framework.py 75.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28
try:
P
peizhilin 已提交
29
    if os.name == 'nt':
P
peizhilin 已提交
30
        import sys
P
peizhilin 已提交
31 32 33 34 35
        third_lib_path = os.path.abspath(os.path.dirname(
            __file__)) + os.sep + '..' + os.sep + 'libs'
        os.environ['path'] += ';' + third_lib_path
        sys.path.append(third_lib_path)

36
    from . import core
37
except ImportError as e:
P
peizhilin 已提交
38 39 40 41 42 43 44 45 46 47 48 49
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
50
except Exception as e:
51
    raise e
52
from . import unique_name
Y
Yu Yang 已提交
53

54
__all__ = [
55 56 57 58
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
59
    'name_scope',
60
]
Y
Yu Yang 已提交
61

Q
qiaolongfei 已提交
62 63 64 65
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
66 67
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

68 69 70 71 72 73 74 75 76 77
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
78

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
118

119 120 121 122
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
123 124
          with name_scope("attention"):
             ...
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
144 145 146
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
147 148 149 150


def grad_var_name(var_name):
    """
151 152
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
153 154 155
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
156

157
def convert_np_dtype_to_dtype_(np_dtype):
158 159
    """
    Convert the data type in numpy to the data type in Paddle
160

161
    Args:
162
        np_dtype(np.dtype): the data type in numpy.
163

164 165
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
166 167

    """
168 169
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
170
        return core.VarDesc.VarType.FP32
171
    elif dtype == np.float64:
172
        return core.VarDesc.VarType.FP64
173
    elif dtype == np.float16:
174
        return core.VarDesc.VarType.FP16
175
    elif dtype == np.int32:
176
        return core.VarDesc.VarType.INT32
177
    elif dtype == np.int16:
178
        return core.VarDesc.VarType.INT16
179
    elif dtype == np.int64:
180
        return core.VarDesc.VarType.INT64
181
    elif dtype == np.bool:
182
        return core.VarDesc.VarType.BOOL
183 184
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
185 186
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
187 188
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
189
    else:
M
minqiyang 已提交
190
        raise ValueError("Not supported numpy dtype %s" % dtype)
191 192 193


def dtype_is_floating(dtype):
194 195 196
    """
    Check the data type is floating or not.
    Args:
197
        dtype(np.dtype|core.VarDesc.VarType): data type.
198 199 200 201 202
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
203
    if not isinstance(dtype, core.VarDesc.VarType):
204 205
        dtype = convert_np_dtype_to_dtype_(dtype)

206 207 208 209
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
210 211


Y
Yang Yang(Tony) 已提交
212
def _debug_string_(proto, throw_on_error=True):
213 214 215 216 217 218 219 220 221 222 223
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
224
    error_fields = list()
Y
Yang Yang(Tony) 已提交
225
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
226 227
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
228 229 230
    return proto.__str__()


X
Xin Pan 已提交
231
class Variable(object):
232
    """
233 234 235
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
236
    two variables in different blocks could have the same name.
237

238 239
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
240

241
    Most of a Variable's member variables can be setted to be None. It mean
242
    it is not available or will be specified later.
243 244

    Args:
245
        block(Block): The block that the variable belongs to.
246 247
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
248 249
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
250
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
251
            Some kinds of variable do not contain shape, just set it to None.
252 253 254
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
255
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
256
            series data.
257
            Default: None
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
280 281
    """

Y
Yu Yang 已提交
282 283
    def __init__(self,
                 block,
Y
Yu Yang 已提交
284
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
285 286 287 288
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
289
                 capacity=None,
Q
QI JUN 已提交
290
                 persistable=None,
F
fengjiayi 已提交
291
                 error_clip=None,
Y
Yu Yang 已提交
292
                 stop_gradient=False,
F
fengjiayi 已提交
293
                 is_data=False,
Y
Yu Yang 已提交
294
                 **kwargs):
Y
Yu Yang 已提交
295
        self.block = block
F
fengjiayi 已提交
296
        self.error_clip = error_clip
Y
Yu Yang 已提交
297 298

        if name is None:
Y
Yu Yang 已提交
299
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
300
        is_new_var = False
M
minqiyang 已提交
301
        name = cpt.to_text(name)
M
minqiyang 已提交
302
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
303 304

        if self.desc is None:
M
minqiyang 已提交
305
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
306
            is_new_var = True
Y
Yu Yang 已提交
307

Y
Yu Yang 已提交
308 309 310 311 312 313 314 315
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
316
        if shape is not None:
Y
Yu Yang 已提交
317
            if is_new_var:
318
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
319 320 321 322 323 324 325 326
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
327
        if dtype is not None:
328
            if not isinstance(dtype, core.VarDesc.VarType):
329
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
330
            if is_new_var:
F
fengjiayi 已提交
331
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
332
            else:
F
fengjiayi 已提交
333
                old_dtype = self.dtype
Q
QI JUN 已提交
334
                if dtype != old_dtype:
Y
Yu Yang 已提交
335 336 337 338 339
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
340 341

        if lod_level is not None:
Y
Yu Yang 已提交
342
            if is_new_var:
343
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
344 345 346 347 348 349 350
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
351 352 353 354 355 356 357 358 359 360 361
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

362 363 364 365 366 367 368 369
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
370
        self.block.vars[name] = self
Y
Yu Yang 已提交
371
        self.op = None
M
minqiyang 已提交
372
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
373
        self.is_data = is_data
X
Xin Pan 已提交
374
        if _in_imperative_mode():
M
minqiyang 已提交
375 376 377
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
378
            self._ivar.desc = self.desc
379
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
380

381
    def _numpy(self):
M
minqiyang 已提交
382
        tensor = self._ivar.value().get_tensor()
383 384 385
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
386
        self._ivar._run_backward()
387 388

    def _gradient(self):
M
minqiyang 已提交
389
        return np.array(self._ivar._grad_value())
390

X
Xin Pan 已提交
391 392 393
    def _clear(self):
        self._ivar._clear()

394
    def __str__(self):
Y
Yang Yang(Tony) 已提交
395 396
        return self.to_string(True)

F
update  
fengjiayi 已提交
397
    def to_string(self, throw_on_error, with_details=False):
398 399 400 401
        """
        Get debug string.

        Args:
402 403
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
404
            with_details(bool): more details about variables and parameters
405 406
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
407

408 409
        Returns:
            str: The debug string.
410
        """
F
update  
fengjiayi 已提交
411 412
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
413
        protostr = self.desc.serialize_to_string()
414
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
415 416 417 418
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
419 420
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
421
        return res_str
422 423 424

    __repr__ = __str__

W
Wu Yi 已提交
425
    def _set_desc(self, input):
426 427 428 429 430 431 432 433 434
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
435 436
        self.desc = input

437 438 439 440 441 442 443 444
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

445 446 447 448
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
449 450 451 452
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
453 454
    @property
    def name(self):
M
minqiyang 已提交
455
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
456

T
typhoonzero 已提交
457 458 459 460
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
461 462 463
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
464
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
465 466

    @property
F
fengjiayi 已提交
467 468
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
469 470 471

    @property
    def lod_level(self):
472
        return self.desc.lod_level()
Y
Yu Yang 已提交
473

Y
Yu Yang 已提交
474 475 476 477
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
478
    def _set_error_clip(self, error_clip):
479 480 481 482 483 484 485 486 487
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
488 489
        self.error_clip = error_clip

Y
Yu Yang 已提交
490

F
fengjiayi 已提交
491 492 493
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
494

495 496
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
497 498 499 500
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
501
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
502 503 504 505 506
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
507 508 509 510
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
511 512 513 514 515 516 517 518 519
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
520
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
521 522 523 524 525 526
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
527 528 529 530 531 532 533 534
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
535 536
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
537 538
        return self.op_proto_map[type]

539 540 541 542
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
543
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
544
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
545 546
        }

F
fengjiayi 已提交
547

X
Xin Pan 已提交
548
class Operator(object):
549
    """
550 551 552 553 554 555 556
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
557
        type(str): The type of operator. Default None.
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
578
        Block.append_op or Block._prepend_op instead.
579 580 581 582 583 584 585 586 587 588

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
589
    """
590 591 592
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
593 594
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
595
    }
596

Y
Yu Yang 已提交
597 598
    def __init__(self,
                 block,
Y
Yu Yang 已提交
599
                 desc,
Y
Yu Yang 已提交
600 601 602
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
603
                 attrs=None):
Y
Yu Yang 已提交
604
        self.block = block
Y
Yu Yang 已提交
605
        self.desc = desc
G
gongweibao 已提交
606 607 608 609 610
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
611 612 613 614
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
615 616
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
617 618 619

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
620 621
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
622

G
gongweibao 已提交
623 624
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
625

F
fengjiayi 已提交
626 627 628 629 630
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
631
        self.desc.set_type(type)
F
fengjiayi 已提交
632
        proto = OpProtoHolder.instance().get_op_proto(type)
633

634 635 636
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
637 638
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
639
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
640 641
                    return True
            return False
Q
QI JUN 已提交
642

Y
Yang Yang(Tony) 已提交
643 644 645 646 647 648 649
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
650 651 652 653
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
654 655
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
656 657 658
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
659
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
660
                            in_arg_names.append(arg)
661 662
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
663
                        else:
M
minqiyang 已提交
664
                            in_arg_names.append(cpt.to_text(arg.name))
665
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
666 667
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
668

Y
Yu Yang 已提交
669
        if outputs is not None:
670
            for m in proto.outputs:
Q
qingqing01 已提交
671 672 673 674 675 676
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
677
            for out_proto in proto.outputs:
Q
qingqing01 已提交
678 679
                if out_proto.name not in outputs:
                    continue
680 681 682 683
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
684 685
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
686 687 688
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
689
                    out_arg_names.append(cpt.to_text(arg.name))
690 691
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
692

G
gongweibao 已提交
693 694
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
695
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
696
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
697
                attr_name = attr.name
G
gongweibao 已提交
698
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
699
                    continue
G
gongweibao 已提交
700
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
701 702
                self._update_desc_attr(attr_name, attr_val)

703
        self.desc.check_attrs()
M
minqiyang 已提交
704

W
Wu Yi 已提交
705
        if self._has_kernel(type):
Q
QI JUN 已提交
706
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
707
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
708

X
Xin Pan 已提交
709 710 711
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
712
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
713
            if inputs is not None:
X
Xin Pan 已提交
714 715 716 717 718 719
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
720
            if outputs is not None:
X
Xin Pan 已提交
721 722 723 724 725
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
726

W
Wu Yi 已提交
727
    def _has_kernel(self, op_type):
728 729
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
730
    def to_string(self, throw_on_error):
731
        """
732 733
        Get debug string.

734
        Args:
735 736
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
737

738 739
        Returns:
            str: The debug string.
740 741

        """
742
        protostr = self.desc.serialize_to_string()
743
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
744 745 746 747
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
748 749 750

    __repr__ = __str__

F
fengjiayi 已提交
751 752 753 754 755
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
756
        """
757
        Get the input arguments according to the input parameter name.
758

759 760
        Args:
            name(str): The input parameter name.
761

762 763 764
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
765
        """
F
fengjiayi 已提交
766 767
        return self.desc.input(name)

W
Wu Yi 已提交
768
    def _rename_input(self, old_name, new_name):
769 770 771 772 773 774 775 776 777 778
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
779
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
780

W
Wu Yi 已提交
781
    def _rename_output(self, old_name, new_name):
782 783 784 785 786 787 788 789 790 791
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
792
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
793

F
fengjiayi 已提交
794 795 796 797
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
798 799 800 801 802 803 804 805
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
806
    def output(self, name):
807
        """
808
        Get output arguments by the output parameter name.
809

810 811
        Args:
            name(str): The output parameter name.
812

813 814 815
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
816
        """
F
fengjiayi 已提交
817 818 819 820 821 822
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

823 824 825 826 827 828 829 830
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
831
    def has_attr(self, name):
832
        """
833 834
        Whether this Operator has the attribute with name or not.

835
        Args:
836
            name(str): the attribute name.
837

838 839
        Returns:
            bool: True if has this attribute.
840 841

        """
F
fengjiayi 已提交
842 843 844
        return self.desc.has_attr(name)

    def attr_type(self, name):
845
        """
846
        Get the type of attribute by attribute's name.
847

848 849
        Args:
            name(str): the attribute name.
850

851 852
        Returns:
            core.AttrType: the attribute type.
853
        """
F
fengjiayi 已提交
854 855
        return self.desc.attr_type(name)

W
Wu Yi 已提交
856
    def _set_attr(self, name, val):
857 858 859 860 861 862 863 864 865 866
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
880 881
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
882 883
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
884
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
885 886 887 888
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
889
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
890

F
fengjiayi 已提交
891 892 893 894 895
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
896
        """
897 898
        Get the attribute by name.

899
        Args:
900
            name(str): the attribute name.
901

902 903
        Returns:
            bool|int|str|float|list: The attribute value. The return value
904 905
            can be any valid attribute type.
        """
F
fengjiayi 已提交
906
        return self.desc.attr(name)
Y
Yu Yang 已提交
907

W
Wu Yi 已提交
908
    def _block_attr_id(self, name):
909
        """
G
gongweibao 已提交
910
        Get the block attribute's id by name.
911

912 913
        Args:
            name(str): the attribute name.
914

915 916
        Returns:
            int: the block index.
917
        """
W
Wu Yi 已提交
918
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
919

W
Wu Yi 已提交
920
    def _block_attr(self, name):
G
gongweibao 已提交
921 922 923 924 925 926 927 928 929 930
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
931
        id = self._block_attr_id(name)
G
gongweibao 已提交
932 933 934
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
935
    def _blocks_attr(self, name):
G
gongweibao 已提交
936 937 938 939 940 941 942 943 944 945
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
946
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
947 948 949 950 951
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
952
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
953 954 955 956 957 958 959 960 961 962
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
963
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
964

J
JiayiFeng 已提交
965
    def all_attrs(self):
F
fengjiayi 已提交
966
        """
967 968 969
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
970
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
971 972 973 974
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
975 976
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
977
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
978 979 980
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
981
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
982 983 984 985
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
986 987
        return attr_map

Y
Yu Yang 已提交
988

Y
Yu Yang 已提交
989
class Block(object):
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1004
        use `Program._create_block()` to create a block.
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1019
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1020
        self.desc = program.desc.block(idx)
1021
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1022
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1023
        self.program = program
1024
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1025

1026
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1027 1028
        return self.to_string(True)

F
fengjiayi 已提交
1029 1030
    def to_string(self, throw_on_error, with_details=False):
        """
1031 1032
        Get debug string.

F
fengjiayi 已提交
1033 1034
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1035
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1036
            with_details(bool): more details about variables and parameters
1037 1038
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1039

1040 1041
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1042 1043 1044 1045
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1046
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1047 1048
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1049
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1050
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1051
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1052
            for op in self.ops:
F
fengjiayi 已提交
1053 1054
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1055 1056 1057
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1058 1059
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1060 1061
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1062 1063 1064

    __repr__ = __str__

Y
Yu Yang 已提交
1065 1066
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1067
        return self.desc.parent
Y
Yu Yang 已提交
1068

Y
Yu Yang 已提交
1069 1070 1071 1072
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1073
    def _set_forward_block_idx(self, idx):
1074 1075 1076 1077 1078 1079 1080 1081 1082
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1083
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1084

Y
Yu Yang 已提交
1085 1086
    @property
    def idx(self):
Y
Yu Yang 已提交
1087
        return self.desc.id
Y
Yu Yang 已提交
1088

Q
Qiao Longfei 已提交
1089
    def var(self, name):
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1103
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1104 1105 1106
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1107 1108
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1109
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1110
        return v
Q
Qiao Longfei 已提交
1111

X
Xin Pan 已提交
1112
    def _find_var_recursive(self, name):
1113 1114 1115 1116 1117 1118 1119
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1120
            Variable: the Variable with the giving name. Or None if not found.
1121
        """
Y
Yu Yang 已提交
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1146
        return None
Y
Yu Yang 已提交
1147

X
Xin Pan 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1167

Q
Qiao Longfei 已提交
1168
    def all_parameters(self):
1169
        return list(self.iter_parameters())
1170

1171
    def iter_parameters(self):
M
minqiyang 已提交
1172
        return (item[1] for item in six.iteritems(self.vars)
1173
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1174

Y
Yu Yang 已提交
1175
    def create_var(self, *args, **kwargs):
1176
        var = Variable(block=self, *args, **kwargs)
1177 1178
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1179
        return var
Y
Yu Yang 已提交
1180

Q
Qiao Longfei 已提交
1181 1182 1183
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1184
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1185 1186
        """
        Rename variable in vars and ops' inputs and outputs
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1199
        """
M
minqiyang 已提交
1200 1201
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1202

T
typhoonzero 已提交
1203
        if not self.has_var(name):
1204
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1205 1206
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1207
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1208 1209 1210 1211 1212 1213 1214
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1215
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1216 1217 1218 1219
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1220
        orig_var_type = v.type
M
minqiyang 已提交
1221
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1222
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1223
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1224
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1225 1226 1227 1228
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1229
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1230 1231 1232 1233 1234 1235 1236
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1237
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1238 1239
            var = Variable(
                self,
T
typhoonzero 已提交
1240
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1241 1242 1243 1244
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1245
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1246 1247 1248
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1249
        self._sync_with_cpp()
1250
        return var
T
typhoonzero 已提交
1251

W
Wu Yi 已提交
1252 1253
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1254
        self.desc._remove_var(cpt.to_bytes(name))
1255 1256
        del self.vars[name]

Y
Yu Yang 已提交
1257 1258
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1259
        param = Parameter(global_block, *args, **kwargs)
1260
        if 'initializer' in kwargs:
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1281
        return param
Y
Yu Yang 已提交
1282

Y
Yu Yang 已提交
1283
    def append_op(self, *args, **kwargs):
1284 1285 1286 1287 1288 1289
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1290
        op_desc = self.desc.append_op()
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1303
        if _in_imperative_mode():
1304
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1305
                                       stop_gradient)
Y
Yu Yang 已提交
1306

W
Wu Yi 已提交
1307
    def _insert_op(self, index, *args, **kwargs):
1308 1309 1310 1311 1312 1313 1314 1315 1316
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1317 1318
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1319 1320 1321 1322
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1323
    def _remove_op(self, index):
1324 1325 1326 1327 1328 1329 1330 1331 1332
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1333 1334
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1335 1336
        del self.ops[index]

W
Wu Yi 已提交
1337
    def _slice_ops(self, start, end):
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1348
        return self.ops[start:end]
Y
Yancey1989 已提交
1349

W
Wu Yi 已提交
1350 1351
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1352 1353 1354 1355 1356 1357 1358
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1359
        self.ops.insert(0, op)
1360
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1361 1362
        return op

W
Wu Yi 已提交
1363
    def _sync_with_cpp(self):
1364
        """
1365 1366
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1367
        """
Q
Qiao Longfei 已提交
1368 1369 1370 1371 1372
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1373
        # sync variables removed from c++ end
1374
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1375
            if not self.desc.find_var(cpt.to_bytes(var)):
1376 1377
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1378
        # sync operators from cpp
1379 1380 1381 1382
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1399 1400 1401 1402 1403

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1404
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1405 1406 1407 1408 1409 1410 1411

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1425 1426 1427 1428
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1429
    def _copy_param_info_from(self, other):
1430
        """
1431 1432
        Copy the information of parameters from the other block.

1433
        Args:
1434 1435 1436 1437 1438
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1439 1440 1441 1442 1443

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1444 1445
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1446
        for p in other.iter_parameters():
1447 1448 1449
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1450
                raise ValueError("_copy_param_info_from should be invoked with "
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1463
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1464
                error_clip=p.error_clip,
1465 1466 1467
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1468
    def _clone_variable(self, var):
1469 1470
        """
        Clone a variable into current block.
1471

1472 1473 1474 1475
        Args:
            var: the variable to be cloned.

        Returns:
1476
            Variable: the new  variable cloned from 'var' in current block.
1477 1478
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1479 1480 1481 1482 1483
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1484 1485
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1486
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1487 1488 1489 1490 1491 1492
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1493 1494
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1495 1496 1497 1498 1499 1500 1501
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1502 1503
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1504
        return ret_var
1505

Y
Yu Yang 已提交
1506 1507

class Program(object):
D
dzhwinter 已提交
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1519
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1520 1521

    Returns:
Y
yuyang18 已提交
1522
        A empty program.
D
dzhwinter 已提交
1523 1524

    Examples:
Y
yuyang18 已提交
1525 1526 1527 1528 1529 1530
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1531 1532 1533

    """

1534 1535
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1536 1537
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1538
        self._seed = 0
Y
yuyang18 已提交
1539
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1540
        self._op_role_var = []
T
tangwei12 已提交
1541 1542 1543 1544

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1545
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1546
        self._endpoints = []
1547
        self._trainers_endpoints = []
T
tangwei12 已提交
1548
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1549 1550 1551

    @property
    def op_role(self):
Y
yuyang18 已提交
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1565 1566 1567 1568 1569 1570 1571 1572
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1573 1574 1575 1576 1577 1578 1579
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1580 1581 1582 1583
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1584
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1585 1586

    @contextlib.contextmanager
W
Wu Yi 已提交
1587
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1588 1589 1590 1591 1592 1593 1594
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1595
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1596 1597 1598 1599

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1600
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1601 1602
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1603 1604 1605
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1606 1607
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1608 1609 1610 1611
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1612
        yield
X
Xin Pan 已提交
1613 1614
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1615

1616
    @contextlib.contextmanager
X
Xin Pan 已提交
1617
    def _lr_schedule_guard(self, is_with_opt=False):
1618 1619 1620 1621 1622 1623 1624
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1625 1626 1627 1628
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1629 1630 1631 1632 1633 1634 1635

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1636 1637 1638 1639

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1640 1641
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1642 1643
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1644 1645 1646
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1647 1648
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1649

1650
    def __str__(self):
Y
yuyang18 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1660 1661
        return self.to_string(True)

F
fengjiayi 已提交
1662 1663 1664
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1665

F
fengjiayi 已提交
1666
        Args:
Y
yuyang18 已提交
1667 1668
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1669

Y
yuyang18 已提交
1670 1671 1672 1673
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1674 1675
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1676 1677 1678 1679

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1690 1691
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1692 1693
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1694

W
Wu Yi 已提交
1695
    def _get_desc(self):
Y
yuyang18 已提交
1696 1697 1698 1699 1700 1701 1702
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1703 1704
        return self.desc

X
version  
Xin Pan 已提交
1705 1706 1707
    def _version(self):
        return self.desc._version()

1708
    def clone(self, for_test=False):
Y
yuyang18 已提交
1709 1710 1711
        """
        Create a new, duplicated program.

1712

Y
yuyang18 已提交
1713 1714 1715 1716
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1717

Y
yuyang18 已提交
1718 1719 1720 1721
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1722 1723 1724 1725 1726
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1727 1728

        Args:
Y
yuyang18 已提交
1729 1730
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1731

D
dzhwinter 已提交
1732
        Returns:
Y
yuyang18 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1786 1787
        """
        if for_test:
X
Xin Pan 已提交
1788
            p = self._inference_optimize(prune_read_op=False)
1789
        else:
1790
            p = Program()
G
gongweibao 已提交
1791 1792
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1793
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1794 1795 1796
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1797 1798 1799 1800

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1801
            p._sync_with_cpp()
1802

W
Wu Yi 已提交
1803
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1804
        p._copy_data_info_from(self)
1805
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1806
        return p
1807

W
Wu Yi 已提交
1808
    def _prune(self, targets):
Y
yuyang18 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1824 1825 1826 1827 1828 1829
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1830 1831
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1832
                    # and we need to find the current op that generate this
1833 1834 1835 1836 1837 1838 1839 1840
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1841
                    t = t.op
1842 1843 1844 1845
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1846
                else:
1847 1848
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1849 1850 1851 1852

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1853 1854 1855
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1856
        res._sync_with_cpp()
1857 1858
        return res

X
Xin Pan 已提交
1859
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1860
        """
F
fengjiayi 已提交
1861 1862 1863 1864 1865
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1866
        3. change the :code:`is_test`
Y
yuyang18 已提交
1867 1868 1869
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1870
        Args:
X
Xin Pan 已提交
1871 1872
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1873

Y
yuyang18 已提交
1874 1875 1876 1877 1878 1879
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1880
        res = Program()
1881
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1882 1883 1884 1885

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1886
        if prune_read_op:
1887 1888 1889 1890 1891 1892 1893 1894 1895
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1896
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1897 1898

        # change all `is_test` attributes to True
M
minqiyang 已提交
1899
        for i in six.moves.range(res.desc.num_blocks()):
1900
            block = res.desc.block(i)
M
minqiyang 已提交
1901
            for j in six.moves.range(block.op_size()):
1902 1903
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1904
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1905 1906 1907
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1908
        res._sync_with_cpp()
1909 1910
        return res

1911 1912
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1913 1914 1915 1916 1917 1918 1919
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1920
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1921 1922 1923 1924

        Returns:
            Program: A deserialized program desc.
        """
1925 1926
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1927
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1928
        p._sync_with_cpp()
1929
        return p
Y
Yu Yang 已提交
1930

D
dzhwinter 已提交
1931 1932
    @property
    def random_seed(self):
Y
yuyang18 已提交
1933 1934 1935 1936 1937 1938
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1939 1940
        return self._seed

Q
qiaolongfei 已提交
1941 1942
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1943 1944 1945
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1946 1947
        return self.desc.num_blocks()

D
dzhwinter 已提交
1948 1949 1950 1951 1952 1953
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1954
    def __repr__(self):
1955
        return self.__str__()
1956

Y
Yu Yang 已提交
1957
    def global_block(self):
Y
yuyang18 已提交
1958 1959 1960
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1961 1962
        return self.blocks[0]

Q
Qiao Longfei 已提交
1963
    def block(self, index):
Y
yuyang18 已提交
1964 1965 1966 1967 1968 1969 1970 1971
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1972 1973
        return self.blocks[index]

Y
Yu Yang 已提交
1974
    def current_block(self):
Y
yuyang18 已提交
1975 1976 1977 1978
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1979 1980
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1981
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1992
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1993 1994 1995
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1996 1997 1998 1999
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
2000
    def _rollback(self):
Y
yuyang18 已提交
2001 2002 2003 2004 2005
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2006 2007
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2008
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2019 2020 2021
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2022
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2023

W
Wu Yi 已提交
2024
    def _copy_param_info_from(self, other):
2025
        """
2026
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2027

Y
yuyang18 已提交
2028 2029 2030
        Notes: This is a very low level API. Users should not invoke it
        directly.

