nn.py 333.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35 36 37 38 39 40 41 42 43
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
44
    'bpr_loss',
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
55 56
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
57 58 59 60 61 62 63
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
64
    'sequence_unpad',
X
Xin Pan 已提交
65 66 67 68 69 70 71 72
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
73
    'sequence_slice',
X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
91
    'group_norm',
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
105
    'roi_align',
X
Xin Pan 已提交
106 107 108 109
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
110
    'resize_nearest',
X
Xin Pan 已提交
111 112 113 114 115 116
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
117
    'selu',
X
Xin Pan 已提交
118 119 120
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
121
    'margin_rank_loss',
X
Xin Pan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
165
    'space_to_depth',
W
whs 已提交
166
    'affine_grid',
S
sneaxiy 已提交
167
    'sequence_reverse',
168
    'affine_channel',
B
barrierye 已提交
169
    'similarity_focus',
M
minqiyang 已提交
170
    'hash',
D
dengkaipeng 已提交
171
    'grid_sampler',
G
gmcather 已提交
172 173
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
174
    'bilinear_tensor_product',
C
chengduo 已提交
175 176
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
177
    'lstm',
Y
Yu Yang 已提交
178 179
]

J
jerrywgz 已提交
180 181
kIgnoreIndex = -100

Y
Yu Yang 已提交
182 183 184 185 186 187 188

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
189
       is_test=False,
190
       name=None):
Y
Yu Yang 已提交
191
    """
192
    **Fully Connected Layer**
Y
Yu Yang 已提交
193

194 195 196 197 198 199 200 201
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
202
    to the output as well.
C
caoying03 已提交
203

C
caoying03 已提交
204
    This process can be formulated as follows:
205 206 207

    .. math::

208
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
209 210 211

    In the above equation:

C
caoying03 已提交
212 213 214 215
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
216
    * :math:`Act`: The activation function.
C
caoying03 已提交
217
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
218 219

    Args:
R
ranqiu 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
235 236
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
237
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
238
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
239
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
240

241
    Returns:
F
fengjiayi 已提交
242
        Variable: The transformation result.
243 244

    Raises:
C
caoying03 已提交
245
        ValueError: If rank of the input tensor is less than 2.
246 247 248 249

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
250
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
251
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
252
    """
C
caoying03 已提交
253

C
caoying03 已提交
254
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
255 256 257 258

    dtype = helper.input_dtype()

    mul_results = []
259 260
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
261 262 263
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
264

Y
Yu Yang 已提交
265
        w = helper.create_parameter(
266
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
267
        tmp = helper.create_variable_for_type_inference(dtype)
268
        helper.append_op(
269 270 271
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
272
            outputs={"Out": tmp},
M
mozga-intel 已提交
273 274
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
275 276 277 278
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
279
    else:
X
Xin Pan 已提交
280
        pre_bias = helper.create_variable_for_type_inference(dtype)
281
        helper.append_op(
282 283 284
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
285
            attrs={"use_mkldnn": False})
286 287 288 289
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
290 291


292 293 294
def embedding(input,
              size,
              is_sparse=False,
295
              is_distributed=False,
296 297 298
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
299
    """
300 301
    **Embedding Layer**

302
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
303 304
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
305 306 307

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
308 309

    Args:
310 311 312 313 314
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
315
        is_distributed(bool): Whether to run lookup table from remote parameter server.
316 317
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
318
            with zeros whenever lookup encounters it in :attr:`input`. If
319
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
320 321
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
322
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
323

324 325 326
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
327

328 329
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
330

C
chengduoZH 已提交
331
          dict_size = len(dataset.ids)
332
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
333
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
334 335 336
    """

    helper = LayerHelper('embedding', **locals())
337 338 339
    remote_prefetch = False
    if os.environ.get('PADDLE_ENABLE_REMOTE_PREFETCH'):
        remote_prefetch = True
Q
Qiao Longfei 已提交
340 341
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
342 343
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
344
    tmp = helper.create_variable_for_type_inference(dtype)
345 346
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
347 348 349 350 351
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
352 353 354
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
355
            'remote_prefetch': remote_prefetch,
356 357
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
358 359 360
    return tmp


W
wopeizl 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
377

W
wopeizl 已提交
378 379 380 381 382 383 384 385 386 387 388
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
389

W
wopeizl 已提交
390 391 392 393
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
394

W
wopeizl 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
481 482


P
phlrain 已提交
483 484 485 486 487 488
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
489
         dropout_prob=0.0,
P
phlrain 已提交
490 491 492 493 494
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
495
    """
P
phlrain 已提交
496
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
497 498 499 500 501

    A four-gate Long Short-Term Memory network with no peephole connections.
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, 
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

P
phlrain 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
    $$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$

    $$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$

    $$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$

    $$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$

    $$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$

    $$ h_t = o_t \\odot tanh(c_t) $$

    - W terms denote weight matrices (e.g. $W_{ix}$ is the matrix
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
    - The $\odot$ is the element-wise product of the vectors.
    - `tanh` is the activation functions.
    - $\tilde{c_t}$ is also called candidate hidden state,
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

    Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, 
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
        init_h(Variable): The initial hidden state of the LSTM                       
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len 
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
541 542
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
543 544 545 546 547 548
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
549
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
550

L
liuhongyu 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

    Returns:
        rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size)
                         if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
        last_h(Tensor): the hidden state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     
        last_c(Tensor): the cell state of the last step of LSTM
                        shape is ( num_layers x batch_size x hidden_size )
                        if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)                     


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
576
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
577 578 579 580 581 582
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
583 584 585
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
645 646 647 648 649 650 651 652 653 654 655
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
656 657
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
658 659 660
    """
    **Dynamic LSTMP Layer**

661 662 663 664 665 666
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
667 668 669 670 671

    The formula is as follows:

    .. math::

672
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
673

674
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
675

676
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
677

678
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
679

680
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
681

682
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
683

684
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
685

Y
Yibing Liu 已提交
686 687 688 689 690 691
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
692
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
693
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
694
          bias vector).
Y
Yibing Liu 已提交
695 696 697
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
698
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
699
    * :math:`h`: The hidden state.
700
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
701 702
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
703
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
704
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
705
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
706 707
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
708 709 710 711

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
712

Y
Yibing Liu 已提交
713 714 715 716 717 718 719 720 721 722 723 724
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
725
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
726 727
                               hidden-hidden weight and projection weight.

728 729
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
730 731
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
732 733
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
734
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
735 736 737 738 739

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
740
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
741 742 743 744 745 746
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
747
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
748 749 750
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
751
                                - The shape is (1 x 7D).
C
chengduo 已提交
752 753 754 755 756

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
757 758 759 760 761 762 763 764 765
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
766
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
767 768
                              default "tanh".
        proj_activation(str): The activation for projection output.
769
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
770 771
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
772 773
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
774 775

    Returns:
776 777 778 779
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
780 781

    Examples:
782

Y
Yibing Liu 已提交
783 784
        .. code-block:: python

785 786 787 788
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
789
            hidden_dim, proj_dim = 512, 256
790
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
791
                                     act=None, bias_attr=None)
792 793 794
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
795 796 797 798
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
799
    """
800

C
chengduo 已提交
801
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
802
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
803
    size = size // 4
Y
Yibing Liu 已提交
804 805 806 807 808 809 810 811 812 813
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
814 815 816 817 818 819
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
848 849 850 851 852 853 854 855 856
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
857
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
858

859
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
860
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
861

G
guosheng 已提交
862 863 864 865 866 867 868 869 870
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
871

G
guosheng 已提交
872
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
873

G
guosheng 已提交
874
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
875 876
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
877 878 879 880
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
881
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
882 883

    Args:
884 885
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
886
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
887
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
888 889
            is the hidden size.
        size(int): The dimension of the gru cell.
890
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
891 892
            hidden-hidden weight matrix. Note:

893
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
894
              :math:`D` is the hidden size.
895
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
896
              The first part are weights of the update gate and reset gate with
897
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
898
              candidate hidden state with shape :math:`(D \\times D)`.
899 900 901 902 903

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
904
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
905
            the bias in the update gate, reset gate and candidate calculations.
906 907 908
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
909 910
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
911
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
912 913 914
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
915
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
916
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
917 918 919 920
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
921 922

    Returns:
G
guosheng 已提交
923
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
924
            and sequence length is the same with the input.
925

G
guosheng 已提交
926
    Examples:
927

G
guosheng 已提交
928 929
        .. code-block:: python

930 931 932 933
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
934
            hidden_dim = 512
935
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
936
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
937 938 939 940 941 942 943 944 945
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
946
    batch_size = input.shape[0]
G
guosheng 已提交
947
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
948
    if h_0:
G
guosheng 已提交
949
        assert h_0.shape == (
Y
Yancey 已提交
950 951 952
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
953

X
Xin Pan 已提交
954 955 956 957
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
976 977 978
def gru_unit(input,
             hidden,
             size,
979 980
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
981
             activation='tanh',
982
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
983
    """
984
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
985

986 987
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
988

989
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
990

991
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
992

993
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
994 995

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
996 997 998
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
999 1000
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1001 1002
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1003 1004 1005
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1006 1007 1008

    Args:
        input (Variable): The fc transformed input value of current step.
1009
        hidden (Variable): The hidden value of gru unit from previous step.
1010
        size (integer): The input dimension value.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1025
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates
1026
            the bias in the update gate, reset gate and candidate calculations.
1027 1028 1029
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1030 1031
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1032 1033 1034 1035
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1036

1037 1038 1039 1040 1041 1042
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1043

1044
             # assuming we have x_t_data and prev_hidden of size=10
1045
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1046 1047
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1060
    size = size // 3
Y
Yu Yang 已提交
1061 1062

    # create weight
1063 1064
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1065

X
Xin Pan 已提交
1066 1067 1068
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1069
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1070
    # create bias
1071
    if helper.bias_attr:
Y
Yu Yang 已提交
1072 1073 1074
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1075
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1076 1077 1078

    helper.append_op(
        type='gru_unit',
1079
        inputs=inputs,
Y
Yu Yang 已提交
1080 1081 1082 1083 1084 1085
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1086 1087
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1088 1089 1090 1091 1092
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1093
@templatedoc()
1094
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1095 1096 1097 1098 1099 1100 1101
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1102
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1103 1104 1105 1106
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1107 1108 1109
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1110 1111

    """
Y
Yu Yang 已提交
1112 1113 1114 1115 1116 1117
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1118 1119 1120 1121 1122 1123 1124 1125
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1141 1142 1143 1144
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1145

W
wopeizl 已提交
1146 1147
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1148

W
wopeizl 已提交
1149
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1150

W
wopeizl 已提交
1151
        label(${label_type}): ${label_comment}
1152

W
wopeizl 已提交
1153 1154
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1155

W
wopeizl 已提交
1156 1157
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1158

W
wopeizl 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1169
                "Transition": transition,
W
wopeizl 已提交
1170 1171
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1172

W
wopeizl 已提交
1173
    return viterbi_path
Y
Yu Yang 已提交
1174 1175


Y
yi.wu 已提交
1176
@templatedoc()
F
fengjiayi 已提交
1177
def cos_sim(X, Y):
Y
Yu Yang 已提交
1178
    """
Y
yi.wu 已提交
1179 1180 1181
    ${comment}

    Args:
1182 1183
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1184

Y
yi.wu 已提交
1185
    Returns:
1186
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1187
    """
F
fengjiayi 已提交
1188
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1189 1190 1191
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1202 1203 1204 1205 1206
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1207
            dropout_implementation="downgrade_in_infer"):
1208 1209 1210 1211 1212
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1213
    training. The dropout operator randomly sets (according to the given dropout
1214 1215 1216 1217
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1218 1219
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1220 1221 1222 1223 1224 1225 1226
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
1238
                                           dropout op can be removed from the program.
P
phlrain 已提交
1239
                                           the program will be efficient
1240

P
phlrain 已提交
1241

1242 1243

    Returns:
1244
        Variable: A tensor variable is the shape with `x`.
1245 1246

    Examples:
1247

1248 1249
        .. code-block:: python

1250 1251
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1252 1253
    """

F
fengjiayi 已提交
1254
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1255 1256 1257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1258 1259 1260 1261

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1262 1263 1264 1265 1266
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1267 1268 1269 1270
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1271 1272
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1273
        })
1274 1275 1276
    return out


J
jerrywgz 已提交
1277
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1278
    """
Y
Yibing Liu 已提交
1279 1280
    **Cross Entropy Layer**

1281 1282 1283
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1284 1285

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1286
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1287

Y
Yibing Liu 已提交
1288
        .. math::
Y
yangyaming 已提交
1289

Y
Yibing Liu 已提交
1290 1291 1292
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1293 1294
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1295 1296 1297 1298 1299

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1300
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1301 1302 1303
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1304 1305
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1306
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1307

Y
Yibing Liu 已提交
1308
    Args:
Y
yangyaming 已提交
1309
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1310 1311 1312 1313
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1314
        label (Variable|list): the ground truth which is a 2-D tensor. When
1315 1316 1317 1318
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1319
        soft_label (bool): a flag indicating whether to
1320
                                           interpretate the given labels as soft
1321
                                           labels. Default: `False`.
M
minqiyang 已提交
1322 1323
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1324
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1325 1326 1327 1328 1329

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1330 1331 1332 1333 1334
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1335 1336 1337 1338 1339 1340

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1341
    """
F
fengjiayi 已提交
1342
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1343
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1344 1345 1346 1347 1348
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1349 1350
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1351 1352 1353
    return out


F
frankwhzhang 已提交
1354
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1355 1356 1357
    """
    Bayesian Personalized Ranking Loss Operator.

1358
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1359 1360 1361 1362 1363 1364
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1365 1366 1367 1368 1369 1370
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1371 1372
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1373 1374 1375
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1376 1377 1378
    Examples:
        .. code-block:: python

1379
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1380
    """
1381 1382 1383 1384 1385 1386

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1387
                'Label': [label]},
1388 1389 1390 1391
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1392
def square_error_cost(input, label):
Y
Yu Yang 已提交
1393
    """
1394 1395
    **Square error cost layer**

1396 1397
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1412 1413
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1414 1415

    Returns:
G
guosheng 已提交
1416
        Variable: The tensor variable storing the element-wise squared error \
1417
                  difference of input and label.
1418 1419 1420 1421 1422 1423 1424 1425

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1426
    """
F
fengjiayi 已提交
1427
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1428
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1429 1430 1431 1432 1433 1434
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1435
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1436
    helper.append_op(
F
fengjiayi 已提交
1437 1438
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1439 1440 1441
    return square_out


Y
yi.wu 已提交
1442
@templatedoc()
Y
Yu Yang 已提交
1443 1444 1445 1446
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1447
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1448
    """
Y
yi.wu 已提交
1449
    **Chunk Evaluator**
Y
yi.wu 已提交
1450

Y
yangyaming 已提交
1451
    This function computes and outputs the precision, recall and
1452
    F1-score of chunk detection.
Y
yi.wu 已提交
1453

Y
yi.wu 已提交
1454 1455 1456 1457 1458 1459 1460 1461
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1462

Y
yi.wu 已提交
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1488

Y
yi.wu 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1513
    Args:
1514 1515 1516 1517 1518
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1519

Y
yi.wu 已提交
1520
    Returns:
Y
update  
yi.wu 已提交
1521 1522 1523
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1524

Y
yi.wu 已提交
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1537
    """
F
fengjiayi 已提交
1538
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1539 1540

    # prepare output
X
Xin Pan 已提交
1541 1542 1543 1544 1545 1546 1547
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1548 1549 1550 1551 1552 1553 1554 1555

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1556 1557 1558 1559
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1560 1561 1562
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1563 1564
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1565
        })
1566 1567
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1568 1569


1570
@templatedoc()
Y
Yu Yang 已提交
1571 1572 1573 1574 1575 1576 1577
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1578 1579
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1580 1581 1582 1583
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1584 1585 1586 1587 1588 1589 1590

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1604

1605 1606
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1607 1608 1609 1610 1611 1612 1613
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1614
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1625
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1626 1627 1628 1629 1630 1631
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1632
def sequence_softmax(input, use_cudnn=False, name=None):
1633 1634 1635
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1636
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1653 1654 1655
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1668 1669
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1670
    softmax_out = helper.create_variable_for_type_inference(dtype)
1671 1672 1673 1674 1675 1676 1677 1678
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1679
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1680
    """
1681
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1682
    has the same shape as the input.
Q
qiaolongfei 已提交
1683

1684 1685 1686 1687 1688 1689
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1690
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1691 1692 1693 1694 1695 1696 1697

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1698
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1699 1700 1701 1702 1703 1704 1705 1706

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1707 1708 1709
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1722 1723
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1724
    softmax_out = helper.create_variable_for_type_inference(dtype)
1725 1726 1727 1728 1729 1730 1731 1732
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1733 1734 1735
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1736 1737
           stride=1,
           padding=0,
1738
           dilation=1,
Y
Yu Yang 已提交
1739 1740 1741
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1742
           use_cudnn=True,
1743 1744
           act=None,
           name=None):
Y
Yu Yang 已提交
1745
    """
C
chengduoZH 已提交
1746
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1747 1748
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1749
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1750 1751 1752 1753 1754 1755 1756
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1757 1758 1759
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1760

1761
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1762

C
chengduoZH 已提交
1763 1764
    .. math::

C
refine  
chengduoZH 已提交
1765
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1766

T
tensor-tang 已提交
1767
    Where:
C
chengduoZH 已提交
1768

1769 1770 1771 1772 1773
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1774
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1775 1776 1777

    Example:

1778 1779
        - Input:

W
weixing02 已提交
1780
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1781

W
weixing02 已提交
1782
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1783

1784
        - Output:
T
tensor-tang 已提交
1785

W
weixing02 已提交
1786
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1787

C
chengduoZH 已提交
1788
        Where
1789 1790

        .. math::
C
chengduoZH 已提交
1791

W
weixing02 已提交
1792 1793
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1794 1795

    Args:
1796
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1797
        num_filters(int): The number of filter. It is as same as the output
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1826 1827
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1828 1829
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1830
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1831
            will be named automatically. Default: None
C
chengduoZH 已提交
1832 1833

    Returns:
G
guosheng 已提交
1834
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1835 1836
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1837
    Raises:
1838 1839
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1840

C
chengduoZH 已提交
1841 1842 1843
    Examples:
        .. code-block:: python

1844 1845
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1846 1847 1848
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1849
    assert param_attr is not False, "param_attr should not be False here."
1850
    l_type = 'conv2d'
X
xzl 已提交
1851 1852
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1853
        l_type = 'depthwise_conv2d'
1854 1855 1856 1857

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1858 1859 1860 1861 1862
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1863
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1864

C
chengduoZH 已提交
1865 1866 1867
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1868
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1869

C
chengduoZH 已提交
1870 1871
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1872 1873

    input_shape = input.shape
M
minqiyang 已提交
1874
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1875 1876

    def _get_default_param_initializer():
C
chengduo 已提交
1877 1878
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1879 1880 1881 1882 1883 1884 1885 1886
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1887
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1903
    helper.append_op(
1904
        type=l_type,
Y
Yu Yang 已提交
1905 1906 1907 1908 1909
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1910 1911 1912
        attrs={
            'strides': stride,
            'paddings': padding,
1913
            'dilations': dilation,
C
chengduoZH 已提交
1914
            'groups': groups,
1915
            'use_cudnn': use_cudnn,
1916
            'use_mkldnn': False,
C
chengduoZH 已提交
1917
        })
Y
Yu Yang 已提交
1918 1919 1920 1921 1922 1923

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1941 1942 1943 1944 1945 1946
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1956 1957
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1958 1959 1960
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1961
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1987
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1988 1989
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1990
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1991 1992
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1993
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1994 1995
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1996
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1997 1998 1999 2000 2001 2002
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2013 2014
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2015 2016
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2017
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2018
            will be named automatically. Default: None.
C
chengduoZH 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2031 2032
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2033 2034 2035
    """

    l_type = 'conv3d'
C
chengduo 已提交
2036
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2047
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2061 2062 2063
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2064 2065 2066 2067 2068 2069 2070 2071
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2072
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2087
            'use_mkldnn': False
C
chengduoZH 已提交
2088 2089
        })

2090
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2091 2092 2093 2094

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2095
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2096
    """
Y
yangyaming 已提交
2097 2098 2099
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2111
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2112 2113 2114 2115 2116
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2117
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2118 2119 2120 2121 2122 2123 2124

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2125 2126
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2127

L
Luo Tao 已提交
2128 2129
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2130
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2131
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2132
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2133 2134 2135 2136 2137 2138 2139

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2140

Y
yangyaming 已提交
2141
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2142 2143 2144 2145 2146
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2147 2148
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2149
    """
F
fengjiayi 已提交
2150
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2151
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2152 2153
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2154 2155 2156 2157 2158 2159

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2160 2161
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2162

Y
yangyaming 已提交
2163 2164 2165 2166 2167
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2168 2169 2170
    return pool_out


C
add doc  
chengduoZH 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2190
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2191 2192 2193 2194 2195
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2196
def sequence_first_step(input):
L
Luo Tao 已提交
2197
    """
L
Luo Tao 已提交
2198
    This function gets the first step of sequence.
L
Luo Tao 已提交
2199 2200 2201 2202

    .. code-block:: text

       x is a 1-level LoDTensor:
2203
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2204 2205 2206 2207 2208
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2209
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2210
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2211

L
Luo Tao 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2221

Y
yangyaming 已提交
2222
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2223 2224 2225
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2226 2227 2228
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2229
def sequence_last_step(input):
L
Luo Tao 已提交
2230
    """
L
Luo Tao 已提交
2231
    This function gets the last step of sequence.
L
Luo Tao 已提交
2232 2233 2234 2235

    .. code-block:: text

       x is a 1-level LoDTensor:
2236
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2237 2238 2239 2240 2241
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2242
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2243
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2244

L
Luo Tao 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2254

Y
yangyaming 已提交
2255
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2256 2257 2258
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2259 2260 2261
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2262 2263 2264 2265
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2266
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2267 2268 2269 2270 2271
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2272

Y
Yibing Liu 已提交
2273 2274
	- Case:

2275
            Given the input Variable **input**:
2276

2277 2278 2279
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2280

2281
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2282

2283
            the output Variable will be
2284

2285 2286 2287
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2288 2289

    NOTE: The first dimension size of **input**, **offset** and **length**
2290
          should be equal. The **offset** should start from 0.
2291

Y
Yibing Liu 已提交
2292
    Args:
2293
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2294
                         sequences.
Y
Yibing Liu 已提交
2295 2296 2297 2298 2299 2300
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2301
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2312
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2313 2314 2315 2316
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2317
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2332
@templatedoc()
Y
Yu Yang 已提交
2333
def pool2d(input,
C
chengduoZH 已提交
2334 2335
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2336 2337
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2338
           global_pooling=False,
C
chengduoZH 已提交
2339
           use_cudnn=True,
2340
           ceil_mode=False,
2341 2342
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2343
    """
F
fengjiayi 已提交
2344
    ${comment}
2345 2346

    Args:
2347 2348 2349
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2350
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2351
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2352 2353
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2354
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2355 2356 2357 2358 2359 2360
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2361 2362 2363
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2364
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2365
                        layer will be named automatically.
2366
        exclusive (bool): Whether to exclude padding points in average pooling
2367
                          mode, default is true
F
fengjiayi 已提交
2368

2369
    Returns:
F
fengjiayi 已提交
2370
        Variable: The pooling result.
F
fengjiayi 已提交
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2384 2385 2386 2387
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2388
                            global_pooling=False)
Y
Yu Yang 已提交
2389 2390 2391 2392 2393
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2394

C
chengduoZH 已提交
2395 2396 2397 2398 2399
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2400 2401 2402 2403
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2404 2405
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2406

C
Add doc  
chengduoZH 已提交
2407
    l_type = 'pool2d'
2408 2409

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2410
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2411
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2412 2413

    helper.append_op(
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2425 2426
            "use_mkldnn": False,
            "exclusive": exclusive,
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2440 2441
           name=None,
           exclusive=True):
2442 2443
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2444
    pooling configurations mentioned in input parameters.
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2457
        exclusive (bool): Whether to exclude padding points in average pooling
2458
                          mode, default is true
2459

2460
    Returns:
2461
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2462 2463 2464 2465 2466
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2467

C
chengduoZH 已提交
2468 2469 2470 2471 2472
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2473 2474 2475
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2476

C
chengduoZH 已提交
2477 2478
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2479

2480 2481
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2482
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2483
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2484 2485

    helper.append_op(
2486
        type=l_type,
Y
Yu Yang 已提交
2487 2488 2489 2490 2491 2492 2493
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2494
            "paddings": pool_padding,
2495
            "use_cudnn": use_cudnn,
2496
            "ceil_mode": ceil_mode,
2497 2498
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2499 2500 2501 2502 2503
        })

    return pool_out


2504 2505 2506 2507 2508
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
D
dengkaipeng 已提交
2509
                    use_cudnn=False,
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
D
dengkaipeng 已提交
2524
        use_cudnn (bool, default False): adaptive pool currently not supported in cudnn.
2525 2526 2527 2528 2529 2530 2531 2532 2533
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: 'use_cudnn' is not a bool value.
D
dengkaipeng 已提交
2534
        ValueError: adaptive pool currently not supported in cudnn.
2535 2536 2537 2538 2539 2540 2541 2542 2543
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2544
          pool_out = fluid.layers.adaptive_pool2d(
2545 2546 2547
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max',
D
dengkaipeng 已提交
2548
                            require_index=False)
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 2:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 2.")

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False.")

D
dengkaipeng 已提交
2569 2570 2571
    if use_cudnn:
        raise ValueError("adaptive pool currently not supported in cudnn.")

2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "use_cudnn": use_cudnn,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2597
    return (pool_out, mask) if require_index else pool_out
2598 2599 2600 2601 2602 2603 2604


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
D
dengkaipeng 已提交
2605
                    use_cudnn=False,
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
                    name=None):
    """
    ${comment}

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (Depth, Height, Width).
        pool_type: ${pooling_type_comment}
        require_index (bool): If true, the index of max pooling point along with outputs.
            it cannot be set in average pooling type.
D
dengkaipeng 已提交
2620
        use_cudnn (bool, default False): adaptive pool currently not supported in cudnn.
2621 2622 2623 2624 2625 2626 2627 2628 2629
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: 'use_cudnn' is not a bool value.
D
dengkaipeng 已提交
2630
        ValueError: adaptive pool currently not supported in cudnn.
2631 2632 2633 2634 2635 2636 2637 2638 2639
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2640
          pool_out, mask = fluid.layers.adaptive_pool3d(
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
                            input=data,
                            pool_size=[3, 3],
                            pool_type='max',
                            require_index=True)
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(pool_size) or len(pool_size) != 3:
        raise ValueError(
            "'pool_size' should be a list or tuple with length as 3.")

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False.")

D
dengkaipeng 已提交
2665 2666 2667
    if use_cudnn:
        raise ValueError("adaptive pool currently not supported in cudnn.")

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "use_cudnn": use_cudnn,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2693
    return (pool_out, mask) if require_index else pool_out
2694 2695


Y
Yu Yang 已提交
2696 2697 2698 2699 2700 2701 2702
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2703
               data_layout='NCHW',
Y
Yang Yang 已提交
2704
               in_place=False,
2705 2706
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2707
               moving_variance_name=None,
2708
               do_model_average_for_mean_and_var=False,
2709 2710
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2711
    """
Q
qiaolongfei 已提交
2712 2713 2714 2715
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2716

Q
qiaolongfei 已提交
2717
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2718

Q
qiaolongfei 已提交
2719 2720
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2721 2722 2723
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2736

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2750
    Args:
Q
qiaolongfei 已提交
2751
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2752 2753 2754 2755
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2756 2757 2758 2759 2760 2761 2762 2763
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2764
        data_layout(string, default NCHW): NCHW|NHWC
2765
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2766 2767 2768 2769
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2770
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2771
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2772 2773 2774 2775 2776
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
2777 2778

    Returns:
Q
qiaolongfei 已提交
2779
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2780 2781 2782 2783 2784 2785 2786

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2787
    """
C
chengduo 已提交
2788
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
2809 2810 2811
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.param_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2812 2813

    bias = helper.create_parameter(
2814
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
2815 2816 2817
    # setting stop_gradient=True to reduce computation
    if use_global_stats and helper.bias_attr.learning_rate == 0.:
        scale.stop_gradient = True
Y
Yu Yang 已提交
2818

2819 2820
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2821 2822 2823
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2824
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2825
        shape=param_shape,
2826 2827 2828 2829 2830 2831 2832
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2833
            trainable=False,
W
wanghaoshuang 已提交
2834
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2835
        shape=param_shape,
2836 2837
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2838 2839 2840 2841 2842 2843

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2844 2845 2846 2847
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2848

X
Xin Pan 已提交
2849 2850
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2868 2869 2870 2871
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2872
            "use_mkldnn": False,
2873 2874
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
2875
        })
Y
Yu Yang 已提交
2876 2877 2878 2879

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2880
@templatedoc()
G
guosheng 已提交
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2891
    ${comment}
G
guosheng 已提交
2892 2893 2894

    The formula is as follows:

Y
yuyang18 已提交
2895
    ..  math::
G
guosheng 已提交
2896 2897 2898 2899 2900 2901 2902

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2903 2904 2905 2906 2907 2908 2909 2910
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2911

G
guosheng 已提交
2912 2913
    Args:
        input(Variable): The input tensor variable.
2914
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2915
            normalization. Default True.
2916
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2917 2918
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2919
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2920
            Default 1.
2921
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2922
            division by zero. Default 1e-05.
G
guosheng 已提交
2923
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2924 2925
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2926 2927
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2928
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2929 2930
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2931
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2932
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2933
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2934 2935 2936
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2937 2938

    Returns:
Y
yuyang18 已提交
2939
        ${y_comment}
G
guosheng 已提交
2940 2941 2942

    Examples:

Y
yuyang18 已提交
2943 2944 2945
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2961
    if shift:
G
guosheng 已提交
2962 2963 2964 2965 2966 2967
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2968 2969 2970 2971 2972
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
    mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True)
    group_norm_out = helper.create_tmp_variable(dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


Y
Yu Yang 已提交
3066 3067 3068 3069
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3070 3071 3072
                     padding=0,
                     stride=1,
                     dilation=1,
3073
                     groups=None,
C
caoying03 已提交
3074
                     param_attr=None,
3075
                     bias_attr=None,
C
chengduoZH 已提交
3076
                     use_cudnn=True,
3077
                     act=None,
C
caoying03 已提交
3078
                     name=None):
Y
Yu Yang 已提交
3079
    """
3080 3081 3082 3083 3084 3085 3086 3087
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3088 3089
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3090 3091 3092
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3093 3094 3095 3096 3097

    For each input :math:`X`, the equation is:

    .. math::

3098
        Out = \sigma (W \\ast X + b)
3099

3100
    Where:
3101 3102 3103

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3104 3105 3106 3107
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3108

3109 3110 3111 3112
    Example:

        - Input:

3113
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3114

3115
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3116 3117 3118

        - Output:

3119
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3120 3121

        Where
Y
Yu Yang 已提交
3122

3123 3124
        .. math::

3125 3126 3127 3128
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3129 3130

    Args:
3131 3132 3133 3134
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3135 3136 3137 3138
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3167
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3168 3169 3170
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3171
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3172
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3173 3174

    Returns:
3175
        Variable: The tensor variable storing the convolution transpose result.
3176 3177

    Raises:
3178 3179
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3180 3181 3182 3183

    Examples:
       .. code-block:: python

3184 3185
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3186
    """
C
chengduo 已提交
3187
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3188 3189 3190 3191 3192 3193 3194 3195
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3196 3197 3198
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3199 3200 3201
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3202

C
chengduoZH 已提交
3203 3204
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3205

Y
Yu Yang 已提交
3206 3207 3208 3209 3210
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3211

Y
Yu Yang 已提交
3212 3213
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3214

C
chengduoZH 已提交
3215
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3216
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3217
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3218
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3219
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3220 3221 3222
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3223

3224 3225 3226 3227 3228 3229 3230
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3231
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3232
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3233

Y
Yu Yang 已提交
3234 3235 3236
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3237
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3238
    helper.append_op(
3239
        type=op_type,
Y
Yu Yang 已提交
3240 3241
        inputs={'Input': [input],
                'Filter': [img_filter]},
3242
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3243
        attrs={
3244
            'output_size': output_size,
3245 3246 3247 3248 3249
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3250 3251
        })

3252 3253 3254
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3255 3256


3257
def conv3d_transpose(input,
Y
Yu Yang 已提交
3258 3259 3260
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3261 3262 3263
                     padding=0,
                     stride=1,
                     dilation=1,
3264
                     groups=None,
C
caoying03 已提交
3265
                     param_attr=None,
3266
                     bias_attr=None,
C
chengduoZH 已提交
3267
                     use_cudnn=True,
3268
                     act=None,
C
caoying03 已提交
3269
                     name=None):
Y
Yu Yang 已提交
3270
    """
3271
    **Convlution3D transpose layer**
3272

3273
    The convolution3D transpose layer calculates the output based on the input,
3274
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3275 3276 3277 3278 3279 3280
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3281 3282 3283
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3284 3285 3286 3287 3288

    For each input :math:`X`, the equation is:

    .. math::

3289
        Out = \sigma (W \\ast X + b)
3290 3291 3292

    In the above equation:

3293 3294
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3295 3296 3297 3298
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3299

3300 3301 3302 3303
    Example:

        - Input:

3304
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3305

3306
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3307 3308 3309

        - Output:

3310
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3311 3312

        Where
Y
Yu Yang 已提交
3313

3314 3315
        .. math::

3316 3317 3318
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3319 3320

    Args:
3321
        input(Variable): The input image with [N, C, D, H, W] format.
3322 3323 3324
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3325
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3326 3327
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3328
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3329 3330 3331
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3332 3333
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3334
        stride(int|tuple): The stride size. If stride is a tuple, it must
3335 3336
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3337
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3338 3339 3340
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3341 3342 3343 3344 3345
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3346 3347 3348 3349 3350 3351 3352 3353 3354
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3355 3356
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3357 3358
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3359 3360
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3361 3362

    Returns:
3363
        Variable: The tensor variable storing the convolution transpose result.
3364 3365

    Raises:
3366 3367
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3368 3369 3370 3371

    Examples:
       .. code-block:: python

3372 3373
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3374
    """
C
chengduo 已提交
3375
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3376 3377
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3378
    if not isinstance(input, Variable):
3379
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3380 3381
    input_channel = input.shape[1]

3382 3383 3384
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3385

C
chengduoZH 已提交
3386 3387 3388
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3389 3390 3391 3392 3393 3394
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3395 3396 3397
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3398

3399
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3400
                         padding[0] - 1) // dilation[0] + 1
3401
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3402
                         padding[1] - 1) // dilation[1] + 1
3403
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3404
                         padding[2] - 1) // dilation[2] + 1
3405
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3406
    else:
3407 3408
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3409

3410
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3411
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3412 3413 3414
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3415
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3416
    helper.append_op(
3417
        type=l_type,
Y
Yu Yang 已提交
3418 3419
        inputs={'Input': [input],
                'Filter': [img_filter]},
3420
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3421 3422 3423 3424
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3425
            'groups': groups,
C
chengduoZH 已提交
3426 3427
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3428

3429 3430
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3431
    return out
Y
yangyaming 已提交
3432 3433


Y
yangyaming 已提交
3434
def sequence_expand(x, y, ref_level=-1, name=None):
3435
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3436 3437 3438 3439
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3440 3441 3442 3443 3444

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3445
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3446
                x.data = [[a], [b], [c], [d]]
3447 3448 3449
                x.dims = [4, 1]

            y is a LoDTensor:
3450 3451
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3452

Y
yangyaming 已提交
3453
            ref_level: 0
3454

Y
yangyaming 已提交
3455
            then output is a 1-level LoDTensor:
3456
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3457
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3458 3459 3460 3461
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3462
                x.data = [[a], [b], [c]]
3463 3464 3465
                x.dims = [3, 1]

            y is a LoDTensor:
3466
                y.lod = [[2, 0, 3]]
3467

Y
yangyaming 已提交
3468
            ref_level: -1
3469

Y
yangyaming 已提交
3470 3471 3472
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3473 3474 3475
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3476 3477
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3478
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3479
                        will be named automatically.
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3490
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3491
    """
Y
yangyaming 已提交
3492
    helper = LayerHelper('sequence_expand', input=x, **locals())
3493
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3494
    tmp = helper.create_variable_for_type_inference(dtype)
3495
    helper.append_op(
Y
yangyaming 已提交
3496 3497 3498 3499 3500
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3501
    return tmp
3502 3503


C
chengduo 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3560
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3561 3562 3563 3564 3565 3566 3567 3568
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3569
@templatedoc()
3570
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3571 3572 3573 3574 3575
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3576 3577 3578
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3579
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3580 3581 3582 3583
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3584 3585 3586
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3587

F
fengjiayi 已提交
3588
    Returns:
M
minqiyang 已提交
3589
        Variable: The padded sequence batch and the original lengths before
3590
                  padding. All sequences has the same length.
M
minqiyang 已提交
3591

F
fengjiayi 已提交
3592 3593 3594 3595 3596 3597 3598
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3599
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3600
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3601 3602 3603 3604 3605
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3606 3607
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3608 3609 3610 3611

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3612 3613 3614 3615 3616 3617
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3618 3619
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3620
        attrs={'padded_length': maxlen})
3621
    return out, length
F
fengjiayi 已提交
3622 3623


3624
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3625
    """
3626
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3627

3628 3629
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3639 3640 3641
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3642
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3643 3644 3645 3646 3647 3648

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3649
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3650 3651 3652 3653 3654 3655

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3656 3657
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3672
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3684 3685 3686 3687 3688 3689 3690 3691 3692
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3693 3694
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3695 3696 3697

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3698 3699

    This layer does the search in beams for one time step. Specifically, it
3700 3701 3702 3703 3704 3705
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3706

3707 3708 3709 3710 3711 3712 3713 3714
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3715

3716
    Args:
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3742

3743
    Returns:
3744 3745
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3746 3747 3748 3749

    Examples:
        .. code-block:: python

3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3767 3768 3769 3770
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3771 3772 3773
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3774 3775 3776 3777 3778

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3779
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3797 3798 3799 3800 3801 3802 3803
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3804

3805 3806 3807 3808 3809 3810 3811 3812 3813
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3814

3815 3816 3817 3818 3819 3820
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3821

3822 3823
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
3824

3825 3826 3827 3828 3829 3830
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3831 3832
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3848 3849 3850 3851
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3852
              param_attr=None,
C
caoying03 已提交
3853 3854
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3855 3856 3857 3858
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3859
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3860

3861
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3862

3863
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3864

3865
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3866 3867 3868

            h_t & = o_t tanh(c_t)

3869 3870 3871 3872 3873 3874
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3875 3876 3877

        .. math::

3878
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3879 3880 3881 3882 3883 3884 3885 3886

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3887
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3888 3889

    Args:
Y
yangyaming 已提交
3890 3891 3892 3893 3894 3895
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3896
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3909 3910
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3911 3912

    Returns:
Y
yangyaming 已提交
3913
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3914 3915

    Raises:
3916 3917 3918 3919
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3920 3921 3922 3923 3924 3925

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3926
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3927
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3928
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3945
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3946 3947 3948 3949
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3950 3951
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3952 3953 3954
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3955
    size = cell_t_prev.shape[1]
3956
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3957 3958
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3959
                param_attr=param_attr,
3960
                bias_attr=bias_attr)
Y
yangyaming 已提交
3961
    dtype = x_t.dtype
X
Xin Pan 已提交
3962 3963
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3964 3965 3966 3967 3968 3969 3970 3971 3972

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3973
    return h, c
G
guosheng 已提交
3974 3975


C
caoying03 已提交
3976
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3977
    """
Y
yangyaming 已提交
3978
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3979 3980 3981

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3982
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3983 3984
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3985 3986
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3987
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3988
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3989
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3990 3991
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3992 3993 3994

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3995

G
guosheng 已提交
3996 3997 3998 3999 4000 4001
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4002
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4003 4004 4005 4006
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4007 4008 4009 4010

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4011
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4012 4013 4014
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4015 4016
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4017
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4018 4019
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4020 4021 4022 4023 4024
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4025
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4026 4027 4028 4029
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4030 4031


C
caoying03 已提交
4032
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4033
    """
Y
Yibing Liu 已提交
4034
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4035 4036 4037

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4038 4039 4040
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4041
            must be in the range :math:`[-rank(input), rank(input))`. If
4042
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4043
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4044 4045
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4046
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4047
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4048
                       will be named automatically.
G
guosheng 已提交
4049 4050

    Returns:
Y
Yibing Liu 已提交
4051
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4052

G
guosheng 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4063 4064
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4065 4066 4067 4068 4069 4070 4071

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4072 4073
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4074
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4075 4076
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4077 4078 4079 4080 4081
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4082
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4083 4084 4085 4086
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4087 4088


C
caoying03 已提交
4089
def reduce_max(input, dim=None, keep_dim=False, name=None):
4090
    """
Y
yangyaming 已提交
4091
    Computes the maximum of tensor elements over the given dimension.
4092 4093 4094

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4095
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4096 4097 4098
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4099
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4100 4101
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4102
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4103 4104
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4105 4106 4107

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4108

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4120 4121 4122 4123 4124 4125 4126

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4127 4128
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4129
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4130 4131
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4132 4133 4134 4135 4136
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4137
            'dim': dim if dim != None else [0],
4138 4139 4140 4141 4142 4143
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4144
def reduce_min(input, dim=None, keep_dim=False, name=None):
4145
    """
Y
yangyaming 已提交
4146
    Computes the minimum of tensor elements over the given dimension.
4147 4148 4149

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4150
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4151 4152 4153
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4154
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4155 4156
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4157
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4158 4159
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4160 4161 4162

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4163

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4175 4176 4177 4178 4179 4180 4181

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4182 4183
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4184
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4185 4186
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4187 4188 4189 4190 4191
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4192
            'dim': dim if dim != None else [0],
4193 4194 4195 4196
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4197 4198


4199 4200 4201 4202 4203 4204
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4205
        dim (list|int|None): The dimensions along which the product is performed. If
4206 4207
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4208 4209
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4210 4211 4212
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4213
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4214
            layer will be named automatically.
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4229
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4230
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4231 4232 4233 4234 4235 4236 4237

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4238 4239
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4240
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4241 4242
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4243 4244 4245 4246 4247
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4248
            'dim': dim if dim != None else [0],
4249 4250 4251 4252 4253 4254
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4255
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4256
    """
C
caoying03 已提交
4257
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4258 4259 4260

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4261 4262 4263 4264 4265
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4266
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4267
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4268
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4269 4270
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4271 4272

    Returns:
D
dzhwinter 已提交
4273
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4274 4275 4276 4277 4278 4279 4280 4281 4282

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4283 4284
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4300
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4314 4315 4316 4317 4318 4319 4320 4321 4322


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4323
    .. math::
4324 4325

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4326 4327 4328 4329 4330

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4331
        x(Variable|list): The input tensor to l2_normalize layer.
4332
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4333 4334
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4335
        epsilon(float): The epsilon value is used to avoid division by zero, \
4336
            the defalut value is 1e-10.
4337
        name(str|None): A name for this layer(optional). If set None, the layer \
4338
            will be named automatically.
C
caoying03 已提交
4339 4340

    Returns:
4341
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4342 4343

    Examples:
4344

C
caoying03 已提交
4345 4346
        .. code-block:: python

4347 4348 4349 4350
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4351 4352
    """

F
fengjiayi 已提交
4353 4354
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4355 4356
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4357 4358
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4359
    helper.append_op(
4360 4361 4362 4363
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4364
        attrs={
4365 4366
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4367 4368
        })
    return out
4369 4370


S
sneaxiy 已提交
4371
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4372
    """
Y
ying 已提交
4373 4374 4375 4376
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4377

C
chengduoZH 已提交
4378
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4379
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4380

4381 4382 4383 4384 4385
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4386
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4387

C
chengduoZH 已提交
4388
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4389
      performs in the following way.
G
guosheng 已提交
4390

4391
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4392
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4393
        last two dimensions and a batched matrix multiply supporting broadcast
4394
        applies on the two tensors.
G
guosheng 已提交
4395

Y
ying 已提交
4396 4397
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4398
    removed after matrix multiplication.
G
guosheng 已提交
4399 4400 4401

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4402 4403 4404
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4405
        alpha (float): The scale of output. Default 1.0.
4406
        name(str|None): A name for this layer(optional). If set None, the layer
4407
            will be named automatically.
G
guosheng 已提交
4408 4409

    Returns:
4410
        Variable: The product Tensor variable.
G
guosheng 已提交
4411

G
guosheng 已提交
4412 4413 4414
    Examples:
        .. code-block:: python

4415
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4416 4417
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4418

4419 4420
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4421

4422 4423
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4424

4425 4426
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4427 4428 4429 4430

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4431 4432
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4433

Y
ying 已提交
4434
            # x: [M], y: [N]
4435
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4436
    """
Y
ying 已提交
4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4449
            y_shape = y_shape + [1]
Y
ying 已提交
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

4466
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4467
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4468
    helper.append_op(
4469 4470 4471 4472
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4473 4474 4475
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4476
            'alpha': float(alpha),
S
sneaxiy 已提交
4477
        })
4478
    return out
4479 4480


4481
def topk(input, k, name=None):
Q
qingqing01 已提交
4482 4483 4484 4485
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4486
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4487 4488 4489 4490 4491 4492
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4514 4515 4516
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4517
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4518
                 of input.
4519
        name(str|None): A name for this layer(optional). If set None, the layer
4520
                       will be named automatically.
F
fengjiayi 已提交
4521
                       Default: None
Q
qingqing01 已提交
4522 4523

    Returns:
4524 4525 4526
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4527
        within the last dimension of input.
Q
qingqing01 已提交
4528

F
fengjiayi 已提交
4529 4530
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4531 4532 4533 4534 4535 4536 4537

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4538 4539
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4551
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4552
    """
Y
ying 已提交
4553 4554 4555 4556 4557 4558 4559 4560 4561
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4562

Y
ying 已提交
4563
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4564

4565
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4566 4567
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4568
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4569

4570
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4571 4572
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4573

4574 4575 4576
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4577
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4578
                          the length of reference string.
4579
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4580
                                     calculating edit distance.
4581
        name (str): The name of this layer. It is optional.
4582

W
wanghaoshuang 已提交
4583
    Returns:
W
wanghaoshuang 已提交
4584
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4585 4586 4587 4588

    Examples:
        .. code-block:: python

T
tink2123 已提交
4589 4590
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4591
            cost = fluid.layers.edit_distance(input=x,label=y)
4592
    """
4593
    helper = LayerHelper("edit_distance", **locals())
4594

4595
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4596
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4597 4598
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4599 4600 4601 4602 4603

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4604
            attrs={"tokens": ignored_tokens})
4605 4606 4607 4608 4609
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4610
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4611
            attrs={"tokens": ignored_tokens})
4612 4613
        label = erased_label

4614
    # edit distance op
X
Xin Pan 已提交
4615 4616
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4617 4618 4619 4620
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4621 4622
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4623 4624
        attrs={"normalized": normalized})

4625
    return edit_distance_out, sequence_num
4626 4627 4628 4629 4630


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4631

Y
ying 已提交
4632 4633 4634 4635
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4653
        input.lod = [[4, 4]]
W
whs 已提交
4654 4655
      
        Computation:
4656

W
whs 已提交
4657 4658 4659 4660 4661 4662
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
4663 4664 4665 4666 4667

        output.data = [[2],
                       [1],
                       [3]]

4668
        output.lod = [[2, 1]]
4669

W
whs 已提交
4670

4671 4672
    Args:

Y
ying 已提交
4673 4674 4675 4676 4677 4678 4679 4680 4681
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4682
        name (str): The name of this layer. It is optional.
4683 4684

    Returns:
W
whs 已提交
4685 4686 4687 4688
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1].
                  'Lp' is the sum if all output sequences' length. If all the sequences
                  in result were empty, the result LoDTensor will be [-1] with 
                  LoD [[]] and dims [1, 1].
4689 4690 4691 4692 4693

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4694

4695
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4696
    """
4697
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4698
    _, topk_indices = topk(input, k=1)
4699 4700

    # ctc align op
X
Xin Pan 已提交
4701
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4702 4703 4704
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4705
        outputs={"Output": [ctc_out]},
4706 4707
        attrs={"merge_repeated": True,
               "blank": blank})
4708
    return ctc_out
4709 4710


W
Wu Yi 已提交
4711
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
4712
    """
4713 4714
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4715
    to compute Connectionist Temporal Classification (CTC) loss.
4716 4717
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4718 4719 4720
    input tensor.

    Args:
4721
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4722 4723 4724 4725
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4726
       label (Variable): The ground truth of variable-length sequence,
4727 4728 4729
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4730 4731
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4732 4733 4734
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4735
         follewed by a mean_op.
W
Wu Yi 已提交
4736
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
4737 4738

    Returns:
4739 4740
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4741 4742

    Examples:
4743

W
wanghaoshuang 已提交
4744
        .. code-block:: python
4745

4746 4747 4748
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4749 4750

    """
F
fengjiayi 已提交
4751
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4752 4753
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4754 4755 4756 4757 4758 4759
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
4760 4761 4762 4763 4764
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
4765
    return loss_out
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4781 4782 4783
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4784 4785 4786 4787 4788
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4789

4790
            out.lod  = [[0, 1, 3]]
4791 4792 4793 4794

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4795 4796 4797 4798 4799 4800 4801
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4802 4803 4804

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4805 4806

    Returns:
4807

4808 4809 4810 4811 4812
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4813
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4814
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4815 4816
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4817
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4818 4819 4820 4821 4822 4823
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4824 4825


4826 4827 4828 4829
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4830 4831 4832 4833 4834 4835
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4836
        num_neg_samples=None,
4837 4838 4839
        name=None,
        sampler="uniform",
        custom_dist=None,
4840 4841
        seed=0,
        is_sparse=False):
4842 4843 4844 4845 4846 4847 4848
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4849 4850
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4851
            sample is 1.0.
C
chengduo 已提交
4852 4853 4854 4855 4856 4857 4858 4859 4860
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4861
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4862 4863
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
4864 4865 4866
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
4867
        custom_dist (float[]): A float[] with size=num_total_classes.
4868 4869 4870 4871
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
4872
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
4873

4874
    Returns:
Y
Yibing Liu 已提交
4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4902 4903 4904 4905 4906 4907 4908 4909 4910

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
4911

4912
    """
Y
Yang Yu 已提交
4913 4914 4915
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4916 4917

    dim = input.shape[1]
Y
Yang Yu 已提交
4918 4919 4920 4921 4922 4923
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
4924
    inputs = {}
C
chengduo 已提交
4925 4926 4927 4928 4929 4930 4931
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4932 4933 4934
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4935

4936 4937 4938 4939
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
4940 4941 4942 4943 4944 4945 4946

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
            if normal_prob - 1.0 > 1e-4:
                bigs.append((i, normal_prob))
            elif 1.0 - normal_prob > 1e-4:
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
            if big_left - 1.0 > 1e-4:
                bigs.append((big_idx, big_left))
            elif 1.0 - big_left > 1e-4:
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

        probs = assign(input=np.array(custom_dist).astype('float32'))
        custom_alias = assign(input=np.array(alias_).astype('int32'))
        custom_alias_probs = assign(
            input=np.array(alias_probs_).astype('float32'))

        inputs['CustomDistProbs'] = probs
        inputs['CustomDistAlias'] = custom_alias
        inputs['CustomDistAliasProbs'] = custom_alias_probs
4999 5000 5001 5002
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5003 5004 5005 5006 5007
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

Y
Yang Yu 已提交
5008 5009
    attrs = {
        'num_total_classes': int(num_total_classes),
5010 5011
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5012 5013
        'sampler': sampler,
        'is_sparse': is_sparse
Y
Yang Yu 已提交
5014
    }
Y
Yang Yu 已提交
5015 5016 5017

    helper.append_op(
        type='nce',
C
chengduo 已提交
5018
        inputs=inputs,
Y
Yang Yu 已提交
5019 5020 5021 5022 5023 5024
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5025
    return cost / (num_neg_samples + 1)
5026 5027


C
chengduo 已提交
5028 5029
def hsigmoid(input,
             label,
5030
             num_classes,
C
chengduo 已提交
5031 5032
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5033
             name=None,
5034 5035 5036
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5037
             is_sparse=False):
W
weixing02 已提交
5038 5039
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5040
    process of language model. This operator organizes the classes into a
5041 5042
    complete binary tree, or you can use is_custom to pass your own tree to 
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5043 5044 5045 5046 5047 5048
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5049
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5050
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5051

5052 5053 5054 5055 5056 5057 5058 5059 5060
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
        1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
        2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
        3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
         means label of each binary classification, using 1 indicate true, 0 indicate false.
        4. now, each word should has its path and code along the path, you can pass a batch of path and code 
        related to the same batch of inputs.


W
weixing02 已提交
5061
    Args:
M
minqiyang 已提交
5062
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5063 5064 5065 5066
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
5067 5068 5069
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, 
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num 
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5081 5082 5083 5084 5085 5086 5087
        path_table: (Variable|None) this variable can store each batch of samples' path to root, 
            it should be in leaf -> root order
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like 
            structure and each element in this array is indexes in parent nodes' Weight Matrix. 
        path_code:  (Variable|None) this variable can store each batch of samples' code, 
            each code consist with every code of parent nodes. it should be in leaf -> root order
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is 
5088
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
5089 5090
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient 
             of W and input will be sparse.
W
weixing02 已提交
5091 5092

    Returns:
J
JiabinYang 已提交
5093
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5094 5095 5096 5097 5098

    Examples:

        .. code-block:: python

G
guosheng 已提交
5099 5100 5101
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5102 5103 5104 5105
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5106 5107
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5108
    dim = input.shape[1]
5109
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5110 5111 5112
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5113 5114 5115 5116
    if (is_custom) and (path_code is None):
        raise ValueError("path_code should not be None with costum tree")
    elif (is_custom) and (path_table is None):
        raise ValueError("path_table should not be None with costum tree")
5117 5118
    elif (is_custom) and (num_classes is None):
        raise ValueError("num_classes should not be None with costum tree")
5119 5120 5121
    else:
        pass

J
JiabinYang 已提交
5122 5123
    weights = None

5124
    if not is_custom:
J
JiabinYang 已提交
5125 5126 5127 5128 5129 5130 5131 5132
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5133
            shape=[num_classes, dim],
J
JiabinYang 已提交
5134 5135
            is_bias=False,
            dtype=input.dtype)
5136 5137 5138
    inputs = {
        "X": input,
        "W": weights,
5139 5140
        "PTable": path_table,
        "PathCode": path_code,
5141 5142
        "Label": label
    }
W
weixing02 已提交
5143
    if helper.bias_attr:
5144
        if not is_custom:
J
JiabinYang 已提交
5145 5146
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5147
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5148 5149 5150 5151 5152 5153
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5154
                shape=[num_classes, 1],
J
JiabinYang 已提交
5155 5156 5157
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5158 5159
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5160
        inputs=inputs,
W
weixing02 已提交
5161 5162
        outputs={"Out": out,
                 "PreOut": pre_out},
J
JiabinYang 已提交
5163 5164
        attrs={"num_classes": num_classes,
               "is_sparse": is_sparse})
W
weixing02 已提交
5165 5166 5167
    return out


Y
fix ci.  
ying 已提交
5168
def transpose(x, perm, name=None):
Y
ying 已提交
5169 5170 5171 5172 5173 5174 5175
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5176 5177 5178
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5179 5180 5181 5182 5183 5184 5185

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5186
            # use append_batch_size=False to avoid prepending extra
5187
            # batch size in shape
5188
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5189
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5190
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5191 5192
    """

Y
fix ci.  
ying 已提交
5193
    if len(perm) != len(x.shape):
Y
ying 已提交
5194 5195 5196
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5197 5198 5199 5200 5201 5202
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5203 5204

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5205 5206
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5207
    helper.append_op(
5208
        type='transpose2',
Y
fix ci.  
ying 已提交
5209
        inputs={'X': [x]},
5210 5211
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5212 5213
        attrs={'axis': perm})
    return out
5214 5215


5216 5217 5218 5219 5220 5221 5222
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5223
    """
5224 5225 5226 5227 5228 5229 5230
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5259 5260 5261 5262 5263 5264 5265 5266 5267
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5268 5269 5270
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5271 5272 5273 5274 5275
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5303 5304 5305
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5318
            output.dims = {8, 8}
5319

5320
            output.lod = [[4, 4]]
5321

T
Tink_Y 已提交
5322
    Examples:
5323 5324 5325

        .. code-block:: python

5326 5327
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5328 5329

    """
W
wanghaoshuang 已提交
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5340 5341 5342 5343 5344 5345 5346
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5347
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5348
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5349
    helper.append_op(
5350
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5351
    return out
5352 5353


Y
yuyang18 已提交
5354
@templatedoc()
5355
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5356 5357
    """
    ${comment}
5358 5359

    Args:
Y
yuyang18 已提交
5360
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5361 5362
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5363 5364 5365 5366 5367
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5368
        ${out_comment}.
5369 5370

    Examples:
Y
yuyang18 已提交
5371 5372 5373 5374
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5375 5376 5377 5378 5379 5380
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5381
    out = helper.create_variable_for_type_inference(dtype)
5382 5383 5384 5385 5386
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5387
    return helper.append_activation(out)
5388 5389


Y
yuyang18 已提交
5390
@templatedoc()
5391 5392
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5393 5394 5395 5396 5397 5398 5399
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5400 5401

    Args:
Y
yuyang18 已提交
5402 5403
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5404 5405

    Returns:
Y
yuyang18 已提交
5406
        ${out_comment}.
5407 5408
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5409 5410 5411 5412 5413

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5414
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5415 5416 5417 5418 5419 5420
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5421 5422


5423 5424 5425
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5426
                               ignore_index=kIgnoreIndex,
5427 5428
                               numeric_stable_mode=False,
                               return_softmax=False):
5429 5430
    """
    **Softmax With Cross Entropy Operator.**
5431

5432 5433 5434 5435
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5436

5437 5438 5439
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5440

5441 5442 5443
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5444

5445
    The equation is as follows:
5446

5447
    1) Hard label (one-hot label, so every sample has exactly one class)
5448

5449 5450 5451 5452
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5453

5454 5455 5456
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5457

5458 5459 5460 5461
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5462 5463 5464
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5465

S
sneaxiy 已提交
5466 5467 5468 5469 5470 5471 5472 5473
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

5474 5475 5476 5477 5478 5479 5480 5481
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
5482 5483
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
5484
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
5485 5486 5487
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
5488 5489 5490
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
S
sneaxiy 已提交
5491
                                    stable algorithm. Default: False
5492
        return_softmax (bool): A flag indicating whether to return the softmax
5493
                               along with the cross entropy loss. Default: False
5494

5495
    Returns:
5496 5497 5498 5499
        Variable or Tuple of two Variables: Return the cross entropy loss if
                              `return_softmax` is False, otherwise the tuple
                              (loss, softmax), where the cross entropy loss is
                              a 2-D tensor with shape [N x 1], and softmax is a
5500
                              2-D tensor with shape [N x K].
5501 5502 5503 5504 5505 5506 5507

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
5508 5509
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
5510 5511
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
5512 5513
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
5514 5515 5516 5517 5518 5519
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
5520 5521 5522 5523 5524
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
5525 5526 5527 5528

    if return_softmax:
        return loss, softmax

5529 5530 5531 5532 5533
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
5534 5535
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
5536
    For each instance, it computes the smooth L1 loss element by element first
5537
    and then sums all the losses. So the shape of ouput Variable is
5538
    [batch_size, 1].
5539

5540 5541
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
5542
            L1 loss op with shape [batch_size, dim1, ..., dimN].
5543
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
5544
            L1 loss op with same shape as :attr:`x`.
5545
        inside_weight (Variable|None):  A tensor with rank at least 2. This
5546 5547
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
5548
            by this tensor element by element.
5549
        outside_weight (Variable|None): A tensor with rank at least 2. This
5550 5551
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
5552
            element by element.
5553
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
5554 5555
           scalar with default value 1.0.

5556
    Returns:
5557
        Variable: The output smooth L1 loss with shape [batch_size, 1].
5558 5559 5560 5561 5562

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
5563 5564
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
5565
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
5566
            out = fluid.layers.smooth_l1(x=fc, y=label)
5567
    """
5568

5569
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
5570 5571
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
5584 5585 5586 5587


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
5588
    This layer creates the one-hot representations for input indices.
5589 5590

    Args:
Y
Yibing Liu 已提交
5591 5592
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
5593 5594

    Returns:
Y
Yibing Liu 已提交
5595
        Variable: The one-hot representations of input.
5596 5597

    Examples:
C
caoying03 已提交
5598
        .. code-block:: python
5599

Y
Yibing Liu 已提交
5600 5601
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
5602 5603
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
5604
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
5605 5606 5607 5608 5609 5610
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
5611 5612


Y
Yu Yang 已提交
5613
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
5614
    """
Y
yi.wu 已提交
5615 5616 5617
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
5618 5619 5620 5621 5622 5623

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

5624 5625
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
5626 5627 5628 5629 5630 5631

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
5632 5633
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
5634 5635
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
5636 5637 5638 5639 5640
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
5641
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
5642
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
5643 5644
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
5645 5646
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
5647 5648 5649
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
5650 5651


5652
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
5653
    """
C
caoying03 已提交
5654 5655
    Gives a new shape to the input Tensor without changing its data.

5656 5657 5658 5659 5660
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
5661

5662
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
5663

5664 5665 5666 5667
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

5668
    2. 0 means the actual dimension value is going to be copied from the
5669 5670 5671 5672
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
5673 5674

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5675
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5676
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5677

5678
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5679 5680
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5681 5682
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5683
    dimensions.
C
caoying03 已提交
5684

5685
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5686 5687 5688 5689
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5690 5691

    Args:
5692
        x(variable): The input tensor.
C
caoying03 已提交
5693 5694
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5695 5696 5697 5698 5699
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5700 5701
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5702 5703 5704 5705 5706 5707 5708
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5709
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5710

5711
    Returns:
G
guosheng 已提交
5712 5713 5714 5715
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5716

X
Xin Pan 已提交
5717 5718 5719
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5720 5721
    Examples:
        .. code-block:: python
G
guosheng 已提交
5722

5723
            data = fluid.layers.data(
5724
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5725
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5726
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5727 5728 5729
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5730
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5731 5732 5733 5734 5735
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5736

5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5752
    helper = LayerHelper("reshape2", **locals())
5753 5754
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5755
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5756
    helper.append_op(
5757
        type="reshape2",
X
Xin Pan 已提交
5758
        inputs=inputs,
D
dzhwinter 已提交
5759
        attrs={"shape": shape},
5760 5761
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5762

D
dzhwinter 已提交
5763
    return helper.append_activation(out)
5764

5765

5766
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5767
    """
M
minqiyang 已提交
5768 5769 5770
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5771
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5772

Y
Yibing Liu 已提交
5773 5774
    Examples:
    Case 1:
M
minqiyang 已提交
5775
      Given
Y
Yibing Liu 已提交
5776 5777 5778 5779 5780 5781 5782 5783
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5784
        and
Y
Yibing Liu 已提交
5785 5786 5787
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5788

Y
Yibing Liu 已提交
5789
    Args:
5790
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5791
        axes (list): List of integers, indicating the dimensions to be squeezed.
5792
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5793 5794 5795 5796 5797 5798 5799 5800

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5801
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5802 5803
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5804 5805
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5806
    helper.append_op(
5807
        type="squeeze2",
5808
        inputs={"X": input},
Y
Yibing Liu 已提交
5809
        attrs={"axes": axes},
5810 5811
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5812

5813 5814 5815
    return out


5816
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5817
    """
M
minqiyang 已提交
5818 5819 5820
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5821

M
minqiyang 已提交
5822 5823
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5824
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5825

Y
Yibing Liu 已提交
5826
    Args:
5827
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5828
        axes (list): List of integers, indicating the dimensions to be inserted.
5829
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5830 5831 5832 5833 5834 5835 5836 5837

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5838
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5839 5840
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5841 5842
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5843
    helper.append_op(
5844
        type="unsqueeze2",
5845
        inputs={"X": input},
Y
Yibing Liu 已提交
5846
        attrs={"axes": axes},
5847 5848
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5849

5850 5851
    return out

5852

Y
yangyaming 已提交
5853
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5854
    """
Y
Yibing Liu 已提交
5855
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5856 5857 5858 5859
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5860
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5861 5862 5863 5864 5865 5866

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5867
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5868 5869 5870
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5871
            target_lod: [4, 2]
Y
yangyaming 已提交
5872 5873

            then we get a 1-level LoDTensor:
5874
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5875 5876 5877 5878 5879 5880
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5881
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5882 5883 5884 5885
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5886
                y.data = [[2, 4]]
Y
yangyaming 已提交
5887 5888 5889
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5890
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5891 5892 5893 5894 5895 5896
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5897
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5898 5899 5900 5901
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5902
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5903 5904 5905 5906
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5907
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5908 5909 5910 5911 5912
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5913
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5914
                           from :attr:`y`.
Y
yangyaming 已提交
5915
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5916
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5917 5918

    Returns:
Y
Yibing Liu 已提交
5919
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5920 5921

    Raises:
Y
Yibing Liu 已提交
5922
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5923 5924 5925 5926 5927 5928 5929 5930 5931

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5932
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5958
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5987 5988
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6001 6002 6003
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6017 6018 6019 6020


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6021
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6022
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6023

G
guosheng 已提交
6024 6025 6026 6027
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6050
                         The length of :attr:paddings must be
G
guosheng 已提交
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6061

G
guosheng 已提交
6062 6063 6064 6065 6066 6067
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6068
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6069 6070 6071 6072 6073 6074 6075
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6076 6077


C
chengduo 已提交
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6109 6110
		And
            pad_value = -1,
C
chengduo 已提交
6111

T
Tink_Y 已提交
6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6147
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6148 6149 6150 6151 6152 6153 6154 6155 6156
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6157 6158 6159 6160 6161 6162 6163
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6164 6165
    called label-smoothing regularization (LSR).

6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6189
                              be :math:`(1, class\_num)`.
6190 6191
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6192
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6212
    smooth_label = helper.create_variable_for_type_inference(dtype)
6213 6214 6215 6216 6217 6218 6219
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6220 6221


W
wopeizl 已提交
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6258 6259


J
jerrywgz 已提交
6260 6261 6262 6263 6264 6265
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6266 6267
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6284 6285 6286
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6287 6288 6289 6290 6291 6292
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6293
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
6334 6335
        .. code-block:: python

W
whs 已提交
6336 6337 6338 6339
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
6340
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
6341 6342 6343 6344 6345 6346
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
6347 6348


6349 6350 6351 6352
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
6353 6354
                 resample='BILINEAR',
                 actual_shape=None):
6355
    """
Q
qiaolongfei 已提交
6356
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
6357

6358
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
6359 6360 6361
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
6362

6363
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
6364

6365
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
6366

6367
    Args:
6368
        input (Variable): The input tensor of image resize layer,
6369 6370
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
6371
        out_shape(list|tuple|Variable|None): Output shape of image resize
6372 6373
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
6374
        scale(float|None): The multiplier for the input height or width.
6375 6376 6377
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
6378 6379
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
6380
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
6381
                       currently.
6382
                       Default: 'BILINEAR'
6383 6384 6385
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6386
                                :attr:`out_shape` and :attr:`scale` specifying
6387 6388 6389 6390 6391 6392 6393
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6394 6395
                                constructing stage.
                                Default: None
6396 6397

    Returns:
Q
update  
qiaolongfei 已提交
6398 6399
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
6400

6401 6402 6403
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
6404
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
6405 6406 6407 6408
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

6409 6410 6411
    Examples:
        .. code-block:: python

6412
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
6413
    """
6414 6415 6416 6417
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
6418 6419
    if resample not in resample_methods:
        raise ValueError(
6420
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
6421
        )
6422
    resample_type = resample_methods[resample]
6423
    if out_shape is None and scale is None:
6424
        raise ValueError("One of out_shape and scale must not be None.")
6425
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
6426
    dtype = helper.input_dtype()
6427 6428 6429 6430

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

6431 6432 6433
    out_h = 0
    out_w = 0
    inputs = {"X": input}
6434
    if out_shape is not None:
6435 6436 6437 6438
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
6439
            inputs['OutSize'] = out_shape
6440 6441 6442 6443 6444 6445 6446 6447
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
6448 6449 6450 6451
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

6452 6453 6454 6455 6456
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
6457
    out = helper.create_variable_for_type_inference(dtype)
6458
    helper.append_op(
6459
        type='{}_interp'.format(resample_type),
6460
        inputs=inputs,
6461
        outputs={"Out": out},
6462 6463 6464
        attrs={"out_h": out_h,
               "out_w": out_w,
               "interp_method": resample_type})
6465
    return out
F
stash  
fengjiayi 已提交
6466 6467


6468
@templatedoc(op_type="bilinear_interp")
6469 6470 6471 6472 6473
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
6474
    """
6475 6476
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
6477 6478
    in priority order.

6479 6480 6481 6482
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
6483 6484
    again in the other direction.

6485
    For details of bilinear interpolation, please refer to Wikipedia:
6486
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
6487 6488 6489 6490 6491

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6492

Y
yuyang18 已提交
6493 6494 6495 6496 6497
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6498 6499 6500
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6501
                                :attr:`out_shape` and :attr:`scale` specifying
6502 6503 6504 6505 6506 6507 6508
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6509 6510
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6511 6512 6513

    Returns:
        ${out_comment}.
6514 6515 6516 6517 6518

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
6519 6520
    """

6521
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
6522 6523


6524
@templatedoc(op_type="nearest_interp")
6525 6526 6527 6528 6529
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
6530
    """
6531
    Resize input by performing nearest neighbor interpolation in both the
6532 6533
    3rd dimention(in height direction) and the 4th dimention(in width
    direction) based on given output shape which specified by actual_shape,
6534 6535
    out_shape and scale in priority order.

6536
    For details of nearest neighbor interpolation, please refer to Wikipedia:
6537
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
6538 6539 6540 6541 6542

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
6543

Y
yuyang18 已提交
6544 6545 6546 6547 6548
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
6549 6550 6551
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
6552
                                :attr:`out_shape` and :attr:`scale` specifying
6553 6554 6555 6556 6557 6558 6559
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
6560 6561
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
6562 6563 6564

    Returns:
        ${out_comment}.
6565 6566 6567 6568 6569

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
6570 6571
    """

6572
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
6573 6574 6575 6576


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
6577 6578 6579
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
6580 6581 6582 6583 6584 6585 6586
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
6587
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
6588

6589
    Returns:
Q
update  
qiaolongfei 已提交
6590
        Variable: The output is a 4-D tensor of the shape
6591
        (num_batches, channls, out_h, out_w).
6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
6602 6603 6604
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
6605 6606 6607
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
6608 6609
def gather(input, index):
    """
Q
qiaolongfei 已提交
6610 6611
    **Gather Layer**

6612
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
6613 6614 6615 6616
    of X indexed by `index` and concatenate them together.

    .. math::

6617
        Out = X[Index]
W
whs 已提交
6618 6619 6620 6621 6622 6623 6624


    .. code-block:: text


                Given:

6625 6626
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
6627 6628 6629 6630 6631 6632 6633 6634 6635 6636
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
6637
        input (Variable): The source input with rank>=1.
W
whs 已提交
6638 6639 6640 6641 6642 6643
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
6644

W
whs 已提交
6645 6646 6647 6648 6649 6650
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6651
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6652 6653 6654 6655 6656 6657 6658 6659
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6691
    out = helper.create_variable_for_type_inference(dtype)
6692 6693 6694 6695 6696 6697 6698 6699 6700
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6751
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6752 6753 6754 6755 6756 6757 6758 6759 6760
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6774

6775 6776 6777
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6778
    """
F
stash  
fengjiayi 已提交
6779
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6780
    dtype = x.dtype
X
Xin Pan 已提交
6781
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6782
    if seed is None:
6783
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6784
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6785
    if isinstance(seed, int):
F
fengjiayi 已提交
6786 6787 6788 6789 6790
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6791 6792 6793 6794
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6795
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6796 6797
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6798 6799
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6800
    return out
W
whs 已提交
6801 6802


6803
def log(x, name=None):
W
wanghaoshuang 已提交
6804 6805 6806 6807 6808
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6809
        Out = \\ln(x)
W
wanghaoshuang 已提交
6810 6811

    Args:
6812
        x (Variable): Input tensor.
6813 6814
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6815 6816 6817 6818 6819 6820 6821 6822

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6823
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6824 6825
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6826
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6827
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6828
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6829 6830 6831
    return out


6832
def relu(x, name=None):
W
wanghaoshuang 已提交
6833 6834
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6835
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6836 6837 6838 6839
    the tensor elementwise.

    .. math::

6840
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6841 6842

    Args:
6843
        x (Variable): The input tensor.
6844 6845
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6846 6847 6848 6849 6850 6851 6852 6853

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6854
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6855 6856
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6857
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6858
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
6859 6860
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
6861
    return out
6862 6863


C
chengduo 已提交
6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
6905 6906 6907
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6908 6909 6910 6911
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6912
    .. math::
6913 6914

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6915

6916
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6917 6918 6919 6920 6921
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6922
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6923
                           Its shape should be the same as input.
6924
        num_classes (int): The possible number of labels.
W
whs 已提交
6925 6926 6927 6928

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6929
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6930 6931 6932 6933

    Examples:

        .. code-block:: python
6934

W
whs 已提交
6935 6936 6937 6938
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6939 6940 6941
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6942 6943
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6944 6945
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6946
        outputs={
W
whs 已提交
6947 6948 6949
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6950 6951 6952
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7021
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7022 7023 7024 7025 7026

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7027
            isinstance(shape, Variable)):
7028 7029 7030 7031 7032
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7033
    out = helper.create_variable_for_type_inference(x.dtype)
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7051 7052


W
whs 已提交
7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7070

W
whs 已提交
7071
              out_shape = [2, 3, 5, 5]
7072

W
whs 已提交
7073
          Step 1:
7074

W
whs 已提交
7075 7076 7077
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7078

W
whs 已提交
7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
7149
            isinstance(out_shape, Variable)):
W
whs 已提交
7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


7171 7172 7173 7174 7175 7176 7177 7178
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
7179

7180 7181
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
7182

7183 7184 7185 7186
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
7187

7188 7189 7190 7191 7192
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
7193 7194 7195

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
7231
    out = helper.create_variable_for_type_inference("float32")
7232 7233 7234 7235 7236 7237 7238 7239

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
7240 7241


M
minqiyang 已提交
7242 7243
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
7244
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
7245
    which compares left score and right score passed in.
M
minqiyang 已提交
7246
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
7247 7248 7249 7250 7251 7252

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
7253
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
7254 7255
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
7256
       margin (float): Indicates the given margin.
M
minqiyang 已提交
7257 7258 7259
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
7260
       Variable: The ranking loss.
M
minqiyang 已提交
7261
    Raises:
M
minqiyang 已提交
7262
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
7263 7264 7265 7266 7267 7268 7269
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
7270
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
7271 7272 7273 7274 7275 7276
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
7277 7278
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
7302
        .. code-block:: text
W
whs 已提交
7303

T
Tink_Y 已提交
7304
	      Given that X is a channel of image from input:
M
minqiyang 已提交
7305

T
Tink_Y 已提交
7306 7307
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
7308

T
Tink_Y 已提交
7309
	      Case 0:
M
minqiyang 已提交
7310

T
Tink_Y 已提交
7311 7312 7313
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
7314

T
Tink_Y 已提交
7315 7316 7317
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
7318

T
Tink_Y 已提交
7319
	      Case 1:
M
minqiyang 已提交
7320

T
Tink_Y 已提交
7321 7322
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
7323

T
Tink_Y 已提交
7324 7325 7326
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
7327

T
Tink_Y 已提交
7328
	      Case 2:
M
minqiyang 已提交
7329

T
Tink_Y 已提交
7330 7331
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
7332

T
Tink_Y 已提交
7333 7334 7335
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
7336 7337


W
whs 已提交
7338 7339
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
7340
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
7364
    out = helper.create_variable_for_type_inference(dtype)
7365 7366 7367 7368 7369 7370 7371 7372 7373
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
7374
    helper.append_op(
7375
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
7376 7377 7378 7379

    return out


7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7392 7393 7394 7395 7396

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7397 7398
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
7399 7400
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
7401
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7422 7423 7424 7425 7426

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7427 7428
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
7429 7430
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
7431
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7452 7453 7454 7455 7456

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7457 7458
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
7459 7460
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
7461
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7483 7484 7485 7486 7487

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7488
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
7489
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
7490 7491
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
7492
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7515 7516 7517 7518 7519

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7520 7521
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
7522 7523
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
7524
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
7546 7547 7548 7549 7550

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
7551 7552
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
7553 7554
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
7555
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7556 7557 7558 7559 7560 7561 7562 7563
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
7564 7565 7566 7567
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

J
jerrywgz 已提交
7568
        y = \max(0, x) + alpha * \min(0, x)
J
jerrywgz 已提交
7569 7570 7571

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
7572
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
7573
          weight (alpha).
J
jerrywgz 已提交
7574
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
7575 7576 7577
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
7578
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
7579
          will be named automatically.
J
jerrywgz 已提交
7580 7581 7582 7583 7584 7585 7586 7587

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
7588
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
7602
        attr=helper.param_attr,
J
jerrywgz 已提交
7603 7604 7605 7606
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
7607
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
7608 7609 7610 7611 7612 7613 7614 7615 7616
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


7617 7618 7619 7620 7621 7622 7623 7624 7625 7626
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7627
    Returns:
7628
        output(${out_type}): ${out_comment}
7629 7630 7631 7632 7633 7634 7635

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
7636 7637
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
7638
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7657
    Returns:
7658
        output(${out_type}): ${out_comment}
7659 7660 7661 7662 7663 7664 7665

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.leaky_relu(x, alpha=0.01)
7666 7667
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
7668
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7686
    Returns:
7687
        output(${out_type}): ${out_comment}
7688 7689 7690 7691 7692 7693 7694

    Examples:

        .. code-block:: python

        x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
        y = fluid.layers.soft_relu(x, threshold=20.0)
7695 7696
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
7697
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
7698 7699 7700 7701 7702 7703 7704 7705
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
7719

7720 7721 7722 7723 7724 7725 7726 7727 7728 7729
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
7730 7731
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
7747
        ValueError: If axis is not in range [0, rank(x)].
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
7764 7765
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
7766
    helper.append_op(
7767
        type='flatten2',
7768
        inputs={"X": x},
7769 7770
        outputs={'Out': out,
                 'XShape': x_shape},
7771 7772
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
7773 7774


C
chenweihang 已提交
7775
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
7776
    """
C
chenweihang 已提交
7777
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
7778
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
7779 7780
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
7781

C
chenweihang 已提交
7782 7783 7784 7785
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7786
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7787 7788 7789 7790 7791 7792
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7793
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7794 7795 7796
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7797 7798 7799
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7811 7812
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7813 7814 7815 7816 7817 7818
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7819
    return out
7820

7821

S
sneaxiy 已提交
7822 7823 7824 7825 7826 7827 7828 7829 7830
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7831

S
sneaxiy 已提交
7832
    .. math::
7833

S
sneaxiy 已提交
7834 7835 7836
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7837
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7838 7839 7840 7841
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7842 7843 7844
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7845 7846
    Returns:
        Variable: The output sequence mask.
7847

S
sneaxiy 已提交
7848 7849
    """

Q
qingqing01 已提交
7850
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7851
    if name is None:
X
Xin Pan 已提交
7852
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7853
    else:
X
Xin Pan 已提交
7854
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7855

Q
qingqing01 已提交
7856 7857 7858
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7859 7860
        outputs={'Y': out},
        attrs={
7861
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7862 7863 7864
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7865 7866


X
Xin Pan 已提交
7867
def stack(x, axis=0):
S
sneaxiy 已提交
7868 7869 7870 7871
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7872 7873 7874 7875 7876 7877 7878

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7879
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7880
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7881 7882

    Args:
7883
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7884
        axis (int|None): The axis along which all inputs are stacked.
7885

S
sneaxiy 已提交
7886 7887
    Returns:
        Variable: The stacked variable.
7888

S
sneaxiy 已提交
7889 7890
    """

X
Xin Pan 已提交
7891 7892 7893 7894 7895 7896
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7897
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7898
    helper.append_op(
S
sneaxiy 已提交
7899 7900
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7901

X
Xin Pan 已提交
7902
    return out
D
dzhwinter 已提交
7903 7904 7905 7906 7907 7908 7909


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7910

D
dzhwinter 已提交
7911 7912 7913
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7914
    raised.
D
dzhwinter 已提交
7915 7916

    Args:
M
minqiyang 已提交
7917
        x (Variable): Input variable.
D
dzhwinter 已提交
7918 7919
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7920

D
dzhwinter 已提交
7921 7922
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7923

D
dzhwinter 已提交
7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7935
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7936 7937 7938 7939 7940 7941 7942 7943

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7956

W
whs 已提交
7957 7958 7959 7960
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7961

W
whs 已提交
7962
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7963

W
whs 已提交
7964
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7965

W
whs 已提交
7966 7967 7968 7969
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7970

W
whs 已提交
7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7987
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7988 7989 7990 7991 7992 7993
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7994 7995


G
fix  
gongweibao 已提交
7996 7997 7998
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7999
@templatedoc()
G
fix  
gongweibao 已提交
8000 8001 8002 8003 8004 8005 8006 8007 8008
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8009
    ${comment}
G
fix  
gongweibao 已提交
8010 8011

    Args:
G
gongweibao 已提交
8012 8013 8014
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8015
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8016 8017 8018
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8019 8020
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8021
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8022

8023 8024 8025 8026 8027
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8028 8029 8030
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8031
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8048 8049


G
gongweibao 已提交
8050
@templatedoc()
X
Xin Pan 已提交
8051
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8052
    """
G
gongweibao 已提交
8053
    ${comment}
G
fix  
gongweibao 已提交
8054 8055

    Args:
G
gongweibao 已提交
8056 8057 8058 8059
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8060 8061 8062
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8063
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8064

8065 8066 8067 8068
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8069 8070 8071
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8072
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
8083
            'use_mkldnn': False
G
fix  
gongweibao 已提交
8084 8085 8086 8087 8088
        })

    return out


G
gongweibao 已提交
8089
@templatedoc()
G
fix  
gongweibao 已提交
8090
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8091
    """
G
gongweibao 已提交
8092
    ${comment}
G
fix  
gongweibao 已提交
8093 8094

    Args:
G
gongweibao 已提交
8095 8096 8097 8098
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
8099
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8100 8101

    Returns:
G
gongweibao 已提交
8102
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8103

8104 8105 8106 8107 8108 8109 8110 8111 8112 8113
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
8114 8115 8116
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
8117
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
8129
@templatedoc()
G
fix  
gongweibao 已提交
8130 8131 8132 8133 8134 8135 8136 8137 8138
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
8139
    ${comment}
G
fix  
gongweibao 已提交
8140 8141

    Args:
G
gongweibao 已提交
8142 8143
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
8144
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8145 8146 8147 8148
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8149
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
8150 8151

    Returns:
G
gongweibao 已提交
8152
        out (Variable): ${out_comment}
8153 8154 8155 8156 8157 8158 8159 8160

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
8161 8162 8163
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
8164
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
8183
@templatedoc()
X
Xin Pan 已提交
8184
def sum(x):
G
fix  
gongweibao 已提交
8185
    """
G
gongweibao 已提交
8186
    ${comment}
G
fix  
gongweibao 已提交
8187 8188

    Args:
G
gongweibao 已提交
8189
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
8190 8191

    Returns:
G
gongweibao 已提交
8192
        out (Variable): ${out_comment}
8193 8194 8195 8196 8197 8198

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
8199 8200 8201
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
8202 8203
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
8204 8205 8206 8207
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
8208
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
8209 8210 8211 8212

    return out


G
gongweibao 已提交
8213
@templatedoc()
G
fix  
gongweibao 已提交
8214 8215
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
8216
    ${comment}
G
fix  
gongweibao 已提交
8217 8218

    Args:
G
gongweibao 已提交
8219 8220 8221 8222
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
8223 8224

    Returns:
G
gongweibao 已提交
8225
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8226

8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
8238 8239 8240
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
8241 8242
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
8254
@templatedoc()
G
fix  
gongweibao 已提交
8255 8256
def shape(input):
    """
G
gongweibao 已提交
8257
    ${comment}
G
fix  
gongweibao 已提交
8258 8259

    Args:
G
gongweibao 已提交
8260
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
8261 8262

    Returns:
G
gongweibao 已提交
8263
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8264

8265 8266 8267 8268 8269 8270
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
8271 8272 8273
    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
8274 8275
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
8276
    helper.append_op(
G
fix  
gongweibao 已提交
8277
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
8278 8279

    return out
G
merge  
gongweibao 已提交
8280 8281


S
sneaxiy 已提交
8282 8283 8284 8285 8286 8287 8288 8289
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
8290 8291
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
8292
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8293 8294 8295
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8296

S
sneaxiy 已提交
8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
8308
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
8309 8310 8311 8312 8313 8314 8315 8316
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
8317
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
8318
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
8319 8320 8321 8322 8323 8324

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
8325
    if name is None:
X
Xin Pan 已提交
8326
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8327 8328 8329
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
8340
    return helper.append_activation(out)
S
sneaxiy 已提交
8341 8342


X
Xin Pan 已提交
8343
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8344 8345 8346
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
8347
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8348 8349 8350
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
8351
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8352 8353 8354
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
8355
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8356 8357 8358
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
8359
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8360 8361 8362
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
8363
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8364 8365 8366
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
8367
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
8379 8380
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
8381
        ])
M
minqiyang 已提交
8382 8383


8384
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
8385 8386
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
8387 8388
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
8389 8390 8391

    if out is None:
        if name is None:
X
Xin Pan 已提交
8392
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
8408
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8420 8421 8422 8423 8424 8425 8426 8427 8428

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
8429 8430 8431 8432 8433 8434 8435
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8436
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8448 8449 8450 8451 8452 8453 8454 8455 8456

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
8457 8458 8459 8460 8461 8462 8463
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8464
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8476 8477 8478 8479 8480 8481 8482 8483 8484

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
8485 8486 8487 8488 8489 8490 8491
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
8492
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
8493 8494 8495 8496 8497 8498 8499 8500 8501 8502
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8503 8504 8505 8506 8507 8508 8509

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
8510 8511 8512 8513
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8529 8530 8531 8532 8533 8534 8535

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
8536 8537 8538 8539 8540
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
8541 8542 8543 8544
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
8568 8569 8570 8571 8572 8573 8574

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
8575 8576 8577 8578 8579
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
8580 8581 8582 8583
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
8584 8585 8586 8587 8588 8589 8590 8591

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
8610
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8611 8612 8613 8614 8615 8616 8617 8618 8619 8620
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
8663
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8664 8665 8666 8667 8668 8669 8670 8671 8672
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
8673 8674
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
8675 8676 8677 8678 8679 8680
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
8681 8682 8683 8684
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
                                      name=None):
X
Xin Pan 已提交
8685 8686 8687 8688 8689 8690
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
8691
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
8692 8693 8694 8695 8696 8697 8698 8699 8700
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
8701
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8702 8703 8704 8705 8706 8707 8708 8709
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
8710
        attrs={"ignore_index": ignore_index},
X
Xin Pan 已提交
8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
8731
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
8732 8733 8734 8735 8736 8737 8738 8739 8740 8741
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
8742 8743


J
JiabinYang 已提交
8744
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
8745
    """
J
JiabinYang 已提交
8746
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
8747 8748 8749

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
8750
    The attr blocksize indicates the input block size.
8751 8752

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
8753
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
8754 8755

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
8756
    (but keeping all data)
J
JiabinYang 已提交
8757

J
JiabinYang 已提交
8758
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
8759
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
8760 8761 8762 8763 8764
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
8765
    Args:
J
JiabinYang 已提交
8766
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
8767
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
8768 8769

    Returns:
J
JiabinYang 已提交
8770
        Variable: The output LoDtensor.
J
JiabinYang 已提交
8771 8772

    Raises:
J
JiabinYang 已提交
8773
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
8774 8775 8776 8777 8778 8779

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
8780
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
8781
                x=data, blocksize=2)
J
JiabinYang 已提交
8782 8783
    """

J
JiabinYang 已提交
8784
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
8785

J
JiabinYang 已提交
8786 8787
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
8788 8789

    if name is None:
J
JiabinYang 已提交
8790 8791
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
8792 8793 8794 8795 8796
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
8797
        type="space_to_depth",
J
JiabinYang 已提交
8798
        inputs={"X": x},
J
JiabinYang 已提交
8799
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
8800
        outputs={"Out": out})
J
JiabinYang 已提交
8801 8802
    return out

J
JiabinYang 已提交
8803

S
sneaxiy 已提交
8804 8805
@templatedoc()
def sequence_reverse(x, name=None):
8806
    """
S
sneaxiy 已提交
8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
8818
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
8819 8820 8821 8822 8823 8824 8825 8826 8827 8828
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
8829 8830


8831 8832 8833 8834 8835 8836
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
8837

8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
8857
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
8870 8871


B
barrierye 已提交
8872
def similarity_focus(input, axis, indexes, name=None):
8873
    """
B
barrierye 已提交
8874
    SimilarityFocus Operator
B
barrierye 已提交
8875 8876

    Generate a similarity focus mask with the same shape of input using the following method:
8877 8878 8879
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
8880
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
8881 8882 8883 8884 8885 8886 8887
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
8888
       each index.
B
barrierye 已提交
8889 8890 8891 8892
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8942
    Args:
8943
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
8944
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8945
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8946
            1, 2 or 3.
B
barrierye 已提交
8947
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8948 8949

    Returns:
8950
        Variable: A tensor variable with the same shape and same type
B
barrierye 已提交
8951
            as the input.
8952

B
barrierye 已提交
8953 8954 8955
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8956 8957
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8970 8971 8972 8973 8974
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8975 8976 8977 8978 8979 8980 8981
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8982 8983


M
minqiyang 已提交
8984 8985
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8986 8987
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8988 8989
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
9028
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
9029
        name (str, default None): The name of this layer.
M
minqiyang 已提交
9030 9031 9032 9033 9034 9035 9036 9037 9038

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
9039 9040
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
9041 9042
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
9043 9044 9045 9046 9047 9048 9049
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
9050 9051


D
dengkaipeng 已提交
9052
@templatedoc()
9053 9054
def grid_sampler(x, grid, name=None):
    """
9055
    This operation samples input X by using bilinear interpolation based on
9056
    flow field grid, which is usually gennerated by affine_grid. The grid of
9057 9058 9059 9060
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
9061
    interpolation value of 4 nearest corner points.
9062 9063 9064 9065 9066 9067 9068 9069

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
9070
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
9100 9101

    Args:
9102 9103 9104
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
9105 9106

    Returns:
9107
        out(Variable): Output of shape [N, C, H, W] data samples input X
9108 9109 9110 9111 9112 9113 9114 9115 9116
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
9117 9118 9119 9120 9121 9122 9123 9124 9125
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

9126
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
9127 9128
    ipts = {'X': x, 'Grid': grid}

9129
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
9130 9131 9132
    return out


G
gmcather 已提交
9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
9227 9228 9229 9230 9231 9232 9233 9234 9235 9236


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
9237
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
9238

Q
Qiao Longfei 已提交
9239
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
9240 9241 9242
    For example:

    .. math::
9243
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
9244

Q
Qiao Longfei 已提交
9245
    In this formula:
9246 9247
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
9248
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
9249
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
9250 9251 9252
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
9253 9254
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
9255 9256 9257
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
9258
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
9259
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
9260
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
9261 9262 9263 9264
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
9265
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
9266 9267 9268 9269

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
9270
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
9271 9272
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
9273
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
9274 9275 9276 9277

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
9278
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out