framework.py 101.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


Q
Qiao Longfei 已提交
90 91 92 93 94 95 96 97 98
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
125
@signature_safe_contextmanager
126 127 128 129 130 131 132 133 134 135 136 137
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
138

139 140 141 142
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
143 144
          with name_scope("attention"):
             ...
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
164 165 166
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
167 168 169 170


def grad_var_name(var_name):
    """
171 172
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
173 174 175
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
176

177
def convert_np_dtype_to_dtype_(np_dtype):
178 179
    """
    Convert the data type in numpy to the data type in Paddle
180

181
    Args:
182
        np_dtype(np.dtype): the data type in numpy.
183

184 185
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
186 187

    """
188 189
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
190
        return core.VarDesc.VarType.FP32
191
    elif dtype == np.float64:
192
        return core.VarDesc.VarType.FP64
193
    elif dtype == np.float16:
194
        return core.VarDesc.VarType.FP16
195
    elif dtype == np.int32:
196
        return core.VarDesc.VarType.INT32
197
    elif dtype == np.int16:
198
        return core.VarDesc.VarType.INT16
199
    elif dtype == np.int64:
200
        return core.VarDesc.VarType.INT64
201
    elif dtype == np.bool:
202
        return core.VarDesc.VarType.BOOL
203 204
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
205 206
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
207 208
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
209
    else:
M
minqiyang 已提交
210
        raise ValueError("Not supported numpy dtype %s" % dtype)
211 212 213


def dtype_is_floating(dtype):
214 215 216
    """
    Check the data type is floating or not.
    Args:
217
        dtype(np.dtype|core.VarDesc.VarType): data type.
218 219 220 221 222
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
223
    if not isinstance(dtype, core.VarDesc.VarType):
224 225
        dtype = convert_np_dtype_to_dtype_(dtype)

226 227 228 229
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
230 231


Y
Yang Yang(Tony) 已提交
232
def _debug_string_(proto, throw_on_error=True):
233 234 235 236 237 238 239 240 241 242 243
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
244
    error_fields = list()
Y
Yang Yang(Tony) 已提交
245
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
246 247
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
248 249 250
    return proto.__str__()


X
Xin Pan 已提交
251
class Variable(object):
252
    """
253 254 255
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
256
    two variables in different blocks could have the same name.
257

258 259
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
260

261
    Most of a Variable's member variables can be setted to be None. It mean
262
    it is not available or will be specified later.
263 264

    Args:
265
        block(Block): The block that the variable belongs to.
266 267
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
268 269
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
270
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
271
            Some kinds of variable do not contain shape, just set it to None.
272 273 274
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
275
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
276
            series data.
277
            Default: None
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
300 301
    """

Y
Yu Yang 已提交
302 303
    def __init__(self,
                 block,
Y
Yu Yang 已提交
304
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
305 306 307 308
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
309
                 capacity=None,
Q
QI JUN 已提交
310
                 persistable=None,
F
fengjiayi 已提交
311
                 error_clip=None,
Y
Yu Yang 已提交
312
                 stop_gradient=False,
F
fengjiayi 已提交
313
                 is_data=False,
Y
Yu Yang 已提交
314
                 **kwargs):
Y
Yu Yang 已提交
315
        self.block = block
F
fengjiayi 已提交
316
        self.error_clip = error_clip
Y
Yu Yang 已提交
317 318

        if name is None:
Y
Yu Yang 已提交
319
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
320
        is_new_var = False
M
minqiyang 已提交
321
        name = cpt.to_text(name)
M
minqiyang 已提交
322
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
323 324

        if self.desc is None:
M
minqiyang 已提交
325
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
326
            is_new_var = True
Y
Yu Yang 已提交
327

Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
336
        if shape is not None:
Y
Yu Yang 已提交
337
            if is_new_var:
338
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
339 340 341 342 343 344 345 346
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
347
        if dtype is not None:
348
            if not isinstance(dtype, core.VarDesc.VarType):
349
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
350
            if is_new_var:
F
fengjiayi 已提交
351
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
352
            else:
F
fengjiayi 已提交
353
                old_dtype = self.dtype
Q
QI JUN 已提交
354
                if dtype != old_dtype:
Y
Yu Yang 已提交
355 356 357 358 359
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
360 361

        if lod_level is not None:
Y
Yu Yang 已提交
362
            if is_new_var:
363
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
364 365 366 367 368 369 370
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
371 372 373 374 375 376 377 378 379 380 381
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

382 383 384 385 386 387 388 389
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
390
        if _in_imperative_mode():
M
minqiyang 已提交
391
            # record vars in tracer rather than blocks
M
minqiyang 已提交
392
            self._ivar = kwargs.get("ivar", None)
393 394
            self._ivar.block = block.desc
            self._ivar.name = name
M
minqiyang 已提交
395
            if not self._ivar:
M
minqiyang 已提交
396
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
397
            self._ivar.desc = self.desc
M
minqiyang 已提交
398 399
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
400 401 402 403 404
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
405

406
    def _numpy(self):
M
minqiyang 已提交
407
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
408
        return np.array(new_ivar.value().get_tensor())
409 410

    def _backward(self):
X
Xin Pan 已提交
411
        self._ivar._run_backward()
412 413

    def _gradient(self):
M
minqiyang 已提交
414
        return np.array(self._ivar._grad_value())
415

X
Xin Pan 已提交
416 417
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
418

419
    def __str__(self):
Y
Yang Yang(Tony) 已提交
420 421
        return self.to_string(True)

F
update  
fengjiayi 已提交
422
    def to_string(self, throw_on_error, with_details=False):
423 424 425 426
        """
        Get debug string.

        Args:
427 428
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
429
            with_details(bool): more details about variables and parameters
430 431
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
432

433 434
        Returns:
            str: The debug string.
435
        """
F
update  
fengjiayi 已提交
436 437
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
438
        protostr = self.desc.serialize_to_string()
439
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
440 441 442 443
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
444 445
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
446
        return res_str
447 448 449

    __repr__ = __str__

W
Wu Yi 已提交
450
    def _set_desc(self, input):
451 452 453 454 455 456 457 458 459
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
460 461
        self.desc = input

462 463
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
464 465 466 467
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
468 469 470

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
471 472 473
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
474

475 476 477 478
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
479 480 481 482
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
483 484
    @property
    def name(self):
M
minqiyang 已提交
485
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
486

T
typhoonzero 已提交
487 488 489 490
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
491 492 493
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
494
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
495 496

    @property
F
fengjiayi 已提交
497 498
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
499 500 501

    @property
    def lod_level(self):
502
        return self.desc.lod_level()
Y
Yu Yang 已提交
503

Y
Yu Yang 已提交
504 505 506 507
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
508
    def _set_error_clip(self, error_clip):
509 510 511 512 513 514 515 516 517
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
518 519
        self.error_clip = error_clip

Y
Yu Yang 已提交
520

F
fengjiayi 已提交
521 522 523
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
524

525 526
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
527 528 529 530
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
531
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
532 533 534 535 536
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
537 538 539 540
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
541 542 543 544 545 546 547 548 549
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
550
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
551 552 553 554 555 556
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
557 558 559 560 561 562 563 564
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
565 566
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
567 568
        return self.op_proto_map[type]

569 570 571 572
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
573
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
574 575
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
576 577
        }

F
fengjiayi 已提交
578

X
Xin Pan 已提交
579
class Operator(object):
580
    """
581 582 583 584 585 586 587
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
588
        type(str): The type of operator. Default None.
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
609
        Block.append_op or Block._prepend_op instead.
610 611 612 613 614 615 616 617 618 619

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
620
    """
621 622 623
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
624 625
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
626
    }
627

Y
Yu Yang 已提交
628 629
    def __init__(self,
                 block,
Y
Yu Yang 已提交
630
                 desc,
Y
Yu Yang 已提交
631 632 633
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
634
                 attrs=None):
Y
Yu Yang 已提交
635
        self.block = block
Y
Yu Yang 已提交
636
        self.desc = desc
G
gongweibao 已提交
637 638 639 640 641
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
642 643 644 645
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
646 647
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
648 649 650

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
651 652
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
653

G
gongweibao 已提交
654 655
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
656

F
fengjiayi 已提交
657 658 659 660 661
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
662 663 664 665 666
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
667
        self.desc.set_type(type)
F
fengjiayi 已提交
668
        proto = OpProtoHolder.instance().get_op_proto(type)
669

670 671 672
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
673 674
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
675
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
676 677
                    return True
            return False
Q
QI JUN 已提交
678

Y
Yang Yang(Tony) 已提交
679 680 681 682 683 684 685
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
686 687 688 689
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
690 691
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
692 693 694
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
695
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
696
                            in_arg_names.append(arg)
697 698
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
699
                        else:
M
minqiyang 已提交
700
                            in_arg_names.append(cpt.to_text(arg.name))
701
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
702 703
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
704

Y
Yu Yang 已提交
705
        if outputs is not None:
706
            for m in proto.outputs:
Q
qingqing01 已提交
707 708 709 710 711 712
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
713
            for out_proto in proto.outputs:
Q
qingqing01 已提交
714 715
                if out_proto.name not in outputs:
                    continue
716 717 718 719
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
720 721
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
722 723 724
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
725
                    out_arg_names.append(cpt.to_text(arg.name))
726 727
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
728

G
gongweibao 已提交
729 730
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
731
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
732
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
733
                attr_name = attr.name
G
gongweibao 已提交
734
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
735
                    continue
G
gongweibao 已提交
736
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
737 738
                self._update_desc_attr(attr_name, attr_val)

739
        self.desc.check_attrs()
W
Wu Yi 已提交
740
        if self._has_kernel(type):
Q
QI JUN 已提交
741
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
742
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
743

X
Xin Pan 已提交
744 745 746
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
747

X
Xin Pan 已提交
748
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
749
            if inputs is not None:
X
Xin Pan 已提交
750 751 752 753 754
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
755

X
Xin Pan 已提交
756
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
757
            if outputs is not None:
X
Xin Pan 已提交
758 759 760 761 762
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
763

W
Wu Yi 已提交
764
    def _has_kernel(self, op_type):
765 766
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
767
    def to_string(self, throw_on_error):
768
        """
769 770
        Get debug string.

771
        Args:
772 773
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
774

775 776
        Returns:
            str: The debug string.
777 778

        """
779
        protostr = self.desc.serialize_to_string()
780
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
781 782 783 784
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
785 786 787

    __repr__ = __str__

F
fengjiayi 已提交
788 789 790 791 792
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
793
        """
794
        Get the input arguments according to the input parameter name.
795

796 797
        Args:
            name(str): The input parameter name.
798

799 800 801
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
802
        """
F
fengjiayi 已提交
803 804
        return self.desc.input(name)

W
Wu Yi 已提交
805
    def _rename_input(self, old_name, new_name):
806 807 808 809 810 811 812 813 814 815
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
816
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
817

W
Wu Yi 已提交
818
    def _rename_output(self, old_name, new_name):
819 820 821 822 823 824 825 826 827 828
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
829
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
830

F
fengjiayi 已提交
831 832 833 834
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
835 836 837 838 839 840 841 842
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
843
    def output(self, name):
844
        """
845
        Get output arguments by the output parameter name.
846

847 848
        Args:
            name(str): The output parameter name.
849

850 851 852
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
853
        """
F
fengjiayi 已提交
854 855 856 857 858 859
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

860 861 862 863 864 865 866 867
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
868
    def has_attr(self, name):
869
        """
870 871
        Whether this Operator has the attribute with name or not.

872
        Args:
873
            name(str): the attribute name.
874

875 876
        Returns:
            bool: True if has this attribute.
877 878

        """
F
fengjiayi 已提交
879 880 881
        return self.desc.has_attr(name)

    def attr_type(self, name):
882
        """
883
        Get the type of attribute by attribute's name.
884

885 886
        Args:
            name(str): the attribute name.
887

888 889
        Returns:
            core.AttrType: the attribute type.
890
        """
F
fengjiayi 已提交
891 892
        return self.desc.attr_type(name)

W
Wu Yi 已提交
893
    def _set_attr(self, name, val):
894 895 896 897 898 899 900 901 902 903
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
917 918
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
919 920
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
921
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
922 923 924 925
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
926
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
927

F
fengjiayi 已提交
928 929 930 931 932
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
933
        """
934 935
        Get the attribute by name.

936
        Args:
937
            name(str): the attribute name.
938

939 940
        Returns:
            bool|int|str|float|list: The attribute value. The return value
941 942
            can be any valid attribute type.
        """
F
fengjiayi 已提交
943
        return self.desc.attr(name)
Y
Yu Yang 已提交
944

W
Wu Yi 已提交
945
    def _block_attr_id(self, name):
946
        """
G
gongweibao 已提交
947
        Get the block attribute's id by name.
948

949 950
        Args:
            name(str): the attribute name.
951

952 953
        Returns:
            int: the block index.
954
        """
W
Wu Yi 已提交
955
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
956

W
Wu Yi 已提交
957
    def _block_attr(self, name):
G
gongweibao 已提交
958 959 960 961 962 963 964 965 966 967
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
968
        id = self._block_attr_id(name)
G
gongweibao 已提交
969 970 971
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
972
    def _blocks_attr(self, name):
G
gongweibao 已提交
973 974 975 976 977 978 979 980 981 982
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
983
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
984 985 986 987 988
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
989
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
990 991 992 993 994 995 996 997 998 999
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1000
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1001

J
JiayiFeng 已提交
1002
    def all_attrs(self):
F
fengjiayi 已提交
1003
        """
1004 1005 1006
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1007
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1008 1009 1010 1011
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1012 1013
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1014
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1015 1016 1017
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1018
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1019 1020 1021 1022
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1023 1024
        return attr_map

Y
Yu Yang 已提交
1025

Y
Yu Yang 已提交
1026
class Block(object):
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1041
        use `Program._create_block()` to create a block.
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1056
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1057
        self.desc = program.desc.block(idx)
1058
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1059
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1060
        self.program = program
1061
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1062

1063
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1064 1065
        return self.to_string(True)

F
fengjiayi 已提交
1066 1067
    def to_string(self, throw_on_error, with_details=False):
        """
1068 1069
        Get debug string.

F
fengjiayi 已提交
1070 1071
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1072
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1073
            with_details(bool): more details about variables and parameters
1074 1075
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1076

1077 1078
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1079 1080 1081 1082
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1083
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1084 1085
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1086
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1087
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1088
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1089
            for op in self.ops:
F
fengjiayi 已提交
1090 1091
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1092 1093 1094
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1095 1096
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1097 1098
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1099 1100 1101

    __repr__ = __str__

Y
Yu Yang 已提交
1102 1103
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1104
        return self.desc.parent
Y
Yu Yang 已提交
1105

Y
Yu Yang 已提交
1106 1107 1108 1109
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1110
    def _set_forward_block_idx(self, idx):
1111 1112 1113 1114 1115 1116 1117 1118 1119
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1120
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1121

Y
Yu Yang 已提交
1122 1123
    @property
    def idx(self):
Y
Yu Yang 已提交
1124
        return self.desc.id
Y
Yu Yang 已提交
1125

Q
Qiao Longfei 已提交
1126
    def var(self, name):
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1140
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1141 1142 1143
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1144 1145
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1146
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1147
        return v
Q
Qiao Longfei 已提交
1148

X
Xin Pan 已提交
1149
    def _find_var_recursive(self, name):
1150 1151 1152 1153 1154 1155 1156
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1157
            Variable: the Variable with the giving name. Or None if not found.
1158
        """
Y
Yu Yang 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1183
        return None
Y
Yu Yang 已提交
1184

X
Xin Pan 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1204

Q
Qiao Longfei 已提交
1205
    def all_parameters(self):
1206
        return list(self.iter_parameters())
1207

1208
    def iter_parameters(self):
M
minqiyang 已提交
1209
        return (item[1] for item in six.iteritems(self.vars)
1210
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1211

Y
Yu Yang 已提交
1212
    def create_var(self, *args, **kwargs):
1213
        var = Variable(block=self, *args, **kwargs)
1214 1215
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1216
        return var
Y
Yu Yang 已提交
1217

Q
Qiao Longfei 已提交
1218 1219 1220
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1221
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1222 1223
        """
        Rename variable in vars and ops' inputs and outputs
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1236
        """
M
minqiyang 已提交
1237 1238
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1239

T
typhoonzero 已提交
1240
        if not self.has_var(name):
1241
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1242 1243
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1244
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1245 1246 1247 1248 1249 1250 1251
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1252
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1253 1254 1255 1256
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1257
        orig_var_type = v.type
M
minqiyang 已提交
1258
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1259
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1260
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1261
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1262 1263 1264 1265
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1266
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1267 1268 1269 1270 1271 1272 1273
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1274
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1275 1276
            var = Variable(
                self,
T
typhoonzero 已提交
1277
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1278 1279 1280 1281
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1282
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1283 1284 1285
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1286
        self._sync_with_cpp()
1287
        return var
T
typhoonzero 已提交
1288

W
Wu Yi 已提交
1289 1290
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1291
        self.desc._remove_var(cpt.to_bytes(name))
1292 1293
        del self.vars[name]

Y
Yu Yang 已提交
1294 1295
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1296
        param = Parameter(global_block, *args, **kwargs)
1297
        if 'initializer' in kwargs:
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1318
        return param
Y
Yu Yang 已提交
1319

Y
Yu Yang 已提交
1320
    def append_op(self, *args, **kwargs):
1321 1322 1323 1324 1325 1326
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1327
        op_desc = self.desc.append_op()
1328 1329 1330 1331 1332 1333 1334
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1335 1336 1337 1338 1339 1340

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1341 1342 1343 1344
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.append(op)
M
minqiyang 已提交
1345

1346 1347
        return op

W
Wu Yi 已提交
1348
    def _insert_op(self, index, *args, **kwargs):
1349 1350 1351 1352 1353 1354 1355 1356 1357
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1358 1359
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1360 1361 1362 1363
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1364
    def _remove_op(self, index):
1365 1366 1367 1368 1369 1370 1371 1372 1373
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1374 1375
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1376 1377
        del self.ops[index]

W
Wu Yi 已提交
1378
    def _slice_ops(self, start, end):
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1389
        return self.ops[start:end]
Y
Yancey1989 已提交
1390

W
Wu Yi 已提交
1391 1392
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1393 1394 1395 1396 1397 1398 1399
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1400
        if _in_imperative_mode():
M
minqiyang 已提交
1401 1402 1403 1404
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.insert(0, op)
Y
Yu Yang 已提交
1405 1406
        return op

W
Wu Yi 已提交
1407
    def _sync_with_cpp(self):
1408
        """
1409 1410
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1411
        """
Q
Qiao Longfei 已提交
1412 1413 1414 1415 1416
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1417
        # sync variables removed from c++ end
1418
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1419
            if not self.desc.find_var(cpt.to_bytes(var)):
1420 1421
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1422
        # sync operators from cpp
1423 1424 1425 1426
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1443 1444 1445 1446 1447

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1448
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1449 1450 1451 1452 1453 1454 1455

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1469 1470 1471 1472
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1473
    def _copy_param_info_from(self, other):
1474
        """
1475 1476
        Copy the information of parameters from the other block.

1477
        Args:
1478 1479 1480 1481 1482
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1483 1484 1485 1486 1487

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1488 1489
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1490
        for p in other.iter_parameters():
1491 1492 1493
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1494
                raise ValueError("_copy_param_info_from should be invoked with "
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1507
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1508
                error_clip=p.error_clip,
1509 1510 1511
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1512
    def _clone_variable(self, var):
1513 1514
        """
        Clone a variable into current block.
1515

1516 1517 1518 1519
        Args:
            var: the variable to be cloned.

        Returns:
1520
            Variable: the new  variable cloned from 'var' in current block.
1521 1522
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1523 1524 1525 1526 1527
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1528 1529
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1530
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1531 1532 1533 1534 1535 1536
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1537 1538
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1539 1540 1541 1542 1543 1544 1545
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1546 1547
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1548
        return ret_var
1549

Y
Yu Yang 已提交
1550

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1646
    def remove_input_by_id(self, node_id):
1647 1648 1649 1650 1651 1652
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1653
        self.node.remove_input(node_id)
1654

1655
    def remove_input(self, node):
1656 1657 1658 1659
        """
        Remove a node from inputs.

        Args:
1660
            node(IrNode): the node being removed.
1661
        """
1662
        self.node.remove_input(node.node)
1663

1664
    def append_input(self, node):
1665 1666 1667 1668
        """
        Append a node in inputs.

        Args:
1669
            node(IrNode): the node being appended.
1670
        """
1671
        self.node.append_input(node.node)
1672 1673 1674 1675 1676 1677 1678 1679

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1680
    def remove_output_by_id(self, node_id):
1681 1682 1683 1684 1685 1686
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1687
        self.node.remove_output(node_id)
1688

1689
    def remove_output(self, node):
1690 1691 1692 1693
        """
        Remove a node from outputs.

        Args:
1694
            node(IrNode): the node being removed.
1695
        """
1696
        self.node.remove_output(node.node)
1697

1698
    def append_output(self, node):
1699 1700 1701 1702
        """
        Append a node in outputs.

        Args:
1703
            node(IrNode): the node being appended.
1704
        """
1705
        self.node.append_output(node.node)
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


1938 1939
class IrGraph(object):
    """
1940
    Python IrGraph. Beneath it is a core.Graph, which is used for
1941
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
1942 1943
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1944 1945 1946 1947
    """

    def __init__(self, graph, for_test=False):
        """
1948 1949
        Construct an IrGraph using core.Graph.

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1960 1961 1962
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1963 1964
        return self._for_test

W
WangZhen 已提交
1965
    def all_nodes(self):
1966 1967 1968
        """
        Return all nodes included in the graph as a set.
        """
1969
        return {IrNode(node) for node in self.graph.nodes()}
1970

1971
    def all_var_nodes(self):
1972 1973 1974
        """
        Return all variable nodes included in the graph as a set.
        """
1975
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
1976

1977
    def all_persistable_nodes(self):
1978 1979 1980
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1981 1982 1983 1984 1985
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
1986
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
1987

1988
    def all_op_nodes(self):
1989 1990 1991
        """
        Return all operator nodes included in the graph as a set.
        """
1992
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
1993

W
WangZhen 已提交
1994 1995
    def var_node(self, name):
        """
1996 1997
        Get a variable node by name from the graph.

W
WangZhen 已提交
1998 1999
        Args:
            name(str): the name of the variable node.
2000

W
WangZhen 已提交
2001 2002 2003
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
2004

W
WangZhen 已提交
2005
        Returns:
2006
            IrVarNode: the variable node with the giving name.
W
WangZhen 已提交
2007 2008 2009 2010 2011 2012
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
2013
        var_nodes = self.all_var_nodes()
W
WangZhen 已提交
2014 2015 2016 2017 2018 2019 2020
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

2021
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2033
            IrVarNode: the created persistable variable node.
2034
        """
2035 2036 2037 2038 2039
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2040
        return IrVarNode(self.graph.create_var_node(var_desc))
2041 2042

    def create_var_node(self, name, var_type, shape, var_dtype):
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2054
            IrVarNode: the created variable node.
2055 2056
        """

2057 2058 2059 2060
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2061
        return IrVarNode(self.graph.create_var_node(var_desc))
2062 2063

    def create_var_node_from_desc(self, var_desc):
2064 2065 2066 2067 2068 2069 2070 2071
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2072
            IrVarNode: the created variable node.
2073
        """
2074
        return IrVarNode(self.graph.create_var_node(var_desc))
2075 2076

    def create_op_node(self, op_type, attrs, inputs, outputs):
2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2087
            IrOpNode: the created operator node.
2088
        """
2089 2090
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2091
        for attr, value in six.iteritems(attrs):
2092
            self._update_desc_attr(op_desc, attr, value)
2093
        for input_name, var_nodes in six.iteritems(inputs):
2094 2095 2096 2097
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2098
        for output_name, var_nodes in six.iteritems(outputs):
2099 2100 2101 2102
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2103
        return IrOpNode(self.graph.create_op_node(op_desc))
2104 2105

    def create_op_node_from_desc(self, op_desc):
2106 2107 2108 2109 2110 2111 2112
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2113
            IrOpNode: the created operator node.
2114
        """
2115
        return IrOpNode(self.graph.create_op_node(op_desc))
2116 2117

    def update_input_link(self, old_input_node, new_input_node, op_node):
2118 2119 2120 2121
        """
        Update the input's link of a operator node.

        Args:
2122 2123 2124
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2125
        """
2126 2127
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2128
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2129 2130 2131 2132
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2133
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2134 2135

    def link_to(self, node_in, node_out):
2136 2137 2138 2139
        """
        Connect two nodes.

        Args:
2140 2141
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2142
        """
2143
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2144
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2145 2146
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2147 2148

    def safe_remove_nodes(self, remove_nodes):
2149 2150 2151 2152 2153 2154 2155
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2156
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2157 2158 2159 2160
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2161 2162
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2163

W
WangZhen 已提交
2164
    def has_circle(self):
2165 2166 2167 2168 2169 2170
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2171 2172 2173
        return core.has_circle(self.graph)

    def graph_num(self):
2174 2175 2176 2177 2178 2179
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2180 2181 2182
        return core.graph_num(self.graph)

    def topology_sort(self):
2183 2184 2185 2186 2187 2188
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
2189
            set(IrNode): nodes in topology order.
2190
        """
2191 2192
        ordered_nodes = core.topology_sort(self.graph)
        return {IrNode(n) for n in ordered_nodes}
W
WangZhen 已提交
2193 2194

    def build_adjacency_list(self):
2195 2196 2197 2198
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2199
            dict{IrNode: set(IrNode)}: the adjacency list.
2200
        """
2201 2202 2203 2204 2205
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2206

2207 2208 2209 2210 2211 2212 2213 2214
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2215
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2216 2217 2218 2219 2220
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2221 2222 2223 2224 2225 2226 2227 2228 2229
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2230
        remove_ctr_vars = set()
2231
        if remove_ctr_var:
2232
            for node in self.all_var_nodes():
2233 2234 2235
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2236 2237
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2238 2239
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2240 2241 2242 2243 2244 2245
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2267
        convert_pass = core.get_pass('graph_to_program_pass')
2268 2269
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2290
class Program(object):
D
dzhwinter 已提交
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2302
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2303 2304

    Returns:
Y
yuyang18 已提交
2305
        A empty program.
D
dzhwinter 已提交
2306 2307

    Examples:
Y
yuyang18 已提交
2308 2309 2310 2311 2312 2313
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2314 2315 2316

    """

2317 2318
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2319 2320
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2321
        self._seed = 0
Y
yuyang18 已提交
2322
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2323
        self._op_role_var = []
T
tangwei12 已提交
2324

2325 2326
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2327
        self._is_distributed = False
2328
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2329
        self._is_chief = False
2330 2331 2332
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2333
        self._endpoints = []
2334 2335 2336
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2337
        self._trainers_endpoints = []
2338
        # the distributed lookup table names
T
tangwei12 已提交
2339
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2340
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2341
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2342
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2343 2344

    @property
D
dzhwinter 已提交
2345
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2346 2347
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2348
        return self.__is_mem_optimized
D
dzhwinter 已提交
2349

D
dzhwinter 已提交
2350 2351 2352
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2353 2354 2355

    @property
    def op_role(self):
Y
yuyang18 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2369 2370 2371
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2372
    def op_role(self, role):
Y
yuyang18 已提交
2373 2374 2375 2376
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2377 2378 2379 2380 2381 2382 2383
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2384 2385 2386 2387
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2388
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2389

S
rename  
sneaxiy 已提交
2390
    @signature_safe_contextmanager
W
Wu Yi 已提交
2391
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2392 2393 2394 2395 2396 2397 2398
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2399
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2400 2401 2402 2403

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2404
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2405 2406
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2407 2408 2409
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2410 2411
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2412 2413 2414 2415
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2416
        yield
X
Xin Pan 已提交
2417 2418
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2419

S
rename  
sneaxiy 已提交
2420
    @signature_safe_contextmanager
X
Xin Pan 已提交
2421
    def _lr_schedule_guard(self, is_with_opt=False):
2422 2423 2424 2425 2426 2427 2428
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2429 2430 2431 2432
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2433 2434 2435 2436 2437 2438 2439

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2440 2441 2442 2443

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2444 2445
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2446 2447
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2448 2449 2450
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2451 2452
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2453

2454
    def __str__(self):
Y
yuyang18 已提交
2455 2456 2457 2458 2459 2460 2461 2462 2463
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2464 2465
        return self.to_string(True)

F
fengjiayi 已提交
2466 2467 2468
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2469

F
fengjiayi 已提交
2470
        Args:
Y
yuyang18 已提交
2471 2472
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2473

Y
yuyang18 已提交
2474 2475 2476 2477
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2478 2479
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2480 2481 2482 2483

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2494 2495
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2496 2497
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2498

W
Wu Yi 已提交
2499
    def _get_desc(self):
Y
yuyang18 已提交
2500 2501 2502 2503 2504 2505 2506
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2507 2508
        return self.desc

X
version  
Xin Pan 已提交
2509 2510 2511
    def _version(self):
        return self.desc._version()

2512
    def clone(self, for_test=False):
Y
yuyang18 已提交
2513 2514 2515
        """
        Create a new, duplicated program.

2516

Y
yuyang18 已提交
2517 2518 2519 2520
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2521

Y
yuyang18 已提交
2522 2523 2524 2525
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2526 2527 2528 2529 2530
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2531 2532

        Args:
Y
yuyang18 已提交
2533 2534
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2535

D
dzhwinter 已提交
2536
        Returns:
Y
yuyang18 已提交
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2590 2591
        """
        if for_test:
X
Xin Pan 已提交
2592
            p = self._inference_optimize(prune_read_op=False)
2593
        else:
2594
            p = Program()
G
gongweibao 已提交
2595 2596
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2597
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2598 2599 2600
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2601 2602 2603 2604

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2605
            p._sync_with_cpp()
2606

W
Wu Yi 已提交
2607
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2608
        p._copy_data_info_from(self)
2609
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2610
        return p
2611

W
Wu Yi 已提交
2612
    def _prune(self, targets):
Y
yuyang18 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2628 2629 2630 2631 2632 2633
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2634 2635
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2636
                    # and we need to find the current op that generate this
2637 2638 2639 2640 2641 2642 2643 2644
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2645
                    t = t.op
2646 2647 2648 2649
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2650
                else:
2651 2652
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2653 2654 2655 2656

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2657 2658 2659
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2660
        res._sync_with_cpp()
2661 2662
        return res

X
Xin Pan 已提交
2663
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2664
        """
F
fengjiayi 已提交
2665 2666 2667 2668 2669
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2670
        3. change the :code:`is_test`
Y
yuyang18 已提交
2671 2672 2673
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2674
        Args:
X
Xin Pan 已提交
2675 2676
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2677

Y
yuyang18 已提交
2678 2679 2680 2681 2682 2683
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2684
        res = Program()
2685
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2686 2687 2688 2689

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2690
        if prune_read_op:
2691 2692 2693 2694 2695 2696 2697 2698 2699
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2700
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2701 2702

        # change all `is_test` attributes to True
M
minqiyang 已提交
2703
        for i in six.moves.range(res.desc.num_blocks()):
2704
            block = res.desc.block(i)
M
minqiyang 已提交
2705
            for j in six.moves.range(block.op_size()):
2706 2707
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2708
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2709 2710 2711
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2712
        res._sync_with_cpp()
2713 2714
        return res

2715 2716
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2717 2718 2719 2720 2721 2722 2723
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2724
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2725 2726 2727 2728

        Returns:
            Program: A deserialized program desc.
        """
2729 2730
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2731
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2732
        p._sync_with_cpp()
2733
        return p
Y
Yu Yang 已提交
2734

2735
    @staticmethod
2736
    def _construct_from_desc(desc):
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2752 2753
    @property
    def random_seed(self):
Y
yuyang18 已提交
2754 2755 2756 2757 2758 2759
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2760 2761
        return self._seed

Q
qiaolongfei 已提交
2762 2763
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2764 2765 2766
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2767 2768
        return self.desc.num_blocks()

D
dzhwinter 已提交
2769 2770 2771 2772 2773 2774
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2775
    def __repr__(self):
2776
        return self.__str__()
2777

Y
Yu Yang 已提交
2778
    def global_block(self):
Y
yuyang18 已提交
2779 2780 2781
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2782 2783
        return self.blocks[0]

Q
Qiao Longfei 已提交
2784
    def block(self, index):
Y
yuyang18 已提交
2785 2786 2787 2788 2789 2790 2791 2792
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2793 2794
        return self.blocks[index]

Y
Yu Yang 已提交
2795
    def current_block(self):
Y
yuyang18 已提交
2796 2797 2798 2799
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2800 2801
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2802
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2813
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2814 2815 2816
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2817 2818 2819 2820
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2821
    def _rollback(self):
Y
yuyang18 已提交
2822 2823 2824 2825 2826
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2827 2828
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2829
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2840 2841 2842
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2843
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2844

W
Wu Yi 已提交
2845
    def _copy_param_info_from(self, other):
2846
        """
2847
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2848

Y
yuyang18 已提交
2849 2850 2851
        Notes: This is a very low level API. Users should not invoke it
        directly.

2852 2853 2854 2855 2856 2857 2858
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2859
            raise TypeError("_copy_param_info_from should be invoked with "
2860 2861 2862
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2863
            raise ValueError("_copy_param_info_from should be invoked with two "
2864
                             "program, with represent the same topology")
W
Wu Yi 已提交
2865
        self.global_block()._copy_param_info_from(other.global_block())
2866

2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2882
        self._parameters_on_pservers = other._parameters_on_pservers
2883
        self._endpoints = other._endpoints
2884
        self._ps_endpoint = other._ps_endpoint
2885 2886
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2887
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2888 2889
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2890

Y
yuyang18 已提交
2891 2892 2893
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2894 2895 2896 2897 2898 2899 2900
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2901
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2902 2903 2904
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2905
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2906
                             "program, with represent the same topology")
2907
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2908 2909 2910
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2911
    def list_vars(self):
Y
yuyang18 已提交
2912 2913 2914 2915 2916 2917
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2918
        for each_block in self.blocks:
2919
            for each_var in list(each_block.vars.values()):
2920 2921
                yield each_var

Y
Yu Yang 已提交
2922

Y
Yu Yang 已提交
2923
class Parameter(Variable):
2924
    """
2925
    Parameter is derived from Variable. A parameter is a persistable
2926
    Variable, and will be updated by optimizers after each iteration.
2927
    The training of a neural network is essentially the updating of
2928 2929
    its parameters.

2930
    Relative to a general Variable, a Parameter has several its own
2931 2932
    member variables:

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2945 2946
    """

Y
Yu Yang 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2957 2958 2959

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2960 2961 2962 2963
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2964 2965
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2966
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2967

W
wanghaoshuang 已提交
2968
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2969

F
fengjiayi 已提交
2970 2971 2972
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2973 2974 2975
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2976

F
update  
fengjiayi 已提交
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2991
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2992
            for attr_name in additional_attr:
2993 2994
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2995 2996
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2997 2998 2999 3000
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3001

Y
Yu Yang 已提交
3002
# program is a global instance.
Y
Yu Yang 已提交
3003 3004
_main_program_ = Program()
_startup_program_ = Program()
3005

3006

3007
def default_startup_program():
Y
Yu Yang 已提交
3008
    """
Y
yuyang18 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3018

Y
Yu Yang 已提交
3019 3020 3021
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3022
    return _startup_program_
3023

3024

3025
def default_main_program():
Y
Yu Yang 已提交
3026
    """
Y
yuyang18 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3036

Y
Yu Yang 已提交
3037 3038 3039
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3040
    return _main_program_
Y
Yu Yang 已提交
3041 3042 3043 3044 3045


def switch_main_program(program):
    """
    Switch the main program to a new program.
3046

Y
Yu Yang 已提交
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3061
    Switch the startup program to a new program
Y
Yu Yang 已提交
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3074
@signature_safe_contextmanager
Y
Yu Yang 已提交
3075 3076
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3077 3078 3079
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3080

Y
Yu Yang 已提交
3081
    Examples:
Y
yuyang18 已提交
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3092

Y
Yu Yang 已提交
3093
    Examples:
Y
yuyang18 已提交
3094 3095 3096 3097 3098 3099

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3100

Y
Yu Yang 已提交
3101
    Args:
Y
yuyang18 已提交
3102
        main_program(Program): New main program inside `with` statement.
3103
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3117 3118


W
Wu Yi 已提交
3119
def _get_var(name, program=None):
X
xuwei06 已提交
3120
    """
Y
yuyang18 已提交
3121
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3122

X
xuwei06 已提交
3123 3124 3125
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3126
        If None, default_global_program() will be used.
X
xuwei06 已提交
3127 3128 3129 3130 3131 3132 3133

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3134
    assert isinstance(program, Program)
X
xuwei06 已提交
3135 3136

    return program.global_block().var(name)
3137 3138


S
rename  
sneaxiy 已提交
3139
@signature_safe_contextmanager
3140 3141 3142 3143
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3144

3145
    yield
P
Paddle CI 已提交
3146

3147
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3148 3149


S
rename  
sneaxiy 已提交
3150
@signature_safe_contextmanager
P
Paddle CI 已提交
3151
def _imperative_place_guard(place):
M
minqiyang 已提交
3152 3153 3154
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3155

3156
    yield
M
minqiyang 已提交
3157

M
minqiyang 已提交
3158
    _imperative_current_expected_place_ = tmp_place