2031 2032 2033 2034 2035 2036 2037
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2038
            raise TypeError("_copy_param_info_from should be invoked with "
2039 2040 2041
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2042
            raise ValueError("_copy_param_info_from should be invoked with two "
2043
                             "program, with represent the same topology")
W
Wu Yi 已提交
2044
        self.global_block()._copy_param_info_from(other.global_block())
2045

2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2065
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2066 2067
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2068

Y
yuyang18 已提交
2069 2070 2071
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2072 2073 2074 2075 2076 2077 2078
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2079
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2080 2081 2082
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2083
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2084
                             "program, with represent the same topology")
2085
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2086 2087 2088
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2089
    def list_vars(self):
Y
yuyang18 已提交
2090 2091 2092 2093 2094 2095
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2096
        for each_block in self.blocks:
2097
            for each_var in list(each_block.vars.values()):
2098 2099
                yield each_var

Y
Yu Yang 已提交
2100

Y
Yu Yang 已提交
2101
class Parameter(Variable):
2102
    """
2103
    Parameter is derived from Variable. A parameter is a persistable
2104
    Variable, and will be updated by optimizers after each iteration.
2105
    The training of a neural network is essentially the updating of
2106 2107
    its parameters.

2108
    Relative to a general Variable, a Parameter has several its own
2109 2110
    member variables:

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2123 2124
    """

Y
Yu Yang 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2135 2136 2137

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2138 2139 2140 2141
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2142 2143
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2144
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2145

W
wanghaoshuang 已提交
2146
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2147

F
fengjiayi 已提交
2148 2149 2150
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2151 2152 2153
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2154

F
update  
fengjiayi 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2169
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2170
            for attr_name in additional_attr:
2171 2172
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2173 2174
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2175 2176 2177 2178
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2179

Y
Yu Yang 已提交
2180
# program is a global instance.
Y
Yu Yang 已提交
2181 2182
_main_program_ = Program()
_startup_program_ = Program()
2183

2184

2185
def default_startup_program():
Y
Yu Yang 已提交
2186
    """
Y
yuyang18 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2196

Y
Yu Yang 已提交
2197 2198 2199
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2200
    return _startup_program_
2201

2202

2203
def default_main_program():
Y
Yu Yang 已提交
2204
    """
Y
yuyang18 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2214

Y
Yu Yang 已提交
2215 2216 2217
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2218
    return _main_program_
Y
Yu Yang 已提交
2219 2220 2221 2222 2223


def switch_main_program(program):
    """
    Switch the main program to a new program.
2224

Y
Yu Yang 已提交
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2239
    Switch the startup program to a new program
Y
Yu Yang 已提交
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2255 2256 2257
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2258

Y
Yu Yang 已提交
2259
    Examples:
Y
yuyang18 已提交
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2270

Y
Yu Yang 已提交
2271
    Examples:
Y
yuyang18 已提交
2272 2273 2274 2275 2276 2277

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2278

Y
Yu Yang 已提交
2279
    Args:
Y
yuyang18 已提交
2280
        main_program(Program): New main program inside `with` statement.
2281
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2295 2296


W
Wu Yi 已提交
2297
def _get_var(name, program=None):
X
xuwei06 已提交
2298
    """
Y
yuyang18 已提交
2299
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2300

X
xuwei06 已提交
2301 2302 2303
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2304
        If None, default_global_program() will be used.
X
xuwei06 已提交
2305 2306 2307 2308 2309 2310 2311

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2312
    assert isinstance(program, Program)
X
xuwei06 已提交
2313 2314

    return program.global_block().var(name)
2315 2316 2317 2318 2319 2320 2321 2322 2323


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace