framework.py 76.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
Q
qiaolongfei 已提交
26

M
minqiyang 已提交
27
from .. import compat as cpt
28
from .proto import framework_pb2
29
try:
P
peizhilin 已提交
30
    if os.name == 'nt':
P
peizhilin 已提交
31
        import sys
P
peizhilin 已提交
32 33 34 35 36
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

37
    from . import core
38
except ImportError as e:
P
peizhilin 已提交
39 40 41 42 43 44 45 46 47 48 49 50
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
51
except Exception as e:
52
    raise e
53
from . import unique_name
Y
Yu Yang 已提交
54

55
__all__ = [
56 57 58 59
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
60
    'name_scope',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

69 70 71 72 73 74 75 76 77 78
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
119

120 121 122 123
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
124 125
          with name_scope("attention"):
             ...
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
145 146 147
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
148 149 150 151


def grad_var_name(var_name):
    """
152 153
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
154 155 156
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
157

158
def convert_np_dtype_to_dtype_(np_dtype):
159 160
    """
    Convert the data type in numpy to the data type in Paddle
161

162
    Args:
163
        np_dtype(np.dtype): the data type in numpy.
164

165 166
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
167 168

    """
169 170
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
171
        return core.VarDesc.VarType.FP32
172
    elif dtype == np.float64:
173
        return core.VarDesc.VarType.FP64
174
    elif dtype == np.float16:
175
        return core.VarDesc.VarType.FP16
176
    elif dtype == np.int32:
177
        return core.VarDesc.VarType.INT32
178
    elif dtype == np.int16:
179
        return core.VarDesc.VarType.INT16
180
    elif dtype == np.int64:
181
        return core.VarDesc.VarType.INT64
182
    elif dtype == np.bool:
183
        return core.VarDesc.VarType.BOOL
184 185
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
186 187
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
188 189
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
190
    else:
M
minqiyang 已提交
191
        raise ValueError("Not supported numpy dtype %s" % dtype)
192 193 194


def dtype_is_floating(dtype):
195 196 197
    """
    Check the data type is floating or not.
    Args:
198
        dtype(np.dtype|core.VarDesc.VarType): data type.
199 200 201 202 203
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
204
    if not isinstance(dtype, core.VarDesc.VarType):
205 206
        dtype = convert_np_dtype_to_dtype_(dtype)

207 208 209 210
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
211 212


Y
Yang Yang(Tony) 已提交
213
def _debug_string_(proto, throw_on_error=True):
214 215 216 217 218 219 220 221 222 223 224
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
225
    error_fields = list()
Y
Yang Yang(Tony) 已提交
226
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
227 228
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
229 230 231
    return proto.__str__()


X
Xin Pan 已提交
232
class Variable(object):
233
    """
234 235 236
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
237
    two variables in different blocks could have the same name.
238

239 240
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
241

242
    Most of a Variable's member variables can be setted to be None. It mean
243
    it is not available or will be specified later.
244 245

    Args:
246
        block(Block): The block that the variable belongs to.
247 248
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
249 250
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
251
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
252
            Some kinds of variable do not contain shape, just set it to None.
253 254 255
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
256
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
257
            series data.
258
            Default: None
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
281 282
    """

Y
Yu Yang 已提交
283 284
    def __init__(self,
                 block,
Y
Yu Yang 已提交
285
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
286 287 288 289
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
290
                 capacity=None,
Q
QI JUN 已提交
291
                 persistable=None,
F
fengjiayi 已提交
292
                 error_clip=None,
Y
Yu Yang 已提交
293
                 stop_gradient=False,
F
fengjiayi 已提交
294
                 is_data=False,
Y
Yu Yang 已提交
295
                 **kwargs):
Y
Yu Yang 已提交
296
        self.block = block
F
fengjiayi 已提交
297
        self.error_clip = error_clip
Y
Yu Yang 已提交
298 299

        if name is None:
Y
Yu Yang 已提交
300
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
301
        is_new_var = False
M
minqiyang 已提交
302
        name = cpt.to_text(name)
M
minqiyang 已提交
303
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
304 305

        if self.desc is None:
M
minqiyang 已提交
306
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
307
            is_new_var = True
Y
Yu Yang 已提交
308

Y
Yu Yang 已提交
309 310 311 312 313 314 315 316
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
317
        if shape is not None:
Y
Yu Yang 已提交
318
            if is_new_var:
319
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
320 321 322 323 324 325 326 327
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
328
        if dtype is not None:
329
            if not isinstance(dtype, core.VarDesc.VarType):
330
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
331
            if is_new_var:
F
fengjiayi 已提交
332
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
333
            else:
F
fengjiayi 已提交
334
                old_dtype = self.dtype
Q
QI JUN 已提交
335
                if dtype != old_dtype:
Y
Yu Yang 已提交
336 337 338 339 340
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
341 342

        if lod_level is not None:
Y
Yu Yang 已提交
343
            if is_new_var:
344
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
345 346 347 348 349 350 351
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
352 353 354 355 356 357 358 359 360 361 362
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

363 364 365 366 367 368 369 370
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
371
        self.block.vars[name] = self
Y
Yu Yang 已提交
372
        self.op = None
M
minqiyang 已提交
373
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
374
        self.is_data = is_data
X
Xin Pan 已提交
375
        if _in_imperative_mode():
M
minqiyang 已提交
376 377 378
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
379
            self._ivar.desc = self.desc
380
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
381

382
    def _numpy(self):
M
minqiyang 已提交
383
        tensor = self._ivar.value().get_tensor()
384 385 386
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
387
        self._ivar._run_backward()
388 389

    def _gradient(self):
M
minqiyang 已提交
390
        return np.array(self._ivar._grad_value())
M
minqiyang 已提交
391

X
Xin Pan 已提交
392 393
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
394

395
    def __str__(self):
Y
Yang Yang(Tony) 已提交
396 397
        return self.to_string(True)

F
update  
fengjiayi 已提交
398
    def to_string(self, throw_on_error, with_details=False):
399 400 401 402
        """
        Get debug string.

        Args:
403 404
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
405
            with_details(bool): more details about variables and parameters
406 407
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
408

409 410
        Returns:
            str: The debug string.
411
        """
F
update  
fengjiayi 已提交
412 413
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
414
        protostr = self.desc.serialize_to_string()
415
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
416 417 418 419
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
420 421
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
422
        return res_str
423 424 425

    __repr__ = __str__

W
Wu Yi 已提交
426
    def _set_desc(self, input):
427 428 429 430 431 432 433 434 435
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
436 437
        self.desc = input

438 439 440 441 442 443 444 445
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

446 447 448 449
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
450 451 452 453
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
454 455
    @property
    def name(self):
M
minqiyang 已提交
456
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
457

T
typhoonzero 已提交
458 459 460 461
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
462 463 464
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
465
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
466 467

    @property
F
fengjiayi 已提交
468 469
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
470 471 472

    @property
    def lod_level(self):
473
        return self.desc.lod_level()
Y
Yu Yang 已提交
474

Y
Yu Yang 已提交
475 476 477 478
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
479
    def _set_error_clip(self, error_clip):
480 481 482 483 484 485 486 487 488
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
489 490
        self.error_clip = error_clip

Y
Yu Yang 已提交
491

F
fengjiayi 已提交
492 493 494
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
495

496 497
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
498 499 500 501
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
502
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
503 504 505 506 507
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
508 509 510 511
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
512 513 514 515 516 517 518 519 520
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
521
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
522 523 524 525 526 527
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
528 529 530 531 532 533 534 535
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
536 537
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
538 539
        return self.op_proto_map[type]

540 541 542 543
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
544
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
545
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
546 547
        }

F
fengjiayi 已提交
548

X
Xin Pan 已提交
549
class Operator(object):
550
    """
551 552 553 554 555 556 557
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
558
        type(str): The type of operator. Default None.
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
579
        Block.append_op or Block._prepend_op instead.
580 581 582 583 584 585 586 587 588 589

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
590
    """
591 592 593
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
594 595
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
596
    }
597

Y
Yu Yang 已提交
598 599
    def __init__(self,
                 block,
Y
Yu Yang 已提交
600
                 desc,
Y
Yu Yang 已提交
601 602 603
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
604
                 attrs=None):
Y
Yu Yang 已提交
605
        self.block = block
Y
Yu Yang 已提交
606
        self.desc = desc
G
gongweibao 已提交
607 608 609 610 611
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
612 613 614 615
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
616 617
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
618 619 620

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
621 622
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
623

G
gongweibao 已提交
624 625
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
626

F
fengjiayi 已提交
627 628 629 630 631
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
632 633 634 635 636
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
637
        self.desc.set_type(type)
F
fengjiayi 已提交
638
        proto = OpProtoHolder.instance().get_op_proto(type)
639

640 641 642
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
643 644
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
645
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
646 647
                    return True
            return False
Q
QI JUN 已提交
648

Y
Yang Yang(Tony) 已提交
649 650 651 652 653 654 655
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
656 657 658 659
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
660 661
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
662 663 664
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
665
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
666
                            in_arg_names.append(arg)
667 668
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
669
                        else:
M
minqiyang 已提交
670
                            in_arg_names.append(cpt.to_text(arg.name))
671
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
672 673
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
674

Y
Yu Yang 已提交
675
        if outputs is not None:
676
            for m in proto.outputs:
Q
qingqing01 已提交
677 678 679 680 681 682
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
683
            for out_proto in proto.outputs:
Q
qingqing01 已提交
684 685
                if out_proto.name not in outputs:
                    continue
686 687 688 689
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
690 691
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
692 693 694
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
695
                    out_arg_names.append(cpt.to_text(arg.name))
696 697
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
698

G
gongweibao 已提交
699 700
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
701
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
702
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
703
                attr_name = attr.name
G
gongweibao 已提交
704
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
705
                    continue
G
gongweibao 已提交
706
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
707 708
                self._update_desc_attr(attr_name, attr_val)

709
        self.desc.check_attrs()
M
minqiyang 已提交
710

W
Wu Yi 已提交
711
        if self._has_kernel(type):
Q
QI JUN 已提交
712
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
713
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
714

X
Xin Pan 已提交
715 716 717
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
718
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
719
            if inputs is not None:
X
Xin Pan 已提交
720 721 722 723 724 725
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
726
            if outputs is not None:
X
Xin Pan 已提交
727 728 729 730 731
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
732

W
Wu Yi 已提交
733
    def _has_kernel(self, op_type):
734 735
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
736
    def to_string(self, throw_on_error):
737
        """
738 739
        Get debug string.

740
        Args:
741 742
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
743

744 745
        Returns:
            str: The debug string.
746 747

        """
748
        protostr = self.desc.serialize_to_string()
749
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
750 751 752 753
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
754 755 756

    __repr__ = __str__

F
fengjiayi 已提交
757 758 759 760 761
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
762
        """
763
        Get the input arguments according to the input parameter name.
764

765 766
        Args:
            name(str): The input parameter name.
767

768 769 770
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
771
        """
F
fengjiayi 已提交
772 773
        return self.desc.input(name)

W
Wu Yi 已提交
774
    def _rename_input(self, old_name, new_name):
775 776 777 778 779 780 781 782 783 784
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
785
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
786

W
Wu Yi 已提交
787
    def _rename_output(self, old_name, new_name):
788 789 790 791 792 793 794 795 796 797
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
798
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
799

F
fengjiayi 已提交
800 801 802 803
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
804 805 806 807 808 809 810 811
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
812
    def output(self, name):
813
        """
814
        Get output arguments by the output parameter name.
815

816 817
        Args:
            name(str): The output parameter name.
818

819 820 821
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
822
        """
F
fengjiayi 已提交
823 824 825 826 827 828
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

829 830 831 832 833 834 835 836
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
837
    def has_attr(self, name):
838
        """
839 840
        Whether this Operator has the attribute with name or not.

841
        Args:
842
            name(str): the attribute name.
843

844 845
        Returns:
            bool: True if has this attribute.
846 847

        """
F
fengjiayi 已提交
848 849 850
        return self.desc.has_attr(name)

    def attr_type(self, name):
851
        """
852
        Get the type of attribute by attribute's name.
853

854 855
        Args:
            name(str): the attribute name.
856

857 858
        Returns:
            core.AttrType: the attribute type.
859
        """
F
fengjiayi 已提交
860 861
        return self.desc.attr_type(name)

W
Wu Yi 已提交
862
    def _set_attr(self, name, val):
863 864 865 866 867 868 869 870 871 872
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
873 874 875 876 877 878 879 880 881 882 883 884 885
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
886 887
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
888 889
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
890
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
891 892 893 894
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
895
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
896

F
fengjiayi 已提交
897 898 899 900 901
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
902
        """
903 904
        Get the attribute by name.

905
        Args:
906
            name(str): the attribute name.
907

908 909
        Returns:
            bool|int|str|float|list: The attribute value. The return value
910 911
            can be any valid attribute type.
        """
F
fengjiayi 已提交
912
        return self.desc.attr(name)
Y
Yu Yang 已提交
913

W
Wu Yi 已提交
914
    def _block_attr_id(self, name):
915
        """
G
gongweibao 已提交
916
        Get the block attribute's id by name.
917

918 919
        Args:
            name(str): the attribute name.
920

921 922
        Returns:
            int: the block index.
923
        """
W
Wu Yi 已提交
924
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
925

W
Wu Yi 已提交
926
    def _block_attr(self, name):
G
gongweibao 已提交
927 928 929 930 931 932 933 934 935 936
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
937
        id = self._block_attr_id(name)
G
gongweibao 已提交
938 939 940
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
941
    def _blocks_attr(self, name):
G
gongweibao 已提交
942 943 944 945 946 947 948 949 950 951
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
952
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
953 954 955 956 957
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
958
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
959 960 961 962 963 964 965 966 967 968
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
969
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
970

J
JiayiFeng 已提交
971
    def all_attrs(self):
F
fengjiayi 已提交
972
        """
973 974 975
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
976
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
977 978 979 980
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
981 982
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
983
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
984 985 986
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
987
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
988 989 990 991
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
992 993
        return attr_map

Y
Yu Yang 已提交
994

Y
Yu Yang 已提交
995
class Block(object):
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1010
        use `Program._create_block()` to create a block.
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1025
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1026
        self.desc = program.desc.block(idx)
1027
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1028
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1029
        self.program = program
1030
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1031

1032
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1033 1034
        return self.to_string(True)

F
fengjiayi 已提交
1035 1036
    def to_string(self, throw_on_error, with_details=False):
        """
1037 1038
        Get debug string.

F
fengjiayi 已提交
1039 1040
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1041
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1042
            with_details(bool): more details about variables and parameters
1043 1044
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1045

1046 1047
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1048 1049 1050 1051
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1052
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1053 1054
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1055
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1056
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1057
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1058
            for op in self.ops:
F
fengjiayi 已提交
1059 1060
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1061 1062 1063
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1064 1065
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1066 1067
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1068 1069 1070

    __repr__ = __str__

Y
Yu Yang 已提交
1071 1072
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1073
        return self.desc.parent
Y
Yu Yang 已提交
1074

Y
Yu Yang 已提交
1075 1076 1077 1078
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1079
    def _set_forward_block_idx(self, idx):
1080 1081 1082 1083 1084 1085 1086 1087 1088
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1089
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1090

Y
Yu Yang 已提交
1091 1092
    @property
    def idx(self):
Y
Yu Yang 已提交
1093
        return self.desc.id
Y
Yu Yang 已提交
1094

Q
Qiao Longfei 已提交
1095
    def var(self, name):
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1109
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1110 1111 1112
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1113 1114
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1115
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1116
        return v
Q
Qiao Longfei 已提交
1117

X
Xin Pan 已提交
1118
    def _find_var_recursive(self, name):
1119 1120 1121 1122 1123 1124 1125
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1126
            Variable: the Variable with the giving name. Or None if not found.
1127
        """
Y
Yu Yang 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1152
        return None
Y
Yu Yang 已提交
1153

X
Xin Pan 已提交
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1173

Q
Qiao Longfei 已提交
1174
    def all_parameters(self):
1175
        return list(self.iter_parameters())
1176

1177
    def iter_parameters(self):
M
minqiyang 已提交
1178
        return (item[1] for item in six.iteritems(self.vars)
1179
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1180

Y
Yu Yang 已提交
1181
    def create_var(self, *args, **kwargs):
1182
        var = Variable(block=self, *args, **kwargs)
1183 1184
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1185
        return var
Y
Yu Yang 已提交
1186

Q
Qiao Longfei 已提交
1187 1188 1189
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1190
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1191 1192
        """
        Rename variable in vars and ops' inputs and outputs
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1205
        """
M
minqiyang 已提交
1206 1207
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1208

T
typhoonzero 已提交
1209
        if not self.has_var(name):
1210
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1211 1212
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1213
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1214 1215 1216 1217 1218 1219 1220
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1221
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1222 1223 1224 1225
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1226
        orig_var_type = v.type
M
minqiyang 已提交
1227
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1228
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1229
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1230
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1231 1232 1233 1234
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1235
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1236 1237 1238 1239 1240 1241 1242
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1243
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1244 1245
            var = Variable(
                self,
T
typhoonzero 已提交
1246
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1247 1248 1249 1250
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1251
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1252 1253 1254
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1255
        self._sync_with_cpp()
1256
        return var
T
typhoonzero 已提交
1257

W
Wu Yi 已提交
1258 1259
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1260
        self.desc._remove_var(cpt.to_bytes(name))
1261 1262
        del self.vars[name]

Y
Yu Yang 已提交
1263 1264
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1265
        param = Parameter(global_block, *args, **kwargs)
1266
        if 'initializer' in kwargs:
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1287
        return param
Y
Yu Yang 已提交
1288

Y
Yu Yang 已提交
1289
    def append_op(self, *args, **kwargs):
1290 1291 1292 1293 1294 1295
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1296
        op_desc = self.desc.append_op()
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1309
        if _in_imperative_mode():
1310
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1311
                                       stop_gradient)
Y
Yu Yang 已提交
1312

W
Wu Yi 已提交
1313
    def _insert_op(self, index, *args, **kwargs):
1314 1315 1316 1317 1318 1319 1320 1321 1322
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1323 1324
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1325 1326 1327 1328
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1329
    def _remove_op(self, index):
1330 1331 1332 1333 1334 1335 1336 1337 1338
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1339 1340
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1341 1342
        del self.ops[index]

W
Wu Yi 已提交
1343
    def _slice_ops(self, start, end):
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1354
        return self.ops[start:end]
Y
Yancey1989 已提交
1355

W
Wu Yi 已提交
1356 1357
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1358 1359 1360 1361 1362 1363 1364
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1365
        self.ops.insert(0, op)
1366
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1367 1368
        return op

W
Wu Yi 已提交
1369
    def _sync_with_cpp(self):
1370
        """
1371 1372
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1373
        """
Q
Qiao Longfei 已提交
1374 1375 1376 1377 1378
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1379
        # sync variables removed from c++ end
1380
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1381
            if not self.desc.find_var(cpt.to_bytes(var)):
1382 1383
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1384
        # sync operators from cpp
1385 1386 1387 1388
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1405 1406 1407 1408 1409

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1410
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1411 1412 1413 1414 1415 1416 1417

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1431 1432 1433 1434
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1435
    def _copy_param_info_from(self, other):
1436
        """
1437 1438
        Copy the information of parameters from the other block.

1439
        Args:
1440 1441 1442 1443 1444
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1445 1446 1447 1448 1449

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1450 1451
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1452
        for p in other.iter_parameters():
1453 1454 1455
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1456
                raise ValueError("_copy_param_info_from should be invoked with "
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1469
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1470
                error_clip=p.error_clip,
1471 1472 1473
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1474
    def _clone_variable(self, var):
1475 1476
        """
        Clone a variable into current block.
1477

1478 1479 1480 1481
        Args:
            var: the variable to be cloned.

        Returns:
1482
            Variable: the new  variable cloned from 'var' in current block.
1483 1484
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1485 1486 1487 1488 1489
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1490 1491
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1492
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1493 1494 1495 1496 1497 1498
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1499 1500
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1501 1502 1503 1504 1505 1506 1507
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1508 1509
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1510
        return ret_var
1511

Y
Yu Yang 已提交
1512 1513

class Program(object):
D
dzhwinter 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1525
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1526 1527

    Returns:
Y
yuyang18 已提交
1528
        A empty program.
D
dzhwinter 已提交
1529 1530

    Examples:
Y
yuyang18 已提交
1531 1532 1533 1534 1535 1536
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1537 1538 1539

    """

1540 1541
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1542 1543
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1544
        self._seed = 0
Y
yuyang18 已提交
1545
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1546
        self._op_role_var = []
T
tangwei12 已提交
1547 1548 1549 1550

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1551
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1552
        self._endpoints = []
1553
        self._trainers_endpoints = []
T
tangwei12 已提交
1554
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1555 1556 1557

    @property
    def op_role(self):
Y
yuyang18 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1571 1572 1573 1574 1575 1576 1577 1578
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1579 1580 1581 1582 1583 1584 1585
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1586 1587 1588 1589
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1590
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1591 1592

    @contextlib.contextmanager
W
Wu Yi 已提交
1593
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1594 1595 1596 1597 1598 1599 1600
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1601
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1602 1603 1604 1605

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1606
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1607 1608
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1609 1610 1611
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1612 1613
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1614 1615 1616 1617
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1618
        yield
X
Xin Pan 已提交
1619 1620
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1621

1622
    @contextlib.contextmanager
X
Xin Pan 已提交
1623
    def _lr_schedule_guard(self, is_with_opt=False):
1624 1625 1626 1627 1628 1629 1630
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1631 1632 1633 1634
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1635 1636 1637 1638 1639 1640 1641

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1642 1643 1644 1645

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1646 1647
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1648 1649
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1650 1651 1652
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1653 1654
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1655

1656
    def __str__(self):
Y
yuyang18 已提交
1657 1658 1659 1660 1661 1662 1663 1664 1665
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1666 1667
        return self.to_string(True)

F
fengjiayi 已提交
1668 1669 1670
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1671

F
fengjiayi 已提交
1672
        Args:
Y
yuyang18 已提交
1673 1674
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1675

Y
yuyang18 已提交
1676 1677 1678 1679
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1680 1681
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1682 1683 1684 1685

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1696 1697
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1698 1699
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1700

W
Wu Yi 已提交
1701
    def _get_desc(self):
Y
yuyang18 已提交
1702 1703 1704 1705 1706 1707 1708
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1709 1710
        return self.desc

X
version  
Xin Pan 已提交
1711 1712 1713
    def _version(self):
        return self.desc._version()

1714
    def clone(self, for_test=False):
Y
yuyang18 已提交
1715 1716 1717
        """
        Create a new, duplicated program.

1718

Y
yuyang18 已提交
1719 1720 1721 1722
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1723

Y
yuyang18 已提交
1724 1725 1726 1727
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1728 1729 1730 1731 1732
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1733 1734

        Args:
Y
yuyang18 已提交
1735 1736
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1737

D
dzhwinter 已提交
1738
        Returns:
Y
yuyang18 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1792 1793
        """
        if for_test:
X
Xin Pan 已提交
1794
            p = self._inference_optimize(prune_read_op=False)
1795
        else:
1796
            p = Program()
G
gongweibao 已提交
1797 1798
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1799
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1800 1801 1802
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1803 1804 1805 1806

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1807
            p._sync_with_cpp()
1808

W
Wu Yi 已提交
1809
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1810
        p._copy_data_info_from(self)
1811
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1812
        return p
1813

W
Wu Yi 已提交
1814
    def _prune(self, targets):
Y
yuyang18 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1830 1831 1832 1833 1834 1835
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1836 1837
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1838
                    # and we need to find the current op that generate this
1839 1840 1841 1842 1843 1844 1845 1846
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1847
                    t = t.op
1848 1849 1850 1851
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1852
                else:
1853 1854
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1855 1856 1857 1858

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1859 1860 1861
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1862
        res._sync_with_cpp()
1863 1864
        return res

X
Xin Pan 已提交
1865
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1866
        """
F
fengjiayi 已提交
1867 1868 1869 1870 1871
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1872
        3. change the :code:`is_test`
Y
yuyang18 已提交
1873 1874 1875
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1876
        Args:
X
Xin Pan 已提交
1877 1878
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1879

Y
yuyang18 已提交
1880 1881 1882 1883 1884 1885
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1886
        res = Program()
1887
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1888 1889 1890 1891

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1892
        if prune_read_op:
1893 1894 1895 1896 1897 1898 1899 1900 1901
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1902
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1903 1904

        # change all `is_test` attributes to True
M
minqiyang 已提交
1905
        for i in six.moves.range(res.desc.num_blocks()):
1906
            block = res.desc.block(i)
M
minqiyang 已提交
1907
            for j in six.moves.range(block.op_size()):
1908 1909
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1910
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1911 1912 1913
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1914
        res._sync_with_cpp()
1915 1916
        return res

1917 1918
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1919 1920 1921 1922 1923 1924 1925
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1926
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1927 1928 1929 1930

        Returns:
            Program: A deserialized program desc.
        """
1931 1932
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1933
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1934
        p._sync_with_cpp()
1935
        return p
Y
Yu Yang 已提交
1936

D
dzhwinter 已提交
1937 1938
    @property
    def random_seed(self):
Y
yuyang18 已提交
1939 1940 1941 1942 1943 1944
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1945 1946
        return self._seed

Q
qiaolongfei 已提交
1947 1948
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1949 1950 1951
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1952 1953
        return self.desc.num_blocks()

D
dzhwinter 已提交
1954 1955 1956 1957 1958 1959
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1960
    def __repr__(self):
1961
        return self.__str__()
1962

Y
Yu Yang 已提交
1963
    def global_block(self):
Y
yuyang18 已提交
1964 1965 1966
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1967 1968
        return self.blocks[0]

Q
Qiao Longfei 已提交
1969
    def block(self, index):
Y
yuyang18 已提交
1970 1971 1972 1973 1974 1975 1976 1977
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1978 1979
        return self.blocks[index]

Y
Yu Yang 已提交
1980
    def current_block(self):
Y
yuyang18 已提交
1981 1982 1983 1984
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1985 1986
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1987
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1998
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1999 2000 2001
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2002 2003 2004 2005
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2006
    def _rollback(self):
Y
yuyang18 已提交
2007 2008 2009 2010 2011
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2012 2013
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2014
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2025 2026 2027
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2028
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2029

W
Wu Yi 已提交
2030
    def _copy_param_info_from(self, other):
2031
        """
2032
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2033

Y
yuyang18 已提交
2034 2035 2036
        Notes: This is a very low level API. Users should not invoke it
        directly.

2037 2038 2039 2040 2041 2042 2043
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2044
            raise TypeError("_copy_param_info_from should be invoked with "
2045 2046 2047
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2048
            raise ValueError("_copy_param_info_from should be invoked with two "
2049
                             "program, with represent the same topology")
W
Wu Yi 已提交
2050
        self.global_block()._copy_param_info_from(other.global_block())
2051

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2071
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2072 2073
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2074

Y
yuyang18 已提交
2075 2076 2077
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2078 2079 2080 2081 2082 2083 2084
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2085
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2086 2087 2088
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2089
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2090
                             "program, with represent the same topology")
2091
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2092 2093 2094
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2095
    def list_vars(self):
Y
yuyang18 已提交
2096 2097 2098 2099 2100 2101
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2102
        for each_block in self.blocks:
2103
            for each_var in list(each_block.vars.values()):
2104 2105
                yield each_var

Y
Yu Yang 已提交
2106

Y
Yu Yang 已提交
2107
class Parameter(Variable):
2108
    """
2109
    Parameter is derived from Variable. A parameter is a persistable
2110
    Variable, and will be updated by optimizers after each iteration.
2111
    The training of a neural network is essentially the updating of
2112 2113
    its parameters.

2114
    Relative to a general Variable, a Parameter has several its own
2115 2116
    member variables:

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2129 2130
    """

Y
Yu Yang 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2141 2142 2143

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2144 2145 2146 2147
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2148 2149
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2150
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2151

W
wanghaoshuang 已提交
2152
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2153

F
fengjiayi 已提交
2154 2155 2156
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2157 2158 2159
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2160

F
update  
fengjiayi 已提交
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2175
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2176
            for attr_name in additional_attr:
2177 2178
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2179 2180
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2181 2182 2183 2184
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2185

Y
Yu Yang 已提交
2186
# program is a global instance.
Y
Yu Yang 已提交
2187 2188
_main_program_ = Program()
_startup_program_ = Program()
2189

2190

2191
def default_startup_program():
Y
Yu Yang 已提交
2192
    """
Y
yuyang18 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2202

Y
Yu Yang 已提交
2203 2204 2205
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2206
    return _startup_program_
2207

2208

2209
def default_main_program():
Y
Yu Yang 已提交
2210
    """
Y
yuyang18 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2220

Y
Yu Yang 已提交
2221 2222 2223
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2224
    return _main_program_
Y
Yu Yang 已提交
2225 2226 2227 2228 2229


def switch_main_program(program):
    """
    Switch the main program to a new program.
2230

Y
Yu Yang 已提交
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2245
    Switch the startup program to a new program
Y
Yu Yang 已提交
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2261 2262 2263
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2264

Y
Yu Yang 已提交
2265
    Examples:
Y
yuyang18 已提交
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2276

Y
Yu Yang 已提交
2277
    Examples:
Y
yuyang18 已提交
2278 2279 2280 2281 2282 2283

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2284

Y
Yu Yang 已提交
2285
    Args:
Y
yuyang18 已提交
2286
        main_program(Program): New main program inside `with` statement.
2287
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2301 2302


W
Wu Yi 已提交
2303
def _get_var(name, program=None):
X
xuwei06 已提交
2304
    """
Y
yuyang18 已提交
2305
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2306

X
xuwei06 已提交
2307 2308 2309
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2310
        If None, default_global_program() will be used.
X
xuwei06 已提交
2311 2312 2313 2314 2315 2316 2317

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2318
    assert isinstance(program, Program)
X
xuwei06 已提交
2319 2320

    return program.global_block().var(name)
2321 2322 2323 2324 2325 2326 2327 2328 2329


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace