Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
45c8a88a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
45c8a88a
编写于
12月 05, 2017
作者:
Q
Qiao Longfei
提交者:
GitHub
12月 05, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add crf_decoding layer (#6274)
* add crf_decoding layer * fix some typo * fix test_crf_decoding_op
上级
e760641a
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
61 addition
and
25 deletion
+61
-25
paddle/operators/crf_decoding_op.cc
paddle/operators/crf_decoding_op.cc
+9
-8
paddle/operators/crf_decoding_op.h
paddle/operators/crf_decoding_op.h
+5
-5
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+1
-1
python/paddle/v2/fluid/layer_helper.py
python/paddle/v2/fluid/layer_helper.py
+7
-1
python/paddle/v2/fluid/layers.py
python/paddle/v2/fluid/layers.py
+18
-0
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
...n/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
+9
-3
python/paddle/v2/fluid/tests/test_crf_decoding_op.py
python/paddle/v2/fluid/tests/test_crf_decoding_op.py
+6
-6
python/paddle/v2/fluid/tests/test_layers.py
python/paddle/v2/fluid/tests/test_layers.py
+6
-1
未找到文件。
paddle/operators/crf_decoding_op.cc
浏览文件 @
45c8a88a
...
...
@@ -36,17 +36,18 @@ class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker {
"w. See more details in comments of the linear_chain_crf operator."
);
AddInput
(
"Label"
,
"(LoDTensor, LoDTensor<int>). The ground truth with shape "
"(LoDTensor, LoDTensor<int
64_t
>). The ground truth with shape "
"[N x 1]. This input is optional. See more details in the operator's "
"comments."
)
.
AsDispensable
();
AddOutput
(
"ViterbiPath"
,
"(LoDTensor, LoDTensor<int>). The decoding results. What to "
"return changes depending on whether the Input(Label) (the groud "
"truth) is given. See more details in the operator's comment."
);
AddOutput
(
"ViterbiPath"
,
"(LoDTensor, LoDTensor<int64_t>). The decoding results. What to "
"return changes depending on whether the Input(Label) (the ground "
"truth) is given. See more details in the operator's comment."
);
AddComment
(
R"DOC(
The crf_decoding operator reads the emission feature weights and the transition
f
r
eature weights learned by the linear_chain_crf operator. It implements the
feature weights learned by the linear_chain_crf operator. It implements the
Viterbi algorithm which is a dynamic programming algorithm for finding the most
likely sequence of hidden states, called the Viterbi path, that results in a
sequence of observed tags.
...
...
@@ -60,14 +61,14 @@ operator.
When Input(Label) is given, the crf_decoding operator returns a row vector
with shape [N x 1] whose values are fixed to be 0, indicating an incorrect
prediction, or 1 indicating a tag is correctly predicted. Such an ouput is the
prediction, or 1 indicating a tag is correctly predicted. Such an ou
t
put is the
input to chunk_eval operator.
2. Input(Label) is not given:
This is the standard decoding process.
The crf_decoding operator returns a row vec
ot
r with shape [N x 1] whose values
The crf_decoding operator returns a row vec
to
r with shape [N x 1] whose values
range from 0 to maximum tag number - 1. Each element indicates an index of a
predicted tag.
)DOC"
);
...
...
paddle/operators/crf_decoding_op.h
浏览文件 @
45c8a88a
...
...
@@ -43,9 +43,9 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
const
size_t
level
=
0
;
const
size_t
seq_num
=
lod
[
level
].
size
()
-
1
;
int
*
path
=
decoded_path
->
mutable_data
<
in
t
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
int
>
()(
ctx
.
device_context
(),
decoded_path
,
0
);
int
64_t
*
path
=
decoded_path
->
mutable_data
<
int64_
t
>
(
platform
::
CPUPlace
());
math
::
SetConstant
<
platform
::
CPUPlace
,
int
64_t
>
()(
ctx
.
device_context
(),
decoded_path
,
0
);
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
...
...
@@ -57,7 +57,7 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
if
(
label
)
{
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
int
*
label_value
=
label
->
data
<
in
t
>
();
const
int
64_t
*
label_value
=
label
->
data
<
int64_
t
>
();
size_t
batch_size
=
emission_weights
->
dims
()[
0
];
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
path
[
i
]
=
label_value
[
i
]
==
path
[
i
]
?
1
:
0
;
...
...
@@ -76,7 +76,7 @@ class CRFDecodingOpKernel : public framework::OpKernel<T> {
const
T
*
x
=
emission_weights
.
data
<
T
>
();
const
T
*
w
=
transition_weights
.
data
<
T
>
();
int
*
path
=
decoded_path
->
data
<
in
t
>
();
int
64_t
*
path
=
decoded_path
->
data
<
int64_
t
>
();
// alpha is a memo table. An element alpha(k, v) records the score of the
// best sequence of tags from position 1 to position k with v being the end
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
45c8a88a
...
...
@@ -237,7 +237,7 @@ class Operator(object):
def
find_name
(
var_list
,
name
):
for
var_name
in
var_list
:
if
var_name
==
name
:
if
var_
list
[
var_name
]
is
not
None
and
var_
name
==
name
:
return
True
return
False
...
...
python/paddle/v2/fluid/layer_helper.py
浏览文件 @
45c8a88a
import
copy
import
itertools
from
framework
import
Variable
,
default_main_program
,
default_startup_program
,
\
from
framework
import
Variable
,
Parameter
,
default_main_program
,
default_startup_program
,
\
unique_name
,
dtype_is_floating
from
paddle.v2.fluid.initializer
import
Constant
,
Xavier
from
param_attr
import
ParamAttr
...
...
@@ -122,6 +122,12 @@ class LayerHelper(object):
return
self
.
main_program
.
global_block
().
create_parameter
(
dtype
=
dtype
,
shape
=
shape
,
**
attr
.
to_kwargs
())
def
get_parameter
(
self
,
name
):
param
=
self
.
main_program
.
global_block
().
var
(
name
)
if
not
isinstance
(
param
,
Parameter
):
raise
ValueError
(
"no Parameter name %s found"
%
name
)
return
param
def
create_tmp_variable
(
self
,
dtype
):
return
self
.
main_program
.
current_block
().
create_var
(
name
=
unique_name
(
"."
.
join
([
self
.
name
,
'tmp'
])),
...
...
python/paddle/v2/fluid/layers.py
浏览文件 @
45c8a88a
...
...
@@ -477,6 +477,24 @@ def linear_chain_crf(input,
return
log_likelihood
def
crf_decoding
(
input
,
param_attr
,
label
=
None
,
main_program
=
None
,
startup_program
=
None
):
helper
=
LayerHelper
(
'crf_decoding'
,
**
locals
())
transition
=
helper
.
get_parameter
(
param_attr
.
name
)
viterbi_path
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
helper
.
append_op
(
type
=
'crf_decoding'
,
inputs
=
{
"Emission"
:
[
input
],
"Transition"
:
transition
,
"Label"
:
label
},
outputs
=
{
"ViterbiPath"
:
[
viterbi_path
]})
return
viterbi_path
def
assign
(
input
,
output
,
main_program
=
None
,
startup_program
=
None
):
helper
=
LayerHelper
(
'assign'
,
**
locals
())
helper
.
append_op
(
...
...
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
45c8a88a
...
...
@@ -137,12 +137,19 @@ def main():
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
,
learning_rate
=
mix_hidden_lr
))
avg_cost
=
fluid
.
layers
.
mean
(
x
=
crf_cost
)
# TODO(qiao)
# 1. add crf_decode_layer and evaluator
# 2. use other optimizer and check why out will be NAN
# check other optimizers and check why out will be NAN
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.0001
)
sgd_optimizer
.
minimize
(
avg_cost
)
# TODO(qiao)
# add dependency track and move this config before optimizer
crf_decode
=
fluid
.
layers
.
crf_decoding
(
input
=
feature_out
,
label
=
target
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'crfw'
))
train_data
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
...
...
@@ -168,7 +175,6 @@ def main():
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
])
avg_cost_val
=
np
.
array
(
outs
[
0
])
if
batch_id
%
10
==
0
:
print
(
"avg_cost="
+
str
(
avg_cost_val
))
...
...
python/paddle/v2/fluid/tests/test_crf_decoding_op.py
浏览文件 @
45c8a88a
...
...
@@ -20,14 +20,14 @@ class CRFDecoding(object):
self
.
w
=
transition_weights
[
2
:,
:]
self
.
track
=
np
.
zeros
(
(
seq_start_positions
[
-
1
],
self
.
tag_num
),
dtype
=
"int
32
"
)
(
seq_start_positions
[
-
1
],
self
.
tag_num
),
dtype
=
"int
64
"
)
self
.
decoded_path
=
np
.
zeros
(
(
seq_start_positions
[
-
1
],
1
),
dtype
=
"int
32
"
)
(
seq_start_positions
[
-
1
],
1
),
dtype
=
"int
64
"
)
def
_decode_one_sequence
(
self
,
decoded_path
,
x
):
seq_len
,
tag_num
=
x
.
shape
alpha
=
np
.
zeros
((
seq_len
,
tag_num
),
dtype
=
"float64"
)
track
=
np
.
zeros
((
seq_len
,
tag_num
),
dtype
=
"int
32
"
)
track
=
np
.
zeros
((
seq_len
,
tag_num
),
dtype
=
"int
64
"
)
for
i
in
range
(
tag_num
):
alpha
[
0
,
i
]
=
self
.
a
[
i
]
+
x
[
0
,
i
]
...
...
@@ -125,10 +125,10 @@ class TestCRFDecodingOp2(OpTest):
axis
=
0
)
labels
=
np
.
random
.
randint
(
low
=
0
,
high
=
TAG_NUM
,
size
=
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int
32
"
)
low
=
0
,
high
=
TAG_NUM
,
size
=
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int
64
"
)
predicted_labels
=
np
.
ones
(
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int
32
"
)
*
(
TAG_NUM
-
1
)
expected_output
=
(
labels
==
predicted_labels
).
astype
(
"int
32
"
)
(
lod
[
-
1
][
-
1
],
1
),
dtype
=
"int
64
"
)
*
(
TAG_NUM
-
1
)
expected_output
=
(
labels
==
predicted_labels
).
astype
(
"int
64
"
)
self
.
inputs
=
{
"Emission"
:
(
emission
,
lod
),
...
...
python/paddle/v2/fluid/tests/test_layers.py
浏览文件 @
45c8a88a
...
...
@@ -4,6 +4,7 @@ import unittest
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.nets
as
nets
from
paddle.v2.fluid.framework
import
Program
,
program_guard
from
paddle.v2.fluid.param_attr
import
ParamAttr
class
TestBook
(
unittest
.
TestCase
):
...
...
@@ -132,8 +133,12 @@ class TestBook(unittest.TestCase):
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int32'
)
hidden
=
layers
.
fc
(
input
=
images
,
size
=
128
)
crf
=
layers
.
linear_chain_crf
(
input
=
hidden
,
label
=
label
)
crf
=
layers
.
linear_chain_crf
(
input
=
hidden
,
label
=
label
,
param_attr
=
ParamAttr
(
name
=
"crfw"
))
crf_decode
=
layers
.
crf_decoding
(
input
=
hidden
,
param_attr
=
ParamAttr
(
name
=
"crfw"
))
self
.
assertNotEqual
(
crf
,
None
)
self
.
assertNotEqual
(
crf_decode
,
None
)
print
(
str
(
program
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录