framework.py 64.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
Q
qiaolongfei 已提交
16
import contextlib
F
fengjiayi 已提交
17
import re
18

Y
Yu Yang 已提交
19
import numpy as np
Q
qiaolongfei 已提交
20

21
import proto.framework_pb2 as framework_pb2
22 23 24 25 26 27 28
try:
    from . import core
except ImportError, e:
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
Y
yuyang18 已提交
29
    directory. The original error is: \n""" + e.message)
30 31
except Exception, e:
    raise e
Y
Yu Yang 已提交
32
import unique_name
Y
Yu Yang 已提交
33

34
__all__ = [
35 36 37 38
    'Block',
    'Variable',
    'Program',
    'Operator',
F
fengjiayi 已提交
39
    'Parameter',
40 41 42
    'default_startup_program',
    'default_main_program',
    'program_guard',
X
xuwei06 已提交
43
    'get_var',
44
]
Y
Yu Yang 已提交
45

Q
qiaolongfei 已提交
46 47 48 49 50 51 52 53
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()


def grad_var_name(var_name):
    """
54 55
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
56 57 58
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
59

60
def convert_np_dtype_to_dtype_(np_dtype):
61 62
    """
    Convert the data type in numpy to the data type in Paddle
63

64
    Args:
65
        np_dtype(np.dtype): the data type in numpy.
66

67 68
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
69 70

    """
71 72
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
73
        return core.VarDesc.VarType.FP32
74
    elif dtype == np.float64:
75
        return core.VarDesc.VarType.FP64
76
    elif dtype == np.float16:
77
        return core.VarDesc.VarType.FP16
78
    elif dtype == np.int32:
79
        return core.VarDesc.VarType.INT32
80
    elif dtype == np.int16:
81
        return core.VarDesc.VarType.INT16
82
    elif dtype == np.int64:
83
        return core.VarDesc.VarType.INT64
84
    elif dtype == np.bool:
85
        return core.VarDesc.VarType.BOOL
86 87
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
88 89
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
90 91 92 93 94
    else:
        raise ValueError("Not supported numpy dtype " + str(dtype))


def dtype_is_floating(dtype):
95 96 97
    """
    Check the data type is floating or not.
    Args:
98
        dtype(np.dtype|core.VarDesc.VarType): data type.
99 100 101 102 103
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
104
    if not isinstance(dtype, core.VarDesc.VarType):
105 106
        dtype = convert_np_dtype_to_dtype_(dtype)

107 108 109 110
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
111 112


Y
Yang Yang(Tony) 已提交
113
def _debug_string_(proto, throw_on_error=True):
114 115 116 117 118 119 120 121 122 123 124
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
125
    error_fields = list()
Y
Yang Yang(Tony) 已提交
126
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
127 128
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
129 130 131
    return proto.__str__()


Y
Yu Yang 已提交
132
class Variable(object):
133
    """
134 135 136 137
    In Fluid, every input and output of an operator is a variable. In most 
    cases, variables are used for holding different kinds of data or training 
    labels. A variable belongs to a block. All variable has its own name and 
    two variables in different blocks could have the same name.
138

139 140
    There are many kinds of variables. Each kind of them has its own attributes 
    and usages. Please reference the framework.proto for details. 
141

142
    Most of a Variable's member variables can be setted to be None. It mean 
143
    it is not available or will be specified later.
144 145

    Args:
146
        block(Block): The block that the variable belongs to.
147 148
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
149 150
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
151
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
152
            Some kinds of variable do not contain shape, just set it to None.
153 154 155
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
156
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
157
            series data.
158
            Default: None
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
181 182
    """

Y
Yu Yang 已提交
183 184
    def __init__(self,
                 block,
Y
Yu Yang 已提交
185
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
186 187 188 189
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
190
                 capacity=None,
Q
QI JUN 已提交
191
                 persistable=None,
F
fengjiayi 已提交
192
                 error_clip=None,
Y
Yu Yang 已提交
193
                 stop_gradient=False,
F
fengjiayi 已提交
194
                 is_data=False,
Y
Yu Yang 已提交
195
                 **kwargs):
Y
Yu Yang 已提交
196
        self.block = block
F
fengjiayi 已提交
197
        self.error_clip = error_clip
Y
Yu Yang 已提交
198 199

        if name is None:
Y
Yu Yang 已提交
200
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
201 202 203 204
        is_new_var = False
        self.desc = self.block.desc.find_var(name)

        if self.desc is None:
D
dongzhihong 已提交
205
            self.desc = self.block.desc.var(name)
Y
Yu Yang 已提交
206
            is_new_var = True
Y
Yu Yang 已提交
207

Y
Yu Yang 已提交
208 209 210 211 212 213 214 215
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
216
        if shape is not None:
Y
Yu Yang 已提交
217
            if is_new_var:
218
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
219 220 221 222 223 224 225 226
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
227
        if dtype is not None:
228
            if not isinstance(dtype, core.VarDesc.VarType):
229
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
230
            if is_new_var:
F
fengjiayi 已提交
231
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
232
            else:
F
fengjiayi 已提交
233
                old_dtype = self.dtype
Q
QI JUN 已提交
234
                if dtype != old_dtype:
Y
Yu Yang 已提交
235 236 237 238 239
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
240 241

        if lod_level is not None:
Y
Yu Yang 已提交
242
            if is_new_var:
243
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
244 245 246 247 248 249 250
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
251 252 253 254 255 256 257 258 259 260 261
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

262 263 264 265 266 267 268 269
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
270
        self.block.vars[name] = self
Y
Yu Yang 已提交
271
        self.op = None
Y
Yu Yang 已提交
272
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
273
        self.is_data = is_data
Y
Yu Yang 已提交
274

275
    def __str__(self):
Y
Yang Yang(Tony) 已提交
276 277
        return self.to_string(True)

F
update  
fengjiayi 已提交
278
    def to_string(self, throw_on_error, with_details=False):
279 280 281 282
        """
        Get debug string.

        Args:
283 284
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
285
            with_details(bool): more details about variables and parameters
286 287
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
288

289 290
        Returns:
            str: The debug string.
291
        """
F
update  
fengjiayi 已提交
292 293
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
294 295
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.VarDesc.FromString(str(protostr))
F
update  
fengjiayi 已提交
296 297 298 299 300 301 302
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        return res_str
303 304 305

    __repr__ = __str__

306
    def set_desc(self, input):
307 308 309 310 311 312 313 314 315
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
316 317
        self.desc = input

318 319 320 321
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
322 323 324 325
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
326 327
    @property
    def name(self):
328
        return self.desc.name()
Y
Yu Yang 已提交
329

T
typhoonzero 已提交
330 331 332 333
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
334 335 336
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
337
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
338 339

    @property
F
fengjiayi 已提交
340 341
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
342 343 344

    @property
    def lod_level(self):
345
        return self.desc.lod_level()
Y
Yu Yang 已提交
346

Y
Yu Yang 已提交
347 348 349 350
    @property
    def type(self):
        return self.desc.type()

351
    def set_error_clip(self, error_clip):
352 353 354 355 356 357 358 359 360
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
361 362
        self.error_clip = error_clip

Y
Yu Yang 已提交
363

F
fengjiayi 已提交
364 365 366
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
367

368 369
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
370 371 372 373 374 375 376 377 378 379
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
        op_proto = framework_pb2.OpProto.FromString(str(pbstr))
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
380 381 382 383
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
384 385 386 387 388 389 390 391 392
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
393
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
394 395 396 397 398 399
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
400 401 402 403 404 405 406 407
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
408 409
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
410 411
        return self.op_proto_map[type]

412 413 414 415 416 417 418
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
            core.op_proto_and_checker_maker.kOpRoleVarAttrName()
        }

F
fengjiayi 已提交
419

Y
Yu Yang 已提交
420
class Operator(object):
421
    """
422 423 424 425 426 427 428
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
429
        type(str): The type of operator. Default None.
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
        Block.append_op or Block.prepend_op instead.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
461
    """
462 463 464 465 466
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
        'ncclInit', 'channel_create', 'channel_close', 'channel_send',
T
tangwei12 已提交
467
        'channel_recv', 'select', 'checkpoint_notify', 'gen_nccl_id'
468
    }
469

Y
Yu Yang 已提交
470 471
    def __init__(self,
                 block,
Y
Yu Yang 已提交
472
                 desc,
Y
Yu Yang 已提交
473 474 475 476
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
477

Y
Yu Yang 已提交
478
        self.block = block
Y
Yu Yang 已提交
479
        self.desc = desc
T
typhoonzero 已提交
480
        self.attrs = attrs
Y
yuyang18 已提交
481 482 483 484 485 486 487 488
        if self.attrs is None:
            self.attrs = dict()
        del attrs

        op_maker = core.op_proto_and_checker_maker

        if op_maker.kOpRoleAttrName() not in self.attrs:
            self.attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
489 490 491 492 493 494 495 496

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
               op_role_var) != 0 and role_var_name not in self.attrs:
            self.attrs[role_var_name] = self.block.program.op_role_var

        if role_var_name in self.attrs and len(self.attrs[role_var_name]) == 0:
            del self.attrs[role_var_name]
Y
yuyang18 已提交
497

F
fengjiayi 已提交
498 499 500 501 502
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
503
        self.desc.set_type(type)
F
fengjiayi 已提交
504
        proto = OpProtoHolder.instance().get_op_proto(type)
505

Y
Yang Yang(Tony) 已提交
506 507
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
508
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
509 510
                    return True
            return False
Q
QI JUN 已提交
511

Y
Yang Yang(Tony) 已提交
512 513 514 515 516 517 518
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
519 520 521 522
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
523 524
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
525 526 527
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
Y
Yang Yu 已提交
528 529 530 531
                        if isinstance(arg, basestring):
                            in_arg_names.append(arg)
                        else:
                            in_arg_names.append(arg.name)
532
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
533 534
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
535

Y
Yu Yang 已提交
536
        if outputs is not None:
537 538 539 540 541 542 543
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
544 545
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
546 547
                                 (type, ", ".join(str(e) for e in need),
                                  ", ".join(str(e) for e in given)))
548

F
fengjiayi 已提交
549
            for out_proto in proto.outputs:
550 551 552 553
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
554 555
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
556 557 558 559 560 561
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
                    out_arg_names.append(arg.name)
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
562

Y
yuyang18 已提交
563 564
        if self.attrs is not None:
            if not isinstance(self.attrs, dict):
565
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
566
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
567
                attr_name = attr.name
Y
yuyang18 已提交
568 569
                if (attr_name not in self.attrs) or (
                        self.attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
570
                    continue
Y
Yancey1989 已提交
571
                attr_val = self.attrs[attr_name]
G
gongweibao 已提交
572 573
                self._update_desc_attr(attr_name, attr_val)

574
        self.desc.check_attrs()
575
        if self.has_kernel(type):
Q
QI JUN 已提交
576
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
577
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
578

579 580 581
    def has_kernel(self, op_type):
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
582
    def to_string(self, throw_on_error):
583
        """
584 585
        Get debug string.

586
        Args:
587 588
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
589

590 591
        Returns:
            str: The debug string.
592 593

        """
594 595
        protostr = self.desc.serialize_to_string()
        proto = framework_pb2.OpDesc.FromString(str(protostr))
Y
Yang Yang(Tony) 已提交
596 597 598 599
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
600 601 602

    __repr__ = __str__

F
fengjiayi 已提交
603 604 605 606 607
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
608
        """
609
        Get the input arguments according to the input parameter name.
610

611 612
        Args:
            name(str): The input parameter name.
613

614 615 616
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
617
        """
F
fengjiayi 已提交
618 619
        return self.desc.input(name)

T
typhoonzero 已提交
620
    def rename_input(self, old_name, new_name):
621 622 623 624 625 626 627 628 629 630
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
T
typhoonzero 已提交
631 632 633
        self.desc.rename_input(old_name, new_name)

    def rename_output(self, old_name, new_name):
634 635 636 637 638 639 640 641 642 643
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
T
typhoonzero 已提交
644 645
        self.desc.rename_output(old_name, new_name)

F
fengjiayi 已提交
646 647 648 649
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
650 651 652 653 654 655 656 657
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
658
    def output(self, name):
659
        """
660
        Get output arguments by the output parameter name.
661

662 663
        Args:
            name(str): The output parameter name.
664

665 666 667
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
668
        """
F
fengjiayi 已提交
669 670 671 672 673 674
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

675 676 677 678 679 680 681 682
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
683
    def has_attr(self, name):
684
        """
685 686
        Whether this Operator has the attribute with name or not.

687
        Args:
688
            name(str): the attribute name.
689

690 691
        Returns:
            bool: True if has this attribute.
692 693

        """
F
fengjiayi 已提交
694 695 696
        return self.desc.has_attr(name)

    def attr_type(self, name):
697
        """
698
        Get the type of attribute by attribute's name.
699

700 701
        Args:
            name(str): the attribute name.
702

703 704
        Returns:
            core.AttrType: the attribute type.
705
        """
F
fengjiayi 已提交
706 707
        return self.desc.attr_type(name)

Y
yuyang18 已提交
708
    def set_attr(self, name, val):
709 710 711 712 713 714 715 716 717 718
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Y
yuyang18 已提交
719
        self.attrs[name] = val
G
gongweibao 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
733 734
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
735 736
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
737
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
738 739 740 741 742
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            self.desc.set_attr(name, val)
Y
yuyang18 已提交
743

F
fengjiayi 已提交
744 745 746 747 748
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
749
        """
750 751
        Get the attribute by name.

752
        Args:
753
            name(str): the attribute name.
754

755 756
        Returns:
            bool|int|str|float|list: The attribute value. The return value
757 758
            can be any valid attribute type.
        """
F
fengjiayi 已提交
759
        return self.desc.attr(name)
Y
Yu Yang 已提交
760

F
fengjiayi 已提交
761
    def block_attr(self, name):
762
        """
763
        Get the block attribute by name.
764

765 766
        Args:
            name(str): the attribute name.
767

768 769
        Returns:
            int: the block index.
770
        """
F
fengjiayi 已提交
771
        return self.desc.block_attr(name)
Y
Yu Yang 已提交
772

J
JiayiFeng 已提交
773
    def all_attrs(self):
F
fengjiayi 已提交
774
        """
775 776 777 778
        Get the attribute dict.

        Returns:
            dict: The Operator's attribute dict.
F
fengjiayi 已提交
779 780 781 782 783 784 785 786 787 788
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
            if n == 'sub_block':
                attr_map[n] = self.block_attr(n)
            else:
                attr_map[n] = self.attr(n)
        return attr_map

Y
Yu Yang 已提交
789

Y
Yu Yang 已提交
790
class Block(object):
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
        use `Program.create_block()` to create a block.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
820
    def __init__(self, program, idx):
Y
Yu Yang 已提交
821
        self.desc = program.desc.block(idx)
822
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
823
        self.ops = list()  # operator list
Y
Yu Yang 已提交
824
        self.program = program
825
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
826

827
    def __str__(self):
Y
Yang Yang(Tony) 已提交
828 829
        return self.to_string(True)

F
fengjiayi 已提交
830 831
    def to_string(self, throw_on_error, with_details=False):
        """
832 833
        Get debug string.

F
fengjiayi 已提交
834 835
        Args:
            throw_on_error(bool): raise exception when self is not initialized
836
                when throw_on_error is True.
F
update  
fengjiayi 已提交
837
            with_details(bool): more details about variables and parameters
838 839
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
840

841 842
        Returns:
            str: The debug string.
F
fengjiayi 已提交
843 844 845 846
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
847
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
848 849 850
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
            for var in self.vars.itervalues():
F
fengjiayi 已提交
851
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
852
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
853
            for op in self.ops:
F
fengjiayi 已提交
854 855
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
856 857 858 859 860 861
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.BlockDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
862 863 864

    __repr__ = __str__

Y
Yu Yang 已提交
865 866
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
867
        return self.desc.parent
Y
Yu Yang 已提交
868

Y
Yu Yang 已提交
869 870 871 872 873
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

    def set_forward_block_idx(self, idx):
874 875 876 877 878 879 880 881 882
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
Y
Yu Yang 已提交
883 884
        self.desc.set_forward_block_idx(idx)

Y
Yu Yang 已提交
885 886
    @property
    def idx(self):
Y
Yu Yang 已提交
887
        return self.desc.id
Y
Yu Yang 已提交
888

Q
Qiao Longfei 已提交
889
    def var(self, name):
890 891 892 893 894 895 896 897 898 899 900 901 902
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
903
        if not isinstance(name, basestring):
904 905 906
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
907 908
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
909
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
910
        return v
Q
Qiao Longfei 已提交
911

F
fengjiayi 已提交
912
    def var_recursive(self, name):
913 914 915 916 917 918 919 920 921 922 923 924 925
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
952

Q
Qiao Longfei 已提交
953
    def all_parameters(self):
954 955 956 957 958
        return list(self.iter_parameters())

    def iter_parameters(self):
        return (item[1] for item in self.vars.iteritems()
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
959

Y
Yu Yang 已提交
960
    def create_var(self, *args, **kwargs):
961
        var = Variable(block=self, *args, **kwargs)
962 963
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
964
        return var
Y
Yu Yang 已提交
965

Q
Qiao Longfei 已提交
966 967 968
    def has_var(self, name):
        return name in self.vars

T
typhoonzero 已提交
969 970 971
    def rename_var(self, name, new_name):
        """
        Rename variable in vars and ops' inputs and outputs
972 973 974 975 976 977 978 979 980 981 982 983

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
984 985
        """
        if not self.has_var(name):
986
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
987 988
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
989
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
990 991 992 993 994 995 996
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
997
            var_type = "Variable"
T
wip  
typhoonzero 已提交
998 999 1000 1001
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1002
        orig_var_type = v.type
T
typhoonzero 已提交
1003
        self.desc.rename_var(name, new_name)
T
typhoonzero 已提交
1004
        # NOTE: v is destroyed by C++ after calling rename_var.
T
wip  
typhoonzero 已提交
1005
        d = self.desc.find_var(new_name)
T
typhoonzero 已提交
1006
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1007 1008 1009 1010
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1011
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1012 1013 1014 1015 1016 1017 1018
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1019
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1020 1021
            var = Variable(
                self,
T
typhoonzero 已提交
1022
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1023 1024 1025 1026 1027 1028 1029 1030
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

        # rename the python side, sync_with_cpp will only add
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
T
typhoonzero 已提交
1031
        self.sync_with_cpp()
1032
        return var
T
typhoonzero 已提交
1033

1034 1035 1036 1037 1038
    def remove_var(self, name):
        self.sync_with_cpp()
        self.desc.remove_var(name)
        del self.vars[name]

Y
Yu Yang 已提交
1039 1040
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1041
        param = Parameter(global_block, *args, **kwargs)
1042 1043
        if 'initializer' in kwargs:
            kwargs['initializer'](param, self)
Q
Qiao Longfei 已提交
1044
        return param
Y
Yu Yang 已提交
1045

Y
Yu Yang 已提交
1046
    def append_op(self, *args, **kwargs):
1047 1048 1049 1050 1051 1052
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1053
        op_desc = self.desc.append_op()
1054
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1055 1056 1057
        self.ops.append(op)
        return op

Q
qiaolongfei 已提交
1058
    def insert_op(self, index, *args, **kwargs):
1059 1060 1061 1062 1063 1064 1065 1066 1067
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
Q
qiaolongfei 已提交
1068 1069 1070 1071 1072 1073
        self.sync_with_cpp()
        op_desc = self.desc.insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

1074
    def remove_op(self, index):
1075 1076 1077 1078 1079 1080 1081 1082 1083
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
1084 1085 1086 1087
        self.sync_with_cpp()
        self.desc.remove_op(index, index + 1)
        del self.ops[index]

Y
Yancey1989 已提交
1088
    def slice_ops(self, start, end):
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1099
        return self.ops[start:end]
Y
Yancey1989 已提交
1100

Y
Yu Yang 已提交
1101
    def prepend_op(self, *args, **kwargs):
Y
Yu Yang 已提交
1102 1103
        op_desc = self.desc.prepend_op()
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1104
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1105 1106
        return op

Q
Qiao Longfei 已提交
1107
    def sync_with_cpp(self):
1108
        """
1109 1110
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1111
        """
Q
Qiao Longfei 已提交
1112 1113 1114 1115 1116
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1117 1118 1119 1120 1121
        # sync variables removed from c++ end
        for var in self.vars.keys():
            if not self.desc.find_var(var):
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1122
        # sync operators from cpp
1123 1124 1125 1126
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1143 1144 1145 1146 1147

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1148
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1149 1150 1151 1152 1153 1154 1155

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1169 1170 1171 1172
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

1173 1174
    def copy_param_info_from(self, other):
        """
1175 1176
        Copy the information of parameters from the other block.

1177
        Args:
1178 1179 1180 1181 1182
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

        Returns:
            None
        """
        if not isinstance(other, Block):
            raise TypeError("copy_param_info_from should be invoked with Block")
        for p in other.iter_parameters():
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
                raise ValueError("copy_param_info_from should be invoked with "
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1206
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1207
                error_clip=p.error_clip,
1208 1209 1210
                name=v.name)
            self.vars[new_p.name] = new_p

1211 1212 1213
    def clone_variable(self, var):
        """
        Clone a variable into current block.
1214

1215 1216 1217 1218
        Args:
            var: the variable to be cloned.

        Returns:
1219
            Variable: the new  variable cloned from 'var' in current block.
1220 1221
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1222 1223 1224 1225 1226
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1227 1228
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1229
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1230 1231 1232 1233 1234 1235
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1236 1237
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1238 1239 1240 1241 1242 1243 1244
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1245 1246
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1247
        return ret_var
1248

Y
Yu Yang 已提交
1249 1250

class Program(object):
D
dzhwinter 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1262
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1263 1264

    Returns:
Y
yuyang18 已提交
1265
        A empty program.
D
dzhwinter 已提交
1266 1267

    Examples:
Y
yuyang18 已提交
1268 1269 1270 1271 1272 1273
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1274 1275 1276

    """

1277 1278
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1279 1280
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1281
        self._seed = 0
Y
yuyang18 已提交
1282
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1283
        self._op_role_var = []
Y
yuyang18 已提交
1284 1285 1286

    @property
    def op_role(self):
Y
yuyang18 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1300 1301 1302 1303 1304 1305 1306 1307
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1308 1309 1310 1311 1312 1313 1314
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1315 1316 1317 1318
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1319
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1320 1321

    @contextlib.contextmanager
1322
    def optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1323 1324 1325 1326 1327 1328 1329
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1330
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1331 1332 1333 1334

        Examples:

            >>> p, g = backward(...)
1335
            >>> with program.optimized_guard([p,g]):
Y
yuyang18 已提交
1336 1337
            >>>     p = p - 0.001 * g
        """
Y
yuyang18 已提交
1338 1339
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1340 1341 1342 1343
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1344
        yield
Y
yuyang18 已提交
1345
        self._op_role_var = []
Y
yuyang18 已提交
1346
        self._current_role = OpRole.Forward
Y
Yu Yang 已提交
1347

1348
    def __str__(self):
Y
yuyang18 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1358 1359
        return self.to_string(True)

F
fengjiayi 已提交
1360 1361 1362
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1363

F
fengjiayi 已提交
1364
        Args:
Y
yuyang18 已提交
1365 1366
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1367

Y
yuyang18 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(str(protostr))
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1391

1392
    def get_desc(self):
Y
yuyang18 已提交
1393 1394 1395 1396 1397 1398 1399
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1400 1401
        return self.desc

1402
    def clone(self, for_test=False):
Y
yuyang18 已提交
1403 1404 1405
        """
        Create a new, duplicated program.

1406

Y
yuyang18 已提交
1407 1408 1409 1410
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1411

Y
yuyang18 已提交
1412 1413 1414 1415
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1416 1417 1418 1419 1420
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1421 1422

        Args:
Y
yuyang18 已提交
1423 1424
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1425

D
dzhwinter 已提交
1426
        Returns:
Y
yuyang18 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1480 1481
        """
        if for_test:
1482
            p = self.inference_optimize()
1483
        else:
1484
            p = Program()
1485
            p.desc = core.ProgramDesc(self.desc)
1486 1487 1488
            p.blocks = [Block(p, i) for i in xrange(self.desc.num_blocks())]
            p.sync_with_cpp()

1489
        p.copy_param_info_from(self)
F
fengjiayi 已提交
1490
        p.copy_data_info_from(self)
Y
Yu Yang 已提交
1491
        return p
1492

1493
    def prune(self, targets):
Y
yuyang18 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1509 1510 1511 1512 1513 1514
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1515 1516
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1517
                    # and we need to find the current op that generate this
1518 1519 1520 1521 1522 1523 1524 1525
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1526
                    t = t.op
1527 1528 1529 1530
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1531
                else:
1532 1533
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1534 1535 1536 1537 1538 1539 1540 1541

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1542
    def inference_optimize(self):
Y
yuyang18 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        """
        This method will create a new program and change the :code:`is_test`
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1554 1555
        # this is an alternative implement before
        # core.inference_optimize being fixed.
1556
        res = Program()
1557 1558 1559 1560 1561 1562 1563
        res.desc = core.ProgramDesc(self.desc)
        for i in xrange(res.desc.num_blocks()):
            block = res.desc.block(i)
            for j in xrange(block.op_size()):
                op = block.op(j)
                if op.has_attr('is_test'):
                    op.set_attr('is_test', True)
1564 1565 1566 1567
        res.blocks = [Block(res, i) for i in xrange(res.desc.num_blocks())]
        res.sync_with_cpp()
        return res

1568 1569
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
            binary_str(str): The binary prootbuf string.

        Returns:
            Program: A deserialized program desc.
        """
1582 1583
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
1584
        p.blocks = [Block(p, i) for i in xrange(p.desc.num_blocks())]
1585 1586
        p.sync_with_cpp()
        return p
Y
Yu Yang 已提交
1587

D
dzhwinter 已提交
1588 1589
    @property
    def random_seed(self):
Y
yuyang18 已提交
1590 1591 1592 1593 1594 1595
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1596 1597
        return self._seed

Q
qiaolongfei 已提交
1598 1599
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1600 1601 1602
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1603 1604
        return self.desc.num_blocks()

D
dzhwinter 已提交
1605 1606 1607 1608 1609 1610
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1611 1612
    def __repr__(self):
        return str(self)
1613

Y
Yu Yang 已提交
1614
    def global_block(self):
Y
yuyang18 已提交
1615 1616 1617
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1618 1619
        return self.blocks[0]

Q
Qiao Longfei 已提交
1620
    def block(self, index):
Y
yuyang18 已提交
1621 1622 1623 1624 1625 1626 1627 1628
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1629 1630
        return self.blocks[index]

Y
Yu Yang 已提交
1631
    def current_block(self):
Y
yuyang18 已提交
1632 1633 1634 1635
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1636 1637
        return self.blocks[self.current_block_idx]

F
update  
fengjiayi 已提交
1638
    def create_block(self, parent_idx=None):
Y
yuyang18 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1649
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1650 1651 1652
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1653 1654 1655 1656 1657
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

    def rollback(self):
Y
yuyang18 已提交
1658 1659 1660 1661 1662
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1663 1664
        self.current_block_idx = self.current_block().parent_idx

Q
Qiao Longfei 已提交
1665
    def sync_with_cpp(self):
Y
yuyang18 已提交
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1676 1677 1678 1679 1680
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
            block.sync_with_cpp()

1681 1682
    def copy_param_info_from(self, other):
        """
1683
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1684

Y
yuyang18 已提交
1685 1686 1687
        Notes: This is a very low level API. Users should not invoke it
        directly.

1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        self.global_block().copy_param_info_from(other.global_block())

F
fengjiayi 已提交
1703 1704 1705
    def copy_data_info_from(self, other):
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1706

Y
yuyang18 已提交
1707 1708 1709
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("copy_param_info_from should be invoked with "
                            "Program")

        if len(self.blocks) != len(other.blocks):
            raise ValueError("copy_param_info_from should be invoked with two "
                             "program, with represent the same topology")
        for var in other.global_block().vars.itervalues():
            if var.is_data:
                self.global_block().var(var.name).is_data = True

1727
    def list_vars(self):
Y
yuyang18 已提交
1728 1729 1730 1731 1732 1733
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
1734 1735 1736 1737
        for each_block in self.blocks:
            for each_var in each_block.vars.itervalues():
                yield each_var

Y
Yu Yang 已提交
1738

Y
Yu Yang 已提交
1739
class Parameter(Variable):
1740 1741 1742 1743 1744 1745
    """
    Parameter is derived from Variable. A parameter is a persistable 
    Variable, and will be updated by optimizers after each iteration.
    The training of a neural network is essentially the updating of 
    its parameters.

1746
    Relative to a general Variable, a Parameter has several its own
1747 1748
    member variables:

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
1761 1762
    """

Y
Yu Yang 已提交
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
1773 1774 1775

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
1776 1777 1778 1779
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

1780 1781
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
1782
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
1783

W
wanghaoshuang 已提交
1784
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
1785

F
fengjiayi 已提交
1786 1787 1788
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
1789 1790 1791
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
1792

F
update  
fengjiayi 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
1807
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
1808 1809 1810 1811 1812
            for attr_name in additional_attr:
                res_str += "%s: %s\n" % (attr_name,
                                         str(getattr(self, attr_name)))
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
1813 1814 1815 1816
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
1817

Y
Yu Yang 已提交
1818
# program is a global instance.
Y
Yu Yang 已提交
1819 1820
_main_program_ = Program()
_startup_program_ = Program()
1821

1822

1823
def default_startup_program():
Y
Yu Yang 已提交
1824
    """
Y
yuyang18 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
1834

Y
Yu Yang 已提交
1835 1836 1837
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
1838
    return _startup_program_
1839

1840

1841
def default_main_program():
Y
Yu Yang 已提交
1842
    """
Y
yuyang18 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
1852

Y
Yu Yang 已提交
1853 1854 1855
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
1856
    return _main_program_
Y
Yu Yang 已提交
1857 1858 1859 1860 1861


def switch_main_program(program):
    """
    Switch the main program to a new program.
1862

Y
Yu Yang 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
1877
    Switch the startup program to a new program
Y
Yu Yang 已提交
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
1893 1894 1895
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
1896

Y
Yu Yang 已提交
1897
    Examples:
Y
yuyang18 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
1908

Y
Yu Yang 已提交
1909
    Examples:
Y
yuyang18 已提交
1910 1911 1912 1913 1914 1915

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
1916

Y
Yu Yang 已提交
1917
    Args:
Y
yuyang18 已提交
1918
        main_program(Program): New main program inside `with` statement.
1919
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
1933 1934 1935 1936


def get_var(name, program=None):
    """
Y
yuyang18 已提交
1937
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
1938

X
xuwei06 已提交
1939 1940 1941
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
1942
        If None, default_global_program() will be used.
X
xuwei06 已提交
1943 1944 1945 1946 1947 1948 1949

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
1950
    assert isinstance(program, Program)
X
xuwei06 已提交
1951 1952

    return program.global_block().var(name)