framework.py 101.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
Q
qiaolongfei 已提交
29

M
minqiyang 已提交
30
from .. import compat as cpt
31
from .proto import framework_pb2
32
try:
P
peizhilin 已提交
33
    if os.name == 'nt':
P
peizhilin 已提交
34
        import sys
P
peizhilin 已提交
35 36 37 38 39
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

40
    from . import core
41
except ImportError as e:
P
peizhilin 已提交
42
    if os.name == 'nt':
43
        executable_path = os.path.abspath(os.path.dirname(sys.executable))
P
peizhilin 已提交
44
        raise ImportError(
45 46 47 48 49
            """NOTE: You may need to run \"set PATH=%s;%%PATH%%\"
        if you encounters \"DLL load failed\" errors. If you have python
        installed in other directory, replace \"%s\" with your own
        directory. The original error is: \n %s""" %
            (executable_path, executable_path, cpt.get_exception_message(e)))
P
peizhilin 已提交
50 51 52 53 54 55
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
56
except Exception as e:
57
    raise e
58
from . import unique_name
Y
Yu Yang 已提交
59

60
__all__ = [
61 62 63 64
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
65
    'name_scope',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74
_imperative_tracer_ = None
M
minqiyang 已提交
75
_imperative_current_expected_place_ = None
76 77 78 79 80 81 82 83 84


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
85

M
minqiyang 已提交
86
def _current_expected_place():
M
minqiyang 已提交
87
    return _imperative_current_expected_place_
M
minqiyang 已提交
88 89


Q
Qiao Longfei 已提交
90 91 92 93 94 95 96 97 98
def is_pserver_mode(main_program):
    main = main_program if main_program \
        else default_main_program()
    for op in main.global_block().ops:
        if op.type in ["send", "recv"]:
            return True
    return False


99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
125
@signature_safe_contextmanager
126 127 128 129 130 131 132 133 134 135 136 137
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
138

139 140 141 142
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
143 144
          with name_scope("attention"):
             ...
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
164 165 166
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
167 168 169 170


def grad_var_name(var_name):
    """
171 172
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
173 174 175
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
176

177
def convert_np_dtype_to_dtype_(np_dtype):
178 179
    """
    Convert the data type in numpy to the data type in Paddle
180

181
    Args:
182
        np_dtype(np.dtype): the data type in numpy.
183

184 185
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
186 187

    """
188 189
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
190
        return core.VarDesc.VarType.FP32
191
    elif dtype == np.float64:
192
        return core.VarDesc.VarType.FP64
193
    elif dtype == np.float16:
194
        return core.VarDesc.VarType.FP16
195
    elif dtype == np.int32:
196
        return core.VarDesc.VarType.INT32
197
    elif dtype == np.int16:
198
        return core.VarDesc.VarType.INT16
199
    elif dtype == np.int64:
200
        return core.VarDesc.VarType.INT64
201
    elif dtype == np.bool:
202
        return core.VarDesc.VarType.BOOL
203 204
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
205 206
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
207 208
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
209
    else:
M
minqiyang 已提交
210
        raise ValueError("Not supported numpy dtype %s" % dtype)
211 212 213


def dtype_is_floating(dtype):
214 215 216
    """
    Check the data type is floating or not.
    Args:
217
        dtype(np.dtype|core.VarDesc.VarType): data type.
218 219 220 221 222
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
223
    if not isinstance(dtype, core.VarDesc.VarType):
224 225
        dtype = convert_np_dtype_to_dtype_(dtype)

226 227 228 229
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
230 231


Y
Yang Yang(Tony) 已提交
232
def _debug_string_(proto, throw_on_error=True):
233 234 235 236 237 238 239 240 241 242 243
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
244
    error_fields = list()
Y
Yang Yang(Tony) 已提交
245
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
246 247
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
248 249 250
    return proto.__str__()


X
Xin Pan 已提交
251
class Variable(object):
252
    """
253 254 255
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
256
    two variables in different blocks could have the same name.
257

258 259
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
260

261
    Most of a Variable's member variables can be setted to be None. It mean
262
    it is not available or will be specified later.
263 264

    Args:
265
        block(Block): The block that the variable belongs to.
266 267
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
268 269
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
270
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
271
            Some kinds of variable do not contain shape, just set it to None.
272 273 274
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
275
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
276
            series data.
277
            Default: None
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
300 301
    """

Y
Yu Yang 已提交
302 303
    def __init__(self,
                 block,
Y
Yu Yang 已提交
304
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
305 306 307 308
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
309
                 capacity=None,
Q
QI JUN 已提交
310
                 persistable=None,
F
fengjiayi 已提交
311
                 error_clip=None,
Y
Yu Yang 已提交
312
                 stop_gradient=False,
F
fengjiayi 已提交
313
                 is_data=False,
Y
Yu Yang 已提交
314
                 **kwargs):
Y
Yu Yang 已提交
315
        self.block = block
F
fengjiayi 已提交
316
        self.error_clip = error_clip
Y
Yu Yang 已提交
317 318

        if name is None:
Y
Yu Yang 已提交
319
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
320
        is_new_var = False
M
minqiyang 已提交
321
        name = cpt.to_text(name)
M
minqiyang 已提交
322
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
323 324

        if self.desc is None:
M
minqiyang 已提交
325
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
326
            is_new_var = True
Y
Yu Yang 已提交
327

Y
Yu Yang 已提交
328 329 330 331 332 333 334 335
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
336
        if shape is not None:
Y
Yu Yang 已提交
337
            if is_new_var:
338
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
339 340 341 342 343 344 345 346
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
347
        if dtype is not None:
348
            if not isinstance(dtype, core.VarDesc.VarType):
349
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
350
            if is_new_var:
F
fengjiayi 已提交
351
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
352
            else:
F
fengjiayi 已提交
353
                old_dtype = self.dtype
Q
QI JUN 已提交
354
                if dtype != old_dtype:
Y
Yu Yang 已提交
355 356 357 358 359
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
360 361

        if lod_level is not None:
Y
Yu Yang 已提交
362
            if is_new_var:
363
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
364 365 366 367 368 369 370
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
371 372 373 374 375 376 377 378 379 380 381
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

382 383 384 385 386 387 388 389
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

X
Xin Pan 已提交
390
        if _in_imperative_mode():
M
minqiyang 已提交
391
            # record vars in tracer rather than blocks
M
minqiyang 已提交
392 393
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
M
minqiyang 已提交
394
                self._ivar = core.VarBase(stop_gradient)
X
Xin Pan 已提交
395
            self._ivar.desc = self.desc
M
minqiyang 已提交
396 397
            if persistable:
                self.block.vars[name] = self
M
minqiyang 已提交
398 399 400 401 402
        else:
            self.block.vars[name] = self
        self.op = None
        self.stop_gradient = stop_gradient
        self.is_data = is_data
Y
Yu Yang 已提交
403

404
    def _numpy(self):
M
minqiyang 已提交
405
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
406
        return np.array(new_ivar.value().get_tensor())
407 408

    def _backward(self):
X
Xin Pan 已提交
409
        self._ivar._run_backward()
410 411

    def _gradient(self):
M
minqiyang 已提交
412
        return np.array(self._ivar._grad_value())
413

X
Xin Pan 已提交
414 415
    def _clear_gradient(self):
        self._ivar._clear_gradient()
X
Xin Pan 已提交
416

417
    def __str__(self):
Y
Yang Yang(Tony) 已提交
418 419
        return self.to_string(True)

F
update  
fengjiayi 已提交
420
    def to_string(self, throw_on_error, with_details=False):
421 422 423 424
        """
        Get debug string.

        Args:
425 426
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
427
            with_details(bool): more details about variables and parameters
428 429
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
430

431 432
        Returns:
            str: The debug string.
433
        """
F
update  
fengjiayi 已提交
434 435
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
436
        protostr = self.desc.serialize_to_string()
437
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
438 439 440 441
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
442 443
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
444
        return res_str
445 446 447

    __repr__ = __str__

W
Wu Yi 已提交
448
    def _set_desc(self, input):
449 450 451 452 453 454 455 456 457
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
458 459
        self.desc = input

460 461
    @property
    def _stop_gradient(self):
M
minqiyang 已提交
462 463 464 465
        if _in_imperative_mode():
            return self._ivar.stop_gradient
        else:
            return self.stop_gradient
466 467 468

    @_stop_gradient.setter
    def _stop_gradient(self, s):
M
minqiyang 已提交
469 470 471
        if _in_imperative_mode():
            self._ivar.stop_gradient = s
        self.stop_gradient = s
472

473 474 475 476
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
477 478 479 480
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
481 482
    @property
    def name(self):
M
minqiyang 已提交
483
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
484

T
typhoonzero 已提交
485 486 487 488
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
489 490 491
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
492
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
493 494

    @property
F
fengjiayi 已提交
495 496
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
497 498 499

    @property
    def lod_level(self):
500
        return self.desc.lod_level()
Y
Yu Yang 已提交
501

Y
Yu Yang 已提交
502 503 504 505
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
506
    def _set_error_clip(self, error_clip):
507 508 509 510 511 512 513 514 515
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
516 517
        self.error_clip = error_clip

Y
Yu Yang 已提交
518

F
fengjiayi 已提交
519 520 521
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
522

523 524
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
525 526 527 528
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
529
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
530 531 532 533 534
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
535 536 537 538
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
539 540 541 542 543 544 545 546 547
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
548
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
549 550 551 552 553 554
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
555 556 557 558 559 560 561 562
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
563 564
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
565 566
        return self.op_proto_map[type]

567 568 569 570
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
571
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
572 573
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
574 575
        }

F
fengjiayi 已提交
576

X
Xin Pan 已提交
577
class Operator(object):
578
    """
579 580 581 582 583 584 585
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
586
        type(str): The type of operator. Default None.
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
607
        Block.append_op or Block._prepend_op instead.
608 609 610 611 612 613 614 615 616 617

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
618
    """
619 620 621
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
622 623
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
624
    }
625

Y
Yu Yang 已提交
626 627
    def __init__(self,
                 block,
Y
Yu Yang 已提交
628
                 desc,
Y
Yu Yang 已提交
629 630 631
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
632
                 attrs=None):
Y
Yu Yang 已提交
633
        self.block = block
Y
Yu Yang 已提交
634
        self.desc = desc
G
gongweibao 已提交
635 636 637 638 639
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
640 641 642 643
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
644 645
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
646 647 648

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
649 650
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
651

G
gongweibao 已提交
652 653
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
654

F
fengjiayi 已提交
655 656 657 658 659
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
P
peizhilin 已提交
660 661 662 663 664
        else:
            callstack_var_name = op_maker.kOpCreationCallstackAttrName()
            op_attrs[callstack_var_name] = list(
                reversed(traceback.format_stack()))[1:]

F
Update  
fengjiayi 已提交
665
        self.desc.set_type(type)
F
fengjiayi 已提交
666
        proto = OpProtoHolder.instance().get_op_proto(type)
667

668 669 670
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
671 672
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
673
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
674 675
                    return True
            return False
Q
QI JUN 已提交
676

Y
Yang Yang(Tony) 已提交
677 678 679 680 681 682 683
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
684 685 686 687
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
688 689
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
690 691 692
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
693
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
694
                            in_arg_names.append(arg)
695 696
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
697
                        else:
M
minqiyang 已提交
698
                            in_arg_names.append(cpt.to_text(arg.name))
699
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
700 701
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
702

Y
Yu Yang 已提交
703
        if outputs is not None:
704
            for m in proto.outputs:
Q
qingqing01 已提交
705 706 707 708 709 710
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
711
            for out_proto in proto.outputs:
Q
qingqing01 已提交
712 713
                if out_proto.name not in outputs:
                    continue
714 715 716 717
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
718 719
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
720 721 722
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
723
                    out_arg_names.append(cpt.to_text(arg.name))
724 725
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
726

G
gongweibao 已提交
727 728
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
729
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
730
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
731
                attr_name = attr.name
G
gongweibao 已提交
732
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
733
                    continue
G
gongweibao 已提交
734
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
735 736
                self._update_desc_attr(attr_name, attr_val)

737
        self.desc.check_attrs()
W
Wu Yi 已提交
738
        if self._has_kernel(type):
Q
QI JUN 已提交
739
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
740
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
741

X
Xin Pan 已提交
742 743 744
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
M
minqiyang 已提交
745

X
Xin Pan 已提交
746
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
747
            if inputs is not None:
X
Xin Pan 已提交
748 749 750 751 752
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
M
minqiyang 已提交
753

X
Xin Pan 已提交
754
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
755
            if outputs is not None:
X
Xin Pan 已提交
756 757 758 759 760
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
761

W
Wu Yi 已提交
762
    def _has_kernel(self, op_type):
763 764
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
765
    def to_string(self, throw_on_error):
766
        """
767 768
        Get debug string.

769
        Args:
770 771
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
772

773 774
        Returns:
            str: The debug string.
775 776

        """
777
        protostr = self.desc.serialize_to_string()
778
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
779 780 781 782
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
783 784 785

    __repr__ = __str__

F
fengjiayi 已提交
786 787 788 789 790
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
791
        """
792
        Get the input arguments according to the input parameter name.
793

794 795
        Args:
            name(str): The input parameter name.
796

797 798 799
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
800
        """
F
fengjiayi 已提交
801 802
        return self.desc.input(name)

W
Wu Yi 已提交
803
    def _rename_input(self, old_name, new_name):
804 805 806 807 808 809 810 811 812 813
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
814
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
815

W
Wu Yi 已提交
816
    def _rename_output(self, old_name, new_name):
817 818 819 820 821 822 823 824 825 826
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
827
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
828

F
fengjiayi 已提交
829 830 831 832
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
833 834 835 836 837 838 839 840
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
841
    def output(self, name):
842
        """
843
        Get output arguments by the output parameter name.
844

845 846
        Args:
            name(str): The output parameter name.
847

848 849 850
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
851
        """
F
fengjiayi 已提交
852 853 854 855 856 857
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

858 859 860 861 862 863 864 865
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
866
    def has_attr(self, name):
867
        """
868 869
        Whether this Operator has the attribute with name or not.

870
        Args:
871
            name(str): the attribute name.
872

873 874
        Returns:
            bool: True if has this attribute.
875 876

        """
F
fengjiayi 已提交
877 878 879
        return self.desc.has_attr(name)

    def attr_type(self, name):
880
        """
881
        Get the type of attribute by attribute's name.
882

883 884
        Args:
            name(str): the attribute name.
885

886 887
        Returns:
            core.AttrType: the attribute type.
888
        """
F
fengjiayi 已提交
889 890
        return self.desc.attr_type(name)

W
Wu Yi 已提交
891
    def _set_attr(self, name, val):
892 893 894 895 896 897 898 899 900 901
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
902 903 904 905 906 907 908 909 910 911 912 913 914
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
915 916
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
917 918
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
919
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
920 921 922 923
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
924
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
925

F
fengjiayi 已提交
926 927 928 929 930
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
931
        """
932 933
        Get the attribute by name.

934
        Args:
935
            name(str): the attribute name.
936

937 938
        Returns:
            bool|int|str|float|list: The attribute value. The return value
939 940
            can be any valid attribute type.
        """
F
fengjiayi 已提交
941
        return self.desc.attr(name)
Y
Yu Yang 已提交
942

W
Wu Yi 已提交
943
    def _block_attr_id(self, name):
944
        """
G
gongweibao 已提交
945
        Get the block attribute's id by name.
946

947 948
        Args:
            name(str): the attribute name.
949

950 951
        Returns:
            int: the block index.
952
        """
W
Wu Yi 已提交
953
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
954

W
Wu Yi 已提交
955
    def _block_attr(self, name):
G
gongweibao 已提交
956 957 958 959 960 961 962 963 964 965
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
966
        id = self._block_attr_id(name)
G
gongweibao 已提交
967 968 969
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
970
    def _blocks_attr(self, name):
G
gongweibao 已提交
971 972 973 974 975 976 977 978 979 980
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
981
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
982 983 984 985 986
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
987
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
988 989 990 991 992 993 994 995 996 997
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
998
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
999

J
JiayiFeng 已提交
1000
    def all_attrs(self):
F
fengjiayi 已提交
1001
        """
1002 1003 1004
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1005
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1006 1007 1008 1009
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1010 1011
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1012
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1013 1014 1015
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1016
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1017 1018 1019 1020
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1021 1022
        return attr_map

Y
Yu Yang 已提交
1023

Y
Yu Yang 已提交
1024
class Block(object):
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1039
        use `Program._create_block()` to create a block.
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1054
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1055
        self.desc = program.desc.block(idx)
1056
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1057
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1058
        self.program = program
1059
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1060

1061
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1062 1063
        return self.to_string(True)

F
fengjiayi 已提交
1064 1065
    def to_string(self, throw_on_error, with_details=False):
        """
1066 1067
        Get debug string.

F
fengjiayi 已提交
1068 1069
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1070
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1071
            with_details(bool): more details about variables and parameters
1072 1073
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1074

1075 1076
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1077 1078 1079 1080
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1081
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1082 1083
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1084
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1085
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1086
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1087
            for op in self.ops:
F
fengjiayi 已提交
1088 1089
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1090 1091 1092
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1093 1094
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1095 1096
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1097 1098 1099

    __repr__ = __str__

Y
Yu Yang 已提交
1100 1101
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1102
        return self.desc.parent
Y
Yu Yang 已提交
1103

Y
Yu Yang 已提交
1104 1105 1106 1107
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1108
    def _set_forward_block_idx(self, idx):
1109 1110 1111 1112 1113 1114 1115 1116 1117
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1118
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1119

Y
Yu Yang 已提交
1120 1121
    @property
    def idx(self):
Y
Yu Yang 已提交
1122
        return self.desc.id
Y
Yu Yang 已提交
1123

Q
Qiao Longfei 已提交
1124
    def var(self, name):
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1138
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1139 1140 1141
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1142 1143
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1144
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1145
        return v
Q
Qiao Longfei 已提交
1146

X
Xin Pan 已提交
1147
    def _find_var_recursive(self, name):
1148 1149 1150 1151 1152 1153 1154
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1155
            Variable: the Variable with the giving name. Or None if not found.
1156
        """
Y
Yu Yang 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1181
        return None
Y
Yu Yang 已提交
1182

X
Xin Pan 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1202

M
minqiyang 已提交
1203
    def _clear_block(self):
M
minqiyang 已提交
1204
        assert _in_imperative_mode()
M
minqiyang 已提交
1205

M
minqiyang 已提交
1206 1207
        # TODO(minqiyang): move this to Variable and Operator's __del__
        self.desc._clear_block()
M
minqiyang 已提交
1208

M
minqiyang 已提交
1209 1210
        assert len(self.vars) == 0
        assert len(self.ops) == 0
M
minqiyang 已提交
1211

Q
Qiao Longfei 已提交
1212
    def all_parameters(self):
1213
        return list(self.iter_parameters())
1214

1215
    def iter_parameters(self):
M
minqiyang 已提交
1216
        return (item[1] for item in six.iteritems(self.vars)
1217
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1218

Y
Yu Yang 已提交
1219
    def create_var(self, *args, **kwargs):
1220
        var = Variable(block=self, *args, **kwargs)
1221 1222
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1223
        return var
Y
Yu Yang 已提交
1224

Q
Qiao Longfei 已提交
1225 1226 1227
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1228
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1229 1230
        """
        Rename variable in vars and ops' inputs and outputs
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1243
        """
M
minqiyang 已提交
1244 1245
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1246

T
typhoonzero 已提交
1247
        if not self.has_var(name):
1248
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1249 1250
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1251
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1252 1253 1254 1255 1256 1257 1258
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1259
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1260 1261 1262 1263
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1264
        orig_var_type = v.type
M
minqiyang 已提交
1265
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1266
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1267
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1268
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1269 1270 1271 1272
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1273
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1274 1275 1276 1277 1278 1279 1280
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1281
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1282 1283
            var = Variable(
                self,
T
typhoonzero 已提交
1284
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1285 1286 1287 1288
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1289
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1290 1291 1292
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1293
        self._sync_with_cpp()
1294
        return var
T
typhoonzero 已提交
1295

W
Wu Yi 已提交
1296 1297
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1298
        self.desc._remove_var(cpt.to_bytes(name))
1299 1300
        del self.vars[name]

Y
Yu Yang 已提交
1301 1302
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1303
        param = Parameter(global_block, *args, **kwargs)
1304
        if 'initializer' in kwargs:
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1325
        return param
Y
Yu Yang 已提交
1326

Y
Yu Yang 已提交
1327
    def append_op(self, *args, **kwargs):
1328 1329 1330 1331 1332 1333
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1334
        op_desc = self.desc.append_op()
1335 1336 1337 1338 1339 1340 1341
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1342 1343 1344 1345 1346 1347

        if _in_imperative_mode():
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
            # currently, we only support stop_gradient in imperative mode.
M
minqiyang 已提交
1348 1349 1350 1351
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.append(op)
M
minqiyang 已提交
1352

1353 1354
        return op

W
Wu Yi 已提交
1355
    def _insert_op(self, index, *args, **kwargs):
1356 1357 1358 1359 1360 1361 1362 1363 1364
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1365 1366
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1367 1368 1369 1370
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1371
    def _remove_op(self, index):
1372 1373 1374 1375 1376 1377 1378 1379 1380
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1381 1382
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1383 1384
        del self.ops[index]

W
Wu Yi 已提交
1385
    def _slice_ops(self, start, end):
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1396
        return self.ops[start:end]
Y
Yancey1989 已提交
1397

W
Wu Yi 已提交
1398 1399
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1400 1401 1402 1403 1404 1405 1406
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1407
        if _in_imperative_mode():
M
minqiyang 已提交
1408 1409 1410 1411
            _imperative_tracer().trace_op(op,
                                          kwargs.get("stop_gradient", False))
        else:
            self.ops.insert(0, op)
Y
Yu Yang 已提交
1412 1413
        return op

W
Wu Yi 已提交
1414
    def _sync_with_cpp(self):
1415
        """
1416 1417
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1418
        """
Q
Qiao Longfei 已提交
1419 1420 1421 1422 1423
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1424
        # sync variables removed from c++ end
1425
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1426
            if not self.desc.find_var(cpt.to_bytes(var)):
1427 1428
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1429
        # sync operators from cpp
1430 1431 1432 1433
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1450 1451 1452 1453 1454

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1455
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1456 1457 1458 1459 1460 1461 1462

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1476 1477 1478 1479
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1480
    def _copy_param_info_from(self, other):
1481
        """
1482 1483
        Copy the information of parameters from the other block.

1484
        Args:
1485 1486 1487 1488 1489
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1490 1491 1492 1493 1494

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1495 1496
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1497
        for p in other.iter_parameters():
1498 1499 1500
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1501
                raise ValueError("_copy_param_info_from should be invoked with "
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1514
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1515
                error_clip=p.error_clip,
1516 1517 1518
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1519
    def _clone_variable(self, var):
1520 1521
        """
        Clone a variable into current block.
1522

1523 1524 1525 1526
        Args:
            var: the variable to be cloned.

        Returns:
1527
            Variable: the new  variable cloned from 'var' in current block.
1528 1529
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1530 1531 1532 1533 1534
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1535 1536
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1537
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1538 1539 1540 1541 1542 1543
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1544 1545
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1546 1547 1548 1549 1550 1551 1552
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1553 1554
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1555
        return ret_var
1556

Y
Yu Yang 已提交
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

1653
    def remove_input_by_id(self, node_id):
1654 1655 1656 1657 1658 1659
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1660
        self.node.remove_input(node_id)
1661

1662
    def remove_input(self, node):
1663 1664 1665 1666
        """
        Remove a node from inputs.

        Args:
1667
            node(IrNode): the node being removed.
1668
        """
1669
        self.node.remove_input(node.node)
1670

1671
    def append_input(self, node):
1672 1673 1674 1675
        """
        Append a node in inputs.

        Args:
1676
            node(IrNode): the node being appended.
1677
        """
1678
        self.node.append_input(node.node)
1679 1680 1681 1682 1683 1684 1685 1686

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

1687
    def remove_output_by_id(self, node_id):
1688 1689 1690 1691 1692 1693
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
1694
        self.node.remove_output(node_id)
1695

1696
    def remove_output(self, node):
1697 1698 1699 1700
        """
        Remove a node from outputs.

        Args:
1701
            node(IrNode): the node being removed.
1702
        """
1703
        self.node.remove_output(node.node)
1704

1705
    def append_output(self, node):
1706 1707 1708 1709
        """
        Append a node in outputs.

        Args:
1710
            node(IrNode): the node being appended.
1711
        """
1712
        self.node.append_output(node.node)
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


1945 1946
class IrGraph(object):
    """
1947
    Python IrGraph. Beneath it is a core.Graph, which is used for
1948
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
1949 1950
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
1951 1952 1953 1954
    """

    def __init__(self, graph, for_test=False):
        """
1955 1956
        Construct an IrGraph using core.Graph.

1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

    def is_test(self):
1967 1968 1969
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
1970 1971
        return self._for_test

W
WangZhen 已提交
1972
    def all_nodes(self):
1973 1974 1975
        """
        Return all nodes included in the graph as a set.
        """
1976
        return {IrNode(node) for node in self.graph.nodes()}
1977

1978
    def all_var_nodes(self):
1979 1980 1981
        """
        Return all variable nodes included in the graph as a set.
        """
1982
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
1983

1984
    def all_persistable_nodes(self):
1985 1986 1987
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
1988 1989 1990 1991 1992
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
1993
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
1994

1995
    def all_op_nodes(self):
1996 1997 1998
        """
        Return all operator nodes included in the graph as a set.
        """
1999
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2000

W
WangZhen 已提交
2001 2002
    def var_node(self, name):
        """
2003 2004
        Get a variable node by name from the graph.

W
WangZhen 已提交
2005 2006
        Args:
            name(str): the name of the variable node.
2007

W
WangZhen 已提交
2008 2009 2010
        Raises:
            ValueError: The If input's type is not str, or this graph
            doesn't have a variable with the giving name.
2011

W
WangZhen 已提交
2012
        Returns:
2013
            IrVarNode: the variable node with the giving name.
W
WangZhen 已提交
2014 2015 2016 2017 2018 2019
        """
        if not isinstance(name, six.string_types):
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
        target_var_node = None
2020
        var_nodes = self.all_var_nodes()
W
WangZhen 已提交
2021 2022 2023 2024 2025 2026 2027
        for var_node in var_nodes:
            if var_node.name() == name:
                target_var_node = var_node
        if target_var_node is None:
            raise ValueError("var_node %s not in this graph" % name)
        return target_var_node

2028
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2040
            IrVarNode: the created persistable variable node.
2041
        """
2042 2043 2044 2045 2046
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2047
        return IrVarNode(self.graph.create_var_node(var_desc))
2048 2049

    def create_var_node(self, name, var_type, shape, var_dtype):
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2061
            IrVarNode: the created variable node.
2062 2063
        """

2064 2065 2066 2067
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2068
        return IrVarNode(self.graph.create_var_node(var_desc))
2069 2070

    def create_var_node_from_desc(self, var_desc):
2071 2072 2073 2074 2075 2076 2077 2078
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2079
            IrVarNode: the created variable node.
2080
        """
2081
        return IrVarNode(self.graph.create_var_node(var_desc))
2082 2083

    def create_op_node(self, op_type, attrs, inputs, outputs):
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2094
            IrOpNode: the created operator node.
2095
        """
2096 2097
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2098
        for attr, value in six.iteritems(attrs):
2099
            self._update_desc_attr(op_desc, attr, value)
2100
        for input_name, var_nodes in six.iteritems(inputs):
2101 2102 2103 2104
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2105
        for output_name, var_nodes in six.iteritems(outputs):
2106 2107 2108 2109
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2110
        return IrOpNode(self.graph.create_op_node(op_desc))
2111 2112

    def create_op_node_from_desc(self, op_desc):
2113 2114 2115 2116 2117 2118 2119
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2120
            IrOpNode: the created operator node.
2121
        """
2122
        return IrOpNode(self.graph.create_op_node(op_desc))
2123 2124

    def update_input_link(self, old_input_node, new_input_node, op_node):
2125 2126 2127 2128
        """
        Update the input's link of a operator node.

        Args:
2129 2130 2131
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2132
        """
2133 2134
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2135
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2136 2137 2138 2139
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2140
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2141 2142

    def link_to(self, node_in, node_out):
2143 2144 2145 2146
        """
        Connect two nodes.

        Args:
2147 2148
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2149
        """
2150
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2151
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2152 2153
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2154 2155

    def safe_remove_nodes(self, remove_nodes):
2156 2157 2158 2159 2160 2161 2162
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2163
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2164 2165 2166 2167
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2168 2169
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2170

W
WangZhen 已提交
2171
    def has_circle(self):
2172 2173 2174 2175 2176 2177
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2178 2179 2180
        return core.has_circle(self.graph)

    def graph_num(self):
2181 2182 2183 2184 2185 2186
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2187 2188 2189
        return core.graph_num(self.graph)

    def topology_sort(self):
2190 2191 2192 2193 2194 2195
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
2196
            set(IrNode): nodes in topology order.
2197
        """
2198 2199
        ordered_nodes = core.topology_sort(self.graph)
        return {IrNode(n) for n in ordered_nodes}
W
WangZhen 已提交
2200 2201

    def build_adjacency_list(self):
2202 2203 2204 2205
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2206
            dict{IrNode: set(IrNode)}: the adjacency list.
2207
        """
2208 2209 2210 2211 2212
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2213

2214 2215 2216 2217 2218 2219 2220 2221
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2222
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2223 2224 2225 2226 2227
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2228 2229 2230 2231 2232 2233 2234 2235 2236
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2237
        remove_ctr_vars = set()
2238
        if remove_ctr_var:
2239
            for node in self.all_var_nodes():
2240 2241 2242
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2243 2244
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2245 2246
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2247 2248 2249 2250 2251 2252
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
        """
        Convert the graph into a Program.

        Notes: When the graph includes backward operator nodes, the
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2274
        convert_pass = core.get_pass('graph_to_program_pass')
2275 2276
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2297
class Program(object):
D
dzhwinter 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2309
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2310 2311

    Returns:
Y
yuyang18 已提交
2312
        A empty program.
D
dzhwinter 已提交
2313 2314

    Examples:
Y
yuyang18 已提交
2315 2316 2317 2318 2319 2320
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
2321 2322 2323

    """

2324 2325
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2326 2327
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2328
        self._seed = 0
Y
yuyang18 已提交
2329
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
2330
        self._op_role_var = []
T
tangwei12 已提交
2331

2332 2333
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2334
        self._is_distributed = False
2335
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2336
        self._is_chief = False
2337 2338 2339
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2340
        self._endpoints = []
2341 2342 2343
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2344
        self._trainers_endpoints = []
2345
        # the distributed lookup table names
T
tangwei12 已提交
2346
        self._distributed_lookup_table = None
D
dzhwinter 已提交
2347
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2348
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2349
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2350 2351

    @property
D
dzhwinter 已提交
2352
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2353 2354
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2355
        return self.__is_mem_optimized
D
dzhwinter 已提交
2356

D
dzhwinter 已提交
2357 2358 2359
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2360 2361 2362

    @property
    def op_role(self):
Y
yuyang18 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2376 2377 2378
        return self._current_role

    @op_role.setter
D
dzhwinter 已提交
2379
    def op_role(self, role):
Y
yuyang18 已提交
2380 2381 2382 2383
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
2384 2385 2386 2387 2388 2389 2390
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
2391 2392 2393 2394
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
2395
        self._op_role_var = [var_name]
Y
yuyang18 已提交
2396

S
rename  
sneaxiy 已提交
2397
    @signature_safe_contextmanager
W
Wu Yi 已提交
2398
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2399 2400 2401 2402 2403 2404 2405
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2406
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2407 2408 2409 2410

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2411
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2412 2413
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2414 2415 2416
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
2417 2418
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2419 2420 2421 2422
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2423
        yield
X
Xin Pan 已提交
2424 2425
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
2426

S
rename  
sneaxiy 已提交
2427
    @signature_safe_contextmanager
X
Xin Pan 已提交
2428
    def _lr_schedule_guard(self, is_with_opt=False):
2429 2430 2431 2432 2433 2434 2435
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2436 2437 2438 2439
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2440 2441 2442 2443 2444 2445 2446

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2447 2448 2449 2450

        tmp_role = self._current_role
        tmp_var = self._op_role_var

2451 2452
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2453 2454
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2455 2456 2457
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
2458 2459
        self._op_role_var = tmp_var
        self._current_role = tmp_role
2460

2461
    def __str__(self):
Y
yuyang18 已提交
2462 2463 2464 2465 2466 2467 2468 2469 2470
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2471 2472
        return self.to_string(True)

F
fengjiayi 已提交
2473 2474 2475
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2476

F
fengjiayi 已提交
2477
        Args:
Y
yuyang18 已提交
2478 2479
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2480

Y
yuyang18 已提交
2481 2482 2483 2484
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2485 2486
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2487 2488 2489 2490

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2501 2502
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2503 2504
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2505

W
Wu Yi 已提交
2506
    def _get_desc(self):
Y
yuyang18 已提交
2507 2508 2509 2510 2511 2512 2513
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
2514 2515
        return self.desc

X
version  
Xin Pan 已提交
2516 2517 2518
    def _version(self):
        return self.desc._version()

2519
    def clone(self, for_test=False):
Y
yuyang18 已提交
2520 2521 2522
        """
        Create a new, duplicated program.

2523

Y
yuyang18 已提交
2524 2525 2526 2527
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
2528

Y
yuyang18 已提交
2529 2530 2531 2532
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
2533 2534 2535 2536 2537
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
2538 2539

        Args:
Y
yuyang18 已提交
2540 2541
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
2542

D
dzhwinter 已提交
2543
        Returns:
Y
yuyang18 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
2597 2598
        """
        if for_test:
X
Xin Pan 已提交
2599
            p = self._inference_optimize(prune_read_op=False)
2600
        else:
2601
            p = Program()
G
gongweibao 已提交
2602 2603
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
2604
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
2605 2606 2607
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
2608 2609 2610 2611

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
2612
            p._sync_with_cpp()
2613

W
Wu Yi 已提交
2614
        p._copy_param_info_from(self)
W
Wu Yi 已提交
2615
        p._copy_data_info_from(self)
2616
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
2617
        return p
2618

W
Wu Yi 已提交
2619
    def _prune(self, targets):
Y
yuyang18 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
2635 2636 2637 2638 2639 2640
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
2641 2642
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
2643
                    # and we need to find the current op that generate this
2644 2645 2646 2647 2648 2649 2650 2651
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

2652
                    t = t.op
2653 2654 2655 2656
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
2657
                else:
2658 2659
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
2660 2661 2662 2663

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
2664 2665 2666
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2667
        res._sync_with_cpp()
2668 2669
        return res

X
Xin Pan 已提交
2670
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
2671
        """
F
fengjiayi 已提交
2672 2673 2674 2675 2676
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

2677
        3. change the :code:`is_test`
Y
yuyang18 已提交
2678 2679 2680
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

2681
        Args:
X
Xin Pan 已提交
2682 2683
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
2684

Y
yuyang18 已提交
2685 2686 2687 2688 2689 2690
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
2691
        res = Program()
2692
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
2693 2694 2695 2696

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
2697
        if prune_read_op:
2698 2699 2700 2701 2702 2703 2704 2705 2706
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
2707
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
2708 2709

        # change all `is_test` attributes to True
M
minqiyang 已提交
2710
        for i in six.moves.range(res.desc.num_blocks()):
2711
            block = res.desc.block(i)
M
minqiyang 已提交
2712
            for j in six.moves.range(block.op_size()):
2713 2714
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
2715
                    op._set_attr('is_test', True)
M
minqiyang 已提交
2716 2717 2718
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
2719
        res._sync_with_cpp()
2720 2721
        return res

2722 2723
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
2724 2725 2726 2727 2728 2729 2730
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
2731
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
2732 2733 2734 2735

        Returns:
            Program: A deserialized program desc.
        """
2736 2737
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
2738
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
2739
        p._sync_with_cpp()
2740
        return p
Y
Yu Yang 已提交
2741

2742
    @staticmethod
2743
    def _construct_from_desc(desc):
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
2759 2760
    @property
    def random_seed(self):
Y
yuyang18 已提交
2761 2762 2763 2764 2765 2766
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
2767 2768
        return self._seed

Q
qiaolongfei 已提交
2769 2770
    @property
    def num_blocks(self):
Y
yuyang18 已提交
2771 2772 2773
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
2774 2775
        return self.desc.num_blocks()

D
dzhwinter 已提交
2776 2777 2778 2779 2780 2781
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
2782
    def __repr__(self):
2783
        return self.__str__()
2784

Y
Yu Yang 已提交
2785
    def global_block(self):
Y
yuyang18 已提交
2786 2787 2788
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
2789 2790
        return self.blocks[0]

Q
Qiao Longfei 已提交
2791
    def block(self, index):
Y
yuyang18 已提交
2792 2793 2794 2795 2796 2797 2798 2799
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
2800 2801
        return self.blocks[index]

Y
Yu Yang 已提交
2802
    def current_block(self):
Y
yuyang18 已提交
2803 2804 2805 2806
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
2807 2808
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
2809
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
2820
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2821 2822 2823
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2824 2825 2826 2827
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2828
    def _rollback(self):
Y
yuyang18 已提交
2829 2830 2831 2832 2833
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2834 2835
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2836
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2847 2848 2849
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2850
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2851

W
Wu Yi 已提交
2852
    def _copy_param_info_from(self, other):
2853
        """
2854
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2855

Y
yuyang18 已提交
2856 2857 2858
        Notes: This is a very low level API. Users should not invoke it
        directly.

2859 2860 2861 2862 2863 2864 2865
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2866
            raise TypeError("_copy_param_info_from should be invoked with "
2867 2868 2869
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2870
            raise ValueError("_copy_param_info_from should be invoked with two "
2871
                             "program, with represent the same topology")
W
Wu Yi 已提交
2872
        self.global_block()._copy_param_info_from(other.global_block())
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
2889
        self._parameters_on_pservers = other._parameters_on_pservers
2890
        self._endpoints = other._endpoints
2891
        self._ps_endpoint = other._ps_endpoint
2892 2893
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2894
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2895 2896
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2897

Y
yuyang18 已提交
2898 2899 2900
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2901 2902 2903 2904 2905 2906 2907
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2908
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2909 2910 2911
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2912
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2913
                             "program, with represent the same topology")
2914
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2915 2916 2917
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2918
    def list_vars(self):
Y
yuyang18 已提交
2919 2920 2921 2922 2923 2924
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2925
        for each_block in self.blocks:
2926
            for each_var in list(each_block.vars.values()):
2927 2928
                yield each_var

Y
Yu Yang 已提交
2929

Y
Yu Yang 已提交
2930
class Parameter(Variable):
2931
    """
2932
    Parameter is derived from Variable. A parameter is a persistable
2933
    Variable, and will be updated by optimizers after each iteration.
2934
    The training of a neural network is essentially the updating of
2935 2936
    its parameters.

2937
    Relative to a general Variable, a Parameter has several its own
2938 2939
    member variables:

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2952 2953
    """

Y
Yu Yang 已提交
2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2964 2965 2966

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2967 2968 2969 2970
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2971 2972
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2973
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2974

W
wanghaoshuang 已提交
2975
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2976

F
fengjiayi 已提交
2977 2978 2979
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2980 2981 2982
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2983

F
update  
fengjiayi 已提交
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2998
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2999
            for attr_name in additional_attr:
3000 3001
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3002 3003
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3004 3005 3006 3007
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3008

Y
Yu Yang 已提交
3009
# program is a global instance.
Y
Yu Yang 已提交
3010 3011
_main_program_ = Program()
_startup_program_ = Program()
3012

3013

3014
def default_startup_program():
Y
Yu Yang 已提交
3015
    """
Y
yuyang18 已提交
3016 3017 3018 3019 3020 3021 3022 3023 3024
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3025

Y
Yu Yang 已提交
3026 3027 3028
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
3029
    return _startup_program_
3030

3031

3032
def default_main_program():
Y
Yu Yang 已提交
3033
    """
Y
yuyang18 已提交
3034 3035 3036 3037 3038 3039 3040 3041 3042
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3043

Y
Yu Yang 已提交
3044 3045 3046
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
3047
    return _main_program_
Y
Yu Yang 已提交
3048 3049 3050 3051 3052


def switch_main_program(program):
    """
    Switch the main program to a new program.
3053

Y
Yu Yang 已提交
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3068
    Switch the startup program to a new program
Y
Yu Yang 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3081
@signature_safe_contextmanager
Y
Yu Yang 已提交
3082 3083
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
3084 3085 3086
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
3087

Y
Yu Yang 已提交
3088
    Examples:
Y
yuyang18 已提交
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3099

Y
Yu Yang 已提交
3100
    Examples:
Y
yuyang18 已提交
3101 3102 3103 3104 3105 3106

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
3107

Y
Yu Yang 已提交
3108
    Args:
Y
yuyang18 已提交
3109
        main_program(Program): New main program inside `with` statement.
3110
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3124 3125


W
Wu Yi 已提交
3126
def _get_var(name, program=None):
X
xuwei06 已提交
3127
    """
Y
yuyang18 已提交
3128
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3129

X
xuwei06 已提交
3130 3131 3132
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3133
        If None, default_global_program() will be used.
X
xuwei06 已提交
3134 3135 3136 3137 3138 3139 3140

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3141
    assert isinstance(program, Program)
X
xuwei06 已提交
3142 3143

    return program.global_block().var(name)
3144 3145


S
rename  
sneaxiy 已提交
3146
@signature_safe_contextmanager
3147 3148 3149 3150
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
M
minqiyang 已提交
3151

3152
    yield
P
Paddle CI 已提交
3153

3154
    _imperative_tracer_ = tmp_trace
P
Paddle CI 已提交
3155 3156


S
rename  
sneaxiy 已提交
3157
@signature_safe_contextmanager
P
Paddle CI 已提交
3158
def _imperative_place_guard(place):
M
minqiyang 已提交
3159 3160 3161
    global _imperative_current_expected_place_
    tmp_place = _imperative_current_expected_place_
    _imperative_current_expected_place_ = place
M
minqiyang 已提交
3162

3163
    yield
M
minqiyang 已提交
3164

M
minqiyang 已提交
3165
    _imperative_current_expected_place_ = tmp_place