framework.py 76.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
P
peizhilin 已提交
19
import os
F
fengjiayi 已提交
20
import re
21
import six
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
P
peizhilin 已提交
30 31 32 33 34 35 36 37 38 39 40 41
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
42
except Exception as e:
43
    raise e
44
from . import unique_name
Y
Yu Yang 已提交
45

46
__all__ = [
47 48 49 50
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
51
    'name_scope',
52
]
Y
Yu Yang 已提交
53

Q
qiaolongfei 已提交
54 55 56 57
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
58 59
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

60 61 62 63 64 65 66 67 68 69
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
70

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
110

111 112 113 114
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
115 116
          with name_scope("attention"):
             ...
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
136 137 138
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
139 140 141 142


def grad_var_name(var_name):
    """
143 144
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
145 146 147
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
148

149
def convert_np_dtype_to_dtype_(np_dtype):
150 151
    """
    Convert the data type in numpy to the data type in Paddle
152

153
    Args:
154
        np_dtype(np.dtype): the data type in numpy.
155

156 157
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
158 159

    """
160 161
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
162
        return core.VarDesc.VarType.FP32
163
    elif dtype == np.float64:
164
        return core.VarDesc.VarType.FP64
165
    elif dtype == np.float16:
166
        return core.VarDesc.VarType.FP16
167
    elif dtype == np.int32:
168
        return core.VarDesc.VarType.INT32
169
    elif dtype == np.int16:
170
        return core.VarDesc.VarType.INT16
171
    elif dtype == np.int64:
172
        return core.VarDesc.VarType.INT64
173
    elif dtype == np.bool:
174
        return core.VarDesc.VarType.BOOL
175 176
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
177 178
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
179 180
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
181
    else:
M
minqiyang 已提交
182
        raise ValueError("Not supported numpy dtype %s" % dtype)
183 184 185


def dtype_is_floating(dtype):
186 187 188
    """
    Check the data type is floating or not.
    Args:
189
        dtype(np.dtype|core.VarDesc.VarType): data type.
190 191 192 193 194
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
195
    if not isinstance(dtype, core.VarDesc.VarType):
196 197
        dtype = convert_np_dtype_to_dtype_(dtype)

198 199 200 201
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
202 203


Y
Yang Yang(Tony) 已提交
204
def _debug_string_(proto, throw_on_error=True):
205 206 207 208 209 210 211 212 213 214 215
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
216
    error_fields = list()
Y
Yang Yang(Tony) 已提交
217
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
218 219
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
220 221 222
    return proto.__str__()


X
Xin Pan 已提交
223
class Variable(object):
224
    """
225 226 227
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
228
    two variables in different blocks could have the same name.
229

230 231
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
232

233
    Most of a Variable's member variables can be setted to be None. It mean
234
    it is not available or will be specified later.
235 236

    Args:
237
        block(Block): The block that the variable belongs to.
238 239
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
240 241
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
242
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
243
            Some kinds of variable do not contain shape, just set it to None.
244 245 246
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
247
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
248
            series data.
249
            Default: None
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
272 273
    """

Y
Yu Yang 已提交
274 275
    def __init__(self,
                 block,
Y
Yu Yang 已提交
276
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
277 278 279 280
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
281
                 capacity=None,
Q
QI JUN 已提交
282
                 persistable=None,
F
fengjiayi 已提交
283
                 error_clip=None,
Y
Yu Yang 已提交
284
                 stop_gradient=False,
F
fengjiayi 已提交
285
                 is_data=False,
Y
Yu Yang 已提交
286
                 **kwargs):
Y
Yu Yang 已提交
287
        self.block = block
F
fengjiayi 已提交
288
        self.error_clip = error_clip
Y
Yu Yang 已提交
289 290

        if name is None:
Y
Yu Yang 已提交
291
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
292
        is_new_var = False
M
minqiyang 已提交
293
        name = cpt.to_text(name)
M
minqiyang 已提交
294
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
295 296

        if self.desc is None:
M
minqiyang 已提交
297
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
298
            is_new_var = True
Y
Yu Yang 已提交
299

Y
Yu Yang 已提交
300 301 302 303 304 305 306 307
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
308
        if shape is not None:
Y
Yu Yang 已提交
309
            if is_new_var:
310
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
311 312 313 314 315 316 317 318
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
319
        if dtype is not None:
320
            if not isinstance(dtype, core.VarDesc.VarType):
321
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
322
            if is_new_var:
F
fengjiayi 已提交
323
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
324
            else:
F
fengjiayi 已提交
325
                old_dtype = self.dtype
Q
QI JUN 已提交
326
                if dtype != old_dtype:
Y
Yu Yang 已提交
327 328 329 330 331
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
332 333

        if lod_level is not None:
Y
Yu Yang 已提交
334
            if is_new_var:
335
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
336 337 338 339 340 341 342
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
343 344 345 346 347 348 349 350 351 352 353
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

354 355 356 357 358 359 360 361
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
362
        self.block.vars[name] = self
Y
Yu Yang 已提交
363
        self.op = None
F
fengjiayi 已提交
364
        self.is_data = is_data
X
Xin Pan 已提交
365 366 367
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
368
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
369

370
    def _numpy(self):
M
minqiyang 已提交
371
        print("get_variable_tensor", self.desc.name())
M
minqiyang 已提交
372
        scope = _imperative_tracer().get_scope()
373 374 375 376
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

    def _backward(self):
377
        scope = _imperative_tracer().get_scope()
X
Xin Pan 已提交
378
        self._ivar._run_backward(scope)
379 380

    def _gradient(self):
X
Xin Pan 已提交
381
        return np.array(self._ivar._grad())
382

M
minqiyang 已提交
383 384 385 386 387 388 389 390
    @property
    def _value(self):
        return self._ivar.value

    @_value.setter
    def _value(self, v):
        self._ivar.value = v

391
    def __str__(self):
Y
Yang Yang(Tony) 已提交
392 393
        return self.to_string(True)

F
update  
fengjiayi 已提交
394
    def to_string(self, throw_on_error, with_details=False):
395 396 397 398
        """
        Get debug string.

        Args:
399 400
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
401
            with_details(bool): more details about variables and parameters
402 403
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
404

405 406
        Returns:
            str: The debug string.
407
        """
F
update  
fengjiayi 已提交
408 409
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
410
        protostr = self.desc.serialize_to_string()
411
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
412 413 414 415
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
416 417
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
418
        return res_str
419 420 421

    __repr__ = __str__

W
Wu Yi 已提交
422
    def _set_desc(self, input):
423 424 425 426 427 428 429 430 431
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
432 433
        self.desc = input

434 435 436 437 438 439 440 441
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

442 443 444 445
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
446 447 448 449
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
450 451
    @property
    def name(self):
M
minqiyang 已提交
452
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
453

T
typhoonzero 已提交
454 455 456 457
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
458 459 460
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
461
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
462 463

    @property
F
fengjiayi 已提交
464 465
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
466 467 468

    @property
    def lod_level(self):
469
        return self.desc.lod_level()
Y
Yu Yang 已提交
470

Y
Yu Yang 已提交
471 472 473 474
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
475
    def _set_error_clip(self, error_clip):
476 477 478 479 480 481 482 483 484
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
485 486
        self.error_clip = error_clip

Y
Yu Yang 已提交
487

F
fengjiayi 已提交
488 489 490
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
491

492 493
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
494 495 496 497
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
498
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
499 500 501 502 503
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
504 505 506 507
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
508 509 510 511 512 513 514 515 516
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
517
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
518 519 520 521 522 523
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
524 525 526 527 528 529 530 531
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
532 533
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
534 535
        return self.op_proto_map[type]

536 537 538 539
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
540
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
541
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
542 543
        }

F
fengjiayi 已提交
544

X
Xin Pan 已提交
545
class Operator(object):
546
    """
547 548 549 550 551 552 553
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
554
        type(str): The type of operator. Default None.
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
575
        Block.append_op or Block._prepend_op instead.
576 577 578 579 580 581 582 583 584 585

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
586
    """
587 588 589
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
590 591
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
592
    }
593

Y
Yu Yang 已提交
594 595
    def __init__(self,
                 block,
Y
Yu Yang 已提交
596
                 desc,
Y
Yu Yang 已提交
597 598 599
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
600 601
                 attrs=None,
                 stop_gradient=False):
Y
Yu Yang 已提交
602
        self.block = block
Y
Yu Yang 已提交
603
        self.desc = desc
G
gongweibao 已提交
604 605 606 607 608
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
609 610 611 612
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
613 614
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
615 616 617

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
618 619
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
620

G
gongweibao 已提交
621 622
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
623

F
fengjiayi 已提交
624 625 626 627 628
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
629
        self.desc.set_type(type)
F
fengjiayi 已提交
630
        proto = OpProtoHolder.instance().get_op_proto(type)
631

632 633 634
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
635 636
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
637
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
638 639
                    return True
            return False
Q
QI JUN 已提交
640

Y
Yang Yang(Tony) 已提交
641 642
        if inputs is not None:
            for in_proto in proto.inputs:
M
minqiyang 已提交
643
                print("create op: find_name", in_proto.name)
Y
Yang Yang(Tony) 已提交
644 645 646 647 648
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
649 650 651 652
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
653 654
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
655 656 657
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
658
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
659
                            in_arg_names.append(arg)
660 661
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
662
                        else:
M
minqiyang 已提交
663
                            in_arg_names.append(cpt.to_text(arg.name))
664
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
665 666
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
667

Y
Yu Yang 已提交
668
        if outputs is not None:
669 670 671 672 673 674 675
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
676 677
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
678 679 680
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
681

F
fengjiayi 已提交
682
            for out_proto in proto.outputs:
683 684 685 686
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
687 688
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
689 690 691
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
692
                    out_arg_names.append(cpt.to_text(arg.name))
693 694
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
695

G
gongweibao 已提交
696 697
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
698
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
699
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
700
                attr_name = attr.name
G
gongweibao 已提交
701
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
702
                    continue
G
gongweibao 已提交
703
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
704 705
                self._update_desc_attr(attr_name, attr_val)

706
        self.desc.check_attrs()
M
minqiyang 已提交
707

W
Wu Yi 已提交
708
        if self._has_kernel(type):
Q
QI JUN 已提交
709
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
710
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
711

X
Xin Pan 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
            self.inputs = []
            if inputs is not None:
                for inp in inputs.values():
                    if isinstance(inp, Variable):
                        self.inputs.append(inp)
                    elif isinstance(inp, list) or isinstance(inp, tuple):
                        self.inputs.extend(inp[:])
            self.outputs = []
            if outputs is not None:
                for out in outputs.values():
                    if isinstance(out, Variable):
                        self.outputs.append(out)
                    elif isinstance(out, list) or isinstance(out, tuple):
                        self.outputs.extend(out[:])
F
fengjiayi 已提交
729

W
Wu Yi 已提交
730
    def _has_kernel(self, op_type):
731 732
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
733
    def to_string(self, throw_on_error):
734
        """
735 736
        Get debug string.

737
        Args:
738 739
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
740

741 742
        Returns:
            str: The debug string.
743 744

        """
745
        protostr = self.desc.serialize_to_string()
746
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
747 748 749 750
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
751 752 753

    __repr__ = __str__

F
fengjiayi 已提交
754 755 756 757 758
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
759
        """
760
        Get the input arguments according to the input parameter name.
761

762 763
        Args:
            name(str): The input parameter name.
764

765 766 767
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
768
        """
F
fengjiayi 已提交
769 770
        return self.desc.input(name)

W
Wu Yi 已提交
771
    def _rename_input(self, old_name, new_name):
772 773 774 775 776 777 778 779 780 781
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
782
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
783

W
Wu Yi 已提交
784
    def _rename_output(self, old_name, new_name):
785 786 787 788 789 790 791 792 793 794
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
795
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
796

F
fengjiayi 已提交
797 798 799 800
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
801 802 803 804 805 806 807 808
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
809
    def output(self, name):
810
        """
811
        Get output arguments by the output parameter name.
812

813 814
        Args:
            name(str): The output parameter name.
815

816 817 818
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
819
        """
F
fengjiayi 已提交
820 821 822 823 824 825
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

826 827 828 829 830 831 832 833
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
834
    def has_attr(self, name):
835
        """
836 837
        Whether this Operator has the attribute with name or not.

838
        Args:
839
            name(str): the attribute name.
840

841 842
        Returns:
            bool: True if has this attribute.
843 844

        """
F
fengjiayi 已提交
845 846 847
        return self.desc.has_attr(name)

    def attr_type(self, name):
848
        """
849
        Get the type of attribute by attribute's name.
850

851 852
        Args:
            name(str): the attribute name.
853

854 855
        Returns:
            core.AttrType: the attribute type.
856
        """
F
fengjiayi 已提交
857 858
        return self.desc.attr_type(name)

W
Wu Yi 已提交
859
    def _set_attr(self, name, val):
860 861 862 863 864 865 866 867 868 869
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
883 884
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
885 886
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
887
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
888 889 890 891
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
892
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
893

F
fengjiayi 已提交
894 895 896 897 898
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
899
        """
900 901
        Get the attribute by name.

902
        Args:
903
            name(str): the attribute name.
904

905 906
        Returns:
            bool|int|str|float|list: The attribute value. The return value
907 908
            can be any valid attribute type.
        """
F
fengjiayi 已提交
909
        return self.desc.attr(name)
Y
Yu Yang 已提交
910

W
Wu Yi 已提交
911
    def _block_attr_id(self, name):
912
        """
G
gongweibao 已提交
913
        Get the block attribute's id by name.
914

915 916
        Args:
            name(str): the attribute name.
917

918 919
        Returns:
            int: the block index.
920
        """
W
Wu Yi 已提交
921
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
922

W
Wu Yi 已提交
923
    def _block_attr(self, name):
G
gongweibao 已提交
924 925 926 927 928 929 930 931 932 933
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
934
        id = self._block_attr_id(name)
G
gongweibao 已提交
935 936 937
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
938
    def _blocks_attr(self, name):
G
gongweibao 已提交
939 940 941 942 943 944 945 946 947 948
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
949
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
950 951 952 953 954
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
955
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
956 957 958 959 960 961 962 963 964 965
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
966
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
967

J
JiayiFeng 已提交
968
    def all_attrs(self):
F
fengjiayi 已提交
969
        """
970 971 972
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
973
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
974 975 976 977
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
978 979
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
980
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
981 982 983
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
984
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
985 986 987 988
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
989 990
        return attr_map

Y
Yu Yang 已提交
991

Y
Yu Yang 已提交
992
class Block(object):
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1007
        use `Program._create_block()` to create a block.
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1022
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1023
        self.desc = program.desc.block(idx)
1024
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1025
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1026
        self.program = program
1027
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1028

1029
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1030 1031
        return self.to_string(True)

F
fengjiayi 已提交
1032 1033
    def to_string(self, throw_on_error, with_details=False):
        """
1034 1035
        Get debug string.

F
fengjiayi 已提交
1036 1037
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1038
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1039
            with_details(bool): more details about variables and parameters
1040 1041
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1042

1043 1044
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1045 1046 1047 1048
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1049
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1050 1051
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1052
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1053
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1054
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1055
            for op in self.ops:
F
fengjiayi 已提交
1056 1057
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1058 1059 1060
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1061 1062
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1063 1064
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1065 1066 1067

    __repr__ = __str__

Y
Yu Yang 已提交
1068 1069
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1070
        return self.desc.parent
Y
Yu Yang 已提交
1071

Y
Yu Yang 已提交
1072 1073 1074 1075
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1076
    def _set_forward_block_idx(self, idx):
1077 1078 1079 1080 1081 1082 1083 1084 1085
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1086
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1087

Y
Yu Yang 已提交
1088 1089
    @property
    def idx(self):
Y
Yu Yang 已提交
1090
        return self.desc.id
Y
Yu Yang 已提交
1091

Q
Qiao Longfei 已提交
1092
    def var(self, name):
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1106
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1107 1108 1109
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1110 1111
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1112
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1113
        return v
Q
Qiao Longfei 已提交
1114

X
Xin Pan 已提交
1115
    def _find_var_recursive(self, name):
1116 1117 1118 1119 1120 1121 1122
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1123
            Variable: the Variable with the giving name. Or None if not found.
1124
        """
Y
Yu Yang 已提交
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1149
        return None
Y
Yu Yang 已提交
1150

X
Xin Pan 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1170

Q
Qiao Longfei 已提交
1171
    def all_parameters(self):
1172
        return list(self.iter_parameters())
1173

1174
    def iter_parameters(self):
M
minqiyang 已提交
1175
        return (item[1] for item in six.iteritems(self.vars)
1176
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1177

Y
Yu Yang 已提交
1178
    def create_var(self, *args, **kwargs):
1179
        var = Variable(block=self, *args, **kwargs)
1180
        if 'initializer' in kwargs:
M
minqiyang 已提交
1181
            print("initializer, ", type(kwargs['initializer']))
1182
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1183
        return var
Y
Yu Yang 已提交
1184

Q
Qiao Longfei 已提交
1185 1186 1187
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1188
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1189 1190
        """
        Rename variable in vars and ops' inputs and outputs
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1203
        """
M
minqiyang 已提交
1204 1205
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1206

T
typhoonzero 已提交
1207
        if not self.has_var(name):
1208
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1209 1210
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1211
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1212 1213 1214 1215 1216 1217 1218
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1219
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1220 1221 1222 1223
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1224
        orig_var_type = v.type
M
minqiyang 已提交
1225
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1226
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1227
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1228
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1229 1230 1231 1232
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1233
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1234 1235 1236 1237 1238 1239 1240
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1241
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1242 1243
            var = Variable(
                self,
T
typhoonzero 已提交
1244
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1245 1246 1247 1248
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1249
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1250 1251 1252
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1253
        self._sync_with_cpp()
1254
        return var
T
typhoonzero 已提交
1255

W
Wu Yi 已提交
1256 1257
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1258
        self.desc._remove_var(cpt.to_bytes(name))
1259 1260
        del self.vars[name]

Y
Yu Yang 已提交
1261 1262
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1263
        param = Parameter(global_block, *args, **kwargs)
1264
        if 'initializer' in kwargs:
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1285
        return param
Y
Yu Yang 已提交
1286

Y
Yu Yang 已提交
1287
    def append_op(self, *args, **kwargs):
1288 1289 1290 1291 1292 1293
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1294
        op_desc = self.desc.append_op()
1295
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
M
minqiyang 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        print("op inputs: ", [v._numpy() for v in op.inputs])
        print("op inputs: ", [v for v in op.inputs])
        import sys
        sys.stdout.flush()
        for v in op.inputs:
            v._ivar._print_var_pointer()
        print("print var pointer end")
        import sys
        sys.stdout.flush()

1306
        if _in_imperative_mode():
X
Xin Pan 已提交
1307
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1308 1309
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1310 1311 1312
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1313
    def _insert_op(self, index, *args, **kwargs):
1314 1315 1316 1317 1318 1319 1320 1321 1322
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1323 1324
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1325 1326 1327 1328
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1329
    def _remove_op(self, index):
1330 1331 1332 1333 1334 1335 1336 1337 1338
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1339 1340
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1341 1342
        del self.ops[index]

W
Wu Yi 已提交
1343
    def _slice_ops(self, start, end):
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1354
        return self.ops[start:end]
Y
Yancey1989 已提交
1355

W
Wu Yi 已提交
1356 1357
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1358
        op = Operator(self, op_desc, *args, **kwargs)
M
minqiyang 已提交
1359 1360
        if _in_imperative_mode():
            _imperative_tracer().trace(op.iop, [v._ivar for v in op.inputs],
M
minqiyang 已提交
1361 1362
                                       [v._ivar for v in op.outputs], self.desc,
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1363 1364 1365 1366
            print([v.name for v in op.outputs])
            for v in op.outputs:
                v._ivar._print_var_pointer()
            print("fill_constant end")
Q
qiaolongfei 已提交
1367
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1368 1369
        return op

W
Wu Yi 已提交
1370
    def _sync_with_cpp(self):
1371
        """
1372 1373
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1374
        """
Q
Qiao Longfei 已提交
1375 1376 1377 1378 1379
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1380
        # sync variables removed from c++ end
1381
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1382
            if not self.desc.find_var(cpt.to_bytes(var)):
1383 1384
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1385
        # sync operators from cpp
1386 1387 1388 1389
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1406 1407 1408 1409 1410

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1411
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1412 1413 1414 1415 1416 1417 1418

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1432 1433 1434 1435
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1436
    def _copy_param_info_from(self, other):
1437
        """
1438 1439
        Copy the information of parameters from the other block.

1440
        Args:
1441 1442 1443 1444 1445
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1446 1447 1448 1449 1450

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1451 1452
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1453
        for p in other.iter_parameters():
1454 1455 1456
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1457
                raise ValueError("_copy_param_info_from should be invoked with "
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1470
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1471
                error_clip=p.error_clip,
1472 1473 1474
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1475
    def _clone_variable(self, var):
1476 1477
        """
        Clone a variable into current block.
1478

1479 1480 1481 1482
        Args:
            var: the variable to be cloned.

        Returns:
1483
            Variable: the new  variable cloned from 'var' in current block.
1484 1485
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1486 1487 1488 1489 1490
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1491 1492
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1493
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1494 1495 1496 1497 1498 1499
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1500 1501
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1502 1503 1504 1505 1506 1507 1508
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1509 1510
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1511
        return ret_var
1512

Y
Yu Yang 已提交
1513 1514

class Program(object):
D
dzhwinter 已提交
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1526
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1527 1528

    Returns:
Y
yuyang18 已提交
1529
        A empty program.
D
dzhwinter 已提交
1530 1531

    Examples:
Y
yuyang18 已提交
1532 1533 1534 1535 1536 1537
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1538 1539 1540

    """

1541 1542
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1543 1544
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1545
        self._seed = 0
Y
yuyang18 已提交
1546
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1547
        self._op_role_var = []
T
tangwei12 已提交
1548 1549 1550 1551

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1552
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1553
        self._endpoints = []
1554
        self._trainers_endpoints = []
T
tangwei12 已提交
1555
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1556 1557 1558

    @property
    def op_role(self):
Y
yuyang18 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1572 1573 1574 1575 1576 1577 1578 1579
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1580 1581 1582 1583 1584 1585 1586
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1587 1588 1589 1590
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1591
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1592 1593

    @contextlib.contextmanager
W
Wu Yi 已提交
1594
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1595 1596 1597 1598 1599 1600 1601
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1602
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1603 1604 1605 1606

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1607
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1608 1609
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1610 1611 1612
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1613 1614
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1615 1616 1617 1618
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1619
        yield
X
Xin Pan 已提交
1620 1621
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1622

1623
    @contextlib.contextmanager
X
Xin Pan 已提交
1624
    def _lr_schedule_guard(self, is_with_opt=False):
1625 1626 1627 1628 1629 1630 1631
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1632 1633 1634 1635
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1636 1637 1638 1639 1640 1641 1642

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1643 1644 1645 1646

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1647 1648
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1649 1650
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1651 1652 1653
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1654 1655
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1656

1657
    def __str__(self):
Y
yuyang18 已提交
1658 1659 1660 1661 1662 1663 1664 1665 1666
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1667 1668
        return self.to_string(True)

F
fengjiayi 已提交
1669 1670 1671
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1672

F
fengjiayi 已提交
1673
        Args:
Y
yuyang18 已提交
1674 1675
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1676

Y
yuyang18 已提交
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1697 1698
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1699 1700
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1701

W
Wu Yi 已提交
1702
    def _get_desc(self):
Y
yuyang18 已提交
1703 1704 1705 1706 1707 1708 1709
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1710 1711
        return self.desc

X
version  
Xin Pan 已提交
1712 1713 1714
    def _version(self):
        return self.desc._version()

1715
    def clone(self, for_test=False):
Y
yuyang18 已提交
1716 1717 1718
        """
        Create a new, duplicated program.

1719

Y
yuyang18 已提交
1720 1721 1722 1723
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1724

Y
yuyang18 已提交
1725 1726 1727 1728
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1729 1730 1731 1732 1733
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1734 1735

        Args:
Y
yuyang18 已提交
1736 1737
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1738

D
dzhwinter 已提交
1739
        Returns:
Y
yuyang18 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1793 1794
        """
        if for_test:
X
Xin Pan 已提交
1795
            p = self._inference_optimize(prune_read_op=False)
1796
        else:
1797
            p = Program()
G
gongweibao 已提交
1798 1799
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1800
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1801 1802 1803
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1804 1805 1806 1807

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1808
            p._sync_with_cpp()
1809

W
Wu Yi 已提交
1810
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1811
        p._copy_data_info_from(self)
1812
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1813
        return p
1814

W
Wu Yi 已提交
1815
    def _prune(self, targets):
Y
yuyang18 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1831 1832 1833 1834 1835 1836
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1837 1838
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1839
                    # and we need to find the current op that generate this
1840 1841 1842 1843 1844 1845 1846 1847
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1848
                    t = t.op
1849 1850 1851 1852
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1853
                else:
1854 1855
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1856 1857 1858 1859

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1860 1861 1862
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1863
        res._sync_with_cpp()
1864 1865
        return res

X
Xin Pan 已提交
1866
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1867
        """
F
fengjiayi 已提交
1868 1869 1870 1871 1872
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1873
        3. change the :code:`is_test`
Y
yuyang18 已提交
1874 1875 1876
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1877
        Args:
X
Xin Pan 已提交
1878 1879
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1880

Y
yuyang18 已提交
1881 1882 1883 1884 1885 1886
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1887
        res = Program()
1888
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1889 1890 1891 1892

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1893
        if prune_read_op:
1894 1895 1896 1897 1898 1899 1900 1901 1902
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1903
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1904 1905

        # change all `is_test` attributes to True
M
minqiyang 已提交
1906
        for i in six.moves.range(res.desc.num_blocks()):
1907
            block = res.desc.block(i)
M
minqiyang 已提交
1908
            for j in six.moves.range(block.op_size()):
1909 1910
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1911
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1912 1913 1914
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1915
        res._sync_with_cpp()
1916 1917
        return res

1918 1919
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1920 1921 1922 1923 1924 1925 1926
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1927
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1928 1929 1930 1931

        Returns:
            Program: A deserialized program desc.
        """
1932 1933
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1934
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1935
        p._sync_with_cpp()
1936
        return p
Y
Yu Yang 已提交
1937

D
dzhwinter 已提交
1938 1939
    @property
    def random_seed(self):
Y
yuyang18 已提交
1940 1941 1942 1943 1944 1945
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1946 1947
        return self._seed

Q
qiaolongfei 已提交
1948 1949
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1950 1951 1952
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1953 1954
        return self.desc.num_blocks()

D
dzhwinter 已提交
1955 1956 1957 1958 1959 1960
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1961
    def __repr__(self):
1962
        return self.__str__()
1963

Y
Yu Yang 已提交
1964
    def global_block(self):
Y
yuyang18 已提交
1965 1966 1967
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1968 1969
        return self.blocks[0]

Q
Qiao Longfei 已提交
1970
    def block(self, index):
Y
yuyang18 已提交
1971 1972 1973 1974 1975 1976 1977 1978
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1979 1980
        return self.blocks[index]

Y
Yu Yang 已提交
1981
    def current_block(self):
Y
yuyang18 已提交
1982 1983 1984 1985
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1986 1987
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1988
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1999
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
2000 2001 2002
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
2003 2004 2005 2006
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2007
    def _rollback(self):
Y
yuyang18 已提交
2008 2009 2010 2011 2012
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2013 2014
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2015
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2026 2027 2028
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2029
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2030

W
Wu Yi 已提交
2031
    def _copy_param_info_from(self, other):
2032
        """
2033
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2034

Y
yuyang18 已提交
2035 2036 2037
        Notes: This is a very low level API. Users should not invoke it
        directly.

2038 2039 2040 2041 2042 2043 2044
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2045
            raise TypeError("_copy_param_info_from should be invoked with "
2046 2047 2048
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2049
            raise ValueError("_copy_param_info_from should be invoked with two "
2050
                             "program, with represent the same topology")
W
Wu Yi 已提交
2051
        self.global_block()._copy_param_info_from(other.global_block())
2052

2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2072
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2073 2074
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2075

Y
yuyang18 已提交
2076 2077 2078
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2079 2080 2081 2082 2083 2084 2085
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2086
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2087 2088 2089
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2090
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2091
                             "program, with represent the same topology")
2092
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2093 2094 2095
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2096
    def list_vars(self):
Y
yuyang18 已提交
2097 2098 2099 2100 2101 2102
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2103
        for each_block in self.blocks:
2104
            for each_var in list(each_block.vars.values()):
2105 2106
                yield each_var

Y
Yu Yang 已提交
2107

Y
Yu Yang 已提交
2108
class Parameter(Variable):
2109
    """
2110
    Parameter is derived from Variable. A parameter is a persistable
2111
    Variable, and will be updated by optimizers after each iteration.
2112
    The training of a neural network is essentially the updating of
2113 2114
    its parameters.

2115
    Relative to a general Variable, a Parameter has several its own
2116 2117
    member variables:

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2130 2131
    """

Y
Yu Yang 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2142 2143 2144

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2145 2146 2147 2148
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2149 2150
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2151
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2152

W
wanghaoshuang 已提交
2153
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2154

F
fengjiayi 已提交
2155 2156 2157
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2158 2159 2160
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2161

F
update  
fengjiayi 已提交
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2176
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2177
            for attr_name in additional_attr:
2178 2179
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2180 2181
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2182 2183 2184 2185
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2186

Y
Yu Yang 已提交
2187
# program is a global instance.
Y
Yu Yang 已提交
2188 2189
_main_program_ = Program()
_startup_program_ = Program()
2190

2191

2192
def default_startup_program():
Y
Yu Yang 已提交
2193
    """
Y
yuyang18 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2203

Y
Yu Yang 已提交
2204 2205 2206
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2207
    return _startup_program_
2208

2209

2210
def default_main_program():
Y
Yu Yang 已提交
2211
    """
Y
yuyang18 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2221

Y
Yu Yang 已提交
2222 2223 2224
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2225
    return _main_program_
Y
Yu Yang 已提交
2226 2227 2228 2229 2230


def switch_main_program(program):
    """
    Switch the main program to a new program.
2231

Y
Yu Yang 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2246
    Switch the startup program to a new program
Y
Yu Yang 已提交
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2262 2263 2264
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2265

Y
Yu Yang 已提交
2266
    Examples:
Y
yuyang18 已提交
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2277

Y
Yu Yang 已提交
2278
    Examples:
Y
yuyang18 已提交
2279 2280 2281 2282 2283 2284

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2285

Y
Yu Yang 已提交
2286
    Args:
Y
yuyang18 已提交
2287
        main_program(Program): New main program inside `with` statement.
2288
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2302 2303


W
Wu Yi 已提交
2304
def _get_var(name, program=None):
X
xuwei06 已提交
2305
    """
Y
yuyang18 已提交
2306
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2307

X
xuwei06 已提交
2308 2309 2310
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2311
        If None, default_global_program() will be used.
X
xuwei06 已提交
2312 2313 2314 2315 2316 2317 2318

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2319
    assert isinstance(program, Program)
X
xuwei06 已提交
2320 2321

    return program.global_block().var(name)
2322 2323 2324 2325 2326 2327 2328 2329 2330


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace