameters': parameters
                               },
                               outputs={
                                   'outputs': outlinks,
                                   'step_scopes': [step_scope]
                               },
                               attrs={
                                   'has_states': len(pre_memories) > 0,
                                   'ex_states': pre_memories,
                                   'states': memories,
                                   'sub_block': rnn_block
                               })
Y
Yu Yang 已提交
997 998


Y
Yang Yang(Tony) 已提交
999
class WhileGuard(BlockGuard):
1000

Y
Yang Yang(Tony) 已提交
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1015
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
1016 1017 1018
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1042 1043 1044 1045 1046 1047 1048 1049
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1050 1051
                if in_var_name not in inner_outputs and not is_ignore_vars(
                        op, in_var_name):
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1076
class While(object):
X
Xin Pan 已提交
1077
    """
1078
    :api_attr: Static Graph
1079

1080
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1081

1082 1083 1084 1085
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1086 1087 1088 1089 1090 1091
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1092
    Args:
1093
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1094
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1095
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1096

1097
    Examples 1:
X
Xin Pan 已提交
1098
          .. code-block:: python
1099

1100
            import paddle.fluid as fluid
1101 1102 1103 1104 1105
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1106

1107
            cond = fluid.layers.less_than(x=i, y=loop_len)
1108
            while_op = fluid.layers.While(cond=cond)
1109
            with while_op.block():
1110
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1111
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1112 1113 1114 1115 1116

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1146 1147
    """

Y
Yang Yang(Tony) 已提交
1148 1149 1150 1151
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1152
    def __init__(self, cond, is_test=False, name=None):
1153
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1154
        self.status = While.BEFORE_WHILE_BLOCK
1155
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1156
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1157
            raise TypeError(
1158
                "condition expected shape as [1], but given shape as {0}.".
1159
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1160
        self.cond_var = cond
C
chengduo 已提交
1161
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1162 1163 1164 1165

    def block(self):
        return WhileGuard(self)

1166
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1167 1168
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1169 1170
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
Y
Yang Yang(Tony) 已提交
1171 1172 1173

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1174 1175
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1176 1177 1178

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1179 1180 1181
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1182

1183
        x_name_list |= set(map(lambda x: x.name, out_vars))
1184 1185 1186
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1187

Y
Yang Yang(Tony) 已提交
1188 1189 1190 1191 1192 1193
        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
1194 1195
                'X':
                [parent_block._var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
1196 1197
                'Condition': [self.cond_var]
            },
1198 1199 1200 1201 1202 1203 1204 1205
            outputs={
                'Out': out_vars,
                'StepScopes': [step_scope]
            },
            attrs={
                'sub_block': while_block,
                "is_test": self.is_test
            })
Y
Yang Yang(Tony) 已提交
1206 1207


1208 1209 1210
support_ret_buildin_type = (bool, float, six.integer_types)


1211
def assign_skip_lod_tensor_array(input, output):
1212
    """
1213
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1214
    """
1215 1216 1217 1218 1219 1220 1221

    def has_shape_diff(x_var, y_var):
        if len(x_var.shape) != len(y_var.shape): return True
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
            if x_dim != y_dim and -1 not in [x_dim, y_dim]: return True
        return False

1222
    if not isinstance(input, (Variable, core.VarBase)):
1223 1224
        if isinstance(output, Variable) and isinstance(
                input, support_ret_buildin_type):
1225 1226 1227
            assign(input, output)
        else:
            output = input
1228 1229
        return

1230 1231
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1232 1233
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
1234 1235 1236
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1237 1238 1239 1240 1241
        if isinstance(output, Variable) and isinstance(
                input, Variable) and has_shape_diff(input, output):
            warnings.warn(
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right."
                .format(input.shape, output.shape))
1242
        assign(input, output)
1243 1244


G
guofei 已提交
1245
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1246
    """
1247 1248
    :api_attr: Static Graph

G
guofei 已提交
1249 1250
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1251 1252 1253 1254
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1255
    Args:
1256 1257 1258 1259 1260
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1261
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1262 1263
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1264

G
guofei 已提交
1265
    Returns:
C
Chen Long 已提交
1266
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1267 1268 1269 1270

    Examples:
        .. code-block:: python

1271 1272 1273
            import paddle
            paddle.enable_static()

1274 1275
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1276

1277 1278 1279
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1280

C
Chen Long 已提交
1281 1282 1283 1284 1285 1286
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1287

C
Chen Long 已提交
1288
                exe = paddle.static.Executor(paddle.CPUPlace())
1289
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1290 1291 1292 1293 1294 1295 1296 1297
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1298
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1299 1300 1301 1302
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1303 1304
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1305 1306
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1307
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1308 1309
            "but given shape as {0}.".format(list(pre_cond.shape)))

J
Jiabin Yang 已提交
1310
    if _non_static_mode():
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1321
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1322 1323
        return loop_vars

G
guofei 已提交
1324
    while_loop_block = While(pre_cond, is_test, name)
1325
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1326
    with while_loop_block.block():
1327 1328 1329 1330 1331 1332 1333 1334 1335
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1336 1337
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1338
        try:
1339
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1340 1341
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1342 1343 1344
            raise ValueError(
                "body in while_loop should return the same arity "
                "(length and structure) as loop_vars: {0}".format(e))
1345
        now_cond = cond(*output_vars)
1346
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1347 1348 1349 1350
        assign(now_cond, pre_cond)
    return loop_vars


1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
def _deal_with_undefined_var(output_vars, loop_vars):
    """ Deal with undefined var cases, We create undefined variable based on the results of body().
        In Dy2Static, we use undefined var to represent the var created in control flow. This function
        expand the loop_vars and replace original loop_vars.
        1. UndefinedVar = Variable      # create a variable
        2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
        3. UndefinedVar = List(int)     # create a list of variable
        4. UndefinedVar = value         # create a variable
    """
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar, create_undefined_variable

    def create_var_like(o_var):
        if isinstance(o_var,
                      (Variable, ) + support_ret_buildin_type) or o_var is None:
            return create_undefined_variable()
1366
        if is_sequence(o_var):
1367
            """
1368 1369 1370
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1384
def lod_rank_table(x, level=0):
1385 1386
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1387 1388
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1389
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1390
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1391 1392
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1393 1394 1395 1396

        .. code-block:: text

            x is a LoDTensor:
1397 1398
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1399 1400
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1401 1402 1403
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1404

Y
yangyaming 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1414 1415 1416 1417

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1418 1419
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1420 1421 1422 1423 1424 1425 1426

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1427
            import paddle.fluid as fluid
Y
yangyaming 已提交
1428
            x = fluid.layers.data(name='x', shape=[10],
1429
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1430
            out = layers.lod_rank_table(x=x, level=0)
1431
    """
1432 1433 1434 1435 1436 1437
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1438
    helper = LayerHelper("lod_rank_table", **locals())
1439 1440 1441 1442 1443 1444
    table = helper.create_variable(type=core.VarDesc.VarType.LOD_RANK_TABLE,
                                   name=unique_name.generate("lod_rank_table"))
    helper.append_op(type='lod_rank_table',
                     inputs={'X': x},
                     outputs={'Out': table},
                     attrs={'level': level})
Y
Yu Yang 已提交
1445
    return table
Y
Yu Yang 已提交
1446 1447


Y
yuyang18 已提交
1448
@templatedoc()
1449
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1450 1451 1452 1453 1454 1455 1456 1457
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1458 1459

    Args:
Y
yuyang18 已提交
1460
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1461 1462

    Returns:
Y
yuyang18 已提交
1463
        ${out_comment}.
F
fengjiayi 已提交
1464 1465
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1466
    res = helper.create_variable_for_type_inference(dtype="int64")
1467 1468 1469
    helper.append_op(type="max_sequence_len",
                     inputs={"RankTable": rank_table},
                     outputs={"Out": res})
F
fengjiayi 已提交
1470 1471 1472
    return res


1473
def lod_tensor_to_array(x, table):
1474
    """
F
fengjiayi 已提交
1475 1476
    Convert a LoDTensor to a LoDTensorArray.

1477 1478 1479 1480 1481
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1482
    Users should not use it directly.
1483 1484

    Args:
F
fengjiayi 已提交
1485
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1486 1487
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1488
                                descending order. It is generally generated
F
fengjiayi 已提交
1489
                                by `layers.lod_rank_table()` API.
1490 1491

    Returns:
F
fengjiayi 已提交
1492
        Variable: The LoDTensorArray that has been converted from the input tensor.
1493 1494 1495 1496

    Examples:
        .. code-block:: python

1497
          import paddle.fluid as fluid
1498 1499 1500
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1501
    """
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1512 1513
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1514
        name=unique_name.generate("lod_tensor_to_array"),
1515
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1516
        dtype=x.dtype)
1517 1518 1519 1520 1521 1522
    helper.append_op(type='lod_tensor_to_array',
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': array})
1523 1524 1525
    return array


1526
def array_to_lod_tensor(x, table):
1527
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1528 1529

    Args:
1530
        x (Variable|list): The lod tensor array to be converted to a tensor.
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1542
          import paddle.fluid as fluid
1543 1544 1545 1546
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1547
    """
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1559
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1560
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1561 1562 1563 1564 1565 1566
    helper.append_op(type="array_to_lod_tensor",
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': tmp})
1567 1568 1569
    return tmp


1570
def increment(x, value=1.0, in_place=True):
1571
    """
1572 1573
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1574

1575
    Parameters:
T
tianshuo78520a 已提交
1576
        x (Variable): A tensor that must always contain only one element, its data type supports
1577 1578 1579
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1580 1581

    Returns:
1582
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1583 1584 1585 1586

    Examples:
        .. code-block:: python

1587
          import paddle.fluid as fluid
1588 1589
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1590
    """
H
hong 已提交
1591
    if in_dygraph_mode():
1592
        return _C_ops.increment_(x, value)
H
hong 已提交
1593

1594 1595
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1596
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1597
    if not in_place:
X
Xin Pan 已提交
1598
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1599 1600
    else:
        out = x
1601 1602 1603 1604
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={'step': float(value)})
Y
Yang Yu 已提交
1605
    return out
Y
Yu Yang 已提交
1606 1607


1608
def array_write(x, i, array=None):
1609
    """
1610 1611 1612 1613
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1614 1615

    Args:
1616 1617 1618 1619
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1620 1621
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1622
            as a result.
1623

1624
    Returns:
1625
        Variable: The input ``array`` after ``x`` is written into.
1626 1627

    Examples:
D
dzhwinter 已提交
1628
        .. code-block:: python
1629

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1653 1654
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1655 1656
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1657
    """
J
Jiabin Yang 已提交
1658
    if _non_static_mode():
1659 1660 1661 1662 1663 1664 1665 1666 1667
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1668
        i = i.numpy().item(0)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1683 1684
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1685
    helper = LayerHelper('array_write', **locals())
1686 1687
    if array is not None:
        if not isinstance(
1688 1689
                array, Variable
        ) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1690 1691
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1692 1693 1694 1695
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1696
            dtype=x.dtype)
1697 1698 1699 1700 1701 1702
    helper.append_op(type='write_to_array',
                     inputs={
                         'X': [x],
                         'I': [i]
                     },
                     outputs={'Out': [array]})
Y
Yu Yang 已提交
1703 1704 1705
    return array


1706
def create_array(dtype, initialized_list=None):
1707
    """
1708
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1709
    the input of :ref:`api_fluid_layers_array_read` and
1710 1711
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1712 1713

    Args:
1714 1715
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1716 1717
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1718 1719

    Returns:
1720
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1721 1722 1723 1724

    Examples:
        .. code-block:: python

1725
          import paddle.fluid as fluid
1726
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1727 1728

    """
1729 1730 1731 1732
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1733 1734
                "Require type(initialized_list) should be list/tuple, but received {}"
                .format(type(initialized_list)))
1735 1736 1737 1738 1739 1740
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1741 1742
                "All values in `initialized_list` should be Variable, but recevied {}."
                .format(type(val)))
1743

J
Jiabin Yang 已提交
1744
    if _non_static_mode():
1745
        return array
1746

Y
Yang Yang(Tony) 已提交
1747
    helper = LayerHelper("array", **locals())
1748
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1749 1750 1751 1752
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)

1753 1754 1755 1756 1757
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1758

Y
yuyang18 已提交
1759
@templatedoc()
W
wawltor 已提交
1760
def less_than(x, y, force_cpu=None, cond=None, name=None):
1761
    """
1762

Y
yuyang18 已提交
1763
    ${comment}
1764 1765

    Args:
N
Noel 已提交
1766 1767
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1768
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1769
        cond(Tensor, optional): Optional output which can be any created Tensor
1770
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1771
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1772 1773
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1774
    Returns:
Y
yuyang18 已提交
1775
        ${out_comment}.
1776 1777 1778 1779

    Examples:
        .. code-block:: python

N
Noel 已提交
1780 1781 1782 1783 1784 1785 1786
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1787
    """
1788 1789 1790 1791 1792 1793 1794 1795 1796
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1797 1798
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1799
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1800 1801
        cond.stop_gradient = True

Y
yuyang18 已提交
1802 1803 1804 1805
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1806 1807 1808 1809 1810 1811 1812
    helper.append_op(type='less_than',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Y
Yang Yang(Tony) 已提交
1813 1814 1815
    return cond


Z
zhoukunsheng 已提交
1816
@templatedoc()
W
wawltor 已提交
1817
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1818
    """
1819 1820 1821 1822
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1823
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1824 1825

    Args:
1826
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1827
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1828 1829
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1830 1831
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1832 1833

    Returns:
1834
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1835 1836 1837 1838

    Examples:
        .. code-block:: python

1839
          import paddle.fluid as fluid
1840 1841 1842 1843 1844 1845
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1846
    """
1847 1848 1849 1850 1851
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1852
        check_type(cond, "cond", Variable, "less_equal")
1853

Z
zhoukunsheng 已提交
1854 1855 1856 1857 1858 1859 1860
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1861 1862 1863 1864 1865 1866 1867
    helper.append_op(type='less_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1868 1869 1870 1871
    return cond


@templatedoc()
W
wawltor 已提交
1872
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1873
    """
1874 1875 1876 1877
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1878
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1879 1880

    Args:
1881
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1882
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1883 1884
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1885 1886
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1887 1888

    Returns:
1889
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1890 1891 1892 1893

    Examples:
        .. code-block:: python

1894
          import paddle.fluid as fluid
1895 1896 1897 1898 1899
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1900
    """
1901 1902 1903 1904 1905
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1906
        check_type(cond, "cond", Variable, "greater_than")
1907

Z
zhoukunsheng 已提交
1908 1909 1910 1911 1912 1913 1914
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1915
    if in_dygraph_mode():
1916
        return _C_ops.greater_than(x, y, -1)
1917
    else:
1918 1919 1920 1921 1922 1923 1924
        helper.append_op(type='greater_than',
                         inputs={
                             'X': [x],
                             'Y': [y]
                         },
                         outputs={'Out': [cond]},
                         attrs=attrs)
1925
        return cond
Z
zhoukunsheng 已提交
1926 1927 1928


@templatedoc()
W
wawltor 已提交
1929
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1930
    """
1931 1932 1933 1934
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1935
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1936 1937

    Args:
1938
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1939
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1940 1941
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1942 1943
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1944 1945

    Returns:
1946
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1947 1948 1949 1950

    Examples:
        .. code-block:: python

1951
          import paddle.fluid as fluid
1952 1953 1954 1955 1956 1957
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1958

Z
zhoukunsheng 已提交
1959
    """
1960 1961 1962 1963 1964
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1965
        check_type(cond, "cond", Variable, "greater_equal")
1966

Z
zhoukunsheng 已提交
1967 1968 1969 1970 1971 1972 1973
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1974 1975 1976 1977 1978 1979 1980
    helper.append_op(type='greater_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1981 1982 1983
    return cond


W
wawltor 已提交
1984
def equal(x, y, cond=None, name=None):
1985 1986 1987 1988
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1989 1990
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
1991
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
1992 1993
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1994 1995
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1996 1997

