framework.py 74.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23
import sys
24

Y
Yu Yang 已提交
25
import numpy as np
Q
qiaolongfei 已提交
26

M
minqiyang 已提交
27
from .. import compat as cpt
28
from .proto import framework_pb2
29
try:
P
peizhilin 已提交
30 31 32 33 34 35
    if os.name == 'nt':
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

36
    from . import core
37
except ImportError as e:
P
peizhilin 已提交
38 39 40 41 42 43 44 45 46 47 48 49
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
50
except Exception as e:
51
    raise e
52
from . import unique_name
Y
Yu Yang 已提交
53

54
__all__ = [
55 56 57 58
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
59
    'name_scope',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

68 69 70 71 72 73 74 75 76 77
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
118

119 120 121 122
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
123 124
          with name_scope("attention"):
             ...
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
144 145 146
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
147 148 149 150


def grad_var_name(var_name):
    """
151 152
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
153 154 155
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
156

157
def convert_np_dtype_to_dtype_(np_dtype):
158 159
    """
    Convert the data type in numpy to the data type in Paddle
160

161
    Args:
162
        np_dtype(np.dtype): the data type in numpy.
163

164 165
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
166 167

    """
168 169
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
170
        return core.VarDesc.VarType.FP32
171
    elif dtype == np.float64:
172
        return core.VarDesc.VarType.FP64
173
    elif dtype == np.float16:
174
        return core.VarDesc.VarType.FP16
175
    elif dtype == np.int32:
176
        return core.VarDesc.VarType.INT32
177
    elif dtype == np.int16:
178
        return core.VarDesc.VarType.INT16
179
    elif dtype == np.int64:
180
        return core.VarDesc.VarType.INT64
181
    elif dtype == np.bool:
182
        return core.VarDesc.VarType.BOOL
183 184
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
185 186
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
187 188
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
189
    else:
M
minqiyang 已提交
190
        raise ValueError("Not supported numpy dtype %s" % dtype)
191 192 193


def dtype_is_floating(dtype):
194 195 196
    """
    Check the data type is floating or not.
    Args:
197
        dtype(np.dtype|core.VarDesc.VarType): data type.
198 199 200 201 202
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
203
    if not isinstance(dtype, core.VarDesc.VarType):
204 205
        dtype = convert_np_dtype_to_dtype_(dtype)

206 207 208 209
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
210 211


Y
Yang Yang(Tony) 已提交
212
def _debug_string_(proto, throw_on_error=True):
213 214 215 216 217 218 219 220 221 222 223
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
224
    error_fields = list()
Y
Yang Yang(Tony) 已提交
225
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
226 227
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
228 229 230
    return proto.__str__()


X
Xin Pan 已提交
231
class Variable(object):
232
    """
233 234 235
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
236
    two variables in different blocks could have the same name.
237

238 239
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
240

241
    Most of a Variable's member variables can be setted to be None. It mean
242
    it is not available or will be specified later.
243 244

    Args:
245
        block(Block): The block that the variable belongs to.
246 247
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
248 249
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
250
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
251
            Some kinds of variable do not contain shape, just set it to None.
252 253 254
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
255
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
256
            series data.
257
            Default: None
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
280 281
    """

Y
Yu Yang 已提交
282 283
    def __init__(self,
                 block,
Y
Yu Yang 已提交
284
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
285 286 287 288
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
289
                 capacity=None,
Q
QI JUN 已提交
290
                 persistable=None,
F
fengjiayi 已提交
291
                 error_clip=None,
Y
Yu Yang 已提交
292
                 stop_gradient=False,
F
fengjiayi 已提交
293
                 is_data=False,
Y
Yu Yang 已提交
294
                 **kwargs):
Y
Yu Yang 已提交
295
        self.block = block
F
fengjiayi 已提交
296
        self.error_clip = error_clip
Y
Yu Yang 已提交
297 298

        if name is None:
Y
Yu Yang 已提交
299
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
300
        is_new_var = False
M
minqiyang 已提交
301
        name = cpt.to_text(name)
M
minqiyang 已提交
302
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
303 304

        if self.desc is None:
M
minqiyang 已提交
305
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
306
            is_new_var = True
Y
Yu Yang 已提交
307

Y
Yu Yang 已提交
308 309 310 311 312 313 314 315
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
316
        if shape is not None:
Y
Yu Yang 已提交
317
            if is_new_var:
318
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
327
        if dtype is not None:
328
            if not isinstance(dtype, core.VarDesc.VarType):
329
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
330
            if is_new_var:
F
fengjiayi 已提交
331
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
332
            else:
F
fengjiayi 已提交
333
                old_dtype = self.dtype
Q
QI JUN 已提交
334
                if dtype != old_dtype:
Y
Yu Yang 已提交
335 336 337 338 339
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
340 341

        if lod_level is not None:
Y
Yu Yang 已提交
342
            if is_new_var:
343
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
344 345 346 347 348 349 350
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
351 352 353 354 355 356 357 358 359 360 361
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

362 363 364 365 366 367 368 369
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
370
        self.block.vars[name] = self
Y
Yu Yang 已提交
371
        self.op = None
Y
Yu Yang 已提交
372
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
373
        self.is_data = is_data
X
Xin Pan 已提交
374 375 376
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
Y
Yu Yang 已提交
377

378
    def _numpy(self):
X
Xin Pan 已提交
379
        tensor = self._ivar.var.get_tensor()
380 381 382
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
383
        self._ivar._run_backward()
384 385

    def _gradient(self):
X
Xin Pan 已提交
386
        return np.array(self._ivar._grad())
387

388
    def __str__(self):
Y
Yang Yang(Tony) 已提交
389 390
        return self.to_string(True)

F
update  
fengjiayi 已提交
391
    def to_string(self, throw_on_error, with_details=False):
392 393 394 395
        """
        Get debug string.

        Args:
396 397
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
398
            with_details(bool): more details about variables and parameters
399 400
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
401

402 403
        Returns:
            str: The debug string.
404
        """
F
update  
fengjiayi 已提交
405 406
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
407
        protostr = self.desc.serialize_to_string()
408
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
409 410 411 412
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
413 414
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
415
        return res_str
416 417 418

    __repr__ = __str__

W
Wu Yi 已提交
419
    def _set_desc(self, input):
420 421 422 423 424 425 426 427 428
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
429 430
        self.desc = input

431 432 433 434
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
435 436 437 438
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
439 440
    @property
    def name(self):
M
minqiyang 已提交
441
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
442

T
typhoonzero 已提交
443 444 445 446
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
447 448 449
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
450
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
451 452

    @property
F
fengjiayi 已提交
453 454
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
455 456 457

    @property
    def lod_level(self):
458
        return self.desc.lod_level()
Y
Yu Yang 已提交
459

Y
Yu Yang 已提交
460 461 462 463
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
464
    def _set_error_clip(self, error_clip):
465 466 467 468 469 470 471 472 473
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
474 475
        self.error_clip = error_clip

Y
Yu Yang 已提交
476

F
fengjiayi 已提交
477 478 479
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
480

481 482
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
483 484 485 486
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
487
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
488 489 490 491 492
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
493 494 495 496
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
497 498 499 500 501 502 503 504 505
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
506
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
507 508 509 510 511 512
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
513 514 515 516 517 518 519 520
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
521 522
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
523 524
        return self.op_proto_map[type]

525 526 527 528
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
529
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
530
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
531 532
        }

F
fengjiayi 已提交
533

X
Xin Pan 已提交
534
class Operator(object):
535
    """
536 537 538 539 540 541 542
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
543
        type(str): The type of operator. Default None.
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
564
        Block.append_op or Block._prepend_op instead.
565 566 567 568 569 570 571 572 573 574

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
575
    """
576 577 578
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
579 580
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
581
    }
582

Y
Yu Yang 已提交
583 584
    def __init__(self,
                 block,
Y
Yu Yang 已提交
585
                 desc,
Y
Yu Yang 已提交
586 587 588 589 590
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
591
        self.desc = desc
G
gongweibao 已提交
592 593 594 595 596
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
597 598 599 600
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
601 602
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
603 604 605

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
606 607
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
608

G
gongweibao 已提交
609 610
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
611

F
fengjiayi 已提交
612 613 614 615 616
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
617
        self.desc.set_type(type)
F
fengjiayi 已提交
618
        proto = OpProtoHolder.instance().get_op_proto(type)
619

620 621 622
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
623 624
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
625
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
626 627
                    return True
            return False
Q
QI JUN 已提交
628

Y
Yang Yang(Tony) 已提交
629 630 631 632 633 634 635
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
636 637 638 639
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
640 641
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
642 643 644
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
645
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
646
                            in_arg_names.append(arg)
647 648
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
649
                        else:
M
minqiyang 已提交
650
                            in_arg_names.append(cpt.to_text(arg.name))
651
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
652 653
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
654

Y
Yu Yang 已提交
655
        if outputs is not None:
656
            for m in proto.outputs:
Q
qingqing01 已提交
657 658 659 660 661 662
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
663
            for out_proto in proto.outputs:
Q
qingqing01 已提交
664 665
                if out_proto.name not in outputs:
                    continue
666 667 668 669
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
670 671
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
672 673 674
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
675
                    out_arg_names.append(cpt.to_text(arg.name))
676 677
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
678

G
gongweibao 已提交
679 680
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
681
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
682
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
683
                attr_name = attr.name
G
gongweibao 已提交
684
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
685
                    continue
G
gongweibao 已提交
686
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
687 688
                self._update_desc_attr(attr_name, attr_val)

689
        self.desc.check_attrs()
W
Wu Yi 已提交
690
        if self._has_kernel(type):
Q
QI JUN 已提交
691
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
692
            self.desc.infer_shape(self.block.desc)
X
Xin Pan 已提交
693 694 695
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
696
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
697
            if inputs is not None:
X
Xin Pan 已提交
698 699 700 701 702 703
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
704
            if outputs is not None:
X
Xin Pan 已提交
705 706 707 708 709
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
710

W
Wu Yi 已提交
711
    def _has_kernel(self, op_type):
712 713
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
714
    def to_string(self, throw_on_error):
715
        """
716 717
        Get debug string.

718
        Args:
719 720
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
721

722 723
        Returns:
            str: The debug string.
724 725

        """
726
        protostr = self.desc.serialize_to_string()
727
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
728 729 730 731
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
732 733 734

    __repr__ = __str__

F
fengjiayi 已提交
735 736 737 738 739
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
740
        """
741
        Get the input arguments according to the input parameter name.
742

743 744
        Args:
            name(str): The input parameter name.
745

746 747 748
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
749
        """
F
fengjiayi 已提交
750 751
        return self.desc.input(name)

W
Wu Yi 已提交
752
    def _rename_input(self, old_name, new_name):
753 754 755 756 757 758 759 760 761 762
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
763
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
764

W
Wu Yi 已提交
765
    def _rename_output(self, old_name, new_name):
766 767 768 769 770 771 772 773 774 775
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
776
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
777

F
fengjiayi 已提交
778 779 780 781
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
782 783 784 785 786 787 788 789
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
790
    def output(self, name):
791
        """
792
        Get output arguments by the output parameter name.
793

794 795
        Args:
            name(str): The output parameter name.
796

797 798 799
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
800
        """
F
fengjiayi 已提交
801 802 803 804 805 806
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

807 808 809 810 811 812 813 814
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
815
    def has_attr(self, name):
816
        """
817 818
        Whether this Operator has the attribute with name or not.

819
        Args:
820
            name(str): the attribute name.
821

822 823
        Returns:
            bool: True if has this attribute.
824 825

        """
F
fengjiayi 已提交
826 827 828
        return self.desc.has_attr(name)

    def attr_type(self, name):
829
        """
830
        Get the type of attribute by attribute's name.
831

832 833
        Args:
            name(str): the attribute name.
834

835 836
        Returns:
            core.AttrType: the attribute type.
837
        """
F
fengjiayi 已提交
838 839
        return self.desc.attr_type(name)

W
Wu Yi 已提交
840
    def _set_attr(self, name, val):
841 842 843 844 845 846 847 848 849 850
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
864 865
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
866 867
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
868
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
869 870 871 872
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
873
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
874

F
fengjiayi 已提交
875 876 877 878 879
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
880
        """
881 882
        Get the attribute by name.

883
        Args:
884
            name(str): the attribute name.
885

886 887
        Returns:
            bool|int|str|float|list: The attribute value. The return value
888 889
            can be any valid attribute type.
        """
F
fengjiayi 已提交
890
        return self.desc.attr(name)
Y
Yu Yang 已提交
891

W
Wu Yi 已提交
892
    def _block_attr_id(self, name):
893
        """
G
gongweibao 已提交
894
        Get the block attribute's id by name.
895

896 897
        Args:
            name(str): the attribute name.
898

899 900
        Returns:
            int: the block index.
901
        """
W
Wu Yi 已提交
902
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
903

W
Wu Yi 已提交
904
    def _block_attr(self, name):
G
gongweibao 已提交
905 906 907 908 909 910 911 912 913 914
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
915
        id = self._block_attr_id(name)
G
gongweibao 已提交
916 917 918
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
919
    def _blocks_attr(self, name):
G
gongweibao 已提交
920 921 922 923 924 925 926 927 928 929
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
930
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
931 932 933 934 935
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
936
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
937 938 939 940 941 942 943 944 945 946
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
947
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
948

J
JiayiFeng 已提交
949
    def all_attrs(self):
F
fengjiayi 已提交
950
        """
951 952 953
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
954
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
955 956 957 958
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
959 960
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
961
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
962 963 964
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
965
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
966 967 968 969
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
970 971
        return attr_map

Y
Yu Yang 已提交
972

Y
Yu Yang 已提交
973
class Block(object):
974 975 976 977 978 979 980 981 982 983 984 985 986 987
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
988
        use `Program._create_block()` to create a block.
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1003
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1004
        self.desc = program.desc.block(idx)
1005
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1006
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1007
        self.program = program
1008
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1009

1010
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1011 1012
        return self.to_string(True)

F
fengjiayi 已提交
1013 1014
    def to_string(self, throw_on_error, with_details=False):
        """
1015 1016
        Get debug string.

F
fengjiayi 已提交
1017 1018
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1019
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1020
            with_details(bool): more details about variables and parameters
1021 1022
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1023

1024 1025
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1026 1027 1028 1029
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1030
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1031 1032
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1033
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1034
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1035
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1036
            for op in self.ops:
F
fengjiayi 已提交
1037 1038
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1039 1040 1041
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1042 1043
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1044 1045
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1046 1047 1048

    __repr__ = __str__

Y
Yu Yang 已提交
1049 1050
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1051
        return self.desc.parent
Y
Yu Yang 已提交
1052

Y
Yu Yang 已提交
1053 1054 1055 1056
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1057
    def _set_forward_block_idx(self, idx):
1058 1059 1060 1061 1062 1063 1064 1065 1066
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1067
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1068

Y
Yu Yang 已提交
1069 1070
    @property
    def idx(self):
Y
Yu Yang 已提交
1071
        return self.desc.id
Y
Yu Yang 已提交
1072

