framework.py 76.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import six
24

Y
Yu Yang 已提交
25
import numpy as np
Q
qiaolongfei 已提交
26

M
minqiyang 已提交
27
from .. import compat as cpt
28
from .proto import framework_pb2
29
try:
P
peizhilin 已提交
30
    if os.name == 'nt':
P
peizhilin 已提交
31
        import sys
P
peizhilin 已提交
32 33 34 35 36
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

37
    from . import core
38
except ImportError as e:
P
peizhilin 已提交
39 40 41 42 43 44 45 46 47 48 49 50
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
51
except Exception as e:
52
    raise e
53
from . import unique_name
Y
Yu Yang 已提交
54

55
__all__ = [
56 57 58 59
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
60
    'name_scope',
61
]
Y
Yu Yang 已提交
62

Q
qiaolongfei 已提交
63 64 65 66
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
67 68
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

69
_imperative_tracer_ = None
M
minqiyang 已提交
70
_current_expected_place_ = None
71 72 73 74 75 76 77 78 79


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
80

M
minqiyang 已提交
81 82 83 84
def _current_expected_place():
    return _current_expected_place_


85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
124

125 126 127 128
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
129 130
          with name_scope("attention"):
             ...
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
150 151 152
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
153 154 155 156


def grad_var_name(var_name):
    """
157 158
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
159 160 161
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
162

163
def convert_np_dtype_to_dtype_(np_dtype):
164 165
    """
    Convert the data type in numpy to the data type in Paddle
166

167
    Args:
168
        np_dtype(np.dtype): the data type in numpy.
169

170 171
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
172 173

    """
174 175
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
176
        return core.VarDesc.VarType.FP32
177
    elif dtype == np.float64:
178
        return core.VarDesc.VarType.FP64
179
    elif dtype == np.float16:
180
        return core.VarDesc.VarType.FP16
181
    elif dtype == np.int32:
182
        return core.VarDesc.VarType.INT32
183
    elif dtype == np.int16:
184
        return core.VarDesc.VarType.INT16
185
    elif dtype == np.int64:
186
        return core.VarDesc.VarType.INT64
187
    elif dtype == np.bool:
188
        return core.VarDesc.VarType.BOOL
189 190
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
191 192
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
193 194
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
195
    else:
M
minqiyang 已提交
196
        raise ValueError("Not supported numpy dtype %s" % dtype)
197 198 199


def dtype_is_floating(dtype):
200 201 202
    """
    Check the data type is floating or not.
    Args:
203
        dtype(np.dtype|core.VarDesc.VarType): data type.
204 205 206 207 208
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
209
    if not isinstance(dtype, core.VarDesc.VarType):
210 211
        dtype = convert_np_dtype_to_dtype_(dtype)

212 213 214 215
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
216 217


Y
Yang Yang(Tony) 已提交
218
def _debug_string_(proto, throw_on_error=True):
219 220 221 222 223 224 225 226 227 228 229
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
230
    error_fields = list()
Y
Yang Yang(Tony) 已提交
231
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
232 233
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
234 235 236
    return proto.__str__()


X
Xin Pan 已提交
237
class Variable(object):
238
    """
239 240 241
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
242
    two variables in different blocks could have the same name.
243

244 245
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
246

247
    Most of a Variable's member variables can be setted to be None. It mean
248
    it is not available or will be specified later.
249 250

    Args:
251
        block(Block): The block that the variable belongs to.
252 253
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
254 255
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
256
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
257
            Some kinds of variable do not contain shape, just set it to None.
258 259 260
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
261
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
262
            series data.
263
            Default: None
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
286 287
    """

Y
Yu Yang 已提交
288 289
    def __init__(self,
                 block,
Y
Yu Yang 已提交
290
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
291 292 293 294
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
295
                 capacity=None,
Q
QI JUN 已提交
296
                 persistable=None,
F
fengjiayi 已提交
297
                 error_clip=None,
Y
Yu Yang 已提交
298
                 stop_gradient=False,
F
fengjiayi 已提交
299
                 is_data=False,
Y
Yu Yang 已提交
300
                 **kwargs):
Y
Yu Yang 已提交
301
        self.block = block
F
fengjiayi 已提交
302
        self.error_clip = error_clip
Y
Yu Yang 已提交
303 304

        if name is None:
Y
Yu Yang 已提交
305
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
306
        is_new_var = False
M
minqiyang 已提交
307
        name = cpt.to_text(name)
M
minqiyang 已提交
308
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
309 310

        if self.desc is None:
M
minqiyang 已提交
311
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
312
            is_new_var = True
Y
Yu Yang 已提交
313

Y
Yu Yang 已提交
314 315 316 317 318 319 320 321
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
322
        if shape is not None:
Y
Yu Yang 已提交
323
            if is_new_var:
324
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
325 326 327 328 329 330 331 332
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
333
        if dtype is not None:
334
            if not isinstance(dtype, core.VarDesc.VarType):
335
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
336
            if is_new_var:
F
fengjiayi 已提交
337
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
338
            else:
F
fengjiayi 已提交
339
                old_dtype = self.dtype
Q
QI JUN 已提交
340
                if dtype != old_dtype:
Y
Yu Yang 已提交
341 342 343 344 345
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
346 347

        if lod_level is not None:
Y
Yu Yang 已提交
348
            if is_new_var:
349
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
350 351 352 353 354 355 356
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
357 358 359 360 361 362 363 364 365 366 367
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

368 369 370 371 372 373 374 375
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
376
        self.block.vars[name] = self
Y
Yu Yang 已提交
377
        self.op = None
M
minqiyang 已提交
378
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
379
        self.is_data = is_data
X
Xin Pan 已提交
380
        if _in_imperative_mode():
M
minqiyang 已提交
381 382 383
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
384
            self._ivar.desc = self.desc
385
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
386

387
    def _numpy(self):
P
Paddle CI 已提交
388 389
        new_ivar = self._ivar._to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
390 391

    def _backward(self):
X
Xin Pan 已提交
392
        self._ivar._run_backward()
393 394

    def _gradient(self):
M
minqiyang 已提交
395
        return np.array(self._ivar._grad_value())
396

X
Xin Pan 已提交
397 398
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
399

400
    def __str__(self):
Y
Yang Yang(Tony) 已提交
401 402
        return self.to_string(True)

F
update  
fengjiayi 已提交
403
    def to_string(self, throw_on_error, with_details=False):
404 405 406 407
        """
        Get debug string.

        Args:
408 409
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
410
            with_details(bool): more details about variables and parameters
411 412
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
413

414 415
        Returns:
            str: The debug string.
416
        """
F
update  
fengjiayi 已提交
417 418
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
419
        protostr = self.desc.serialize_to_string()
420
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
421 422 423 424
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
425 426
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
427
        return res_str
428 429 430

    __repr__ = __str__

W
Wu Yi 已提交
431
    def _set_desc(self, input):
432 433 434 435 436 437 438 439 440
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
441 442
        self.desc = input

443 444 445 446 447 448 449 450
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

451 452 453 454
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
455 456 457 458
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
459 460
    @property
    def name(self):
M
minqiyang 已提交
461
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
462

T
typhoonzero 已提交
463 464 465 466
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
467 468 469
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
470
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
471 472

    @property
F
fengjiayi 已提交
473 474
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
475 476 477

    @property
    def lod_level(self):
478
        return self.desc.lod_level()
Y
Yu Yang 已提交
479

Y
Yu Yang 已提交
480 481 482 483
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
484
    def _set_error_clip(self, error_clip):
485 486 487 488 489 490 491 492 493
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
494 495
        self.error_clip = error_clip

Y
Yu Yang 已提交
496

F
fengjiayi 已提交
497 498 499
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
500

501 502
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
503 504 505 506
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
507
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
508 509 510 511 512
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
513 514 515 516
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
517 518 519 520 521 522 523 524 525
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
526
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
527 528 529 530 531 532
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
533 534 535 536 537 538 539 540
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
541 542
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
543 544
        return self.op_proto_map[type]

545 546 547 548
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
549
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
550
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
551 552
        }

F
fengjiayi 已提交
553

X
Xin Pan 已提交
554
class Operator(object):
555
    """
556 557 558 559 560 561 562
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
563
        type(str): The type of operator. Default None.
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
584
        Block.append_op or Block._prepend_op instead.
585 586 587 588 589 590 591 592 593 594

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
595
    """
596 597 598
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
599 600
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
601
    }
602

Y
Yu Yang 已提交
603 604
    def __init__(self,
                 block,
Y
Yu Yang 已提交
605
                 desc,
Y
Yu Yang 已提交
606 607 608
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
609
                 attrs=None):
Y
Yu Yang 已提交
610
        self.block = block
Y
Yu Yang 已提交
611
        self.desc = desc
G
gongweibao 已提交
612 613 614 615 616
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
617 618 619 620
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
621 622
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
623 624 625

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
626 627
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
628

G
gongweibao 已提交
629 630
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
631

F
fengjiayi 已提交
632 633 634 635 636
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
637 638 639 640 641
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
642
        self.desc.set_type(type)
F
fengjiayi 已提交
643
        proto = OpProtoHolder.instance().get_op_proto(type)
644

645 646 647
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
648 649
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
650
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
651 652
                    return True
            return False
Q
QI JUN 已提交
653

Y
Yang Yang(Tony) 已提交
654 655 656 657 658 659 660
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
661 662 663 664
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
665 666
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
667 668 669
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
670
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
671
                            in_arg_names.append(arg)
672 673
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
674
                        else:
M
minqiyang 已提交
675
                            in_arg_names.append(cpt.to_text(arg.name))
676
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
677 678
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
679

Y
Yu Yang 已提交
680
        if outputs is not None:
681
            for m in proto.outputs:
Q
qingqing01 已提交
682 683 684 685 686 687
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
688
            for out_proto in proto.outputs:
Q
qingqing01 已提交
689 690
                if out_proto.name not in outputs:
                    continue
691 692 693 694
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
695 696
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
697 698 699
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
700
                    out_arg_names.append(cpt.to_text(arg.name))
701 702
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
703

G
gongweibao 已提交
704 705
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
706
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
707
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
708
                attr_name = attr.name
G
gongweibao 已提交
709
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
710
                    continue
G
gongweibao 已提交
711
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
712 713
                self._update_desc_attr(attr_name, attr_val)

714
        self.desc.check_attrs()
M
minqiyang 已提交
715

W
Wu Yi 已提交
716
        if self._has_kernel(type):
Q
QI JUN 已提交
717
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
718
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
719

X
Xin Pan 已提交
720 721 722
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
723
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
724
            if inputs is not None:
X
Xin Pan 已提交
725 726 727 728 729 730
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
731
            if outputs is not None:
X
Xin Pan 已提交
732 733 734 735 736
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
737

W
Wu Yi 已提交
738
    def _has_kernel(self, op_type):
739 740
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
741
    def to_string(self, throw_on_error):
742
        """
743 744
        Get debug string.

745
        Args:
746 747
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
748

749 750
        Returns:
            str: The debug string.
751 752

        """
753
        protostr = self.desc.serialize_to_string()
754
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
755 756 757 758
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
759 760 761

    __repr__ = __str__

F
fengjiayi 已提交
762 763 764 765 766
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
767
        """
768
        Get the input arguments according to the input parameter name.
769

770 771
        Args:
            name(str): The input parameter name.
772

773 774 775
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
776
        """
F
fengjiayi 已提交
777 778
        return self.desc.input(name)

W
Wu Yi 已提交
779
    def _rename_input(self, old_name, new_name):
780 781 782 783 784 785 786 787 788 789
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
790
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
791

W
Wu Yi 已提交
792
    def _rename_output(self, old_name, new_name):
793 794 795 796 797 798 799 800 801 802
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
803
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
804

F
fengjiayi 已提交
805 806 807 808
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
809 810 811 812 813 814 815 816
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
817
    def output(self, name):
818
        """
819
        Get output arguments by the output parameter name.
820

821 822
        Args:
            name(str): The output parameter name.
823

824 825 826
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
827
        """
F
fengjiayi 已提交
828 829 830 831 832 833
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

834 835 836 837 838 839 840 841
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
842
    def has_attr(self, name):
843
        """
844 845
        Whether this Operator has the attribute with name or not.

846
        Args:
847
            name(str): the attribute name.
848

849 850
        Returns:
            bool: True if has this attribute.
851 852

        """
F
fengjiayi 已提交
853 854 855
        return self.desc.has_attr(name)

    def attr_type(self, name):
856
        """
857
        Get the type of attribute by attribute's name.
858

859 860
        Args:
            name(str): the attribute name.
861

862 863
        Returns:
            core.AttrType: the attribute type.
864
        """
F
fengjiayi 已提交
865 866
        return self.desc.attr_type(name)

W
Wu Yi 已提交
867
    def _set_attr(self, name, val):
868 869 870 871 872 873 874 875 876 877
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
878 879 880 881 882 883 884 885 886 887 888 889 890
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
891 892
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
893 894
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
895
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
896 897 898 899
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
900
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
901

F
fengjiayi 已提交
902 903 904 905 906
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
907
        """
908 909
        Get the attribute by name.

910
        Args:
911
            name(str): the attribute name.
912

913 914
        Returns:
            bool|int|str|float|list: The attribute value. The return value
915 916
            can be any valid attribute type.
        """
F
fengjiayi 已提交
917
        return self.desc.attr(name)
Y
Yu Yang 已提交
918

W
Wu Yi 已提交
919
    def _block_attr_id(self, name):
920
        """
G
gongweibao 已提交
921
        Get the block attribute's id by name.
922

923 924
        Args:
            name(str): the attribute name.
925

926 927
        Returns:
            int: the block index.
928
        """
W
Wu Yi 已提交
929
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
930

W
Wu Yi 已提交
931
    def _block_attr(self, name):
G
gongweibao 已提交
932 933 934 935 936 937 938 939 940 941
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
942
        id = self._block_attr_id(name)
G
gongweibao 已提交
943 944 945
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
946
    def _blocks_attr(self, name):
G
gongweibao 已提交
947 948 949 950 951 952 953 954 955 956
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
957
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
958 959 960 961 962
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
963
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
964 965 966 967 968 969 970 971 972 973
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
974
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
975

J
JiayiFeng 已提交
976
    def all_attrs(self):
F
fengjiayi 已提交
977
        """
978 979 980
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
981
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
982 983 984 985
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
986 987
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
988
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
989 990 991
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
992
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
993 994 995 996
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
997 998
        return attr_map

Y
Yu Yang 已提交
999

Y
Yu Yang 已提交
1000
class Block(object):
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1015
        use `Program._create_block()` to create a block.
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1030
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1031
        self.desc = program.desc.block(idx)
1032
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1033
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1034
        self.program = program
1035
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1036

1037
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1038 1039
        return self.to_string(True)

F
fengjiayi 已提交
1040 1041
    def to_string(self, throw_on_error, with_details=False):
        """
1042 1043
        Get debug string.

F
fengjiayi 已提交
1044 1045
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1046
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1047
            with_details(bool): more details about variables and parameters
1048 1049
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1050

1051 1052
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1053 1054 1055 1056
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1057
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1058 1059
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1060
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1061
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1062
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1063
            for op in self.ops:
F
fengjiayi 已提交
1064 1065
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1066 1067 1068
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1069 1070
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1071 1072
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1073 1074 1075

    __repr__ = __str__

Y
Yu Yang 已提交
1076 1077
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1078
        return self.desc.parent
Y
Yu Yang 已提交
1079

Y
Yu Yang 已提交
1080 1081 1082 1083
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1084
    def _set_forward_block_idx(self, idx):
1085 1086 1087 1088 1089 1090 1091 1092 1093
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1094
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1095

Y
Yu Yang 已提交
1096 1097
    @property
    def idx(self):
Y
Yu Yang 已提交
1098
        return self.desc.id
Y
Yu Yang 已提交
1099

Q
Qiao Longfei 已提交
1100
    def var(self, name):
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1114
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1115 1116 1117
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1118 1119
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1120
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1121
        return v
Q
Qiao Longfei 已提交
1122

X
Xin Pan 已提交
1123
    def _find_var_recursive(self, name):
1124 1125 1126 1127 1128 1129 1130
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1131
            Variable: the Variable with the giving name. Or None if not found.
1132
        """
Y
Yu Yang 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1157
        return None
Y
Yu Yang 已提交
1158

X
Xin Pan 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1178

Q
Qiao Longfei 已提交
1179
    def all_parameters(self):
1180
        return list(self.iter_parameters())
1181

1182
    def iter_parameters(self):
M
minqiyang 已提交
1183
        return (item[1] for item in six.iteritems(self.vars)
1184
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1185

Y
Yu Yang 已提交
1186
    def create_var(self, *args, **kwargs):
1187
        var = Variable(block=self, *args, **kwargs)
1188 1189
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1190
        return var
Y
Yu Yang 已提交
1191

Q
Qiao Longfei 已提交
1192 1193 1194
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1195
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1196 1197
        """
        Rename variable in vars and ops' inputs and outputs
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1210
        """
M
minqiyang 已提交
1211 1212
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1213

T
typhoonzero 已提交
1214
        if not self.has_var(name):
1215
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1216 1217
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1218
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1219 1220 1221 1222 1223 1224 1225
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1226
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1227 1228 1229 1230
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1231
        orig_var_type = v.type
M
minqiyang 已提交
1232
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1233
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1234
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1235
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1236 1237 1238 1239
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1240
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1241 1242 1243 1244 1245 1246 1247
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1248
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1249 1250
            var = Variable(
                self,
T
typhoonzero 已提交
1251
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1252 1253 1254 1255
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1256
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1257 1258 1259
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1260
        self._sync_with_cpp()
1261
        return var
T
typhoonzero 已提交
1262

W
Wu Yi 已提交
1263 1264
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1265
        self.desc._remove_var(cpt.to_bytes(name))
1266 1267
        del self.vars[name]

Y
Yu Yang 已提交
1268 1269
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1270
        param = Parameter(global_block, *args, **kwargs)
1271
        if 'initializer' in kwargs:
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1292
        return param
Y
Yu Yang 已提交
1293

Y
Yu Yang 已提交
1294
    def append_op(self, *args, **kwargs):
1295 1296 1297 1298 1299 1300
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1301
        op_desc = self.desc.append_op()
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1314
        if _in_imperative_mode():
1315
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1316
                                       _current_expected_place_, stop_gradient)
Y
Yu Yang 已提交
1317

W
Wu Yi 已提交
1318
    def _insert_op(self, index, *args, **kwargs):
1319 1320 1321 1322 1323 1324 1325 1326 1327
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1328 1329
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1330 1331 1332 1333
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1334
    def _remove_op(self, index):
1335 1336 1337 1338 1339 1340 1341 1342 1343
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1344 1345
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1346 1347
        del self.ops[index]

W
Wu Yi 已提交
1348
    def _slice_ops(self, start, end):
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1359
        return self.ops[start:end]
Y
Yancey1989 已提交
1360

W
Wu Yi 已提交
1361 1362
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1363 1364 1365 1366 1367 1368 1369
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1370
        self.ops.insert(0, op)
1371
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1372 1373
        return op

W
Wu Yi 已提交
1374
    def _sync_with_cpp(self):
1375
        """
1376 1377
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1378
        """
Q
Qiao Longfei 已提交
1379 1380 1381 1382 1383
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1384
        # sync variables removed from c++ end
1385
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1386
            if not self.desc.find_var(cpt.to_bytes(var)):
1387 1388
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1389
        # sync operators from cpp
1390 1391 1392 1393
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1410 1411 1412 1413 1414

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1415
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1416 1417 1418 1419 1420 1421 1422

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1436 1437 1438 1439
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1440
    def _copy_param_info_from(self, other):
1441
        """
1442 1443
        Copy the information of parameters from the other block.

1444
        Args:
1445 1446 1447 1448 1449
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1450 1451 1452 1453 1454

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1455 1456
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1457
        for p in other.iter_parameters():
1458 1459 1460
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1461
                raise ValueError("_copy_param_info_from should be invoked with "
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1474
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1475
                error_clip=p.error_clip,
1476 1477 1478
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1479
    def _clone_variable(self, var):
1480 1481
        """
        Clone a variable into current block.
1482

1483 1484 1485 1486
        Args:
            var: the variable to be cloned.

        Returns:
1487
            Variable: the new  variable cloned from 'var' in current block.
1488 1489
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1490 1491 1492 1493 1494
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1495 1496
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1497
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1498 1499 1500 1501 1502 1503
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1504 1505
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1506 1507 1508 1509 1510 1511 1512
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1513 1514
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1515
        return ret_var
1516

Y
Yu Yang 已提交
1517 1518

class Program(object):
D
dzhwinter 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1530
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1531 1532

    Returns:
Y
yuyang18 已提交
1533
        A empty program.
D
dzhwinter 已提交
1534 1535

    Examples:
Y
yuyang18 已提交
1536 1537 1538 1539 1540 1541
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1542 1543 1544

    """

1545 1546
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1547 1548
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1549
        self._seed = 0
Y
yuyang18 已提交
1550
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1551
        self._op_role_var = []
T
tangwei12 已提交
1552 1553 1554 1555

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1556
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1557
        self._endpoints = []
1558
        self._trainers_endpoints = []
T
tangwei12 已提交
1559
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1560 1561 1562

    @property
    def op_role(self):
Y
yuyang18 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1576 1577 1578 1579 1580 1581 1582 1583
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1584 1585 1586 1587 1588 1589 1590
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1591 1592 1593 1594
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1595
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1596 1597

    @contextlib.contextmanager
W
Wu Yi 已提交
1598
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1599 1600 1601 1602 1603 1604 1605
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1606
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1607 1608 1609 1610

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1611
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1612 1613
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1614 1615 1616
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1617 1618
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1619 1620 1621 1622
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1623
        yield
X
Xin Pan 已提交
1624 1625
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1626

1627
    @contextlib.contextmanager
X
Xin Pan 已提交
1628
    def _lr_schedule_guard(self, is_with_opt=False):
1629 1630 1631 1632 1633 1634 1635
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1636 1637 1638 1639
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1640 1641 1642 1643 1644 1645 1646

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1647 1648 1649 1650

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1651 1652
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1653 1654
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1655 1656 1657
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1658 1659
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1660

1661
    def __str__(self):
Y
yuyang18 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1671 1672
        return self.to_string(True)

F
fengjiayi 已提交
1673 1674 1675
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1676

F
fengjiayi 已提交
1677
        Args:
Y
yuyang18 已提交
1678 1679
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1680

Y
yuyang18 已提交
1681 1682 1683 1684
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1685 1686
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1687 1688 1689 1690

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1701 1702
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1703 1704
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1705

W
Wu Yi 已提交
1706
    def _get_desc(self):
Y
yuyang18 已提交
1707 1708 1709 1710 1711 1712 1713
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1714 1715
        return self.desc

X
version  
Xin Pan 已提交
1716 1717 1718
    def _version(self):
        return self.desc._version()

1719
    def clone(self, for_test=False):
Y
yuyang18 已提交
1720 1721 1722
        """
        Create a new, duplicated program.

1723

Y
yuyang18 已提交
1724 1725 1726 1727
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1728

Y
yuyang18 已提交
1729 1730 1731 1732
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1733 1734 1735 1736 1737
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1738 1739

        Args:
Y
yuyang18 已提交
1740 1741
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1742

D
dzhwinter 已提交
1743
        Returns:
Y
yuyang18 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1797 1798
        """
        if for_test:
X
Xin Pan 已提交
1799
            p = self._inference_optimize(prune_read_op=False)
1800
        else:
1801
            p = Program()
G
gongweibao 已提交
1802 1803
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1804
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1805 1806 1807
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1808 1809 1810 1811

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1812
            p._sync_with_cpp()
1813

W
Wu Yi 已提交
1814
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1815
        p._copy_data_info_from(self)
1816
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1817
        return p
1818

W
Wu Yi 已提交
1819
    def _prune(self, targets):
Y
yuyang18 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1835 1836 1837 1838 1839 1840
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1841 1842
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1843
                    # and we need to find the current op that generate this
1844 1845 1846 1847 1848 1849 1850 1851
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1852
                    t = t.op
1853 1854 1855 1856
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1857
                else:
1858 1859
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1860 1861 1862 1863

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1864 1865 1866
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1867
        res._sync_with_cpp()
1868 1869
        return res

X
Xin Pan 已提交
1870
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1871
        """
F
fengjiayi 已提交
1872 1873 1874 1875 1876
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1877
        3. change the :code:`is_test`
Y
yuyang18 已提交
1878 1879 1880
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1881
        Args:
X
Xin Pan 已提交
1882 1883
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1884

Y
yuyang18 已提交
1885 1886 1887 1888 1889 1890
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1891
        res = Program()
1892
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1893 1894 1895 1896

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1897
        if prune_read_op:
1898 1899 1900 1901 1902 1903 1904 1905 1906
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1907
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1908 1909

        # change all `is_test` attributes to True
M
minqiyang 已提交
1910
        for i in six.moves.range(res.desc.num_blocks()):
1911
            block = res.desc.block(i)
M
minqiyang 已提交
1912
            for j in six.moves.range(block.op_size()):
1913 1914
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1915
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1916 1917 1918
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1919
        res._sync_with_cpp()
1920 1921
        return res

1922 1923
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1924 1925 1926 1927 1928 1929 1930
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1931
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1932 1933 1934 1935

        Returns:
            Program: A deserialized program desc.
        """
1936 1937
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1938
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1939
        p._sync_with_cpp()
1940
        return p
Y
Yu Yang 已提交
1941

D
dzhwinter 已提交
1942 1943
    @property
    def random_seed(self):
Y
yuyang18 已提交
1944 1945 1946 1947 1948 1949
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1950 1951
        return self._seed

Q
qiaolongfei 已提交
1952 1953
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1954 1955 1956
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1957 1958
        return self.desc.num_blocks()

D
dzhwinter 已提交
1959 1960 1961 1962 1963 1964
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1965
    def __repr__(self):
1966
        return self.__str__()
1967

Y
Yu Yang 已提交
1968
    def global_block(self):
Y
yuyang18 已提交
1969 1970 1971
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1972 1973
        return self.blocks[0]

Q
Qiao Longfei 已提交
1974
    def block(self, index):
Y
yuyang18 已提交
1975 1976 1977 1978 1979 1980 1981 1982
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1983 1984
        return self.blocks[index]

Y
Yu Yang 已提交
1985
    def current_block(self):
Y
yuyang18 已提交
1986 1987 1988 1989
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1990 1991
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1992
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2003
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2004 2005 2006
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2007 2008 2009 2010
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2011
    def _rollback(self):
Y
yuyang18 已提交
2012 2013 2014 2015 2016
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2017 2018
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2019
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2030 2031 2032
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2033
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2034

W
Wu Yi 已提交
2035
    def _copy_param_info_from(self, other):
2036
        """
2037
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2038

Y
yuyang18 已提交
2039 2040 2041
        Notes: This is a very low level API. Users should not invoke it
        directly.

2042 2043 2044 2045 2046 2047 2048
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2049
            raise TypeError("_copy_param_info_from should be invoked with "
2050 2051 2052
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2053
            raise ValueError("_copy_param_info_from should be invoked with two "
2054
                             "program, with represent the same topology")
W
Wu Yi 已提交
2055
        self.global_block()._copy_param_info_from(other.global_block())
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2076
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2077 2078
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2079

Y
yuyang18 已提交
2080 2081 2082
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2083 2084 2085 2086 2087 2088 2089
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2090
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2091 2092 2093
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2094
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2095
                             "program, with represent the same topology")
2096
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2097 2098 2099
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2100
    def list_vars(self):
Y
yuyang18 已提交
2101 2102 2103 2104 2105 2106
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2107
        for each_block in self.blocks:
2108
            for each_var in list(each_block.vars.values()):
2109 2110
                yield each_var

Y
Yu Yang 已提交
2111

Y
Yu Yang 已提交
2112
class Parameter(Variable):
2113
    """
2114
    Parameter is derived from Variable. A parameter is a persistable
2115
    Variable, and will be updated by optimizers after each iteration.
2116
    The training of a neural network is essentially the updating of
2117 2118
    its parameters.

2119
    Relative to a general Variable, a Parameter has several its own
2120 2121
    member variables:

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2134 2135
    """

Y
Yu Yang 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2146 2147 2148

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2149 2150 2151 2152
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2153 2154
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2155
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2156

W
wanghaoshuang 已提交
2157
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2158

F
fengjiayi 已提交
2159 2160 2161
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2162 2163 2164
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2165

F
update  
fengjiayi 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2180
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2181
            for attr_name in additional_attr:
2182 2183
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2184 2185
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2186 2187 2188 2189
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2190

Y
Yu Yang 已提交
2191
# program is a global instance.
Y
Yu Yang 已提交
2192 2193
_main_program_ = Program()
_startup_program_ = Program()
2194

2195

2196
def default_startup_program():
Y
Yu Yang 已提交
2197
    """
Y
yuyang18 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2207

Y
Yu Yang 已提交
2208 2209 2210
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2211
    return _startup_program_
2212

2213

2214
def default_main_program():
Y
Yu Yang 已提交
2215
    """
Y
yuyang18 已提交
2216 2217 2218 2219 2220 2221 2222 2223 2224
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2225

Y
Yu Yang 已提交
2226 2227 2228
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2229
    return _main_program_
Y
Yu Yang 已提交
2230 2231 2232 2233 2234


def switch_main_program(program):
    """
    Switch the main program to a new program.
2235

Y
Yu Yang 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2250
    Switch the startup program to a new program
Y
Yu Yang 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2266 2267 2268
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2269

Y
Yu Yang 已提交
2270
    Examples:
Y
yuyang18 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2281

Y
Yu Yang 已提交
2282
    Examples:
Y
yuyang18 已提交
2283 2284 2285 2286 2287 2288

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2289

Y
Yu Yang 已提交
2290
    Args:
Y
yuyang18 已提交
2291
        main_program(Program): New main program inside `with` statement.
2292
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2306 2307


W
Wu Yi 已提交
2308
def _get_var(name, program=None):
X
xuwei06 已提交
2309
    """
Y
yuyang18 已提交
2310
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2311

X
xuwei06 已提交
2312 2313 2314
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2315
        If None, default_global_program() will be used.
X
xuwei06 已提交
2316 2317 2318 2319 2320 2321 2322

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2323
    assert isinstance(program, Program)
X
xuwei06 已提交
2324 2325

    return program.global_block().var(name)
2326 2327 2328


@contextlib.contextmanager
P
Paddle CI 已提交
2329
def _imperative_guard(tracer):
2330 2331 2332
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
2333

P
Paddle CI 已提交
2334 2335 2336 2337 2338 2339 2340
    yield

    _imperative_tracer_ = tmp_trace


@contextlib.contextmanager
def _imperative_place_guard(place):
M
minqiyang 已提交
2341 2342 2343 2344
    global _current_expected_place_
    tmp_place = _current_expected_place_
    _current_expected_place_ = place

2345
    yield
M
minqiyang 已提交
2346 2347

    _current_expected_place_ = tmp_place