    Returns:
W
wangchaochaohu 已提交
1998 1999
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
2000 2001 2002 2003

    Examples:
        .. code-block:: python

2004
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2005 2006 2007 2008 2009 2010 2011
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2012
    """
H
hong 已提交
2013 2014
    if in_dygraph_mode():
        default_axis = -1
2015
        return _C_ops.equal(x, y, default_axis)
H
hong 已提交
2016

2017 2018 2019 2020 2021
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
2022
        check_type(cond, "cond", Variable, "equal")
2023

2024 2025
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2026
        cond = helper.create_variable_for_type_inference(dtype='bool')
2027 2028
        cond.stop_gradient = True

2029 2030 2031 2032 2033 2034
    helper.append_op(type='equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
2035 2036 2037
    return cond


W
wawltor 已提交
2038
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2039
    """
2040 2041 2042 2043
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

2044
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2045 2046

    Args:
2047
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2048
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2049 2050
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2051 2052
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2053 2054

    Returns:
2055
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2056 2057 2058 2059

    Examples:
        .. code-block:: python

2060
          import paddle.fluid as fluid
2061

2062 2063
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2064 2065
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2066 2067 2068 2069 2070
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
2071
        check_type(cond, "cond", Variable, "not_equal")
2072

Z
zhoukunsheng 已提交
2073 2074 2075 2076 2077
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2078 2079 2080 2081 2082 2083
    helper.append_op(type='not_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
Z
zhoukunsheng 已提交
2084 2085 2086
    return cond


2087
def array_read(array, i):
2088
    """
2089
    This OP is used to read data at the specified position from the input array
2090
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2091
    is the specified read position. This OP is often used together with
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2104

K
kavyasrinet 已提交
2105
    Args:
2106 2107 2108
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2109

K
kavyasrinet 已提交
2110
    Returns:
2111
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2112

K
kavyasrinet 已提交
2113
    Examples:
2114 2115
        .. code-block:: python

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2144 2145
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2146
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2147
    """
J
Jiabin Yang 已提交
2148
    if _non_static_mode():
2149 2150 2151 2152 2153 2154 2155 2156 2157
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2158
        i = i.numpy().item(0)
2159 2160
        return array[i]

2161
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2162 2163 2164 2165 2166
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2167
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2168 2169 2170 2171 2172 2173
    helper.append_op(type='read_from_array',
                     inputs={
                         'X': [array],
                         'I': [i]
                     },
                     outputs={'Out': [out]})
Y
Yu Yang 已提交
2174
    return out
Y
Yang Yu 已提交
2175 2176


2177
def shrink_memory(x, i, table):
2178
    """
Y
yuyang18 已提交
2179
    This function creates an operator to shrink rnn memory using the RankTable
2180
    as mentioned in the input parameter.
Y
yuyang18 已提交
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2201
    """
Y
Yang Yu 已提交
2202
    helper = LayerHelper('shrink_memory', **locals())
2203 2204 2205
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2206
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2207 2208 2209 2210 2211 2212 2213 2214
    helper.append_op(type='shrink_rnn_memory',
                     inputs={
                         'X': [x],
                         'I': [i],
                         'RankTable': [table]
                     },
                     outputs={'Out': [out]},
                     attrs={})
Y
Yang Yu 已提交
2215
    return out
Y
Yang Yu 已提交
2216 2217


2218
def array_length(array):
2219
    """
2220
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2221
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2222
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2223

K
kavyasrinet 已提交
2224
    Args:
2225
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2226 2227

    Returns:
2228
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2229 2230

    Examples:
Q
qiaolongfei 已提交
2231
        .. code-block:: python
K
kavyasrinet 已提交
2232

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2249

2250 2251 2252 2253 2254
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2255

2256 2257 2258
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2259 2260
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2261
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2262
    """
2263

J
Jiabin Yang 已提交
2264
    if _non_static_mode():
2265 2266 2267 2268 2269
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2270 2271 2272 2273 2274 2275
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2276
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2277
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2278
    tmp.stop_gradient = True
2279 2280 2281
    helper.append_op(type='lod_array_length',
                     inputs={'X': [array]},
                     outputs={'Out': [tmp]})
Y
Yang Yu 已提交
2282
    return tmp
Y
Yu Yang 已提交
2283 2284 2285


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2286
    """
2287 2288 2289
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2290 2291 2292
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2293
    def __init__(self, block):
2294
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2295 2296 2297 2298 2299 2300 2301 2302
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2303 2304
        return super(ConditionalBlockGuard,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2305 2306 2307


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2308 2309 2310 2311 2312 2313 2314 2315
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2316
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2317 2318 2319 2320 2321
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2322
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2334
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2335
        for each_input in inputs:
2336
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2337
        self.inputs = inputs
2338
        self.is_scalar_condition = is_scalar_condition
2339
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2350 2351 2352 2353
        params, intermediate = get_inputs_outputs_in_block(inside_block,
                                                           params,
                                                           intermediate,
                                                           helper=self.helper)
Y
Yu Yang 已提交
2354

2355 2356 2357
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2358
        param_list = [
W
Wu Yi 已提交
2359
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2360 2361
        ]

X
Xin Pan 已提交
2362 2363 2364 2365 2366
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2367 2368

        step_scope = parent_block.create_var(
2369
            type=core.VarDesc.VarType.STEP_SCOPES)
2370
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2371 2372
            type='conditional_block',
            inputs={
2373 2374
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2375
            },
2376 2377 2378 2379
            outputs={
                'Out': out_list,
                'Scope': [step_scope]
            },
2380 2381 2382 2383 2384
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2385 2386 2387 2388 2389 2390
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2391
        inside_block_idx = inside_block.idx
2392

2393 2394 2395
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2437 2438
            conditional_block_op.desc, cpt.to_text(set()),
            [grad_sub_block.desc])
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2453 2454
            if grad_sub_block.desc.has_var_recursive(grad_var_name.encode(
            )) or grad_var_name == core.empty_var_name():
2455
                continue
2456
            grad_sub_block.desc.var(grad_var_name.encode())
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2471

2472
def copy_var_to_parent_block(var, layer_helper):
2473 2474
    if not isinstance(var, Variable):
        return var
2475 2476 2477 2478 2479
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2480 2481 2482 2483
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
2484 2485 2486
        parent_block_var = parent_block.create_var(dtype=var.dtype,
                                                   shape=var.shape,
                                                   type=var.type)
2487
        assign(var, parent_block_var)
2488 2489 2490
    return parent_block_var


2491
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2492
    """
2493 2494 2495 2496 2497 2498 2499 2500 2501
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2502 2503

    Note:
2504 2505 2506 2507
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2508 2509 2510
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2511
        3. If it is in static mode, any tensors or operations created outside
2512 2513 2514
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2515 2516

        .. code-block:: python
2517 2518 2519 2520 2521

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2522
            c = a * b
2523
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2524

2525 2526 2527
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2528 2529

    Args:
2530
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2531
            value determines whether to return the result of ``true_fn`` or
2532 2533 2534 2535 2536 2537
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2538
             don't have to set this parameter. For more information, please
2539
             refer to :ref:`api_guide_Name` .
2540 2541 2542
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2543
             be same with return values of true_fn and false_fn.
2544 2545

    Returns:
2546
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2547
        predicate ``pred`` is true else ``false_fn()`` .
2548 2549 2550

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2551 2552
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2553 2554 2555 2556

    Examples:
        .. code-block:: python

2557
            import paddle
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2568 2569 2570 2571
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2572

2573 2574

            def false_func():
2575 2576 2577 2578 2579
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2580

2581 2582
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2583
            pred = paddle.less_than(x=x, y=y, name=None)
2584
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2585
            # ret is a tuple containing 2 tensors
2586 2587
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2588
            #           [ True  True  True]]
2589

2590
    """
J
Jiabin Yang 已提交
2591
    if _non_static_mode():
2592
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2593
        assert pred.size == 1, "condition input's numel should be 1"
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2606 2607
                        "The false_fn in cond must be callable, but received {}"
                        .format(type(false_fn).__name__))
2608 2609 2610
                return false_fn()
        return None

2611 2612
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2613 2614 2615
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2616
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2617 2618
    if true_fn is not None:
        if not callable(true_fn):
2619 2620 2621
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2622 2623 2624 2625
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2626
                true_output = map_structure(copy_to_parent_func,
2627 2628 2629
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2630 2631 2632
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2633 2634
        false_cond_block = ConditionalBlock([logical_not(pred)],
                                            is_scalar_condition=True)
2635 2636 2637
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2638
                false_output = map_structure(copy_to_parent_func,
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
2654
    if return_names is None:
2655
        is_dy2staic = False
2656 2657
        return_names = ["no name"] * len(to_sequence(true_output))
    else:
2658
        """
2659 2660
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2661 2662 2663 2664 2665 2666 2667
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2668 2669
        true_output, false_output = expand_undefined_var(
            true_output, false_output, return_names)
2670

2671
    if len(to_sequence(true_output)) != len(to_sequence(false_output)):
2672
        raise ValueError(
2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
            "true fn returns {} vars, but false fn returns {} vars, which is not equals"
            .format(len(to_sequence(true_output)),
                    len(to_sequence(false_output))))
    for true_out, false_out, return_name in zip(to_sequence(true_output),
                                                to_sequence(false_output),
                                                to_sequence(return_names)):
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}"
                .format(return_name, e))
2685

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
    def check_ret_none(seq_true, seq_false, seq_names):
        length = len(seq_true)
        for i in range(length):
            f_true = flatten(seq_true[i])
            f_false = flatten(seq_false[i])
            for idx in range(len(f_true)):
                if f_true[idx] is None and f_false[idx] is not None or f_false[
                        idx] is None and f_true[idx] is not None:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            seq_names[i], type(f_true[idx]), f_true[idx],
                            type(f_false[idx]), f_false[idx]))

    check_ret_none(to_sequence(true_output), to_sequence(false_output),
                   to_sequence(return_names))

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
            true_output, false_output)

2708
    mask = cast(pred, dtype='int32')
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
    merge_func = lambda name, false_var, true_var: select_input_with_buildin_type(
        [false_var, true_var], mask, name)

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
        map(merge_every_var_list, to_sequence(false_output),
            to_sequence(true_output), to_sequence(return_names)))
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2719 2720 2721
    return merged_output


2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
        if x is None: return UndefinedVar("padding")
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


def expand_undefined_var(nest1, nest2, names):
2735 2736 2737 2738 2739
    """ TODO: make this function recursively.
        nest1: Var1, (UndefinedVar, [1,2,3])
        nest2: Var2, ([1,2,3,4], UndefinedVar)
        In this case, we should not expand recursively.
    """
2740 2741 2742 2743 2744 2745 2746
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_VALUE_PREFIX

    def pack_undefined_var_as(seq):
        return pack_sequence_as(seq,
                                [UndefinedVar("padding") for i in flatten(seq)])

2747
    def map_fn(n1, n2, name, order):
2748 2749
        if not name.startswith(RETURN_VALUE_PREFIX) and (isinstance(
                n1, UndefinedVar) or n1 is None):
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n1), n1, type(n2), n2))
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n2), n2, type(n1), n1))
2763 2764 2765 2766
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
2767 2768
        map(map_fn, to_sequence(nest1), to_sequence(nest2), to_sequence(names),
            [0 for i in to_sequence(names)]))
2769
    nest2_out = list(
2770 2771
        map(map_fn, to_sequence(nest2), to_sequence(nest1), to_sequence(names),
            [1 for i in to_sequence(names)]))
2772 2773 2774 2775 2776
    if not is_sequence(nest1): nest1_out = nest1_out[0]
    if not is_sequence(nest2): nest2_out = nest2_out[0]
    return nest1_out, nest2_out


L
liym27 已提交
2777
def _error_message(what, arg_name, op_name, right_value, error_value):
2778
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2791 2792
    :api_attr: Static Graph

L
liym27 已提交
2793 2794 2795 2796 2797 2798 2799 2800
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2801
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2802 2803 2804 2805 2806 2807 2808
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2809
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2810 2811 2812 2813 2814 2815
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2816 2817 2818
            import paddle

            paddle.enable_static()
L
liym27 已提交
2819 2820

            def fn_1():
2821
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2822 2823

            def fn_2():
2824
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2825 2826

            def fn_3():
2827
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2828

2829 2830 2831 2832
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2833 2834 2835
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2836

2837 2838 2839
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2840 2841

                # Call fn_1 because pred_1 is True
2842
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2843 2844 2845 2846
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2847
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2848

2849
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2860
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2861 2862 2863 2864 2865

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2866
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2867 2868 2869
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
2870 2871
                                   "2",
                                   str(len(pred_fn)) + "-tuple"))
L
liym27 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2904
class Switch(object):
Q
qiaolongfei 已提交
2905
    """
2906
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2907

2908 2909 2910 2911 2912
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
2913 2914
    only the statement following the default branch is executed.

2915 2916 2917 2918
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2919
    Member Functions:
2920
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2921

2922 2923 2924 2925 2926
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2927

2928 2929 2930 2931 2932 2933 2934 2935 2936
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2937

2938 2939
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2940 2941 2942

    Examples:
        .. code-block:: python
2943

2944
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2945

2946
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2947 2948 2949 2950 2951
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2952
            zero_var = fluid.layers.fill_constant(
2953
                shape=[1], dtype='float32', value=0.0)
2954
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2955
                shape=[1], dtype='float32', value=1.0)
2956
            two_var = fluid.layers.fill_constant(
2957
                shape=[1], dtype='float32', value=2.0)
2958

2959
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2960 2961

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2962
                with switch.case(global_step == zero_var):
2963
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2964
                with switch.default():
2965
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2966

2967 2968 2969 2970 2971
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2972 2973
    """

2974 2975 2976 2977 2978 2979 2980 2981 2982
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2983 2984 2985 2986
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2987 2988 2989 2990 2991 2992 2993
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2994 2995
            new_not_cond = logical_and(x=pre_not_cond,
                                       y=logical_not(x=condition))
2996 2997
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2998
                [logical_and(x=pre_not_cond, y=condition)],
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3026 3027 3028


class IfElseBlockGuard(object):
3029

Y
Yu Yang 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
3063
    """
3064 3065
    :api_attr: Static Graph

3066 3067 3068 3069
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3070 3071 3072 3073
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3074 3075 3076
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3077

3078 3079 3080 3081 3082 3083 3084 3085 3086
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3087

3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3106
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3107 3108 3109 3110 3111 3112 3113 3114

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3115
        print(res)
3116
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3117 3118

    Args:
3119 3120
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3121

3122 3123
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3124

3125 3126
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3127

3128 3129 3130 3131 3132 3133 3134
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3135

X
Xin Pan 已提交
3136
    """
Y
Yu Yang 已提交
3137 3138 3139 3140
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3141
    def __init__(self, cond, name=None):
3142 3143
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3144
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3156
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3157
            out_true = parent_block.create_var(
3158 3159
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3160
                dtype=x.dtype)
Y
Yu Yang 已提交
3161 3162

            out_false = parent_block.create_var(
3163 3164
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3165
                dtype=x.dtype)
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
            parent_block.append_op(type='split_lod_tensor',
                                   inputs={
                                       'X': x,
                                       'Mask': self.cond,
                                   },
                                   outputs={
                                       'OutTrue': out_true,
                                       'OutFalse': out_false
                                   },
                                   attrs={'level': 0})
Y
Yu Yang 已提交
3176 3177 3178 3179 3180 3181 3182 3183 3184
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3185
    def _parent_block(self):
Y
Yu Yang 已提交
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
3201
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3202
        for each_out in outs:
3203 3204
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
3205 3206
            # create outside tensor
            outside_out = parent_block.create_var(
3207
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
3208
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
3209
                dtype=each_out.dtype)
Y
Yu Yang 已提交
3210 3211 3212
            out_table.append(outside_out)

            # assign local var to outside
3213
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3214 3215 3216 3217

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3218
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3232 3233 3234 3235 3236
                merge_lod_tensor(in_true=true_var,
                                 in_false=false_var,
                                 mask=self.cond,
                                 x=self.cond,
                                 level=0))
Y
Yu Yang 已提交
3237
        return rlist
3238 3239 3240


class DynamicRNN(object):
Y
yuyang18 已提交
3241
    """
3242 3243
    :api_attr: Static Graph

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3256
    The input sequences will be shrank because only sequences of which the
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3269

3270 3271 3272 3273
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3274 3275 3276 3277

    Examples:
        .. code-block:: python

3278
            import paddle.fluid as fluid
3279

3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3306
    """
3307 3308 3309 3310
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3311 3312
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3313 3314 3315 3316
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3317
        self.zero_idx = None
3318 3319 3320
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3321
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3322 3323 3324 3325 3326
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3327
    def step_input(self, x, level=0):
3328
        r"""
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3372

Y
yuyang18 已提交
3373
        Args:
3374 3375 3376 3377 3378 3379 3380
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3381 3382

        Returns:
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3417
        """
3418
        self._assert_in_rnn_block_("step_input")
3419
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3420 3421 3422
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3423
                name=unique_name.generate('lod_rank_table'),
3424 3425
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
3426 3427 3428 3429
            parent_block.append_op(type='lod_rank_table',
                                   inputs={"X": x},
                                   outputs={"Out": self.lod_rank_table},
                                   attrs={"level": level})
3430
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3431 3432
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3433
            self.max_seq_len.stop_gradient = False
3434 3435 3436
            parent_block.append_op(type='max_sequence_len',
                                   inputs={'RankTable': self.lod_rank_table},
                                   outputs={"Out": self.max_seq_len})
3437
            self.cond.stop_gradient = True
3438 3439 3440 3441 3442 3443 3444
            parent_block.append_op(type='less_than',
                                   inputs={
                                       'X': self.step_idx,
                                       'Y': self.max_seq_len
                                   },
                                   outputs={'Out': self.cond},
                                   attrs={'force_cpu': True})
3445 3446

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3447
            name=unique_name.generate('dynamic_rnn_input_array'),
3448 3449 3450
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
3451 3452 3453 3454 3455 3456
        parent_block.append_op(type='lod_tensor_to_array',
                               inputs={
                                   'X': x,
                                   'RankTable': self.lod_rank_table
                               },
                               outputs={'Out': input_array})
3457
        return array_read(array=input_array, i=self.step_idx)
3458

Y
yangyaming 已提交
3459
    def static_input(self, x):
3460
        r"""
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3534

Y
yuyang18 已提交
3535
        Args:
3536 3537 3538 3539
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3540 3541

        Returns:
T
tianshuo78520a 已提交
3542
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3554 3555 3556 3557

        Examples:
            .. code-block:: python

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3584
        """
Y
yangyaming 已提交
3585
        self._assert_in_rnn_block_("static_input")
3586
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3587 3588 3589 3590 3591
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3592
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3593 3594
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
3595 3596 3597 3598 3599 3600
        parent_block.append_op(type='reorder_lod_tensor_by_rank',
                               inputs={
                                   'X': [x],
                                   'RankTable': [self.lod_rank_table]
                               },
                               outputs={'Out': [x_reordered]})
Y
yangyaming 已提交
3601 3602
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3603
    @signature_safe_contextmanager
3604
    def block(self):
Y
yuyang18 已提交
3605
        """
3606 3607 3608 3609 3610 3611
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3612
        """
3613 3614
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3615 3616 3617 3618
        self.step_idx = fill_constant(shape=[1],
                                      dtype='int64',
                                      value=0,
                                      force_cpu=True)
3619 3620 3621 3622
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3623
            increment(x=self.step_idx, value=1.0, in_place=True)
3624 3625

            for new_mem, mem_array in self.mem_link:
3626 3627
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3628 3629 3630 3631
            less_than(x=self.step_idx,
                      y=self.max_seq_len,
                      force_cpu=True,
                      cond=self.cond)
3632 3633 3634 3635

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3636
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table))
3637 3638

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3639
        """
T
tianshuo78520a 已提交
3640
        This function is used to get the output  sequences of DynamicRNN.
3641 3642 3643 3644 3645 3646 3647 3648 3649

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3650
        """
3651
        if self.status != DynamicRNN.AFTER_RNN:
3652 3653
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3654 3655 3656 3657 3658
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3659 3660 3661 3662 3663 3664
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3665
        r"""
3666 3667 3668
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3669

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3682
            value (float, optional): When init is None, it is used as initialized value
3683 3684
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3685
                the memory needs to reorder like the RNN's input sequences. It should be
3686 3687 3688 3689 3690 3691 3692
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3693
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3694
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3695
                the memory Tensor also need to be shrank and will only retain data \
3696 3697 3698 3699 3700 3701
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3702

3703 3704 3705
        Examples:
            .. code-block:: python

3706
                import paddle.fluid as fluid
3707

3708 3709
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3722

3723 3724
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3725 3726


3727 3728
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3729

3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3749
        """
3750
        self._assert_in_rnn_block_('memory')
3751
        self._init_zero_idx_()
3752 3753 3754
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3755
        if init is not None:
3756 3757
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3758
            parent_block = self._parent_block_()
3759 3760 3761 3762 3763 3764 3765 3766
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3767
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3768 3769
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
3770 3771 3772 3773 3774 3775
                parent_block.append_op(type='reorder_lod_tensor_by_rank',
                                       inputs={
                                           'X': [init_tensor],
                                           'RankTable': [self.lod_rank_table]
                                       },
                                       outputs={'Out': [init_reordered]})
3776
                init_tensor = init_reordered
3777
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3778
                name=unique_name.generate('dynamic_rnn_mem_array'),
3779 3780
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
3781 3782 3783 3784 3785 3786
            parent_block.append_op(type='write_to_array',
                                   inputs={
                                       'X': init_tensor,
                                       'I': self.zero_idx
                                   },
                                   outputs={'Out': mem_array})
3787
            retv = array_read(array=mem_array, i=self.step_idx)
3788 3789 3790
            retv = shrink_memory(x=retv,
                                 i=self.step_idx,
                                 table=self.lod_rank_table)
3791 3792 3793 3794 3795 3796 3797 3798 3799
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3800
                name=unique_name.generate('mem_init'), dtype=dtype)
3801
            arr, dtype = self.input_array[0]
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817
            in0 = parent_block.create_var(name=unique_name.generate('in0'),
                                          dtype=dtype)
            parent_block.append_op(type='read_from_array',
                                   inputs={
                                       'X': [arr],
                                       'I': [self.zero_idx]
                                   },
                                   outputs={'Out': [in0]})
            parent_block.append_op(type='fill_constant_batch_size_like',
                                   inputs={'Input': [in0]},
                                   outputs={'Out': [init]},
                                   attrs={
                                       'shape': [-1] + shape,
                                       'value': float(value),
                                       'dtype': init.dtype
                                   })
3818 3819 3820
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3821
        """
3822 3823
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3824
        Args:
3825 3826 3827
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3828 3829 3830

        Returns:
            None
3831

3832 3833 3834 3835 3836
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3837
        """
3838
        self._assert_in_rnn_block_('update_memory')
3839 3840 3841 3842
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3843 3844 3845 3846 3847 3848 3849 3850 3851 3852

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3853
        """
3854
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3855 3856

        Args:
3857 3858
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3859 3860 3861

        Returns:
            None
3862 3863 3864

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3865
        """
3866 3867 3868
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3869 3870
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3871
            outside_array = parent_block.create_var(
3872
                name=unique_name.generate_with_ignorable_key("_".join(
3873 3874 3875 3876 3877 3878
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3879 3880 3881 3882 3883
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
3884 3885 3886 3887 3888 3889 3890 3891 3892
            parent_block.append_op(type='fill_constant',
                                   inputs={},
                                   outputs={'Out': [self.zero_idx]},
                                   attrs={
                                       'shape': [1],
                                       'dtype': self.zero_idx.dtype,
                                       'value': float(0),
                                       'force_cpu': True
                                   })
3893

3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
3904 3905
            raise ValueError(
                "{0} can only be invoked inside rnn block.".format(method))
Y
Yang Yu 已提交
3906 3907


L
liym27 已提交
3908 3909
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3910 3911
    :api_attr: Static Graph

L
liym27 已提交
3912 3913 3914
    This operator is like a C++ switch/case statement.

    Args:
3915
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3916 3917 3918 3919 3920
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3921
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3922 3923 3924 3925
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3926
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3938 3939 3940
            import paddle

            paddle.enable_static()
3941

L
liym27 已提交
3942
            def fn_1():
3943
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3944 3945

            def fn_2():
3946
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3947 3948

            def fn_3():
3949
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3950

3951 3952 3953
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3954 3955
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3956

3957
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3958 3959 3960 3961
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3962
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3963 3964 3965 3966 3967
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3968
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3969 3970 3971
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3972
                exe = paddle.static.Executor(paddle.CPUPlace())
3973
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3974 3975 3976 3977 3978 3979 3980 3981
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3982 3983
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3984 3985 3986 3987

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3988
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
4001
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
4014
                                   "switch_case", int, type(key)))
L
liym27 已提交
4015 4016 4017

            if key in keys_of_fns:
                raise ValueError(
4018 4019
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once."
                    .format(key))
L
liym27 已提交
4020 4021 4022 4023 4024
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4025 4026 4027
                    _error_message(
                        "The type of function for key {}".format(key),
                        "branch_fns", "switch_case", "callable", type(fn)))
L
liym27 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4052
@templatedoc()
Y
Yang Yu 已提交
4053
def reorder_lod_tensor_by_rank(x, rank_table):
4054 4055 4056 4057
    """
    ${comment}

    Args:
4058 4059
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4060

4061
    Returns:
4062
        out(${out_type}): ${out_comment}.
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4076 4077 4078 4079 4080 4081 4082

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4083 4084
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4085
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4086 4087 4088 4089 4090 4091
    helper.append_op(type='reorder_lod_tensor_by_rank',
                     inputs={
                         'X': [x],
                         'RankTable': [rank_table]
                     },
                     outputs={'Out': [out]})
Y
Yang Yu 已提交
4092
    return out
4093 4094


4095
def is_empty(x, name=None):
4096
    """
4097

4098
    Test whether a Tensor is empty.
4099 4100

    Args:
4101 4102 4103 4104
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4105 4106

    Returns:
4107
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4108 4109 4110 4111

    Examples:
        .. code-block:: python

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4123

4124
    """
H
hong 已提交
4125
    if in_dygraph_mode():
W
wanghuancoder 已提交
4126
        return _C_ops.is_empty(x)
4127 4128
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4129

4130 4131
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
4132 4133
    check_type(name, "name", (str, type(None)), "is_empty")

4134
    helper = LayerHelper("is_empty", **locals())
4135 4136
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4137 4138 4139
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
4140
    return cond