Q
Qiao Longfei 已提交
1073
    def var(self, name):
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1087
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1088 1089 1090
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1091 1092
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1093
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1094
        return v
Q
Qiao Longfei 已提交
1095

X
Xin Pan 已提交
1096
    def _find_var_recursive(self, name):
1097 1098 1099 1100 1101 1102 1103
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1104
            Variable: the Variable with the giving name. Or None if not found.
1105
        """
Y
Yu Yang 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1130
        return None
Y
Yu Yang 已提交
1131

X
Xin Pan 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1151

Q
Qiao Longfei 已提交
1152
    def all_parameters(self):
1153
        return list(self.iter_parameters())
1154

1155
    def iter_parameters(self):
M
minqiyang 已提交
1156
        return (item[1] for item in six.iteritems(self.vars)
1157
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1158

Y
Yu Yang 已提交
1159
    def create_var(self, *args, **kwargs):
1160
        var = Variable(block=self, *args, **kwargs)
1161 1162
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1163
        return var
Y
Yu Yang 已提交
1164

Q
Qiao Longfei 已提交
1165 1166 1167
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1168
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1169 1170
        """
        Rename variable in vars and ops' inputs and outputs
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1183
        """
M
minqiyang 已提交
1184 1185
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1186

T
typhoonzero 已提交
1187
        if not self.has_var(name):
1188
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1189 1190
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1191
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1192 1193 1194 1195 1196 1197 1198
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1199
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1200 1201 1202 1203
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1204
        orig_var_type = v.type
M
minqiyang 已提交
1205
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1206
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1207
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1208
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1209 1210 1211 1212
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1213
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1214 1215 1216 1217 1218 1219 1220
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1221
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1222 1223
            var = Variable(
                self,
T
typhoonzero 已提交
1224
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1225 1226 1227 1228
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1229
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1230 1231 1232
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1233
        self._sync_with_cpp()
1234
        return var
T
typhoonzero 已提交
1235

W
Wu Yi 已提交
1236 1237
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1238
        self.desc._remove_var(cpt.to_bytes(name))
1239 1240
        del self.vars[name]

Y
Yu Yang 已提交
1241 1242
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1243
        param = Parameter(global_block, *args, **kwargs)
1244
        if 'initializer' in kwargs:
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1265
        return param
Y
Yu Yang 已提交
1266

Y
Yu Yang 已提交
1267
    def append_op(self, *args, **kwargs):
1268 1269 1270 1271 1272 1273
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1274
        op_desc = self.desc.append_op()
1275
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
1276
        if _in_imperative_mode():
X
Xin Pan 已提交
1277
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc)
Y
Yu Yang 已提交
1278 1279 1280
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1281
    def _insert_op(self, index, *args, **kwargs):
1282 1283 1284 1285 1286 1287 1288 1289 1290
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1291 1292
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1293 1294 1295 1296
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1297
    def _remove_op(self, index):
1298 1299 1300 1301 1302 1303 1304 1305 1306
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1307 1308
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1309 1310
        del self.ops[index]

W
Wu Yi 已提交
1311
    def _slice_ops(self, start, end):
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1322
        return self.ops[start:end]
Y
Yancey1989 已提交
1323

W
Wu Yi 已提交
1324 1325
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1326
        op = Operator(self, op_desc, *args, **kwargs)
X
Xin Pan 已提交
1327
        if _in_imperative_mode():
X
Xin Pan 已提交
1328
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc)
Q
qiaolongfei 已提交
1329
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1330 1331
        return op

W
Wu Yi 已提交
1332
    def _sync_with_cpp(self):
1333
        """
1334 1335
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1336
        """
Q
Qiao Longfei 已提交
1337 1338 1339 1340 1341
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1342
        # sync variables removed from c++ end
1343
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1344
            if not self.desc.find_var(cpt.to_bytes(var)):
1345 1346
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1347
        # sync operators from cpp
1348 1349 1350 1351
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1368 1369 1370 1371 1372

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1373
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1374 1375 1376 1377 1378 1379 1380

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1394 1395 1396 1397
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1398
    def _copy_param_info_from(self, other):
1399
        """
1400 1401
        Copy the information of parameters from the other block.

1402
        Args:
1403 1404 1405 1406 1407
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1408 1409 1410 1411 1412

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1413 1414
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1415
        for p in other.iter_parameters():
1416 1417 1418
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1419
                raise ValueError("_copy_param_info_from should be invoked with "
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1432
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1433
                error_clip=p.error_clip,
1434 1435 1436
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1437
    def _clone_variable(self, var):
1438 1439
        """
        Clone a variable into current block.
1440

1441 1442 1443 1444
        Args:
            var: the variable to be cloned.

        Returns:
1445
            Variable: the new  variable cloned from 'var' in current block.
1446 1447
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1448 1449 1450 1451 1452
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1453 1454
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1455
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1456 1457 1458 1459 1460 1461
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1462 1463
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1464 1465 1466 1467 1468 1469 1470
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1471 1472
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1473
        return ret_var
1474

Y
Yu Yang 已提交
1475 1476

class Program(object):
D
dzhwinter 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1488
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1489 1490

    Returns:
Y
yuyang18 已提交
1491
        A empty program.
D
dzhwinter 已提交
1492 1493

    Examples:
Y
yuyang18 已提交
1494 1495 1496 1497 1498 1499
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1500 1501 1502

    """

1503 1504
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1505 1506
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1507
        self._seed = 0
Y
yuyang18 已提交
1508
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1509
        self._op_role_var = []
T
tangwei12 已提交
1510 1511 1512 1513

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1514
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1515
        self._endpoints = []
1516
        self._trainers_endpoints = []
T
tangwei12 已提交
1517
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1518 1519 1520

    @property
    def op_role(self):
Y
yuyang18 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1534 1535 1536 1537 1538 1539 1540 1541
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1542 1543 1544 1545 1546 1547 1548
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1549 1550 1551 1552
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1553
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1554 1555

    @contextlib.contextmanager
W
Wu Yi 已提交
1556
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1557 1558 1559 1560 1561 1562 1563
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1564
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1565 1566 1567 1568

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1569
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1570 1571
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1572 1573 1574
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1575 1576
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1577 1578 1579 1580
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1581
        yield
X
Xin Pan 已提交
1582 1583
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1584

1585
    @contextlib.contextmanager
X
Xin Pan 已提交
1586
    def _lr_schedule_guard(self, is_with_opt=False):
1587 1588 1589 1590 1591 1592 1593
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1594 1595 1596 1597
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1598 1599 1600 1601 1602 1603 1604

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1605 1606 1607 1608

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1609 1610
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1611 1612
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1613 1614 1615
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1616 1617
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1618

1619
    def __str__(self):
Y
yuyang18 已提交
1620 1621 1622 1623 1624 1625 1626 1627 1628
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1629 1630
        return self.to_string(True)

F
fengjiayi 已提交
1631 1632 1633
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1634

F
fengjiayi 已提交
1635
        Args:
Y
yuyang18 已提交
1636 1637
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1638

Y
yuyang18 已提交
1639 1640 1641 1642
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1643 1644
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1645 1646 1647 1648

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1659 1660
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1661 1662
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1663

W
Wu Yi 已提交
1664
    def _get_desc(self):
Y
yuyang18 已提交
1665 1666 1667 1668 1669 1670 1671
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1672 1673
        return self.desc

X
version  
Xin Pan 已提交
1674 1675 1676
    def _version(self):
        return self.desc._version()

1677
    def clone(self, for_test=False):
Y
yuyang18 已提交
1678 1679 1680
        """
        Create a new, duplicated program.

1681

Y
yuyang18 已提交
1682 1683 1684 1685
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1686

Y
yuyang18 已提交
1687 1688 1689 1690
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1691 1692 1693 1694 1695
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1696 1697

        Args:
Y
yuyang18 已提交
1698 1699
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1700

D
dzhwinter 已提交
1701
        Returns:
Y
yuyang18 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1755 1756
        """
        if for_test:
X
Xin Pan 已提交
1757
            p = self._inference_optimize(prune_read_op=False)
1758
        else:
1759
            p = Program()
G
gongweibao 已提交
1760 1761
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1762
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1763 1764 1765
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1766 1767 1768 1769

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1770
            p._sync_with_cpp()
1771

W
Wu Yi 已提交
1772
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1773
        p._copy_data_info_from(self)
1774
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1775
        return p
1776

W
Wu Yi 已提交
1777
    def _prune(self, targets):
Y
yuyang18 已提交
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1793 1794 1795 1796 1797 1798
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1799 1800
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1801
                    # and we need to find the current op that generate this
1802 1803 1804 1805 1806 1807 1808 1809
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1810
                    t = t.op
1811 1812 1813 1814
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1815
                else:
1816 1817
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1818 1819 1820 1821

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1822 1823 1824
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1825
        res._sync_with_cpp()
1826 1827
        return res

X
Xin Pan 已提交
1828
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1829
        """
F
fengjiayi 已提交
1830 1831 1832 1833 1834
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1835
        3. change the :code:`is_test`
Y
yuyang18 已提交
1836 1837 1838
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1839
        Args:
X
Xin Pan 已提交
1840 1841
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1842

Y
yuyang18 已提交
1843 1844 1845 1846 1847 1848
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1849
        res = Program()
1850
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1851 1852 1853 1854

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1855
        if prune_read_op:
1856 1857 1858 1859 1860 1861 1862 1863 1864
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1865
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1866 1867

        # change all `is_test` attributes to True
M
minqiyang 已提交
1868
        for i in six.moves.range(res.desc.num_blocks()):
1869
            block = res.desc.block(i)
M
minqiyang 已提交
1870
            for j in six.moves.range(block.op_size()):
1871 1872
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1873
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1874 1875 1876
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1877
        res._sync_with_cpp()
1878 1879
        return res

1880 1881
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1882 1883 1884 1885 1886 1887 1888
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1889
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1890 1891 1892 1893

        Returns:
            Program: A deserialized program desc.
        """
1894 1895
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1896
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1897
        p._sync_with_cpp()
1898
        return p
Y
Yu Yang 已提交
1899

D
dzhwinter 已提交
1900 1901
    @property
    def random_seed(self):
Y
yuyang18 已提交
1902 1903 1904 1905 1906 1907
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1908 1909
        return self._seed

Q
qiaolongfei 已提交
1910 1911
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1912 1913 1914
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1915 1916
        return self.desc.num_blocks()

D
dzhwinter 已提交
1917 1918 1919 1920 1921 1922
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1923
    def __repr__(self):
1924
        return self.__str__()
1925

Y
Yu Yang 已提交
1926
    def global_block(self):
Y
yuyang18 已提交
1927 1928 1929
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1930 1931
        return self.blocks[0]

Q
Qiao Longfei 已提交
1932
    def block(self, index):
Y
yuyang18 已提交
1933 1934 1935 1936 1937 1938 1939 1940
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1941 1942
        return self.blocks[index]

Y
Yu Yang 已提交
1943
    def current_block(self):
Y
yuyang18 已提交
1944 1945 1946 1947
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1948 1949
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1950
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1961
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1962 1963 1964
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1965 1966 1967 1968
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1969
    def _rollback(self):
Y
yuyang18 已提交
1970 1971 1972 1973 1974
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1975 1976
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1977
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1988 1989 1990
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1991
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1992

W
Wu Yi 已提交
1993
    def _copy_param_info_from(self, other):
1994
        """
1995
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1996

Y
yuyang18 已提交
1997 1998 1999
        Notes: This is a very low level API. Users should not invoke it
        directly.

2000 2001 2002 2003 2004 2005 2006
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2007
            raise TypeError("_copy_param_info_from should be invoked with "
2008 2009 2010
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2011
            raise ValueError("_copy_param_info_from should be invoked with two "
2012
                             "program, with represent the same topology")
W
Wu Yi 已提交
2013
        self.global_block()._copy_param_info_from(other.global_block())
2014

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2034
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2035 2036
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2037

Y
yuyang18 已提交
2038 2039 2040
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2041 2042 2043 2044 2045 2046 2047
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2048
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2049 2050 2051
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2052
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2053
                             "program, with represent the same topology")
2054
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2055 2056 2057
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2058
    def list_vars(self):
Y
yuyang18 已提交
2059 2060 2061 2062 2063 2064
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2065
        for each_block in self.blocks:
2066
            for each_var in list(each_block.vars.values()):
2067 2068
                yield each_var

Y
Yu Yang 已提交
2069

Y
Yu Yang 已提交
2070
class Parameter(Variable):
2071
    """
2072
    Parameter is derived from Variable. A parameter is a persistable
2073
    Variable, and will be updated by optimizers after each iteration.
2074
    The training of a neural network is essentially the updating of
2075 2076
    its parameters.

2077
    Relative to a general Variable, a Parameter has several its own
2078 2079
    member variables:

2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2092 2093
    """

Y
Yu Yang 已提交
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2104 2105 2106

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2107 2108 2109 2110
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2111 2112
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2113
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2114

W
wanghaoshuang 已提交
2115
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2116

F
fengjiayi 已提交
2117 2118 2119
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2120 2121 2122
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2123

F
update  
fengjiayi 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2138
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2139
            for attr_name in additional_attr:
2140 2141
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2142 2143
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2144 2145 2146 2147
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2148

Y
Yu Yang 已提交
2149
# program is a global instance.
Y
Yu Yang 已提交
2150 2151
_main_program_ = Program()
_startup_program_ = Program()
2152

2153

2154
def default_startup_program():
Y
Yu Yang 已提交
2155
    """
Y
yuyang18 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2165

Y
Yu Yang 已提交
2166 2167 2168
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2169
    return _startup_program_
2170

2171

2172
def default_main_program():
Y
Yu Yang 已提交
2173
    """
Y
yuyang18 已提交
2174 2175 2176 2177 2178 2179 2180 2181 2182
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2183

Y
Yu Yang 已提交
2184 2185 2186
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2187
    return _main_program_
Y
Yu Yang 已提交
2188 2189 2190 2191 2192


def switch_main_program(program):
    """
    Switch the main program to a new program.
2193

Y
Yu Yang 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2208
    Switch the startup program to a new program
Y
Yu Yang 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2224 2225 2226
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2227

Y
Yu Yang 已提交
2228
    Examples:
Y
yuyang18 已提交
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2239

Y
Yu Yang 已提交
2240
    Examples:
Y
yuyang18 已提交
2241 2242 2243 2244 2245 2246

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2247

Y
Yu Yang 已提交
2248
    Args:
Y
yuyang18 已提交
2249
        main_program(Program): New main program inside `with` statement.
2250
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2264 2265


W
Wu Yi 已提交
2266
def _get_var(name, program=None):
X
xuwei06 已提交
2267
    """
Y
yuyang18 已提交
2268
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2269

X
xuwei06 已提交
2270 2271 2272
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2273
        If None, default_global_program() will be used.
X
xuwei06 已提交
2274 2275 2276 2277 2278 2279 2280

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2281
    assert isinstance(program, Program)
X
xuwei06 已提交
2282 2283

    return program.global_block().var(name)
2284 2285 2286 2287 2288 2289 2290 2291 2292


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace