framework.py 75.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28
try:
P
peizhilin 已提交
29
    if os.name == 'nt':
P
peizhilin 已提交
30
        import sys
P
peizhilin 已提交
31 32 33 34 35
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

36
    from . import core
37
except ImportError as e:
P
peizhilin 已提交
38 39 40 41 42 43 44 45 46 47 48 49
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
50
except Exception as e:
51
    raise e
52
from . import unique_name
Y
Yu Yang 已提交
53

54
__all__ = [
55 56 57 58
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
59
    'name_scope',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

68 69 70 71 72 73 74 75 76 77
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
118

119 120 121 122
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
123 124
          with name_scope("attention"):
             ...
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
144 145 146
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
147 148 149 150


def grad_var_name(var_name):
    """
151 152
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
153 154 155
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
156

157
def convert_np_dtype_to_dtype_(np_dtype):
158 159
    """
    Convert the data type in numpy to the data type in Paddle
160

161
    Args:
162
        np_dtype(np.dtype): the data type in numpy.
163

164 165
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
166 167

    """
168 169
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
170
        return core.VarDesc.VarType.FP32
171
    elif dtype == np.float64:
172
        return core.VarDesc.VarType.FP64
173
    elif dtype == np.float16:
174
        return core.VarDesc.VarType.FP16
175
    elif dtype == np.int32:
176
        return core.VarDesc.VarType.INT32
177
    elif dtype == np.int16:
178
        return core.VarDesc.VarType.INT16
179
    elif dtype == np.int64:
180
        return core.VarDesc.VarType.INT64
181
    elif dtype == np.bool:
182
        return core.VarDesc.VarType.BOOL
183 184
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
185 186
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
187 188
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
189
    else:
M
minqiyang 已提交
190
        raise ValueError("Not supported numpy dtype %s" % dtype)
191 192 193


def dtype_is_floating(dtype):
194 195 196
    """
    Check the data type is floating or not.
    Args:
197
        dtype(np.dtype|core.VarDesc.VarType): data type.
198 199 200 201 202
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
203
    if not isinstance(dtype, core.VarDesc.VarType):
204 205
        dtype = convert_np_dtype_to_dtype_(dtype)

206 207 208 209
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
210 211


Y
Yang Yang(Tony) 已提交
212
def _debug_string_(proto, throw_on_error=True):
213 214 215 216 217 218 219 220 221 222 223
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
224
    error_fields = list()
Y
Yang Yang(Tony) 已提交
225
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
226 227
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
228 229 230
    return proto.__str__()


X
Xin Pan 已提交
231
class Variable(object):
232
    """
233 234 235
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
236
    two variables in different blocks could have the same name.
237

238 239
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
240

241
    Most of a Variable's member variables can be setted to be None. It mean
242
    it is not available or will be specified later.
243 244

    Args:
245
        block(Block): The block that the variable belongs to.
246 247
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
248 249
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
250
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
251
            Some kinds of variable do not contain shape, just set it to None.
252 253 254
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
255
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
256
            series data.
257
            Default: None
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
280 281
    """

Y
Yu Yang 已提交
282 283
    def __init__(self,
                 block,
Y
Yu Yang 已提交
284
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
285 286 287 288
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
289
                 capacity=None,
Q
QI JUN 已提交
290
                 persistable=None,
F
fengjiayi 已提交
291
                 error_clip=None,
Y
Yu Yang 已提交
292
                 stop_gradient=False,
F
fengjiayi 已提交
293
                 is_data=False,
Y
Yu Yang 已提交
294
                 **kwargs):
Y
Yu Yang 已提交
295
        self.block = block
F
fengjiayi 已提交
296
        self.error_clip = error_clip
Y
Yu Yang 已提交
297 298

        if name is None:
Y
Yu Yang 已提交
299
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
300
        is_new_var = False
M
minqiyang 已提交
301
        name = cpt.to_text(name)
M
minqiyang 已提交
302
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
303 304

        if self.desc is None:
M
minqiyang 已提交
305
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
306
            is_new_var = True
Y
Yu Yang 已提交
307

Y
Yu Yang 已提交
308 309 310 311 312 313 314 315
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
316
        if shape is not None:
Y
Yu Yang 已提交
317
            if is_new_var:
318
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
327
        if dtype is not None:
328
            if not isinstance(dtype, core.VarDesc.VarType):
329
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
330
            if is_new_var:
F
fengjiayi 已提交
331
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
332
            else:
F
fengjiayi 已提交
333
                old_dtype = self.dtype
Q
QI JUN 已提交
334
                if dtype != old_dtype:
Y
Yu Yang 已提交
335 336 337 338 339
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
340 341

        if lod_level is not None:
Y
Yu Yang 已提交
342
            if is_new_var:
343
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
344 345 346 347 348 349 350
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
351 352 353 354 355 356 357 358 359 360 361
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

362 363 364 365 366 367 368 369
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
370
        self.block.vars[name] = self
Y
Yu Yang 已提交
371
        self.op = None
M
minqiyang 已提交
372
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
373
        self.is_data = is_data
X
Xin Pan 已提交
374
        if _in_imperative_mode():
M
minqiyang 已提交
375 376 377
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
378
            self._ivar.desc = self.desc
379
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
380

381
    def _numpy(self):
M
minqiyang 已提交
382
        tensor = self._ivar.value().get_tensor()
383 384 385
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
386
        self._ivar._run_backward()
387 388

    def _gradient(self):
M
minqiyang 已提交
389
        return np.array(self._ivar._grad_value())
390

391
    def __str__(self):
Y
Yang Yang(Tony) 已提交
392 393
        return self.to_string(True)

F
update  
fengjiayi 已提交
394
    def to_string(self, throw_on_error, with_details=False):
395 396 397 398
        """
        Get debug string.

        Args:
399 400
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
401
            with_details(bool): more details about variables and parameters
402 403
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
404

405 406
        Returns:
            str: The debug string.
407
        """
F
update  
fengjiayi 已提交
408 409
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
410
        protostr = self.desc.serialize_to_string()
411
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
412 413 414 415
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
416 417
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
418
        return res_str
419 420 421

    __repr__ = __str__

W
Wu Yi 已提交
422
    def _set_desc(self, input):
423 424 425 426 427 428 429 430 431
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
432 433
        self.desc = input

434 435 436 437 438 439 440 441
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

442 443 444 445
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
446 447 448 449
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
450 451
    @property
    def name(self):
M
minqiyang 已提交
452
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
453

T
typhoonzero 已提交
454 455 456 457
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
458 459 460
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
461
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
462 463

    @property
F
fengjiayi 已提交
464 465
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
466 467 468

    @property
    def lod_level(self):
469
        return self.desc.lod_level()
Y
Yu Yang 已提交
470

Y
Yu Yang 已提交
471 472 473 474
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
475
    def _set_error_clip(self, error_clip):
476 477 478 479 480 481 482 483 484
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
485 486
        self.error_clip = error_clip

Y
Yu Yang 已提交
487

F
fengjiayi 已提交
488 489 490
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
491

492 493
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
494 495 496 497
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
498
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
499 500 501 502 503
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
504 505 506 507
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
508 509 510 511 512 513 514 515 516
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
517
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
518 519 520 521 522 523
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
524 525 526 527 528 529 530 531
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
532 533
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
534 535
        return self.op_proto_map[type]

536 537 538 539
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
540
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
541
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
542 543
        }

F
fengjiayi 已提交
544

X
Xin Pan 已提交
545
class Operator(object):
546
    """
547 548 549 550 551 552 553
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
554
        type(str): The type of operator. Default None.
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
575
        Block.append_op or Block._prepend_op instead.
576 577 578 579 580 581 582 583 584 585

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
586
    """
587 588 589
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
590 591
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
592
    }
593

Y
Yu Yang 已提交
594 595
    def __init__(self,
                 block,
Y
Yu Yang 已提交
596
                 desc,
Y
Yu Yang 已提交
597 598 599
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
600
                 attrs=None):
Y
Yu Yang 已提交
601
        self.block = block
Y
Yu Yang 已提交
602
        self.desc = desc
G
gongweibao 已提交
603 604 605 606 607
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
608 609 610 611
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
612 613
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
614 615 616

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
617 618
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
619

G
gongweibao 已提交
620 621
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
622

F
fengjiayi 已提交
623 624 625 626 627
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
628
        self.desc.set_type(type)
F
fengjiayi 已提交
629
        proto = OpProtoHolder.instance().get_op_proto(type)
630

631 632 633
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
634 635
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
636
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
637 638
                    return True
            return False
Q
QI JUN 已提交
639

Y
Yang Yang(Tony) 已提交
640 641 642 643 644 645 646
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
647 648 649 650
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
651 652
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
653 654 655
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
656
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
657
                            in_arg_names.append(arg)
658 659
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
660
                        else:
M
minqiyang 已提交
661
                            in_arg_names.append(cpt.to_text(arg.name))
662
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
663 664
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
665

Y
Yu Yang 已提交
666
        if outputs is not None:
667
            for m in proto.outputs:
Q
qingqing01 已提交
668 669 670 671 672 673
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
674
            for out_proto in proto.outputs:
Q
qingqing01 已提交
675 676
                if out_proto.name not in outputs:
                    continue
677 678 679 680
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
681 682
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
683 684 685
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
686
                    out_arg_names.append(cpt.to_text(arg.name))
687 688
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
689

G
gongweibao 已提交
690 691
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
692
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
693
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
694
                attr_name = attr.name
G
gongweibao 已提交
695
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
696
                    continue
G
gongweibao 已提交
697
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
698 699
                self._update_desc_attr(attr_name, attr_val)

700
        self.desc.check_attrs()
M
minqiyang 已提交
701

W
Wu Yi 已提交
702
        if self._has_kernel(type):
Q
QI JUN 已提交
703
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
704
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
705

X
Xin Pan 已提交
706 707 708
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
709
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
710
            if inputs is not None:
X
Xin Pan 已提交
711 712 713 714 715 716
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
717
            if outputs is not None:
X
Xin Pan 已提交
718 719 720 721 722
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
723

W
Wu Yi 已提交
724
    def _has_kernel(self, op_type):
725 726
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
727
    def to_string(self, throw_on_error):
728
        """
729 730
        Get debug string.

731
        Args:
732 733
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
734

735 736
        Returns:
            str: The debug string.
737 738

        """
739
        protostr = self.desc.serialize_to_string()
740
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
741 742 743 744
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
745 746 747

    __repr__ = __str__

F
fengjiayi 已提交
748 749 750 751 752
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
753
        """
754
        Get the input arguments according to the input parameter name.
755

756 757
        Args:
            name(str): The input parameter name.
758

759 760 761
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
762
        """
F
fengjiayi 已提交
763 764
        return self.desc.input(name)

W
Wu Yi 已提交
765
    def _rename_input(self, old_name, new_name):
766 767 768 769 770 771 772 773 774 775
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
776
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
777

W
Wu Yi 已提交
778
    def _rename_output(self, old_name, new_name):
779 780 781 782 783 784 785 786 787 788
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
789
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
790

F
fengjiayi 已提交
791 792 793 794
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
795 796 797 798 799 800 801 802
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
803
    def output(self, name):
804
        """
805
        Get output arguments by the output parameter name.
806

807 808
        Args:
            name(str): The output parameter name.
809

810 811 812
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
813
        """
F
fengjiayi 已提交
814 815 816 817 818 819
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

820 821 822 823 824 825 826 827
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
828
    def has_attr(self, name):
829
        """
830 831
        Whether this Operator has the attribute with name or not.

832
        Args:
833
            name(str): the attribute name.
834

835 836
        Returns:
            bool: True if has this attribute.
837 838

        """
F
fengjiayi 已提交
839 840 841
        return self.desc.has_attr(name)

    def attr_type(self, name):
842
        """
843
        Get the type of attribute by attribute's name.
844

845 846
        Args:
            name(str): the attribute name.
847

848 849
        Returns:
            core.AttrType: the attribute type.
850
        """
F
fengjiayi 已提交
851 852
        return self.desc.attr_type(name)

W
Wu Yi 已提交
853
    def _set_attr(self, name, val):
854 855 856 857 858 859 860 861 862 863
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
877 878
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
879 880
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
881
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
882 883 884 885
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
886
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
887

F
fengjiayi 已提交
888 889 890 891 892
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
893
        """
894 895
        Get the attribute by name.

896
        Args:
897
            name(str): the attribute name.
898

899 900
        Returns:
            bool|int|str|float|list: The attribute value. The return value
901 902
            can be any valid attribute type.
        """
F
fengjiayi 已提交
903
        return self.desc.attr(name)
Y
Yu Yang 已提交
904

W
Wu Yi 已提交
905
    def _block_attr_id(self, name):
906
        """
G
gongweibao 已提交
907
        Get the block attribute's id by name.
908

909 910
        Args:
            name(str): the attribute name.
911

912 913
        Returns:
            int: the block index.
914
        """
W
Wu Yi 已提交
915
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
916

W
Wu Yi 已提交
917
    def _block_attr(self, name):
G
gongweibao 已提交
918 919 920 921 922 923 924 925 926 927
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
928
        id = self._block_attr_id(name)
G
gongweibao 已提交
929 930 931
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
932
    def _blocks_attr(self, name):
G
gongweibao 已提交
933 934 935 936 937 938 939 940 941 942
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
943
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
944 945 946 947 948
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
949
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
950 951 952 953 954 955 956 957 958 959
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
960
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
961

J
JiayiFeng 已提交
962
    def all_attrs(self):
F
fengjiayi 已提交
963
        """
964 965 966
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
967
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
968 969 970 971
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
972 973
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
974
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
975 976 977
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
978
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
979 980 981 982
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
983 984
        return attr_map

Y
Yu Yang 已提交
985

Y
Yu Yang 已提交
986
class Block(object):
987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1001
        use `Program._create_block()` to create a block.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1016
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1017
        self.desc = program.desc.block(idx)
1018
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1019
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1020
        self.program = program
1021
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1022

1023
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1024 1025
        return self.to_string(True)

F
fengjiayi 已提交
1026 1027
    def to_string(self, throw_on_error, with_details=False):
        """
1028 1029
        Get debug string.

F
fengjiayi 已提交
1030 1031
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1032
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1033
            with_details(bool): more details about variables and parameters
1034 1035
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1036

1037 1038
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1039 1040 1041 1042
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1043
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1044 1045
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1046
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1047
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1048
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1049
            for op in self.ops:
F
fengjiayi 已提交
1050 1051
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1052 1053 1054
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1055 1056
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1057 1058
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1059 1060 1061

    __repr__ = __str__

Y
Yu Yang 已提交
1062 1063
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1064
        return self.desc.parent
Y
Yu Yang 已提交
1065

Y
Yu Yang 已提交
1066 1067 1068 1069
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1070
    def _set_forward_block_idx(self, idx):
1071 1072 1073 1074 1075 1076 1077 1078 1079
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1080
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1081

Y
Yu Yang 已提交
1082 1083
    @property
    def idx(self):
Y
Yu Yang 已提交
1084
        return self.desc.id
Y
Yu Yang 已提交
1085

Q
Qiao Longfei 已提交
1086
    def var(self, name):
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1100
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1101 1102 1103
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1104 1105
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1106
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1107
        return v
Q
Qiao Longfei 已提交
1108

X
Xin Pan 已提交
1109
    def _find_var_recursive(self, name):
1110 1111 1112 1113 1114 1115 1116
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1117
            Variable: the Variable with the giving name. Or None if not found.
1118
        """
Y
Yu Yang 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1143
        return None
Y
Yu Yang 已提交
1144

X
Xin Pan 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1164

Q
Qiao Longfei 已提交
1165
    def all_parameters(self):
1166
        return list(self.iter_parameters())
1167

1168
    def iter_parameters(self):
M
minqiyang 已提交
1169
        return (item[1] for item in six.iteritems(self.vars)
1170
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1171

Y
Yu Yang 已提交
1172
    def create_var(self, *args, **kwargs):
1173
        var = Variable(block=self, *args, **kwargs)
1174 1175
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1176
        return var
Y
Yu Yang 已提交
1177

Q
Qiao Longfei 已提交
1178 1179 1180
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1181
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1182 1183
        """
        Rename variable in vars and ops' inputs and outputs
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1196
        """
M
minqiyang 已提交
1197 1198
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1199

T
typhoonzero 已提交
1200
        if not self.has_var(name):
1201
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1202 1203
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1204
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1205 1206 1207 1208 1209 1210 1211
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1212
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1213 1214 1215 1216
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1217
        orig_var_type = v.type
M
minqiyang 已提交
1218
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1219
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1220
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1221
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1222 1223 1224 1225
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1226
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1227 1228 1229 1230 1231 1232 1233
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1234
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1235 1236
            var = Variable(
                self,
T
typhoonzero 已提交
1237
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1238 1239 1240 1241
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1242
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1243 1244 1245
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1246
        self._sync_with_cpp()
1247
        return var
T
typhoonzero 已提交
1248

W
Wu Yi 已提交
1249 1250
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1251
        self.desc._remove_var(cpt.to_bytes(name))
1252 1253
        del self.vars[name]

Y
Yu Yang 已提交
1254 1255
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1256
        param = Parameter(global_block, *args, **kwargs)
1257
        if 'initializer' in kwargs:
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1278
        return param
Y
Yu Yang 已提交
1279

Y
Yu Yang 已提交
1280
    def append_op(self, *args, **kwargs):
1281 1282 1283 1284 1285 1286
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1287
        op_desc = self.desc.append_op()
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1300
        if _in_imperative_mode():
1301
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1302
                                       stop_gradient)
Y
Yu Yang 已提交
1303

W
Wu Yi 已提交
1304
    def _insert_op(self, index, *args, **kwargs):
1305 1306 1307 1308 1309 1310 1311 1312 1313
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1314 1315
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1316 1317 1318 1319
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1320
    def _remove_op(self, index):
1321 1322 1323 1324 1325 1326 1327 1328 1329
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1330 1331
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1332 1333
        del self.ops[index]

W
Wu Yi 已提交
1334
    def _slice_ops(self, start, end):
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1345
        return self.ops[start:end]
Y
Yancey1989 已提交
1346

W
Wu Yi 已提交
1347 1348
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1349 1350 1351 1352 1353 1354 1355
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1356
        self.ops.insert(0, op)
1357
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1358 1359
        return op

W
Wu Yi 已提交
1360
    def _sync_with_cpp(self):
1361
        """
1362 1363
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1364
        """
Q
Qiao Longfei 已提交
1365 1366 1367 1368 1369
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1370
        # sync variables removed from c++ end
1371
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1372
            if not self.desc.find_var(cpt.to_bytes(var)):
1373 1374
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1375
        # sync operators from cpp
1376 1377 1378 1379
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1396 1397 1398 1399 1400

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1401
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1402 1403 1404 1405 1406 1407 1408

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1422 1423 1424 1425
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1426
    def _copy_param_info_from(self, other):
1427
        """
1428 1429
        Copy the information of parameters from the other block.

1430
        Args:
1431 1432 1433 1434 1435
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1436 1437 1438 1439 1440

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1441 1442
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1443
        for p in other.iter_parameters():
1444 1445 1446
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1447
                raise ValueError("_copy_param_info_from should be invoked with "
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1460
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1461
                error_clip=p.error_clip,
1462 1463 1464
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1465
    def _clone_variable(self, var):
1466 1467
        """
        Clone a variable into current block.
1468

1469 1470 1471 1472
        Args:
            var: the variable to be cloned.

        Returns:
1473
            Variable: the new  variable cloned from 'var' in current block.
1474 1475
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1476 1477 1478 1479 1480
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1481 1482
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1483
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1484 1485 1486 1487 1488 1489
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1490 1491
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1492 1493 1494 1495 1496 1497 1498
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1499 1500
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1501
        return ret_var
1502

Y
Yu Yang 已提交
1503 1504

class Program(object):
D
dzhwinter 已提交
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1516
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1517 1518

    Returns:
Y
yuyang18 已提交
1519
        A empty program.
D
dzhwinter 已提交
1520 1521

    Examples:
Y
yuyang18 已提交
1522 1523 1524 1525 1526 1527
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1528 1529 1530

    """

1531 1532
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1533 1534
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1535
        self._seed = 0
Y
yuyang18 已提交
1536
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1537
        self._op_role_var = []
T
tangwei12 已提交
1538 1539 1540 1541

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1542
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1543
        self._endpoints = []
1544
        self._trainers_endpoints = []
T
tangwei12 已提交
1545
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1546 1547 1548

    @property
    def op_role(self):
Y
yuyang18 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1562 1563 1564 1565 1566 1567 1568 1569
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1570 1571 1572 1573 1574 1575 1576
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1577 1578 1579 1580
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1581
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1582 1583

    @contextlib.contextmanager
W
Wu Yi 已提交
1584
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1585 1586 1587 1588 1589 1590 1591
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1592
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1593 1594 1595 1596

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1597
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1598 1599
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1600 1601 1602
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1603 1604
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1605 1606 1607 1608
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1609
        yield
X
Xin Pan 已提交
1610 1611
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1612

1613
    @contextlib.contextmanager
X
Xin Pan 已提交
1614
    def _lr_schedule_guard(self, is_with_opt=False):
1615 1616 1617 1618 1619 1620 1621
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1622 1623 1624 1625
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1626 1627 1628 1629 1630 1631 1632

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1633 1634 1635 1636

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1637 1638
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1639 1640
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1641 1642 1643
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1644 1645
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1646

1647
    def __str__(self):
Y
yuyang18 已提交
1648 1649 1650 1651 1652 1653 1654 1655 1656
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1657 1658
        return self.to_string(True)

F
fengjiayi 已提交
1659 1660 1661
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1662

F
fengjiayi 已提交
1663
        Args:
Y
yuyang18 已提交
1664 1665
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1666

Y
yuyang18 已提交
1667 1668 1669 1670
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1671 1672
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1673 1674 1675 1676

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1687 1688
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1689 1690
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1691

W
Wu Yi 已提交
1692
    def _get_desc(self):
Y
yuyang18 已提交
1693 1694 1695 1696 1697 1698 1699
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1700 1701
        return self.desc

X
version  
Xin Pan 已提交
1702 1703 1704
    def _version(self):
        return self.desc._version()

1705
    def clone(self, for_test=False):
Y
yuyang18 已提交
1706 1707 1708
        """
        Create a new, duplicated program.

1709

Y
yuyang18 已提交
1710 1711 1712 1713
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1714

Y
yuyang18 已提交
1715 1716 1717 1718
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1719 1720 1721 1722 1723
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1724 1725

        Args:
Y
yuyang18 已提交
1726 1727
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1728

D
dzhwinter 已提交
1729
        Returns:
Y
yuyang18 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1783 1784
        """
        if for_test:
X
Xin Pan 已提交
1785
            p = self._inference_optimize(prune_read_op=False)
1786
        else:
1787
            p = Program()
G
gongweibao 已提交
1788 1789
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1790
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1791 1792 1793
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1794 1795 1796 1797

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1798
            p._sync_with_cpp()
1799

W
Wu Yi 已提交
1800
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1801
        p._copy_data_info_from(self)
1802
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1803
        return p
1804

W
Wu Yi 已提交
1805
    def _prune(self, targets):
Y
yuyang18 已提交
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1821 1822 1823 1824 1825 1826
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1827 1828
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1829
                    # and we need to find the current op that generate this
1830 1831 1832 1833 1834 1835 1836 1837
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1838
                    t = t.op
1839 1840 1841 1842
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1843
                else:
1844 1845
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1846 1847 1848 1849

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1850 1851 1852
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1853
        res._sync_with_cpp()
1854 1855
        return res

X
Xin Pan 已提交
1856
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1857
        """
F
fengjiayi 已提交
1858 1859 1860 1861 1862
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1863
        3. change the :code:`is_test`
Y
yuyang18 已提交
1864 1865 1866
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1867
        Args:
X
Xin Pan 已提交
1868 1869
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1870

Y
yuyang18 已提交
1871 1872 1873 1874 1875 1876
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1877
        res = Program()
1878
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1879 1880 1881 1882

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1883
        if prune_read_op:
1884 1885 1886 1887 1888 1889 1890 1891 1892
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1893
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1894 1895

        # change all `is_test` attributes to True
M
minqiyang 已提交
1896
        for i in six.moves.range(res.desc.num_blocks()):
1897
            block = res.desc.block(i)
M
minqiyang 已提交
1898
            for j in six.moves.range(block.op_size()):
1899 1900
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1901
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1902 1903 1904
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1905
        res._sync_with_cpp()
1906 1907
        return res

1908 1909
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1910 1911 1912 1913 1914 1915 1916
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1917
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1918 1919 1920 1921

        Returns:
            Program: A deserialized program desc.
        """
1922 1923
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1924
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1925
        p._sync_with_cpp()
1926
        return p
Y
Yu Yang 已提交
1927

D
dzhwinter 已提交
1928 1929
    @property
    def random_seed(self):
Y
yuyang18 已提交
1930 1931 1932 1933 1934 1935
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1936 1937
        return self._seed

Q
qiaolongfei 已提交
1938 1939
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1940 1941 1942
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1943 1944
        return self.desc.num_blocks()

D
dzhwinter 已提交
1945 1946 1947 1948 1949 1950
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1951
    def __repr__(self):
1952
        return self.__str__()
1953

Y
Yu Yang 已提交
1954
    def global_block(self):
Y
yuyang18 已提交
1955 1956 1957
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1958 1959
        return self.blocks[0]

Q
Qiao Longfei 已提交
1960
    def block(self, index):
Y
yuyang18 已提交
1961 1962 1963 1964 1965 1966 1967 1968
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1969 1970
        return self.blocks[index]

Y
Yu Yang 已提交
1971
    def current_block(self):
Y
yuyang18 已提交
1972 1973 1974 1975
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1976 1977
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1978
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1989
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1990 1991 1992
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1993 1994 1995 1996
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1997
    def _rollback(self):
Y
yuyang18 已提交
1998 1999 2000 2001 2002
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2003 2004
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2005
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2016 2017 2018
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2019
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2020

W
Wu Yi 已提交
2021
    def _copy_param_info_from(self, other):
2022
        """
2023
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2024

Y
yuyang18 已提交
2025 2026 2027
        Notes: This is a very low level API. Users should not invoke it
        directly.

2028 2029 2030 2031 2032 2033 2034
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2035
            raise TypeError("_copy_param_info_from should be invoked with "
2036 2037 2038
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2039
            raise ValueError("_copy_param_info_from should be invoked with two "
2040
                             "program, with represent the same topology")
W
Wu Yi 已提交
2041
        self.global_block()._copy_param_info_from(other.global_block())
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2062
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2063 2064
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2065

Y
yuyang18 已提交
2066 2067 2068
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2069 2070 2071 2072 2073 2074 2075
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2076
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2077 2078 2079
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2080
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2081
                             "program, with represent the same topology")
2082
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2083 2084 2085
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2086
    def list_vars(self):
Y
yuyang18 已提交
2087 2088 2089 2090 2091 2092
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2093
        for each_block in self.blocks:
2094
            for each_var in list(each_block.vars.values()):
2095 2096
                yield each_var

Y
Yu Yang 已提交
2097

Y
Yu Yang 已提交
2098
class Parameter(Variable):
2099
    """
2100
    Parameter is derived from Variable. A parameter is a persistable
2101
    Variable, and will be updated by optimizers after each iteration.
2102
    The training of a neural network is essentially the updating of
2103 2104
    its parameters.

2105
    Relative to a general Variable, a Parameter has several its own
2106 2107
    member variables:

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2120 2121
    """

Y
Yu Yang 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2132 2133 2134

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2135 2136 2137 2138
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2139 2140
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2141
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2142

W
wanghaoshuang 已提交
2143
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2144

F
fengjiayi 已提交
2145 2146 2147
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2148 2149 2150
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2151

F
update  
fengjiayi 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2166
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2167
            for attr_name in additional_attr:
2168 2169
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2170 2171
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2172 2173 2174 2175
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2176

Y
Yu Yang 已提交
2177
# program is a global instance.
Y
Yu Yang 已提交
2178 2179
_main_program_ = Program()
_startup_program_ = Program()
2180

2181

2182
def default_startup_program():
Y
Yu Yang 已提交
2183
    """
Y
yuyang18 已提交
2184 2185 2186 2187 2188 2189 2190 2191 2192
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2193

Y
Yu Yang 已提交
2194 2195 2196
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2197
    return _startup_program_
2198

2199

2200
def default_main_program():
Y
Yu Yang 已提交
2201
    """
Y
yuyang18 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2211

Y
Yu Yang 已提交
2212 2213 2214
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2215
    return _main_program_
Y
Yu Yang 已提交
2216 2217 2218 2219 2220


def switch_main_program(program):
    """
    Switch the main program to a new program.
2221

Y
Yu Yang 已提交
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2236
    Switch the startup program to a new program
Y
Yu Yang 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2252 2253 2254
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2255

Y
Yu Yang 已提交
2256
    Examples:
Y
yuyang18 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2267

Y
Yu Yang 已提交
2268
    Examples:
Y
yuyang18 已提交
2269 2270 2271 2272 2273 2274

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2275

Y
Yu Yang 已提交
2276
    Args:
Y
yuyang18 已提交
2277
        main_program(Program): New main program inside `with` statement.
2278
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2292 2293


W
Wu Yi 已提交
2294
def _get_var(name, program=None):
X
xuwei06 已提交
2295
    """
Y
yuyang18 已提交
2296
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2297

X
xuwei06 已提交
2298 2299 2300
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2301
        If None, default_global_program() will be used.
X
xuwei06 已提交
2302 2303 2304 2305 2306 2307 2308

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2309
    assert isinstance(program, Program)
X
xuwei06 已提交
2310 2311

    return program.global_block().var(name)
2312 2313 2314 2315 2316 2317 2318 2319 2320


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace