framework.py 100.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


Q
Qiao Longfei 已提交
90 91 92 93 94 95 96 97 98
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
125
@signature_safe_contextmanager
126 127 128 129 130 131 132 133 134 135 136 137
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
138

139 140 141 142
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
143 144
          with name_scope("attention"):
             ...
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
164 165 166
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
167 168 169 170


def grad_var_name(var_name):
    """
171 172
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
173 174 175
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
176

177
def convert_np_dtype_to_dtype_(np_dtype):
178 179
    """
    Convert the data type in numpy to the data type in Paddle
180

181
    Args:
182
        np_dtype(np.dtype): the data type in numpy.
183

184 185
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
186 187

    """
188 189
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
190
        return core.VarDesc.VarType.FP32
191
    elif dtype == np.float64:
192
        return core.VarDesc.VarType.FP64
193
    elif dtype == np.float16:
194
        return core.VarDesc.VarType.FP16
195
    elif dtype == np.int32:
196
        return core.VarDesc.VarType.INT32
197
    elif dtype == np.int16:
198
        return core.VarDesc.VarType.INT16
199
    elif dtype == np.int64:
200
        return core.VarDesc.VarType.INT64
201
    elif dtype == np.bool:
202
        return core.VarDesc.VarType.BOOL
203 204
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
205 206
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
207 208
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
209
    else:
M
minqiyang 已提交
210
        raise ValueError("Not supported numpy dtype %s" % dtype)
211 212 213


def dtype_is_floating(dtype):
214 215 216
    """
    Check the data type is floating or not.
    Args:
217
        dtype(np.dtype|core.VarDesc.VarType): data type.
218 219 220 221 222
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
223
    if not isinstance(dtype, core.VarDesc.VarType):
224 225
        dtype = convert_np_dtype_to_dtype_(dtype)

226 227 228 229
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
230 231


Y
Yang Yang(Tony) 已提交
232
def _debug_string_(proto, throw_on_error=True):
233 234 235 236 237 238 239 240 241 242 243
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
244
    error_fields = list()
Y
Yang Yang(Tony) 已提交
245
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
246 247
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
248 249 250
    return proto.__str__()


X
Xin Pan 已提交
251
class Variable(object):
252
    """
253 254 255
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
256
    two variables in different blocks could have the same name.
257

258 259
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
260

261
    Most of a Variable's member variables can be setted to be None. It mean
262
    it is not available or will be specified later.
263 264

    Args:
265
        block(Block): The block that the variable belongs to.
266 267
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
268 269
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
270
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
271
            Some kinds of variable do not contain shape, just set it to None.
272 273 274
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
275
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
276
            series data.
277
            Default: None
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
300 301
    """

Y
Yu Yang 已提交
302 303
    def __init__(self,
                 block,
Y
Yu Yang 已提交
304
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
305 306 307 308
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
309
                 capacity=None,
Q
QI JUN 已提交
310
                 persistable=None,
F
fengjiayi 已提交
311
                 error_clip=None,
Y
Yu Yang 已提交
312
                 stop_gradient=False,
F
fengjiayi 已提交
313
                 is_data=False,
Y
Yu Yang 已提交
314
                 **kwargs):
Y
Yu Yang 已提交
315
        self.block = block
F
fengjiayi 已提交
316
        self.error_clip = error_clip
Y
Yu Yang 已提交
317 318

        if name is None:
Y
Yu Yang 已提交
319
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
320
        is_new_var = False
M
minqiyang 已提交
321
        name = cpt.to_text(name)
M
minqiyang 已提交
322
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
323 324

        if self.desc is None:
M
minqiyang 已提交
325
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
326
            is_new_var = True
Y
Yu Yang 已提交
327

Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
336
        if shape is not None:
Y
Yu Yang 已提交
337
            if is_new_var:
338
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
339 340 341 342 343 344 345 346
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
347
        if dtype is not None:
348
            if not isinstance(dtype, core.VarDesc.VarType):
349
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
350
            if is_new_var:
F
fengjiayi 已提交
351
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
352
            else:
F
fengjiayi 已提交
353
                old_dtype = self.dtype
Q
QI JUN 已提交
354
                if dtype != old_dtype:
Y
Yu Yang 已提交
355 356 357 358 359
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
360 361

        if lod_level is not None:
Y
Yu Yang 已提交
362
            if is_new_var:
363
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
364 365 366 367 368 369 370
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
371 372 373 374 375 376 377 378 379 380 381
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

382 383 384 385 386 387 388 389
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
390
        self.block.vars[name] = self
Y
Yu Yang 已提交
391
        self.op = None
M
minqiyang 已提交
392
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
393
        self.is_data = is_data
X
Xin Pan 已提交
394
        if _in_imperative_mode():
M
minqiyang 已提交
395 396 397
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
398
            self._ivar.desc = self.desc
399
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
400

401
    def _numpy(self):
M
minqiyang 已提交
402
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
403
        return np.array(new_ivar.value().get_tensor())
404 405

    def _backward(self):
X
Xin Pan 已提交
406
        self._ivar._run_backward()
407 408

    def _gradient(self):
M
minqiyang 已提交
409
        return np.array(self._ivar._grad_value())
410

X
Xin Pan 已提交
411 412
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
413

414
    def __str__(self):
Y
Yang Yang(Tony) 已提交
415 416
        return self.to_string(True)

F
update  
fengjiayi 已提交
417
    def to_string(self, throw_on_error, with_details=False):
418 419 420 421
        """
        Get debug string.

        Args:
422 423
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
424
            with_details(bool): more details about variables and parameters
425 426
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
427

428 429
        Returns:
            str: The debug string.
430
        """
F
update  
fengjiayi 已提交
431 432
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
433
        protostr = self.desc.serialize_to_string()
434
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
435 436 437 438
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
439 440
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
441
        return res_str
442 443 444

    __repr__ = __str__

W
Wu Yi 已提交
445
    def _set_desc(self, input):
446 447 448 449 450 451 452 453 454
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
455 456
        self.desc = input

457 458
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
459 460 461 462
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
463 464 465

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
466 467 468
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
469

470 471 472 473
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
474 475 476 477
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
478 479
    @property
    def name(self):
M
minqiyang 已提交
480
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
481

T
typhoonzero 已提交
482 483 484 485
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
486 487 488
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
489
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
490 491

    @property
F
fengjiayi 已提交
492 493
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
494 495 496

    @property
    def lod_level(self):
497
        return self.desc.lod_level()
Y
Yu Yang 已提交
498

Y
Yu Yang 已提交
499 500 501 502
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
503
    def _set_error_clip(self, error_clip):
504 505 506 507 508 509 510 511 512
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
513 514
        self.error_clip = error_clip

Y
Yu Yang 已提交
515

F
fengjiayi 已提交
516 517 518
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
519

520 521
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
522 523 524 525
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
526
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
527 528 529 530 531
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
532 533 534 535
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
536 537 538 539 540 541 542 543 544
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
545
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
546 547 548 549 550 551
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
552 553 554 555 556 557 558 559
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
560 561
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
562 563
        return self.op_proto_map[type]

564 565 566 567
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
568
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
569 570
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
571 572
        }

F
fengjiayi 已提交
573

X
Xin Pan 已提交
574
class Operator(object):
575
    """
576 577 578 579 580 581 582
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
583
        type(str): The type of operator. Default None.
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
604
        Block.append_op or Block._prepend_op instead.
605 606 607 608 609 610 611 612 613 614

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
615
    """
616 617 618
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
619 620
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
621
    }
622

Y
Yu Yang 已提交
623 624
    def __init__(self,
                 block,
Y
Yu Yang 已提交
625
                 desc,
Y
Yu Yang 已提交
626 627 628
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
629
                 attrs=None):
Y
Yu Yang 已提交
630
        self.block = block
Y
Yu Yang 已提交
631
        self.desc = desc
G
gongweibao 已提交
632 633 634 635 636
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
637 638 639 640
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
641 642
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
643 644 645

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
646 647
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
648

G
gongweibao 已提交
649 650
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
651

F
fengjiayi 已提交
652 653 654 655 656
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
657 658 659 660 661
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
662
        self.desc.set_type(type)
F
fengjiayi 已提交
663
        proto = OpProtoHolder.instance().get_op_proto(type)
664

665 666 667
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
668 669
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
670
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
671 672
                    return True
            return False
Q
QI JUN 已提交
673

Y
Yang Yang(Tony) 已提交
674 675 676 677 678 679 680
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
681 682 683 684
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
685 686
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
687 688 689
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
690
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
691
                            in_arg_names.append(arg)
692 693
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
694
                        else:
M
minqiyang 已提交
695
                            in_arg_names.append(cpt.to_text(arg.name))
696
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
697 698
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
699

Y
Yu Yang 已提交
700
        if outputs is not None:
701
            for m in proto.outputs:
Q
qingqing01 已提交
702 703 704 705 706 707
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
708
            for out_proto in proto.outputs:
Q
qingqing01 已提交
709 710
                if out_proto.name not in outputs:
                    continue
711 712 713 714
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
715 716
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
717 718 719
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
720
                    out_arg_names.append(cpt.to_text(arg.name))
721 722
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
723

G
gongweibao 已提交
724 725
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
726
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
727
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
728
                attr_name = attr.name
G
gongweibao 已提交
729
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
730
                    continue
G
gongweibao 已提交
731
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
732 733
                self._update_desc_attr(attr_name, attr_val)

734
        self.desc.check_attrs()
W
Wu Yi 已提交
735
        if self._has_kernel(type):
Q
QI JUN 已提交
736
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
737
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
738

X
Xin Pan 已提交
739 740 741
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
742
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
743
            if inputs is not None:
X
Xin Pan 已提交
744 745 746 747 748 749
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
750
            if outputs is not None:
X
Xin Pan 已提交
751 752 753 754 755
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
756

W
Wu Yi 已提交
757
    def _has_kernel(self, op_type):
758 759
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
760
    def to_string(self, throw_on_error):
761
        """
762 763
        Get debug string.

764
        Args:
765 766
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
767

768 769
        Returns:
            str: The debug string.
770 771

        """
772
        protostr = self.desc.serialize_to_string()
773
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
774 775 776 777
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
778 779 780

    __repr__ = __str__

F
fengjiayi 已提交
781 782 783 784 785
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
786
        """
787
        Get the input arguments according to the input parameter name.
788

789 790
        Args:
            name(str): The input parameter name.
791

792 793 794
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
795
        """
F
fengjiayi 已提交
796 797
        return self.desc.input(name)

W
Wu Yi 已提交
798
    def _rename_input(self, old_name, new_name):
799 800 801 802 803 804 805 806 807 808
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
809
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
810

W
Wu Yi 已提交
811
    def _rename_output(self, old_name, new_name):
812 813 814 815 816 817 818 819 820 821
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
822
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
823

F
fengjiayi 已提交
824 825 826 827
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
828 829 830 831 832 833 834 835
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
836
    def output(self, name):
837
        """
838
        Get output arguments by the output parameter name.
839

840 841
        Args:
            name(str): The output parameter name.
842

843 844 845
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
846
        """
F
fengjiayi 已提交
847 848 849 850 851 852
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

853 854 855 856 857 858 859 860
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
861
    def has_attr(self, name):
862
        """
863 864
        Whether this Operator has the attribute with name or not.

865
        Args:
866
            name(str): the attribute name.
867

868 869
        Returns:
            bool: True if has this attribute.
870 871

        """
F
fengjiayi 已提交
872 873 874
        return self.desc.has_attr(name)

    def attr_type(self, name):
875
        """
876
        Get the type of attribute by attribute's name.
877

878 879
        Args:
            name(str): the attribute name.
880

881 882
        Returns:
            core.AttrType: the attribute type.
883
        """
F
fengjiayi 已提交
884 885
        return self.desc.attr_type(name)

W
Wu Yi 已提交
886
    def _set_attr(self, name, val):
887 888 889 890 891 892 893 894 895 896
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
897 898 899 900 901 902 903 904 905 906 907 908 909
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
910 911
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
912 913
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
914
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
915 916 917 918
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
919
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
920

F
fengjiayi 已提交
921 922 923 924 925
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
926
        """
927 928
        Get the attribute by name.

929
        Args:
930
            name(str): the attribute name.
931

932 933
        Returns:
            bool|int|str|float|list: The attribute value. The return value
934 935
            can be any valid attribute type.
        """
F
fengjiayi 已提交
936
        return self.desc.attr(name)
Y
Yu Yang 已提交
937

W
Wu Yi 已提交
938
    def _block_attr_id(self, name):
939
        """
G
gongweibao 已提交
940
        Get the block attribute's id by name.
941

942 943
        Args:
            name(str): the attribute name.
944

945 946
        Returns:
            int: the block index.
947
        """
W
Wu Yi 已提交
948
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
949

W
Wu Yi 已提交
950
    def _block_attr(self, name):
G
gongweibao 已提交
951 952 953 954 955 956 957 958 959 960
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
961
        id = self._block_attr_id(name)
G
gongweibao 已提交
962 963 964
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
965
    def _blocks_attr(self, name):
G
gongweibao 已提交
966 967 968 969 970 971 972 973 974 975
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
976
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
977 978 979 980 981
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
982
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
983 984 985 986 987 988 989 990 991 992
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
993
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
994

J
JiayiFeng 已提交
995
    def all_attrs(self):
F
fengjiayi 已提交
996
        """
997 998 999
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1000
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1001 1002 1003 1004
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1005 1006
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1007
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1008 1009 1010
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1011
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1012 1013 1014 1015
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1016 1017
        return attr_map

Y
Yu Yang 已提交
1018

Y
Yu Yang 已提交
1019
class Block(object):
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1034
        use `Program._create_block()` to create a block.
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1049
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1050
        self.desc = program.desc.block(idx)
1051
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1052
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1053
        self.program = program
1054
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1055

1056
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1057 1058
        return self.to_string(True)

F
fengjiayi 已提交
1059 1060
    def to_string(self, throw_on_error, with_details=False):
        """
1061 1062
        Get debug string.

F
fengjiayi 已提交
1063 1064
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1065
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1066
            with_details(bool): more details about variables and parameters
1067 1068
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1069

1070 1071
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1072 1073 1074 1075
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1076
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1077 1078
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1079
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1080
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1081
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1082
            for op in self.ops:
F
fengjiayi 已提交
1083 1084
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1085 1086 1087
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1088 1089
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1090 1091
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1092 1093 1094

    __repr__ = __str__

Y
Yu Yang 已提交
1095 1096
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1097
        return self.desc.parent
Y
Yu Yang 已提交
1098

Y
Yu Yang 已提交
1099 1100 1101 1102
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1103
    def _set_forward_block_idx(self, idx):
1104 1105 1106 1107 1108 1109 1110 1111 1112
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1113
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1114

Y
Yu Yang 已提交
1115 1116
    @property
    def idx(self):
Y
Yu Yang 已提交
1117
        return self.desc.id
Y
Yu Yang 已提交
1118

Q
Qiao Longfei 已提交
1119
    def var(self, name):
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1133
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1134 1135 1136
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1137 1138
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1139
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1140
        return v
Q
Qiao Longfei 已提交
1141

X
Xin Pan 已提交
1142
    def _find_var_recursive(self, name):
1143 1144 1145 1146 1147 1148 1149
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1150
            Variable: the Variable with the giving name. Or None if not found.
1151
        """
Y
Yu Yang 已提交
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1176
        return None
Y
Yu Yang 已提交
1177

X
Xin Pan 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1197

Q
Qiao Longfei 已提交
1198
    def all_parameters(self):
1199
        return list(self.iter_parameters())
1200

1201
    def iter_parameters(self):
M
minqiyang 已提交
1202
        return (item[1] for item in six.iteritems(self.vars)
1203
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1204

Y
Yu Yang 已提交
1205
    def create_var(self, *args, **kwargs):
1206
        var = Variable(block=self, *args, **kwargs)
1207 1208
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1209
        return var
Y
Yu Yang 已提交
1210

Q
Qiao Longfei 已提交
1211 1212 1213
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1214
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1215 1216
        """
        Rename variable in vars and ops' inputs and outputs
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1229
        """
M
minqiyang 已提交
1230 1231
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1232

T
typhoonzero 已提交
1233
        if not self.has_var(name):
1234
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1235 1236
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1237
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1238 1239 1240 1241 1242 1243 1244
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1245
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1246 1247 1248 1249
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1250
        orig_var_type = v.type
M
minqiyang 已提交
1251
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1252
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1253
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1254
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1255 1256 1257 1258
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1259
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1260 1261 1262 1263 1264 1265 1266
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1267
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1268 1269
            var = Variable(
                self,
T
typhoonzero 已提交
1270
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1271 1272 1273 1274
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1275
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1276 1277 1278
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1279
        self._sync_with_cpp()
1280
        return var
T
typhoonzero 已提交
1281

W
Wu Yi 已提交
1282 1283
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1284
        self.desc._remove_var(cpt.to_bytes(name))
1285 1286
        del self.vars[name]

Y
Yu Yang 已提交
1287 1288
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1289
        param = Parameter(global_block, *args, **kwargs)
1290
        if 'initializer' in kwargs:
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1311
        return param
Y
Yu Yang 已提交
1312

Y
Yu Yang 已提交
1313
    def append_op(self, *args, **kwargs):
1314 1315 1316 1317 1318 1319
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1320
        op_desc = self.desc.append_op()
1321 1322 1323 1324 1325 1326 1327 1328
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
M
minqiyang 已提交
1329

M
minqiyang 已提交
1330 1331
        # TODO(minqiyang): add stop_gradient support in static mode too.
        # currently, we only support stop_gradient in imperative mode.
1332 1333 1334 1335
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1336
        if _in_imperative_mode():
1337
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
M
minqiyang 已提交
1338
                                       _imperative_current_expected_place_,
1339
                                       stop_gradient)
Y
Yu Yang 已提交
1340

W
Wu Yi 已提交
1341
    def _insert_op(self, index, *args, **kwargs):
1342 1343 1344 1345 1346 1347 1348 1349 1350
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1351 1352
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1353 1354 1355 1356
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1357
    def _remove_op(self, index):
1358 1359 1360 1361 1362 1363 1364 1365 1366
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1367 1368
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1369 1370
        del self.ops[index]

W
Wu Yi 已提交
1371
    def _slice_ops(self, start, end):
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1382
        return self.ops[start:end]
Y
Yancey1989 已提交
1383

W
Wu Yi 已提交
1384 1385
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1386 1387 1388 1389 1390 1391 1392
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1393
        self.ops.insert(0, op)
1394
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1395 1396
        return op

W
Wu Yi 已提交
1397
    def _sync_with_cpp(self):
1398
        """
1399 1400
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1401
        """
Q
Qiao Longfei 已提交
1402 1403 1404 1405 1406
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1407
        # sync variables removed from c++ end
1408
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1409
            if not self.desc.find_var(cpt.to_bytes(var)):
1410 1411
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1412
        # sync operators from cpp
1413 1414 1415 1416
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1433 1434 1435 1436 1437

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1438
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1439 1440 1441 1442 1443 1444 1445

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1459 1460 1461 1462
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1463
    def _copy_param_info_from(self, other):
1464
        """
1465 1466
        Copy the information of parameters from the other block.

1467
        Args:
1468 1469 1470 1471 1472
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1473 1474 1475 1476 1477

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1478 1479
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1480
        for p in other.iter_parameters():
1481 1482 1483
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1484
                raise ValueError("_copy_param_info_from should be invoked with "
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1497
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1498
                error_clip=p.error_clip,
1499 1500 1501
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1502
    def _clone_variable(self, var):
1503 1504
        """
        Clone a variable into current block.
1505

1506 1507 1508 1509
        Args:
            var: the variable to be cloned.

        Returns:
1510
            Variable: the new  variable cloned from 'var' in current block.
1511 1512
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1513 1514 1515 1516 1517
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1518 1519
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1520
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1521 1522 1523 1524 1525 1526
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1527 1528
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1529 1530 1531 1532 1533 1534 1535
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1536 1537
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1538
        return ret_var
1539

Y
Yu Yang 已提交
1540

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

    def inputs_remove_by_id(self, node_id):
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
        self.node.inputs_remove(node_id)

    def inputs_remove(self, ir_node):
        """
        Remove a node from inputs.

        Args:
            ir_node(IrNode): the node being removed.
        """
        self.node.inputs_remove(ir_node.node)

    def inputs_append(self, ir_node):
        """
        Append a node in inputs.

        Args:
            ir_node(IrNode): the node being appended.
        """
        self.node.inputs_append(ir_node.node)

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

    def outputs_remove_by_id(self, node_id):
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
        self.node.outputs_remove(node_id)

    def outputs_remove(self, ir_node):
        """
        Remove a node from outputs.

        Args:
            ir_node(IrNode): the node being removed.
        """
        self.node.outputs_remove(ir_node.node)

    def outputs_append(self, ir_node):
        """
        Append a node in outputs.

        Args:
            ir_node(IrNode): the node being appended.
        """
        self.node.outputs_append(ir_node.node)

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


1900 1901
class IrGraph(object):
    """
1902
    Python IrGraph. Beneath it is a core.Graph, which is used for
1903
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
1904 1905
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1906 1907 1908 1909
    """

    def __init__(self, graph, for_test=False):
        """
1910 1911
        Construct an IrGraph using core.Graph.

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1922 1923 1924
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1925 1926
        return self._for_test

W
WangZhen 已提交
1927
    def all_nodes(self):
1928 1929 1930
        """
        Return all nodes included in the graph as a set.
        """
1931
        return {IrNode(node) for node in self.graph.nodes()}
1932

1933
    def all_var_nodes(self):
1934 1935 1936
        """
        Return all variable nodes included in the graph as a set.
        """
1937
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
1938

1939
    def all_persistable_nodes(self):
1940 1941 1942
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1943 1944 1945 1946 1947
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
1948
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
1949

1950
    def all_op_nodes(self):
1951 1952 1953
        """
        Return all operator nodes included in the graph as a set.
        """
1954
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
1955

W
WangZhen 已提交
1956 1957
    def var_node(self, name):
        """
1958 1959
        Get a variable node by name from the graph.

W
WangZhen 已提交
1960 1961
        Args:
            name(str): the name of the variable node.
1962

W
WangZhen 已提交
1963 1964 1965
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
1966

W
WangZhen 已提交
1967
        Returns:
1968
            IrVarNode: the variable node with the giving name.
W
WangZhen 已提交
1969 1970 1971 1972 1973 1974
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
1975
        var_nodes = self.all_var_nodes()
W
WangZhen 已提交
1976 1977 1978 1979 1980 1981 1982
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

1983
    def create_persistable_node(self, name, var_type, shape, var_dtype):
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
1995
            IrVarNode: the created persistable variable node.
1996
        """
1997 1998 1999 2000 2001
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2002
        return IrVarNode(self.graph.create_var_node(var_desc))
2003 2004

    def create_var_node(self, name, var_type, shape, var_dtype):
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2016
            IrVarNode: the created variable node.
2017 2018
        """

2019 2020 2021 2022
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2023
        return IrVarNode(self.graph.create_var_node(var_desc))
2024 2025

    def create_var_node_from_desc(self, var_desc):
2026 2027 2028 2029 2030 2031 2032 2033
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2034
            IrVarNode: the created variable node.
2035
        """
2036
        return IrVarNode(self.graph.create_var_node(var_desc))
2037 2038

    def create_op_node(self, op_type, attrs, inputs, outputs):
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2049
            IrOpNode: the created operator node.
2050
        """
2051 2052
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2053
        for attr, value in six.iteritems(attrs):
2054
            self._update_desc_attr(op_desc, attr, value)
2055
        for input_name, var_nodes in six.iteritems(inputs):
2056 2057 2058 2059
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2060
        for output_name, var_nodes in six.iteritems(outputs):
2061 2062 2063 2064
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2065
        return IrOpNode(self.graph.create_op_node(op_desc))
2066 2067

    def create_op_node_from_desc(self, op_desc):
2068 2069 2070 2071 2072 2073 2074
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2075
            IrOpNode: the created operator node.
2076
        """
2077
        return IrOpNode(self.graph.create_op_node(op_desc))
2078 2079

    def update_input_link(self, old_input_node, new_input_node, op_node):
2080 2081 2082 2083
        """
        Update the input's link of a operator node.

        Args:
2084 2085 2086
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2087
        """
2088 2089
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2090
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2091 2092 2093 2094
        old_input_node.outputs_remove(op_node)
        op_node.inputs_remove(old_input_node)
        new_input_node.outputs_append(op_node)
        op_node.inputs_append(new_input_node)
2095
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2096 2097

    def link_to(self, node_in, node_out):
2098 2099 2100 2101
        """
        Connect two nodes.

        Args:
2102 2103
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2104
        """
2105
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2106
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2107 2108 2109 2110
        node_in.outputs_append(node_out)
        node_out.inputs_append(node_in)

    def safe_remove_nodes(self, remove_nodes):
2111 2112 2113 2114 2115 2116 2117
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2118
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2119 2120 2121 2122
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2123 2124
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2125

W
WangZhen 已提交
2126
    def has_circle(self):
2127 2128 2129 2130 2131 2132
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2133 2134 2135
        return core.has_circle(self.graph)

    def graph_num(self):
2136 2137 2138 2139 2140 2141
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2142 2143 2144
        return core.graph_num(self.graph)

    def topology_sort(self):
2145 2146 2147 2148 2149 2150
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
2151
            set(IrNode): nodes in topology order.
2152
        """
2153 2154
        ordered_nodes = core.topology_sort(self.graph)
        return {IrNode(n) for n in ordered_nodes}
W
WangZhen 已提交
2155 2156

    def build_adjacency_list(self):
2157 2158 2159 2160
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2161
            dict{IrNode: set(IrNode)}: the adjacency list.
2162
        """
2163 2164 2165 2166 2167
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2168

2169 2170 2171 2172 2173 2174 2175 2176
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2177
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2178 2179 2180 2181 2182
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2183 2184 2185 2186 2187 2188 2189 2190 2191
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2192
        remove_ctr_vars = set()
2193
        if remove_ctr_var:
2194
            for node in self.all_var_nodes():
2195 2196 2197
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2198 2199
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2200 2201
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2202 2203 2204 2205 2206 2207
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2229
        convert_pass = core.get_pass('graph_to_program_pass')
2230 2231
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2252
class Program(object):
D
dzhwinter 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2264
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2265 2266

    Returns:
Y
yuyang18 已提交
2267
        A empty program.
D
dzhwinter 已提交
2268 2269

    Examples:
Y
yuyang18 已提交
2270 2271 2272 2273 2274 2275
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2276 2277 2278

    """

2279 2280
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2281 2282
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2283
        self._seed = 0
Y
yuyang18 已提交
2284
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2285
        self._op_role_var = []
T
tangwei12 已提交
2286

2287 2288
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2289
        self._is_distributed = False
2290
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2291
        self._is_chief = False
2292 2293 2294
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2295
        self._endpoints = []
2296 2297 2298
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2299
        self._trainers_endpoints = []
2300
        # the distributed lookup table names
T
tangwei12 已提交
2301
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2302
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2303
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2304
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2305 2306

    @property
D
dzhwinter 已提交
2307
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2308 2309
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2310
        return self.__is_mem_optimized
D
dzhwinter 已提交
2311

D
dzhwinter 已提交
2312 2313 2314
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2315 2316 2317

    @property
    def op_role(self):
Y
yuyang18 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2331 2332 2333
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2334
    def op_role(self, role):
Y
yuyang18 已提交
2335 2336 2337 2338
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2339 2340 2341 2342 2343 2344 2345
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2346 2347 2348 2349
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2350
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2351

S
rename  
sneaxiy 已提交
2352
    @signature_safe_contextmanager
W
Wu Yi 已提交
2353
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2354 2355 2356 2357 2358 2359 2360
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2361
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2362 2363 2364 2365

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2366
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2367 2368
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2369 2370 2371
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2372 2373
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2374 2375 2376 2377
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2378
        yield
X
Xin Pan 已提交
2379 2380
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2381

S
rename  
sneaxiy 已提交
2382
    @signature_safe_contextmanager
X
Xin Pan 已提交
2383
    def _lr_schedule_guard(self, is_with_opt=False):
2384 2385 2386 2387 2388 2389 2390
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2391 2392 2393 2394
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2395 2396 2397 2398 2399 2400 2401

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2402 2403 2404 2405

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2406 2407
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2408 2409
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2410 2411 2412
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2413 2414
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2415

2416
    def __str__(self):
Y
yuyang18 已提交
2417 2418 2419 2420 2421 2422 2423 2424 2425
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2426 2427
        return self.to_string(True)

F
fengjiayi 已提交
2428 2429 2430
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2431

F
fengjiayi 已提交
2432
        Args:
Y
yuyang18 已提交
2433 2434
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2435

Y
yuyang18 已提交
2436 2437 2438 2439
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2440 2441
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2442 2443 2444 2445

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2456 2457
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2458 2459
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2460

W
Wu Yi 已提交
2461
    def _get_desc(self):
Y
yuyang18 已提交
2462 2463 2464 2465 2466 2467 2468
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2469 2470
        return self.desc

X
version  
Xin Pan 已提交
2471 2472 2473
    def _version(self):
        return self.desc._version()

2474
    def clone(self, for_test=False):
Y
yuyang18 已提交
2475 2476 2477
        """
        Create a new, duplicated program.

2478

Y
yuyang18 已提交
2479 2480 2481 2482
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2483

Y
yuyang18 已提交
2484 2485 2486 2487
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2488 2489 2490 2491 2492
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2493 2494

        Args:
Y
yuyang18 已提交
2495 2496
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2497

D
dzhwinter 已提交
2498
        Returns:
Y
yuyang18 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2552 2553
        """
        if for_test:
X
Xin Pan 已提交
2554
            p = self._inference_optimize(prune_read_op=False)
2555
        else:
2556
            p = Program()
G
gongweibao 已提交
2557 2558
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2559
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2560 2561 2562
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2563 2564 2565 2566

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2567
            p._sync_with_cpp()
2568

W
Wu Yi 已提交
2569
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2570
        p._copy_data_info_from(self)
2571
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2572
        return p
2573

W
Wu Yi 已提交
2574
    def _prune(self, targets):
Y
yuyang18 已提交
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2590 2591 2592 2593 2594 2595
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2596 2597
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2598
                    # and we need to find the current op that generate this
2599 2600 2601 2602 2603 2604 2605 2606
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2607
                    t = t.op
2608 2609 2610 2611
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2612
                else:
2613 2614
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2615 2616 2617 2618

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2619 2620 2621
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2622
        res._sync_with_cpp()
2623 2624
        return res

X
Xin Pan 已提交
2625
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2626
        """
F
fengjiayi 已提交
2627 2628 2629 2630 2631
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2632
        3. change the :code:`is_test`
Y
yuyang18 已提交
2633 2634 2635
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2636
        Args:
X
Xin Pan 已提交
2637 2638
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2639

Y
yuyang18 已提交
2640 2641 2642 2643 2644 2645
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2646
        res = Program()
2647
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2648 2649 2650 2651

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2652
        if prune_read_op:
2653 2654 2655 2656 2657 2658 2659 2660 2661
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2662
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2663 2664

        # change all `is_test` attributes to True
M
minqiyang 已提交
2665
        for i in six.moves.range(res.desc.num_blocks()):
2666
            block = res.desc.block(i)
M
minqiyang 已提交
2667
            for j in six.moves.range(block.op_size()):
2668 2669
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2670
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2671 2672 2673
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2674
        res._sync_with_cpp()
2675 2676
        return res

2677 2678
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2679 2680 2681 2682 2683 2684 2685
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2686
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2687 2688 2689 2690

        Returns:
            Program: A deserialized program desc.
        """
2691 2692
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2693
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2694
        p._sync_with_cpp()
2695
        return p
Y
Yu Yang 已提交
2696

2697
    @staticmethod
2698
    def _construct_from_desc(desc):
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2714 2715
    @property
    def random_seed(self):
Y
yuyang18 已提交
2716 2717 2718 2719 2720 2721
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2722 2723
        return self._seed

Q
qiaolongfei 已提交
2724 2725
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2726 2727 2728
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2729 2730
        return self.desc.num_blocks()

D
dzhwinter 已提交
2731 2732 2733 2734 2735 2736
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2737
    def __repr__(self):
2738
        return self.__str__()
2739

Y
Yu Yang 已提交
2740
    def global_block(self):
Y
yuyang18 已提交
2741 2742 2743
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2744 2745
        return self.blocks[0]

Q
Qiao Longfei 已提交
2746
    def block(self, index):
Y
yuyang18 已提交
2747 2748 2749 2750 2751 2752 2753 2754
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2755 2756
        return self.blocks[index]

Y
Yu Yang 已提交
2757
    def current_block(self):
Y
yuyang18 已提交
2758 2759 2760 2761
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2762 2763
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2764
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2775
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2776 2777 2778
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2779 2780 2781 2782
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2783
    def _rollback(self):
Y
yuyang18 已提交
2784 2785 2786 2787 2788
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2789 2790
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2791
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2802 2803 2804
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2805
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2806

W
Wu Yi 已提交
2807
    def _copy_param_info_from(self, other):
2808
        """
2809
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2810

Y
yuyang18 已提交
2811 2812 2813
        Notes: This is a very low level API. Users should not invoke it
        directly.

2814 2815 2816 2817 2818 2819 2820
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2821
            raise TypeError("_copy_param_info_from should be invoked with "
2822 2823 2824
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2825
            raise ValueError("_copy_param_info_from should be invoked with two "
2826
                             "program, with represent the same topology")
W
Wu Yi 已提交
2827
        self.global_block()._copy_param_info_from(other.global_block())
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2844
        self._parameters_on_pservers = other._parameters_on_pservers
2845
        self._endpoints = other._endpoints
2846
        self._ps_endpoint = other._ps_endpoint
2847 2848
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2849
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2850 2851
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2852

Y
yuyang18 已提交
2853 2854 2855
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2856 2857 2858 2859 2860 2861 2862
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2863
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2864 2865 2866
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2867
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2868
                             "program, with represent the same topology")
2869
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2870 2871 2872
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2873
    def list_vars(self):
Y
yuyang18 已提交
2874 2875 2876 2877 2878 2879
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2880
        for each_block in self.blocks:
2881
            for each_var in list(each_block.vars.values()):
2882 2883
                yield each_var

Y
Yu Yang 已提交
2884

Y
Yu Yang 已提交
2885
class Parameter(Variable):
2886
    """
2887
    Parameter is derived from Variable. A parameter is a persistable
2888
    Variable, and will be updated by optimizers after each iteration.
2889
    The training of a neural network is essentially the updating of
2890 2891
    its parameters.

2892
    Relative to a general Variable, a Parameter has several its own
2893 2894
    member variables:

2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2907 2908
    """

Y
Yu Yang 已提交
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2919 2920 2921

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2922 2923 2924 2925
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2926 2927
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2928
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2929

W
wanghaoshuang 已提交
2930
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2931

F
fengjiayi 已提交
2932 2933 2934
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2935 2936 2937
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2938

F
update  
fengjiayi 已提交
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2953
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2954
            for attr_name in additional_attr:
2955 2956
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2957 2958
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2959 2960 2961 2962
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2963

Y
Yu Yang 已提交
2964
# program is a global instance.
Y
Yu Yang 已提交
2965 2966
_main_program_ = Program()
_startup_program_ = Program()
2967

2968

2969
def default_startup_program():
Y
Yu Yang 已提交
2970
    """
Y
yuyang18 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2980

Y
Yu Yang 已提交
2981 2982 2983
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2984
    return _startup_program_
2985

2986

2987
def default_main_program():
Y
Yu Yang 已提交
2988
    """
Y
yuyang18 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2998

Y
Yu Yang 已提交
2999 3000 3001
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3002
    return _main_program_
Y
Yu Yang 已提交
3003 3004 3005 3006 3007


def switch_main_program(program):
    """
    Switch the main program to a new program.
3008

Y
Yu Yang 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3023
    Switch the startup program to a new program
Y
Yu Yang 已提交
3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3036
@signature_safe_contextmanager
Y
Yu Yang 已提交
3037 3038
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3039 3040 3041
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3042

Y
Yu Yang 已提交
3043
    Examples:
Y
yuyang18 已提交
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3054

Y
Yu Yang 已提交
3055
    Examples:
Y
yuyang18 已提交
3056 3057 3058 3059 3060 3061

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3062

Y
Yu Yang 已提交
3063
    Args:
Y
yuyang18 已提交
3064
        main_program(Program): New main program inside `with` statement.
3065
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3079 3080


W
Wu Yi 已提交
3081
def _get_var(name, program=None):
X
xuwei06 已提交
3082
    """
Y
yuyang18 已提交
3083
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3084

X
xuwei06 已提交
3085 3086 3087
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3088
        If None, default_global_program() will be used.
X
xuwei06 已提交
3089 3090 3091 3092 3093 3094 3095

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3096
    assert isinstance(program, Program)
X
xuwei06 已提交
3097 3098

    return program.global_block().var(name)
3099 3100


S
rename  
sneaxiy 已提交
3101
@signature_safe_contextmanager
3102 3103 3104 3105
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3106

3107
    yield
P
Paddle CI 已提交
3108

3109
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3110 3111


S
rename  
sneaxiy 已提交
3112
@signature_safe_contextmanager
P
Paddle CI 已提交
3113
def _imperative_place_guard(place):
M
minqiyang 已提交
3114 3115 3116
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3117

3118
    yield
M
minqiyang 已提交
3119

M
minqiyang 已提交
3120
    _imperative_current_expected_place_ = tmp_place