control_flow.py 171.2 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

S
rename  
sneaxiy 已提交
15
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
16

17
from .layer_function_generator import autodoc, templatedoc
18
from .tensor import assign, cast, fill_constant
19
from .. import core
H
hong 已提交
20
from ..framework import Program, Variable, Operator, _non_static_mode, static_only, _in_legacy_dygraph, in_dygraph_mode
21
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
22
from .nn import logical_and, logical_not, logical_or
23
from .utils import assert_same_structure, map_structure, hold_mutable_vars, copy_mutable_vars, padding_to_same_structure, is_sequence, pack_sequence_as, flatten, to_sequence
Y
yuyang18 已提交
24
import numpy
25
import warnings
L
liym27 已提交
26
from functools import reduce, partial
27
from ..data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
28 29
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
30
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
31

Q
QI JUN 已提交
32
__all__ = [
W
Wu Yi 已提交
33
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
Z
zhoukunsheng 已提交
34
    'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal',
35
    'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN',
H
Huihuang Zheng 已提交
36 37
    'reorder_lod_tensor_by_rank', 'Print', 'Assert', 'is_empty', 'case',
    'switch_case', 'while_loop'
D
dzhwinter 已提交
38 39
]

Y
Yu Yang 已提交
40

41 42
def select_output(input, outputs, mask):
    """
43
    **select_output**
44 45 46 47 48 49 50 51 52 53 54 55 56 57
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
58 59 60 61
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

62 63 64 65 66 67
    helper.append_op(type='select_output',
                     inputs={
                         'X': input,
                         'Mask': mask
                     },
                     outputs={'Out': outputs})
68 69 70
    return outputs


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
        map(lambda a, b: a if a == b else -1, first_shape, second_shape))
    return out_shape


90 91 92
def select_input(inputs, mask):
    """
    **select_input**
93

94 95 96 97 98 99 100 101 102 103 104 105
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
106 107 108
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

109 110 111 112 113
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
    #assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
114

115 116 117
    out = helper.create_variable(dtype=output_dtype,
                                 shape=output_shape,
                                 type=output_type)
118 119 120 121 122 123
    helper.append_op(type='select_input',
                     inputs={
                         'X': inputs,
                         'Mask': mask
                     },
                     outputs={'Out': out})
124 125 126
    return out


127
def select_input_with_buildin_type(inputs, mask, name):
128
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import to_static_variable
129
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
130 131
    false_var, true_var = inputs

132 133 134 135 136 137
    if isinstance(false_var, UndefinedVar) and isinstance(
            true_var, UndefinedVar):
        """ None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None.
        """
        return None

138
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
139 140 141 142 143
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
                f"Exceptions throwed while doing select_input on {name}:\n{e}")
144

145
    elif (isinstance(false_var, support_ret_buildin_type)
146
          and isinstance(false_var, type(true_var))):
147 148 149 150
        if false_var == true_var:
            return false_var
        else:
            inputs = [
151 152
                to_static_variable(false_var),
                to_static_variable(true_var)
153 154
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
155 156 157 158
    elif ((isinstance(false_var, support_ret_buildin_type)
           and isinstance(true_var, Variable))
          or (isinstance(true_var, support_ret_buildin_type)
              and isinstance(false_var, Variable))):
159 160 161 162 163
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
            "'{}'".format(type(false_var), type(true_var)))
164 165 166 167 168 169 170 171 172 173
    elif ((isinstance(false_var, UndefinedVar)
           and isinstance(true_var, (Variable, ) + support_ret_buildin_type))
          or (isinstance(true_var, UndefinedVar)
              and isinstance(false_var,
                             (Variable, ) + support_ret_buildin_type))):

        def create_var_if_not_undefined_var(a):
            if isinstance(a, UndefinedVar): return a
            return to_static_variable(a)

174 175 176
        true_var, false_var = to_static_variable(true_var), to_static_variable(
            false_var)
        inputs = [false_var, true_var]
177 178 179 180 181
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".
            format(type(false_var), type(true_var)))
182 183 184 185 186
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
            f"Exceptions throwed while doing select_input on {name}:\n{e}")
187 188


189
def split_lod_tensor(input, mask, level=0):
190 191 192 193
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
194 195
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
196 197

    Args:
198
        input(Variable|tuple|list|None): The input tensor that contains complete
199
                                lod information needed to construct the output.
200
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
201
        level(int): The specific lod level to split.
202 203

    Returns:
Q
qiaolongfei 已提交
204 205 206 207
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
208 209 210 211

    Examples:
        .. code-block:: python

212
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
213
          x = fluid.layers.data(name='x', shape=[1])
214 215
          x.persistable = True

Q
qiaolongfei 已提交
216
          y = fluid.layers.data(name='y', shape=[1])
217 218
          y.persistable = True

Q
qiaolongfei 已提交
219
          out_true, out_false = fluid.layers.split_lod_tensor(
220
                input=x, mask=y, level=level)
221

222
    """
223 224 225 226
    check_type(input, 'input', (Variable, list, tuple, type(None)),
               'fluid.layers.split_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
227
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
228 229
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
230 231 232 233 234 235 236 237 238 239
    helper.append_op(type='split_lod_tensor',
                     inputs={
                         'X': input,
                         'Mask': mask,
                     },
                     outputs={
                         'OutTrue': out_true,
                         'OutFalse': out_false
                     },
                     attrs={'level': level})
240 241 242
    return out_true, out_false


243
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
244 245 246 247 248
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
249 250 251
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
252 253

    Args:
254 255 256
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
257
                            lod information needed to construct the output.
258
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
259
        level(int): The specific lod level to merge.
260 261 262 263 264 265 266

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

267
          import paddle.fluid as fluid
268 269 270 271 272 273 274 275 276 277 278 279
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
280
    helper = LayerHelper('merge_lod_tensor', **locals())
281 282 283 284 285 286 287
    check_type(x, 'x', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
    check_type(in_true, 'in_true', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
    check_type(in_false, 'in_false', (Variable, list, tuple, type(None)),
               'fluid.layers.merge_lod_tensor')
X
Xin Pan 已提交
288
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
289 290 291 292 293 294 295 296 297
    helper.append_op(type='merge_lod_tensor',
                     inputs={
                         'X': x,
                         'Mask': mask,
                         'InTrue': in_true,
                         'InFalse': in_false
                     },
                     outputs={'Out': out},
                     attrs={'level': level})
298 299 300
    return out


301
@static_only
Y
Yan Chunwei 已提交
302 303 304
def Print(input,
          first_n=-1,
          message=None,
305
          summarize=20,
Y
Yan Chunwei 已提交
306 307 308
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
309
          print_tensor_layout=True,
Y
yangyaming 已提交
310 311
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
312
    '''
313 314
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
315 316 317 318 319 320 321 322 323
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
324
        input (Variable): A Tensor to print.
325
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
326
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
327 328
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
329 330 331
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
332
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
333
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
334
        print_phase (str): Which phase to displace, including 'forward',
335
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
336 337
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
338 339

    Returns:
340
        Variable: Output tensor.
Y
Yan Chunwei 已提交
341

342 343 344 345
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
346

Y
Yan Chunwei 已提交
347 348
    Examples:
        .. code-block:: python
349

350 351 352
           import paddle

           paddle.enable_static()
353

354 355 356 357 358 359 360 361 362 363 364 365 366 367
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
368
    '''
369 370 371
    check_variable_and_dtype(input, 'input',
                             ['float32', 'float64', 'int32', 'int64', 'bool'],
                             'fluid.layers.Print')
372

373 374
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
375 376 377 378 379 380 381 382 383 384 385 386 387 388
    helper.append_op(type='print',
                     inputs={'In': input},
                     outputs={'Out': output},
                     attrs={
                         'first_n': first_n,
                         'summarize': summarize,
                         'message': message or "",
                         'print_tensor_name': print_tensor_name,
                         'print_tensor_type': print_tensor_type,
                         'print_tensor_shape': print_tensor_shape,
                         'print_tensor_layout': print_tensor_layout,
                         'print_tensor_lod': print_tensor_lod,
                         'print_phase': print_phase.upper()
                     })
389
    return output
Y
Yan Chunwei 已提交
390 391


H
Huihuang Zheng 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

455 456 457 458 459 460
    op = helper.append_op(type="assert",
                          inputs={
                              "Cond": cond,
                              "Data": [] if data is None else list(data)
                          },
                          attrs={"summarize": summarize})
H
Huihuang Zheng 已提交
461 462 463 464

    return op


Y
Yu Yang 已提交
465 466
class BlockGuard(object):
    """
467 468 469 470
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
471 472
    """

473 474
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
475
            raise TypeError("BlockGuard takes a program")
476
        self.main_program = main_program
Y
Yu Yang 已提交
477 478

    def __enter__(self):
W
Wu Yi 已提交
479
        self.main_program._create_block()
Y
Yu Yang 已提交
480 481

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
482
        self.main_program._rollback()
Y
Yu Yang 已提交
483 484 485 486 487
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
488 489 490 491 492
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
493 494
    """

Y
Yu Yang 已提交
495
    def __init__(self, rnn):
X
Xin Pan 已提交
496
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
497
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
498
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
499 500 501 502
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
503
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
504 505

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
506 507
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
508
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
509
        self.rnn._complete_op()
510 511
        return super(BlockGuardWithCompletion,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
512 513 514 515


class StaticRNNMemoryLink(object):
    """
516 517 518 519
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
520 521 522 523 524 525 526 527 528


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
529 530 531 532 533 534 535 536 537
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
538
    """
539 540
    :api_attr: Static Graph

541 542
    StaticRNN class.

543 544 545 546 547 548 549
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
550 551

    Examples:
552 553 554 555 556 557
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
558 559
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
560 561 562 563 564
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
565
            # transform batch size to dim 1
566 567 568 569
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
570
                # mark created x_emb as input, each step process a word
571
                word = rnn.step_input(x_emb)
572
                # create prev memory parameter, batch size comes from word
573 574
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
575 576
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
577
                # mark hidden as output
578
                rnn.step_output(hidden)
579
            # get StaticrNN final output
580
            result = rnn()
C
chengduo 已提交
581

582
    """
Y
Yu Yang 已提交
583 584 585 586
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

587
    def __init__(self, name=None):
588
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
589
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
590 591 592 593 594 595 596 597
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
598
        """
599 600
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
601
        """
Y
Yang Yang 已提交
602
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
603 604 605 606 607

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

608 609 610 611 612 613 614
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
615
        """
C
chengduo 已提交
616 617 618
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
619 620
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
621

622
        Args:
623
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
624 625
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
626 627 628 629 630 631 632
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
633 634

        Returns:
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)


        Examples 2:
666 667
            .. code-block:: python

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers
            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
            	boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
            		# mark created x_emb as input, each step process a word
            		word = rnn.step_input(x_emb)
            		# init memory
            		prev = rnn.memory(init=boot_memory)
            		hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
            		# update hidden with prev
            		rnn.update_memory(prev, hidden)

691
        """
Y
Yu Yang 已提交
692
        self._assert_in_rnn_block_('memory')
693 694 695 696 697 698
        check_type(init, "init", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(shape, "shape", (list, tuple, type(None)),
                   "fluid.layers.StaticRNN.memory")
        check_type(batch_ref, "batch_ref", (Variable, type(None)),
                   "fluid.layers.StaticRNN.memory")
Y
Yu Yang 已提交
699
        if init is None:
700
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
701
                raise ValueError(
702
                    "if init is None, memory at least need shape and batch_ref")
703
            parent_block = self._parent_block()
704
            var_name = unique_name.generate_with_ignorable_key("@".join(
Y
Yu Yang 已提交
705
                [self.helper.name, "memory_boot"]))
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
            boot_var = parent_block.create_var(name=var_name,
                                               shape=shape,
                                               dtype=batch_ref.dtype,
                                               persistable=False)

            parent_block.append_op(type="fill_constant_batch_size_like",
                                   inputs={'Input': [batch_ref]},
                                   outputs={'Out': [boot_var]},
                                   attrs={
                                       'value': init_value,
                                       'shape': boot_var.shape,
                                       'dtype': boot_var.dtype,
                                       'input_dim_idx': ref_batch_dim_idx,
                                       'output_dim_idx': init_batch_dim_idx
                                   })
Y
Yu Yang 已提交
721 722 723 724

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
725 726
                name=unique_name.generate_with_ignorable_key("@".join(
                    [self.helper.name, "mem"])),
F
fengjiayi 已提交
727
                dtype=init.dtype,
Y
Yu Yang 已提交
728
                shape=init.shape)
729 730
            self.memories[pre_mem.name] = StaticRNNMemoryLink(init=init,
                                                              pre_mem=pre_mem)
Y
Yu Yang 已提交
731 732 733
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
734 735 736 737 738 739 740 741
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)

C
chengduo 已提交
771
        """
Y
Yu Yang 已提交
772
        self._assert_in_rnn_block_('step_input')
773
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
774
        if self.seq_len is None:
Y
Yu Yang 已提交
775
            self.seq_len = x.shape[0]
776
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
777 778
            raise ValueError("Static RNN only take fix seq_len input")

779 780 781 782
        ipt = self.helper.create_variable(name=x.name,
                                          dtype=x.dtype,
                                          shape=list(x.shape[1:]),
                                          type=x.type)
Y
Yu Yang 已提交
783 784 785 786
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
787 788 789 790 791 792 793 794
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
               		dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
               		word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	rnn.step_output(hidden)

            	result = rnn()

C
chengduo 已提交
826
        """
Y
Yu Yang 已提交
827
        self._assert_in_rnn_block_('step_output')
828
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
829

X
Xin Pan 已提交
830
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
831 832 833 834
        self.helper.append_op(type='rnn_memory_helper',
                              inputs={'X': [o]},
                              outputs={'Out': tmp_o},
                              attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
835

836 837 838 839
        out_var = self._parent_block().create_var(name=tmp_o.name,
                                                  shape=[self.seq_len] +
                                                  list(tmp_o.shape),
                                                  dtype=tmp_o.dtype)
Y
Yu Yang 已提交
840 841 842 843

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
844 845 846 847
        """
        Mark the StaticRNN output variables.

        Args:
848
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
849 850 851

        Returns:
            None
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

        Examples:
            .. code-block:: python

            	import paddle.fluid as fluid
            	import paddle.fluid.layers as layers

            	vocab_size, hidden_size=10000, 200
            	x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            	# create word sequence
            	x_emb = layers.embedding(
                	input=x,
                	size=[vocab_size, hidden_size],
                	dtype='float32',
                	is_sparse=False)
            	# transform batch size to dim 1
            	x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            	rnn = fluid.layers.StaticRNN()
            	with rnn.step():
                	# mark created x_emb as input, each step process a word
                	word = rnn.step_input(x_emb)
                	# create prev memory parameter, batch size comes from word
                	prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                	hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                	# use hidden to update prev
                	rnn.update_memory(prev, hidden)
                	# mark each step's hidden and word as output
                	rnn.output(hidden, word)

            	result = rnn()
C
chengduo 已提交
883
        """
Y
Yu Yang 已提交
884 885 886 887
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
888
        """
889
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
890 891 892

        Args:
            mem(Variable): the memory variable.
893
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
894
                           var and mem should have same dims and data type.
C
chengduo 已提交
895 896 897

        Returns:
            None
898

C
chengduo 已提交
899
        """
900 901
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
902 903
        self.memories[mem.name].mem = var

904
    def _parent_block(self):
905
        prog = self.helper.main_program
Y
Yu Yang 已提交
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

921
    def _complete_op(self):
922 923
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
924
        parent_block = self._parent_block()
Y
Yu Yang 已提交
925 926 927 928 929 930 931 932 933 934 935 936 937 938

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
939 940 941
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
942 943 944 945 946 947 948 949
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

950 951 952
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
953 954 955 956 957 958 959

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
960
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
961 962 963
        boot_memories = []
        pre_memories = []
        memories = []
964
        for _, mem in self.memories.items():
Y
Yu Yang 已提交
965 966
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
967 968
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
969 970
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
971 972
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
973 974 975 976
            rnn_block.append_op(type='rnn_memory_helper',
                                inputs={'X': [mem_var]},
                                outputs={'Out': [new_mem]},
                                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
977 978 979

            memories.append(new_mem.name)

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
        parent_block.append_op(type='recurrent',
                               inputs={
                                   'inputs': inlinks,
                                   'initial_states': boot_memories,
                                   'parameters': parameters
                               },
                               outputs={
                                   'outputs': outlinks,
                                   'step_scopes': [step_scope]
                               },
                               attrs={
                                   'has_states': len(pre_memories) > 0,
                                   'ex_states': pre_memories,
                                   'states': memories,
                                   'sub_block': rnn_block
                               })
Y
Yu Yang 已提交
996 997


Y
Yang Yang(Tony) 已提交
998
class WhileGuard(BlockGuard):
999

Y
Yang Yang(Tony) 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1014
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
1015 1016 1017
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
def get_inputs_outputs_in_block(current_block, inner_inputs, inner_outputs,
                                helper):
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1041 1042 1043 1044 1045 1046 1047 1048
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1049 1050
                if in_var_name not in inner_outputs and not is_ignore_vars(
                        op, in_var_name):
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
        if not parent_block_var and current_block_var and \
                current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1075
class While(object):
X
Xin Pan 已提交
1076
    """
1077
    :api_attr: Static Graph
1078

1079
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1080

1081 1082 1083 1084
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1085 1086 1087 1088 1089 1090
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1091
    Args:
1092
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1093
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1094
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1095

1096
    Examples 1:
X
Xin Pan 已提交
1097
          .. code-block:: python
1098

1099
            import paddle.fluid as fluid
1100 1101 1102 1103 1104
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1105

1106
            cond = fluid.layers.less_than(x=i, y=loop_len)
1107
            while_op = fluid.layers.While(cond=cond)
1108
            with while_op.block():
1109
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1110
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1111 1112 1113 1114 1115

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1145 1146
    """

Y
Yang Yang(Tony) 已提交
1147 1148 1149 1150
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1151
    def __init__(self, cond, is_test=False, name=None):
1152
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1153
        self.status = While.BEFORE_WHILE_BLOCK
1154
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1155
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1156
            raise TypeError(
1157
                "condition expected shape as [1], but given shape as {0}.".
1158
                format(list(cond.shape)))
Y
Yang Yang(Tony) 已提交
1159
        self.cond_var = cond
C
chengduo 已提交
1160
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1161 1162 1163 1164

    def block(self):
        return WhileGuard(self)

1165
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1166 1167
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1168 1169
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
Y
Yang Yang(Tony) 已提交
1170 1171 1172

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1173 1174
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
            while_block, x_name_list, inner_outputs, self.helper)
Y
Yang Yang(Tony) 已提交
1175 1176 1177

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1178 1179 1180
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1181

1182
        x_name_list |= set(map(lambda x: x.name, out_vars))
1183 1184 1185
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1186

Y
Yang Yang(Tony) 已提交
1187 1188 1189 1190 1191 1192
        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
1193 1194
                'X':
                [parent_block._var_recursive(x_name) for x_name in x_name_list],
Y
Yang Yang(Tony) 已提交
1195 1196
                'Condition': [self.cond_var]
            },
1197 1198 1199 1200 1201 1202 1203 1204
            outputs={
                'Out': out_vars,
                'StepScopes': [step_scope]
            },
            attrs={
                'sub_block': while_block,
                "is_test": self.is_test
            })
Y
Yang Yang(Tony) 已提交
1205 1206


1207
support_ret_buildin_type = (bool, float, int)
1208 1209


1210
def assign_skip_lod_tensor_array(input, output):
1211
    """
1212
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1213
    """
1214 1215 1216 1217 1218 1219 1220

    def has_shape_diff(x_var, y_var):
        if len(x_var.shape) != len(y_var.shape): return True
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
            if x_dim != y_dim and -1 not in [x_dim, y_dim]: return True
        return False

1221
    if not isinstance(input, (Variable, core.VarBase)):
1222 1223
        if isinstance(output, Variable) and isinstance(
                input, support_ret_buildin_type):
1224 1225 1226
            assign(input, output)
        else:
            output = input
1227 1228
        return

1229 1230
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1231 1232
        parent_block = main_program.block(
            main_program.current_block().parent_idx)
1233 1234 1235
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1236 1237 1238 1239 1240
        if isinstance(output, Variable) and isinstance(
                input, Variable) and has_shape_diff(input, output):
            warnings.warn(
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right."
                .format(input.shape, output.shape))
1241
        assign(input, output)
1242 1243


G
guofei 已提交
1244
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1245
    """
1246 1247
    :api_attr: Static Graph

G
guofei 已提交
1248 1249
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1250 1251 1252 1253
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1254
    Args:
1255 1256 1257 1258 1259
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
	    as many arguments as ``loop_vars`` .
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1260
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1261 1262
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1263

G
guofei 已提交
1264
    Returns:
C
Chen Long 已提交
1265
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1266 1267 1268 1269

    Examples:
        .. code-block:: python

1270 1271 1272
            import paddle
            paddle.enable_static()

1273 1274
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1275

1276 1277 1278
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1279

C
Chen Long 已提交
1280 1281 1282 1283 1284 1285
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1286

C
Chen Long 已提交
1287
                exe = paddle.static.Executor(paddle.CPUPlace())
1288
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1289 1290 1291 1292 1293 1294 1295 1296
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1297
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1298 1299 1300 1301
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1302 1303
    check_variable_and_dtype(pre_cond, 'var of cond returned', ['bool'],
                             'fluid.layers.while_loop')
G
guofei 已提交
1304 1305
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1306
            "the shape of the variable returned by cond should be [1],"
G
guofei 已提交
1307 1308
            "but given shape as {0}.".format(list(pre_cond.shape)))

J
Jiabin Yang 已提交
1309
    if _non_static_mode():
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        now_cond = pre_cond.numpy()[0]
        while (now_cond):
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
                    "(length and structure) and types as loop_vars")
            now_cond = cond(*output_vars).numpy()[0]
1320
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1321 1322
        return loop_vars

G
guofei 已提交
1323
    while_loop_block = While(pre_cond, is_test, name)
1324
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1325
    with while_loop_block.block():
1326 1327 1328 1329 1330 1331 1332 1333 1334
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1335 1336
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1337
        try:
1338
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1339 1340
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1341 1342 1343
            raise ValueError(
                "body in while_loop should return the same arity "
                "(length and structure) as loop_vars: {0}".format(e))
1344
        now_cond = cond(*output_vars)
1345
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1346 1347 1348 1349
        assign(now_cond, pre_cond)
    return loop_vars


1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
def _deal_with_undefined_var(output_vars, loop_vars):
    """ Deal with undefined var cases, We create undefined variable based on the results of body().
        In Dy2Static, we use undefined var to represent the var created in control flow. This function
        expand the loop_vars and replace original loop_vars.
        1. UndefinedVar = Variable      # create a variable
        2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
        3. UndefinedVar = List(int)     # create a list of variable
        4. UndefinedVar = value         # create a variable
    """
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar, create_undefined_variable

    def create_var_like(o_var):
        if isinstance(o_var,
                      (Variable, ) + support_ret_buildin_type) or o_var is None:
            return create_undefined_variable()
1365
        if is_sequence(o_var):
1366
            """
1367 1368 1369
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1383
def lod_rank_table(x, level=0):
1384 1385
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1386 1387
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1388
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1389
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1390 1391
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1392 1393 1394 1395

        .. code-block:: text

            x is a LoDTensor:
1396 1397
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1398 1399
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1400 1401 1402
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1403

Y
yangyaming 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1413 1414 1415 1416

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1417 1418
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1419 1420 1421 1422 1423 1424 1425

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1426
            import paddle.fluid as fluid
Y
yangyaming 已提交
1427
            x = fluid.layers.data(name='x', shape=[10],
1428
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1429
            out = layers.lod_rank_table(x=x, level=0)
1430
    """
1431 1432 1433 1434 1435 1436
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_rank_table')

Y
Yu Yang 已提交
1437
    helper = LayerHelper("lod_rank_table", **locals())
1438 1439 1440 1441 1442 1443
    table = helper.create_variable(type=core.VarDesc.VarType.LOD_RANK_TABLE,
                                   name=unique_name.generate("lod_rank_table"))
    helper.append_op(type='lod_rank_table',
                     inputs={'X': x},
                     outputs={'Out': table},
                     attrs={'level': level})
Y
Yu Yang 已提交
1444
    return table
Y
Yu Yang 已提交
1445 1446


Y
yuyang18 已提交
1447
@templatedoc()
1448
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1449 1450 1451 1452 1453 1454 1455 1456
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1457 1458

    Args:
Y
yuyang18 已提交
1459
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1460 1461

    Returns:
Y
yuyang18 已提交
1462
        ${out_comment}.
F
fengjiayi 已提交
1463 1464
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1465
    res = helper.create_variable_for_type_inference(dtype="int64")
1466 1467 1468
    helper.append_op(type="max_sequence_len",
                     inputs={"RankTable": rank_table},
                     outputs={"Out": res})
F
fengjiayi 已提交
1469 1470 1471
    return res


1472
def lod_tensor_to_array(x, table):
1473
    """
F
fengjiayi 已提交
1474 1475
    Convert a LoDTensor to a LoDTensorArray.

1476 1477 1478 1479 1480
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1481
    Users should not use it directly.
1482 1483

    Args:
F
fengjiayi 已提交
1484
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1485 1486
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1487
                                descending order. It is generally generated
F
fengjiayi 已提交
1488
                                by `layers.lod_rank_table()` API.
1489 1490

    Returns:
F
fengjiayi 已提交
1491
        Variable: The LoDTensorArray that has been converted from the input tensor.
1492 1493 1494 1495

    Examples:
        .. code-block:: python

1496
          import paddle.fluid as fluid
1497 1498 1499
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1500
    """
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'lod_tensor_to_array')
1511 1512
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1513
        name=unique_name.generate("lod_tensor_to_array"),
1514
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1515
        dtype=x.dtype)
1516 1517 1518 1519 1520 1521
    helper.append_op(type='lod_tensor_to_array',
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': array})
1522 1523 1524
    return array


1525
def array_to_lod_tensor(x, table):
1526
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1527 1528

    Args:
1529
        x (Variable|list): The lod tensor array to be converted to a tensor.
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1541
          import paddle.fluid as fluid
1542 1543 1544 1545
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1546
    """
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
            check_type(table_x, 'table[' + str(i) + ']', Variable,
                       'array_to_lod_tensor')

1558
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1559
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1560 1561 1562 1563 1564 1565
    helper.append_op(type="array_to_lod_tensor",
                     inputs={
                         'X': x,
                         'RankTable': table
                     },
                     outputs={'Out': tmp})
1566 1567 1568
    return tmp


1569
def increment(x, value=1.0, in_place=True):
1570
    """
1571 1572
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1573

1574
    Parameters:
T
tianshuo78520a 已提交
1575
        x (Variable): A tensor that must always contain only one element, its data type supports
1576 1577 1578
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1579 1580

    Returns:
1581
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1582 1583 1584 1585

    Examples:
        .. code-block:: python

1586
          import paddle.fluid as fluid
1587 1588
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1589
    """
H
hong 已提交
1590
    if in_dygraph_mode():
1591
        return _C_ops.increment_(x, value)
H
hong 已提交
1592

1593 1594
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
Y
Yu Yang 已提交
1595
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1596
    if not in_place:
X
Xin Pan 已提交
1597
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1598 1599
    else:
        out = x
1600 1601 1602 1603
    helper.append_op(type='increment',
                     inputs={'X': [x]},
                     outputs={'Out': [out]},
                     attrs={'step': float(value)})
Y
Yang Yu 已提交
1604
    return out
Y
Yu Yang 已提交
1605 1606


1607
def array_write(x, i, array=None):
1608
    """
1609 1610 1611 1612
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1613 1614

    Args:
1615 1616 1617 1618
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1619 1620
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1621
            as a result.
1622

1623
    Returns:
1624
        Variable: The input ``array`` after ``x`` is written into.
1625 1626

    Examples:
D
dzhwinter 已提交
1627
        .. code-block:: python
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1652 1653
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1654 1655
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1656
    """
J
Jiabin Yang 已提交
1657
    if _non_static_mode():
1658 1659 1660 1661 1662 1663 1664 1665 1666
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1667
        i = i.numpy().item(0)
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1682 1683
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1684
    helper = LayerHelper('array_write', **locals())
1685 1686
    if array is not None:
        if not isinstance(
1687 1688
                array, Variable
        ) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
1689 1690
            raise TypeError(
                "array should be tensor array vairable in array_write Op")
Y
Yu Yang 已提交
1691 1692 1693 1694
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
1695
            dtype=x.dtype)
1696 1697 1698 1699 1700 1701
    helper.append_op(type='write_to_array',
                     inputs={
                         'X': [x],
                         'I': [i]
                     },
                     outputs={'Out': [array]})
Y
Yu Yang 已提交
1702 1703 1704
    return array


1705
def create_array(dtype, initialized_list=None):
1706
    """
1707
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1708
    the input of :ref:`api_fluid_layers_array_read` and
1709 1710
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1711 1712

    Args:
1713 1714
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1715 1716
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1717 1718

    Returns:
1719
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1720 1721 1722 1723

    Examples:
        .. code-block:: python

1724
          import paddle.fluid as fluid
1725
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1726 1727

    """
1728 1729 1730 1731
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1732 1733
                "Require type(initialized_list) should be list/tuple, but received {}"
                .format(type(initialized_list)))
1734 1735 1736 1737 1738 1739
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1740 1741
                "All values in `initialized_list` should be Variable, but recevied {}."
                .format(type(val)))
1742

J
Jiabin Yang 已提交
1743
    if _non_static_mode():
1744
        return array
1745

Y
Yang Yang(Tony) 已提交
1746
    helper = LayerHelper("array", **locals())
1747
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1748 1749 1750 1751
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)

1752 1753 1754 1755 1756
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1757

Y
yuyang18 已提交
1758
@templatedoc()
W
wawltor 已提交
1759
def less_than(x, y, force_cpu=None, cond=None, name=None):
1760
    """
1761

Y
yuyang18 已提交
1762
    ${comment}
1763 1764

    Args:
N
Noel 已提交
1765 1766
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1767
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1768
        cond(Tensor, optional): Optional output which can be any created Tensor
1769
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1770
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1771 1772
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1773
    Returns:
Y
yuyang18 已提交
1774
        ${out_comment}.
1775 1776 1777 1778

    Examples:
        .. code-block:: python

N
Noel 已提交
1779 1780 1781 1782 1783 1784 1785
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1786
    """
1787 1788 1789 1790 1791 1792 1793 1794 1795
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_than")
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1796 1797
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1798
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1799 1800
        cond.stop_gradient = True

Y
yuyang18 已提交
1801 1802 1803 1804
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1805 1806 1807 1808 1809 1810 1811
    helper.append_op(type='less_than',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Y
Yang Yang(Tony) 已提交
1812 1813 1814
    return cond


Z
zhoukunsheng 已提交
1815
@templatedoc()
W
wawltor 已提交
1816
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1817
    """
1818 1819 1820 1821
    :alias_main: paddle.less_equal
	:alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
	:old_api: paddle.fluid.layers.less_equal

1822
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1823 1824

    Args:
1825
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1826
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1827 1828
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1829 1830
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1831 1832

    Returns:
1833
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1834 1835 1836 1837

    Examples:
        .. code-block:: python

1838
          import paddle.fluid as fluid
1839 1840 1841 1842 1843 1844
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
1845
    """
1846 1847 1848 1849 1850
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "less_equal")
    if cond is not None:
1851
        check_type(cond, "cond", Variable, "less_equal")
1852

Z
zhoukunsheng 已提交
1853 1854 1855 1856 1857 1858 1859
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1860 1861 1862 1863 1864 1865 1866
    helper.append_op(type='less_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1867 1868 1869 1870
    return cond


@templatedoc()
W
wawltor 已提交
1871
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1872
    """
1873 1874 1875 1876
    :alias_main: paddle.greater_than
	:alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
	:old_api: paddle.fluid.layers.greater_than

1877
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
1878 1879

    Args:
1880
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1881
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1882 1883
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1884 1885
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1886 1887

    Returns:
1888
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
1889 1890 1891 1892

    Examples:
        .. code-block:: python

1893
          import paddle.fluid as fluid
1894 1895 1896 1897 1898
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
1899
    """
1900 1901 1902 1903 1904
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_than")
    if cond is not None:
1905
        check_type(cond, "cond", Variable, "greater_than")
1906

Z
zhoukunsheng 已提交
1907 1908 1909 1910 1911 1912 1913
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1914
    if in_dygraph_mode():
1915
        return _C_ops.greater_than(x, y, -1)
1916
    else:
1917 1918 1919 1920 1921 1922 1923
        helper.append_op(type='greater_than',
                         inputs={
                             'X': [x],
                             'Y': [y]
                         },
                         outputs={'Out': [cond]},
                         attrs=attrs)
1924
        return cond
Z
zhoukunsheng 已提交
1925 1926 1927


@templatedoc()
W
wawltor 已提交
1928
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1929
    """
1930 1931 1932 1933
    :alias_main: paddle.greater_equal
	:alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
	:old_api: paddle.fluid.layers.greater_equal

1934
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
1935 1936

    Args:
1937
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1938
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1939 1940
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1941 1942
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1943 1944

    Returns:
1945
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1946 1947 1948 1949

    Examples:
        .. code-block:: python

1950
          import paddle.fluid as fluid
1951 1952 1953 1954 1955 1956
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
1957

Z
zhoukunsheng 已提交
1958
    """
1959 1960 1961 1962 1963
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "greater_equal")
    if cond is not None:
1964
        check_type(cond, "cond", Variable, "greater_equal")
1965

Z
zhoukunsheng 已提交
1966 1967 1968 1969 1970 1971 1972
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

1973 1974 1975 1976 1977 1978 1979
    helper.append_op(type='greater_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]},
                     attrs=attrs)
Z
zhoukunsheng 已提交
1980 1981 1982
    return cond


W
wawltor 已提交
1983
def equal(x, y, cond=None, name=None):
1984 1985 1986 1987
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
1988 1989
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
1990
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
1991 1992
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1993 1994
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1995 1996

    Returns:
W
wangchaochaohu 已提交
1997 1998
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
1999 2000 2001 2002

    Examples:
        .. code-block:: python

2003
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2004 2005 2006 2007 2008 2009 2010
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2011
    """
H
hong 已提交
2012 2013
    if in_dygraph_mode():
        default_axis = -1
2014
        return _C_ops.equal(x, y, default_axis)
H
hong 已提交
2015

2016 2017 2018 2019 2020
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "equal")
    if cond is not None:
2021
        check_type(cond, "cond", Variable, "equal")
2022

2023 2024
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2025
        cond = helper.create_variable_for_type_inference(dtype='bool')
2026 2027
        cond.stop_gradient = True

2028 2029 2030 2031 2032 2033
    helper.append_op(type='equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
2034 2035 2036
    return cond


W
wawltor 已提交
2037
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2038
    """
2039 2040 2041 2042
    :alias_main: paddle.not_equal
	:alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
	:old_api: paddle.fluid.layers.not_equal

2043
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2044 2045

    Args:
2046
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2047
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2048 2049
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2050 2051
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2052 2053

    Returns:
2054
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2055 2056 2057 2058

    Examples:
        .. code-block:: python

2059
          import paddle.fluid as fluid
2060

2061 2062
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2063 2064
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2065 2066 2067 2068 2069
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    check_variable_and_dtype(y, "y", ["float32", "float64", "int32", "int64"],
                             "not_equal")
    if cond is not None:
2070
        check_type(cond, "cond", Variable, "not_equal")
2071

Z
zhoukunsheng 已提交
2072 2073 2074 2075 2076
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2077 2078 2079 2080 2081 2082
    helper.append_op(type='not_equal',
                     inputs={
                         'X': [x],
                         'Y': [y]
                     },
                     outputs={'Out': [cond]})
Z
zhoukunsheng 已提交
2083 2084 2085
    return cond


2086
def array_read(array, i):
2087
    """
2088
    This OP is used to read data at the specified position from the input array
2089
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2090
    is the specified read position. This OP is often used together with
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2103

K
kavyasrinet 已提交
2104
    Args:
2105 2106 2107
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2108

K
kavyasrinet 已提交
2109
    Returns:
2110
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2111

K
kavyasrinet 已提交
2112
    Examples:
2113 2114
        .. code-block:: python

2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2143 2144
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2145
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2146
    """
J
Jiabin Yang 已提交
2147
    if _non_static_mode():
2148 2149 2150 2151 2152 2153 2154 2155 2156
        assert isinstance(
            array,
            list), "The 'array' in array_read must be list in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2157
        i = i.numpy().item(0)
2158 2159
        return array[i]

2160
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2161 2162 2163 2164 2165
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2166
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2167 2168 2169 2170 2171 2172
    helper.append_op(type='read_from_array',
                     inputs={
                         'X': [array],
                         'I': [i]
                     },
                     outputs={'Out': [out]})
Y
Yu Yang 已提交
2173
    return out
Y
Yang Yu 已提交
2174 2175


2176
def shrink_memory(x, i, table):
2177
    """
Y
yuyang18 已提交
2178
    This function creates an operator to shrink rnn memory using the RankTable
2179
    as mentioned in the input parameter.
Y
yuyang18 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2200
    """
Y
Yang Yu 已提交
2201
    helper = LayerHelper('shrink_memory', **locals())
2202 2203 2204
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2205
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2206 2207 2208 2209 2210 2211 2212 2213
    helper.append_op(type='shrink_rnn_memory',
                     inputs={
                         'X': [x],
                         'I': [i],
                         'RankTable': [table]
                     },
                     outputs={'Out': [out]},
                     attrs={})
Y
Yang Yu 已提交
2214
    return out
Y
Yang Yu 已提交
2215 2216


2217
def array_length(array):
2218
    """
2219
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2220
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2221
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2222

K
kavyasrinet 已提交
2223
    Args:
2224
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2225 2226

    Returns:
2227
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2228 2229

    Examples:
Q
qiaolongfei 已提交
2230
        .. code-block:: python
K
kavyasrinet 已提交
2231

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2248

2249 2250 2251 2252 2253
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2254

2255 2256 2257
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2258 2259
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2260
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2261
    """
2262

J
Jiabin Yang 已提交
2263
    if _non_static_mode():
2264 2265 2266 2267 2268
        assert isinstance(
            array,
            list), "The 'array' in array_write must be a list in dygraph mode"
        return len(array)

2269 2270 2271 2272 2273 2274
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError(
            "array should be tensor array vairable in array_length Op")

Y
Yang Yu 已提交
2275
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2276
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2277
    tmp.stop_gradient = True
2278 2279 2280
    helper.append_op(type='lod_array_length',
                     inputs={'X': [array]},
                     outputs={'Out': [tmp]})
Y
Yang Yu 已提交
2281
    return tmp
Y
Yu Yang 已提交
2282 2283 2284


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2285
    """
2286 2287 2288
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2289 2290 2291
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2292
    def __init__(self, block):
2293
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2294 2295 2296 2297 2298 2299 2300 2301
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2302 2303
        return super(ConditionalBlockGuard,
                     self).__exit__(exc_type, exc_val, exc_tb)
Y
Yu Yang 已提交
2304 2305 2306


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2307 2308 2309 2310 2311 2312 2313 2314
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2315
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2316 2317 2318 2319 2320
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2321
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2333
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2334
        for each_input in inputs:
2335
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2336
        self.inputs = inputs
2337
        self.is_scalar_condition = is_scalar_condition
2338
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2349 2350 2351 2352
        params, intermediate = get_inputs_outputs_in_block(inside_block,
                                                           params,
                                                           intermediate,
                                                           helper=self.helper)
Y
Yu Yang 已提交
2353

2354 2355 2356
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2357
        param_list = [
W
Wu Yi 已提交
2358
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2359 2360
        ]

X
Xin Pan 已提交
2361 2362 2363 2364 2365
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2366 2367

        step_scope = parent_block.create_var(
2368
            type=core.VarDesc.VarType.STEP_SCOPES)
2369
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2370 2371
            type='conditional_block',
            inputs={
2372 2373
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2374
            },
2375 2376 2377 2378
            outputs={
                'Out': out_list,
                'Scope': [step_scope]
            },
2379 2380 2381 2382 2383
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })

2384 2385 2386 2387 2388 2389
        if self.need_append_conditional_block_grad(inside_block):
            self.append_conditional_block_grad(parent_block, inside_block,
                                               conditional_block_op)

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2390
        inside_block_idx = inside_block.idx
2391

2392 2393 2394
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
        return grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

    def append_conditional_block_grad(self, parent_block, inside_block,
                                      conditional_block_op):
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
2433
                param_list.append(inner_var.name)
2434 2435

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2436
            conditional_block_op.desc, set(), [grad_sub_block.desc])
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
        new_op_desc.set_output('Input@GRAD',
                               [param + "@GRAD" for param in param_list])

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2451 2452
            if grad_sub_block.desc.has_var_recursive(grad_var_name.encode(
            )) or grad_var_name == core.empty_var_name():
2453
                continue
2454
            grad_sub_block.desc.var(grad_var_name.encode())
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2469

2470
def copy_var_to_parent_block(var, layer_helper):
2471 2472
    if not isinstance(var, Variable):
        return var
2473 2474 2475 2476 2477
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
    assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow"
    parent_block = prog.block(parent_idx)

2478 2479 2480 2481
    if var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY \
            and parent_block._find_var_recursive(var.name):
        parent_block_var = var
    else:
2482 2483 2484
        parent_block_var = parent_block.create_var(dtype=var.dtype,
                                                   shape=var.shape,
                                                   type=var.type)
2485
        assign(var, parent_block_var)
2486 2487 2488
    return parent_block_var


2489
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2490
    """
2491 2492 2493 2494 2495 2496 2497 2498 2499
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2500 2501

    Note:
2502 2503 2504 2505
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2506 2507 2508
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2509
        3. If it is in static mode, any tensors or operations created outside
2510 2511 2512
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2513 2514

        .. code-block:: python
2515 2516 2517 2518 2519

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2520
            c = a * b
2521
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2522

2523 2524 2525
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2526 2527

    Args:
2528
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2529
            value determines whether to return the result of ``true_fn`` or
2530 2531 2532 2533 2534 2535
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2536
             don't have to set this parameter. For more information, please
2537
             refer to :ref:`api_guide_Name` .
2538 2539 2540
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2541
             be same with return values of true_fn and false_fn.
2542 2543

    Returns:
2544
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2545
        predicate ``pred`` is true else ``false_fn()`` .
2546 2547 2548

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2549 2550
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2551 2552 2553 2554

    Examples:
        .. code-block:: python

2555
            import paddle
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2566 2567 2568 2569
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2570

2571 2572

            def false_func():
2573 2574 2575 2576 2577
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2578

2579 2580
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2581
            pred = paddle.less_than(x=x, y=y, name=None)
2582
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2583
            # ret is a tuple containing 2 tensors
2584 2585
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2586
            #           [ True  True  True]]
2587

2588
    """
J
Jiabin Yang 已提交
2589
    if _non_static_mode():
2590
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2591
        assert pred.size == 1, "condition input's numel should be 1"
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
                        "The true_fn in cond must be callable, but received {}".
                        format(type(true_fn).__name__))
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2604 2605
                        "The false_fn in cond must be callable, but received {}"
                        .format(type(false_fn).__name__))
2606 2607 2608
                return false_fn()
        return None

2609 2610
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2611 2612 2613
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2614
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2615 2616
    if true_fn is not None:
        if not callable(true_fn):
2617 2618 2619
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
                    type(true_fn).__name__))
2620 2621 2622 2623
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2624
                true_output = map_structure(copy_to_parent_func,
2625 2626 2627
                                            origin_true_output)
    if false_fn is not None:
        if not callable(false_fn):
2628 2629 2630
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
                    type(false_fn).__name__))
2631 2632
        false_cond_block = ConditionalBlock([logical_not(pred)],
                                            is_scalar_condition=True)
2633 2634 2635
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2636
                false_output = map_structure(copy_to_parent_func,
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
                                             origin_false_output)

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns None while false_fn returns non-None")
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
            "true_fn returns non-None while false_fn returns None")

    # Merge ture and false output if they are not None
2652
    if return_names is None:
2653
        is_dy2staic = False
2654 2655
        return_names = ["no name"] * len(to_sequence(true_output))
    else:
2656
        """
2657 2658
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2659 2660 2661 2662 2663 2664 2665
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2666 2667
        true_output, false_output = expand_undefined_var(
            true_output, false_output, return_names)
2668

2669
    if len(to_sequence(true_output)) != len(to_sequence(false_output)):
2670
        raise ValueError(
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
            "true fn returns {} vars, but false fn returns {} vars, which is not equals"
            .format(len(to_sequence(true_output)),
                    len(to_sequence(false_output))))
    for true_out, false_out, return_name in zip(to_sequence(true_output),
                                                to_sequence(false_output),
                                                to_sequence(return_names)):
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}"
                .format(return_name, e))
2683

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
    def check_ret_none(seq_true, seq_false, seq_names):
        length = len(seq_true)
        for i in range(length):
            f_true = flatten(seq_true[i])
            f_false = flatten(seq_false[i])
            for idx in range(len(f_true)):
                if f_true[idx] is None and f_false[idx] is not None or f_false[
                        idx] is None and f_true[idx] is not None:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            seq_names[i], type(f_true[idx]), f_true[idx],
                            type(f_false[idx]), f_false[idx]))

    check_ret_none(to_sequence(true_output), to_sequence(false_output),
                   to_sequence(return_names))

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
            true_output, false_output)

2706
    mask = cast(pred, dtype='int32')
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    merge_func = lambda name, false_var, true_var: select_input_with_buildin_type(
        [false_var, true_var], mask, name)

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
        map(merge_every_var_list, to_sequence(false_output),
            to_sequence(true_output), to_sequence(return_names)))
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2717 2718 2719
    return merged_output


2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
        if x is None: return UndefinedVar("padding")
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


def expand_undefined_var(nest1, nest2, names):
2733 2734 2735 2736 2737
    """ TODO: make this function recursively.
        nest1: Var1, (UndefinedVar, [1,2,3])
        nest2: Var2, ([1,2,3,4], UndefinedVar)
        In this case, we should not expand recursively.
    """
2738 2739 2740 2741 2742 2743 2744
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import RETURN_VALUE_PREFIX

    def pack_undefined_var_as(seq):
        return pack_sequence_as(seq,
                                [UndefinedVar("padding") for i in flatten(seq)])

2745
    def map_fn(n1, n2, name, order):
2746 2747
        if not name.startswith(RETURN_VALUE_PREFIX) and (isinstance(
                n1, UndefinedVar) or n1 is None):
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n1), n1, type(n2), n2))
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n2), n2, type(n1), n1))
2761 2762 2763 2764
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
2765 2766
        map(map_fn, to_sequence(nest1), to_sequence(nest2), to_sequence(names),
            [0 for i in to_sequence(names)]))
2767
    nest2_out = list(
2768 2769
        map(map_fn, to_sequence(nest2), to_sequence(nest1), to_sequence(names),
            [1 for i in to_sequence(names)]))
2770 2771 2772 2773 2774
    if not is_sequence(nest1): nest1_out = nest1_out[0]
    if not is_sequence(nest2): nest2_out = nest2_out[0]
    return nest1_out, nest2_out


L
liym27 已提交
2775
def _error_message(what, arg_name, op_name, right_value, error_value):
2776
    error_message = "{what} of '{arg_name}' in {op_name} must be " \
L
liym27 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
        "{right_value}, but received: {error_value}.".format(
        what=what,
        arg_name=arg_name,
        op_name=op_name,
        right_value=right_value,
        error_value=error_value)

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
2789 2790
    :api_attr: Static Graph

L
liym27 已提交
2791 2792 2793 2794 2795 2796 2797 2798
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2799
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
2800 2801 2802 2803 2804 2805 2806
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
2807
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
2808 2809 2810 2811 2812 2813
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

2814 2815 2816
            import paddle

            paddle.enable_static()
L
liym27 已提交
2817 2818

            def fn_1():
2819
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
2820 2821

            def fn_2():
2822
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
2823 2824

            def fn_3():
2825
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
2826

2827 2828 2829 2830
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
2831 2832 2833
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
2834

2835 2836 2837
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
2838 2839

                # Call fn_1 because pred_1 is True
2840
                out_1 = paddle.static.nn.case(
L
liym27 已提交
2841 2842 2843 2844
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
2845
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
2846

2847
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
2858
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
2859 2860 2861 2862 2863

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
                    _error_message("The elements' type", "pred_fn_pairs",
2864
                                   "case", tuple, type(pred_fn)))
L
liym27 已提交
2865 2866 2867
            if len(pred_fn) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "pred_fn_pairs", "case",
2868 2869
                                   "2",
                                   str(len(pred_fn)) + "-tuple"))
L
liym27 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
                    _error_message("The pred's type", "pred_fn_pairs", "case",
                                   "boolean Variable", type(pred)))

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
                    " be callable.".format(pred.name))

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


2902
class Switch(object):
Q
qiaolongfei 已提交
2903
    """
2904
    :api_attr: Static Graph
Q
qiaolongfei 已提交
2905

2906 2907 2908 2909 2910
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
2911 2912
    only the statement following the default branch is executed.

2913 2914 2915 2916
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

2917
    Member Functions:
2918
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
2919

2920 2921 2922 2923 2924
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
2935

2936 2937
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
2938 2939 2940

    Examples:
        .. code-block:: python
2941

2942
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
2943

2944
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
2945 2946 2947 2948 2949
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
2950
            zero_var = fluid.layers.fill_constant(
2951
                shape=[1], dtype='float32', value=0.0)
2952
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
2953
                shape=[1], dtype='float32', value=1.0)
2954
            two_var = fluid.layers.fill_constant(
2955
                shape=[1], dtype='float32', value=2.0)
2956

2957
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
2958 2959

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
2960
                with switch.case(global_step == zero_var):
2961
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
2962
                with switch.default():
2963
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
2964

2965 2966 2967 2968 2969
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
2970 2971
    """

2972 2973 2974 2975 2976 2977 2978 2979 2980
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

2981 2982 2983 2984
        check_variable_and_dtype(
            condition, 'condition', ['bool'],
            'the member function case of fluid.layers.Switch')

2985 2986 2987 2988 2989 2990 2991
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
2992 2993
            new_not_cond = logical_and(x=pre_not_cond,
                                       y=logical_not(x=condition))
2994 2995
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
2996
                [logical_and(x=pre_not_cond, y=condition)],
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3024 3025 3026


class IfElseBlockGuard(object):
3027

Y
Yu Yang 已提交
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
3061
    """
3062 3063
    :api_attr: Static Graph

3064 3065 3066 3067
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3068 3069 3070 3071
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3072 3073 3074
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3075

3076 3077 3078 3079 3080 3081 3082 3083 3084
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3085

3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3104
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3105 3106 3107 3108 3109 3110 3111 3112

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3113
        print(res)
3114
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3115 3116

    Args:
3117 3118
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3119

3120 3121
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3122

3123 3124
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3125

3126 3127 3128 3129 3130 3131 3132
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3133

X
Xin Pan 已提交
3134
    """
Y
Yu Yang 已提交
3135 3136 3137 3138
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3139
    def __init__(self, cond, name=None):
3140 3141
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3142
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3154
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3155
            out_true = parent_block.create_var(
3156 3157
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3158
                dtype=x.dtype)
Y
Yu Yang 已提交
3159 3160

            out_false = parent_block.create_var(
3161 3162
                name=unique_name.generate_with_ignorable_key('ifelse_input' +
                                                             self.helper.name),
F
fengjiayi 已提交
3163
                dtype=x.dtype)
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
            parent_block.append_op(type='split_lod_tensor',
                                   inputs={
                                       'X': x,
                                       'Mask': self.cond,
                                   },
                                   outputs={
                                       'OutTrue': out_true,
                                       'OutFalse': out_false
                                   },
                                   attrs={'level': 0})
Y
Yu Yang 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3183
    def _parent_block(self):
Y
Yu Yang 已提交
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
3199
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3200
        for each_out in outs:
3201 3202
            check_type(each_out, "each output", Variable,
                       "fluid.layers.IfElse.output")
Y
Yu Yang 已提交
3203 3204
            # create outside tensor
            outside_out = parent_block.create_var(
3205
                name=unique_name.generate_with_ignorable_key("_".join(
Y
Yu Yang 已提交
3206
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
3207
                dtype=each_out.dtype)
Y
Yu Yang 已提交
3208 3209 3210
            out_table.append(outside_out)

            # assign local var to outside
3211
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3212 3213 3214 3215

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3216
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3230 3231 3232 3233 3234
                merge_lod_tensor(in_true=true_var,
                                 in_false=false_var,
                                 mask=self.cond,
                                 x=self.cond,
                                 level=0))
Y
Yu Yang 已提交
3235
        return rlist
3236 3237 3238


class DynamicRNN(object):
Y
yuyang18 已提交
3239
    """
3240 3241
    :api_attr: Static Graph

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3254
    The input sequences will be shrank because only sequences of which the
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3267

3268 3269 3270 3271
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3272 3273 3274 3275

    Examples:
        .. code-block:: python

3276
            import paddle.fluid as fluid
3277

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3304
    """
3305 3306 3307 3308
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3309 3310
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3311 3312 3313 3314
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3315
        self.zero_idx = None
3316 3317 3318
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3319
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3320 3321 3322 3323 3324
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3325
    def step_input(self, x, level=0):
3326
        r"""
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3370

Y
yuyang18 已提交
3371
        Args:
3372 3373 3374 3375 3376 3377 3378
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3379 3380

        Returns:
3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3415
        """
3416
        self._assert_in_rnn_block_("step_input")
3417
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3418 3419 3420
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3421
                name=unique_name.generate('lod_rank_table'),
3422 3423
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
3424 3425 3426 3427
            parent_block.append_op(type='lod_rank_table',
                                   inputs={"X": x},
                                   outputs={"Out": self.lod_rank_table},
                                   attrs={"level": level})
3428
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3429 3430
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
3431
            self.max_seq_len.stop_gradient = False
3432 3433 3434
            parent_block.append_op(type='max_sequence_len',
                                   inputs={'RankTable': self.lod_rank_table},
                                   outputs={"Out": self.max_seq_len})
3435
            self.cond.stop_gradient = True
3436 3437 3438 3439 3440 3441 3442
            parent_block.append_op(type='less_than',
                                   inputs={
                                       'X': self.step_idx,
                                       'Y': self.max_seq_len
                                   },
                                   outputs={'Out': self.cond},
                                   attrs={'force_cpu': True})
3443 3444

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3445
            name=unique_name.generate('dynamic_rnn_input_array'),
3446 3447 3448
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
3449 3450 3451 3452 3453 3454
        parent_block.append_op(type='lod_tensor_to_array',
                               inputs={
                                   'X': x,
                                   'RankTable': self.lod_rank_table
                               },
                               outputs={'Out': input_array})
3455
        return array_read(array=input_array, i=self.step_idx)
3456

Y
yangyaming 已提交
3457
    def static_input(self, x):
3458
        r"""
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3532

Y
yuyang18 已提交
3533
        Args:
3534 3535 3536 3537
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3538 3539

        Returns:
T
tianshuo78520a 已提交
3540
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3552 3553 3554 3555

        Examples:
            .. code-block:: python

3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3582
        """
Y
yangyaming 已提交
3583
        self._assert_in_rnn_block_("static_input")
3584
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3585 3586 3587 3588 3589
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3590
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3591 3592
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
3593 3594 3595 3596 3597 3598
        parent_block.append_op(type='reorder_lod_tensor_by_rank',
                               inputs={
                                   'X': [x],
                                   'RankTable': [self.lod_rank_table]
                               },
                               outputs={'Out': [x_reordered]})
Y
yangyaming 已提交
3599 3600
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3601
    @signature_safe_contextmanager
3602
    def block(self):
Y
yuyang18 已提交
3603
        """
3604 3605 3606 3607 3608 3609
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3610
        """
3611 3612
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3613 3614 3615 3616
        self.step_idx = fill_constant(shape=[1],
                                      dtype='int64',
                                      value=0,
                                      force_cpu=True)
3617 3618 3619 3620
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3621
            increment(x=self.step_idx, value=1.0, in_place=True)
3622 3623

            for new_mem, mem_array in self.mem_link:
3624 3625
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3626 3627 3628 3629
            less_than(x=self.step_idx,
                      y=self.max_seq_len,
                      force_cpu=True,
                      cond=self.cond)
3630 3631 3632 3633

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3634
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table))
3635 3636

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3637
        """
T
tianshuo78520a 已提交
3638
        This function is used to get the output  sequences of DynamicRNN.
3639 3640 3641 3642 3643 3644 3645 3646 3647

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3648
        """
3649
        if self.status != DynamicRNN.AFTER_RNN:
3650 3651
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
3652 3653 3654 3655 3656
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3657 3658 3659 3660 3661 3662
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
3663
        r"""
3664 3665 3666
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3667

3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3680
            value (float, optional): When init is None, it is used as initialized value
3681 3682
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
3683
                the memory needs to reorder like the RNN's input sequences. It should be
3684 3685 3686 3687 3688 3689 3690
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
3691
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
3692
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
3693
                the memory Tensor also need to be shrank and will only retain data \
3694 3695 3696 3697 3698 3699
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3700

3701 3702 3703
        Examples:
            .. code-block:: python

3704
                import paddle.fluid as fluid
3705

3706 3707
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
3708

3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
3720

3721 3722
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3723 3724


3725 3726
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
3727

3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3747
        """
3748
        self._assert_in_rnn_block_('memory')
3749
        self._init_zero_idx_()
3750 3751 3752
        if shape is not None:
            check_type(shape, 'shape', (list, tuple),
                       'fluid.layers.DynamicRNN.memory()')
3753
        if init is not None:
3754 3755
            check_type(init, 'init', Variable,
                       'fluid.layers.DynamicRNN.memory()')
3756
            parent_block = self._parent_block_()
3757 3758 3759 3760 3761 3762 3763 3764
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3765
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
3766 3767
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
3768 3769 3770 3771 3772 3773
                parent_block.append_op(type='reorder_lod_tensor_by_rank',
                                       inputs={
                                           'X': [init_tensor],
                                           'RankTable': [self.lod_rank_table]
                                       },
                                       outputs={'Out': [init_reordered]})
3774
                init_tensor = init_reordered
3775
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
3776
                name=unique_name.generate('dynamic_rnn_mem_array'),
3777 3778
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
3779 3780 3781 3782 3783 3784
            parent_block.append_op(type='write_to_array',
                                   inputs={
                                       'X': init_tensor,
                                       'I': self.zero_idx
                                   },
                                   outputs={'Out': mem_array})
3785
            retv = array_read(array=mem_array, i=self.step_idx)
3786 3787 3788
            retv = shrink_memory(x=retv,
                                 i=self.step_idx,
                                 table=self.lod_rank_table)
3789 3790 3791 3792 3793 3794 3795 3796 3797
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
3798
                name=unique_name.generate('mem_init'), dtype=dtype)
3799
            arr, dtype = self.input_array[0]
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
            in0 = parent_block.create_var(name=unique_name.generate('in0'),
                                          dtype=dtype)
            parent_block.append_op(type='read_from_array',
                                   inputs={
                                       'X': [arr],
                                       'I': [self.zero_idx]
                                   },
                                   outputs={'Out': [in0]})
            parent_block.append_op(type='fill_constant_batch_size_like',
                                   inputs={'Input': [in0]},
                                   outputs={'Out': [init]},
                                   attrs={
                                       'shape': [-1] + shape,
                                       'value': float(value),
                                       'dtype': init.dtype
                                   })
3816 3817 3818
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
3819
        """
3820 3821
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
3822
        Args:
3823 3824 3825
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
3826 3827 3828

        Returns:
            None
3829

3830 3831 3832 3833 3834
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
3835
        """
3836
        self._assert_in_rnn_block_('update_memory')
3837 3838 3839 3840
        check_type(ex_mem, 'ex_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
        check_type(new_mem, 'new_mem', Variable,
                   'fluid.layers.DynamicRNN.update_memory()')
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
3851
        """
3852
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
3853 3854

        Args:
3855 3856
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
3857 3858 3859

        Returns:
            None
3860 3861 3862

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
3863
        """
3864 3865 3866
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
3867 3868
            check_type(each, "outputs", Variable,
                       "fluid.layers.DynamicRNN.output")
3869
            outside_array = parent_block.create_var(
3870
                name=unique_name.generate_with_ignorable_key("_".join(
3871 3872 3873 3874 3875 3876
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

3877 3878 3879 3880 3881
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
3882 3883 3884 3885 3886 3887 3888 3889 3890
            parent_block.append_op(type='fill_constant',
                                   inputs={},
                                   outputs={'Out': [self.zero_idx]},
                                   attrs={
                                       'shape': [1],
                                       'dtype': self.zero_idx.dtype,
                                       'value': float(0),
                                       'force_cpu': True
                                   })
3891

3892 3893 3894 3895 3896 3897 3898 3899 3900 3901
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
3902 3903
            raise ValueError(
                "{0} can only be invoked inside rnn block.".format(method))
Y
Yang Yu 已提交
3904 3905


L
liym27 已提交
3906 3907
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
3908 3909
    :api_attr: Static Graph

L
liym27 已提交
3910 3911 3912
    This operator is like a C++ switch/case statement.

    Args:
3913
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
3914 3915 3916 3917 3918
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3919
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
3920 3921 3922 3923
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
3924
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3936 3937 3938
            import paddle

            paddle.enable_static()
3939

L
liym27 已提交
3940
            def fn_1():
3941
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3942 3943

            def fn_2():
3944
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3945 3946

            def fn_3():
3947
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3948

3949 3950 3951
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
3952 3953
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
3954

3955
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
3956 3957 3958 3959
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

3960
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
3961 3962 3963 3964 3965
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
3966
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
3967 3968 3969
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

3970
                exe = paddle.static.Executor(paddle.CPUPlace())
3971
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
3972 3973 3974 3975 3976 3977 3978 3979
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

3980 3981
        check_variable_and_dtype(branch_index, 'branch_index',
                                 ['uint8', 'int32', 'int64'], 'switch_case')
L
liym27 已提交
3982 3983 3984 3985

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

3986
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998

        branch_fns = branch_fns.items() if isinstance(branch_fns,
                                                      dict) else branch_fns

        branch_fns = list(enumerate(branch_fns)) if all(
            callable(fn) for fn in branch_fns) else branch_fns

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
                    _error_message("The elements' type", "branch_fns",
3999
                                   "switch_case", tuple, type(branch_fns)))
L
liym27 已提交
4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011

            if len(index_fn_pair) != 2:
                raise TypeError(
                    _error_message("The tuple's size", "branch_fns",
                                   "switch_case", "2",
                                   str(len(index_fn_pair)) + "-tuple"))

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
                    _error_message("The key's type", "branch_fns",
4012
                                   "switch_case", int, type(key)))
L
liym27 已提交
4013 4014 4015

            if key in keys_of_fns:
                raise ValueError(
4016 4017
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once."
                    .format(key))
L
liym27 已提交
4018 4019 4020 4021 4022
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4023 4024 4025
                    _error_message(
                        "The type of function for key {}".format(key),
                        "branch_fns", "switch_case", "callable", type(fn)))
L
liym27 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4050
@templatedoc()
Y
Yang Yu 已提交
4051
def reorder_lod_tensor_by_rank(x, rank_table):
4052 4053 4054 4055
    """
    ${comment}

    Args:
4056 4057
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4058

4059
    Returns:
4060
        out(${out_type}): ${out_comment}.
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4074 4075 4076 4077 4078 4079 4080

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
    check_type(rank_table, 'rank_table', (Variable),
               'reorder_lod_tensor_by_rank')
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4081 4082
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4083
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4084 4085 4086 4087 4088 4089
    helper.append_op(type='reorder_lod_tensor_by_rank',
                     inputs={
                         'X': [x],
                         'RankTable': [rank_table]
                     },
                     outputs={'Out': [out]})
Y
Yang Yu 已提交
4090
    return out
4091 4092


4093
def is_empty(x, name=None):
4094
    """
4095

4096
    Test whether a Tensor is empty.
4097 4098

    Args:
4099 4100 4101 4102
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4103 4104

    Returns:
4105
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4106 4107 4108 4109

    Examples:
        .. code-block:: python

4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4121

4122
    """
H
hong 已提交
4123
    if in_dygraph_mode():
W
wanghuancoder 已提交
4124
        return _C_ops.is_empty(x)
4125 4126
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4127

4128 4129
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'is_empty')
4130 4131
    check_type(name, "name", (str, type(None)), "is_empty")

4132
    helper = LayerHelper("is_empty", **locals())
4133 4134
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4135 4136 4137
    helper.append_op(type='is_empty',
                     inputs={'X': [x]},
                     outputs={'Out': [cond]})
4138
    return cond