nn.py 299.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
Y
Yu Yang 已提交
21 22
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
23
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
24
from ..param_attr import ParamAttr
S
sneaxiy 已提交
25
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
26 27
from .tensor import concat
from . import utils
F
fengjiayi 已提交
28
from .. import unique_name
29
from functools import reduce
30
from .. import core
Y
Yu Yang 已提交
31 32

__all__ = [
X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
60
    'sequence_unpad',
X
Xin Pan 已提交
61 62 63 64 65 66 67 68
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
69
    'sequence_slice',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
100
    'roi_align',
X
Xin Pan 已提交
101 102 103 104
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
105
    'resize_nearest',
X
Xin Pan 已提交
106 107 108 109 110 111 112 113 114
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
115
    'margin_rank_loss',
X
Xin Pan 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
159
    'space_to_depth',
W
whs 已提交
160
    'affine_grid',
S
sneaxiy 已提交
161
    'sequence_reverse',
162
    'affine_channel',
B
barrierye 已提交
163
    'similarity_focus',
M
minqiyang 已提交
164
    'hash',
D
dengkaipeng 已提交
165
    'grid_sampler',
G
gmcather 已提交
166 167
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
168
    'bilinear_tensor_product',
Y
Yu Yang 已提交
169 170 171 172 173 174 175 176 177
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
178
       is_test=False,
179
       name=None):
Y
Yu Yang 已提交
180
    """
181
    **Fully Connected Layer**
Y
Yu Yang 已提交
182

183 184 185 186 187 188 189 190
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
191
    to the output as well.
C
caoying03 已提交
192

C
caoying03 已提交
193
    This process can be formulated as follows:
194 195 196

    .. math::

197
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
198 199 200

    In the above equation:

C
caoying03 已提交
201 202 203 204
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
205
    * :math:`Act`: The activation function.
C
caoying03 已提交
206
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
207 208

    Args:
R
ranqiu 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
224 225
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
226
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
227
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
228
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
229

230
    Returns:
F
fengjiayi 已提交
231
        Variable: The transformation result.
232 233

    Raises:
C
caoying03 已提交
234
        ValueError: If rank of the input tensor is less than 2.
235 236 237 238

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
239
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
240
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
241
    """
C
caoying03 已提交
242

C
caoying03 已提交
243
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
244 245 246 247

    dtype = helper.input_dtype()

    mul_results = []
248 249
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
250 251 252
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
253

Y
Yu Yang 已提交
254
        w = helper.create_parameter(
255
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
256
        tmp = helper.create_variable_for_type_inference(dtype)
257
        helper.append_op(
258 259 260
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
261
            outputs={"Out": tmp},
M
mozga-intel 已提交
262 263
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
264 265 266 267
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
268
    else:
X
Xin Pan 已提交
269
        pre_bias = helper.create_variable_for_type_inference(dtype)
270
        helper.append_op(
271 272 273
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
274
            attrs={"use_mkldnn": False})
275 276 277 278
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
279 280


281 282 283
def embedding(input,
              size,
              is_sparse=False,
284
              is_distributed=False,
285 286 287
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
288
    """
289 290
    **Embedding Layer**

291
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
292 293
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
294 295 296

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
297 298

    Args:
299 300 301 302 303
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
304
        is_distributed(bool): Whether to run lookup table from remote parameter server.
305 306
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
307
            with zeros whenever lookup encounters it in :attr:`input`. If
308
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
309 310
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
311
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
312

313 314 315
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
316

317 318
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
319

C
chengduoZH 已提交
320
          dict_size = len(dataset.ids)
321
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
322
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
323 324 325 326 327
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
328
    tmp = helper.create_variable_for_type_inference(dtype)
329 330
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
331 332 333 334 335
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
336 337 338 339 340
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
341 342 343
    return tmp


Y
yi.wu 已提交
344
@templatedoc(op_type="lstm")
Y
Yu Yang 已提交
345 346
def dynamic_lstm(input,
                 size,
Y
Yancey 已提交
347 348
                 h_0=None,
                 c_0=None,
Y
Yu Yang 已提交
349 350 351 352 353 354 355
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
356 357
                 dtype='float32',
                 name=None):
Y
Yibing Liu 已提交
358
    """
Y
yi.wu 已提交
359
    ${comment}
Y
Yibing Liu 已提交
360 361

    Args:
Y
yi.wu 已提交
362 363
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
Y
Yancey 已提交
364 365 366 367 368 369
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
370
        param_attr(ParamAttr|None): The parameter attribute for the learnable
371
                               hidden-hidden weights.
Y
Yibing Liu 已提交
372 373 374

                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
375 376
                               - The shape is (D x 4D), where D is the hidden
                                 size.
C
chengduo 已提交
377 378 379 380 381

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
Y
yi.wu 已提交
382
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
383 384 385
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.
Y
Yibing Liu 已提交
386

387
                              1. `use_peepholes = False`
Y
yi.wu 已提交
388 389
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
390
                              2. `use_peepholes = True`
Y
yi.wu 已提交
391
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
Y
Yibing Liu 已提交
392
                                                 W_{fc}, W_{oc}`}.
Y
yi.wu 已提交
393
                                 - The shape is (1 x 7D).
C
chengduo 已提交
394 395 396 397 398

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
yi.wu 已提交
399 400 401 402 403 404 405 406
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
Y
Yibing Liu 已提交
407 408

    Returns:
Y
Yibing Liu 已提交
409 410
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.
Y
Yibing Liu 已提交
411

Y
Yibing Liu 已提交
412
    Examples:
Y
Yibing Liu 已提交
413 414
        .. code-block:: python

Y
Yibing Liu 已提交
415 416
            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
C
chengduo 已提交
417
                                           bias_attr=False)
Y
Yibing Liu 已提交
418 419
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
Y
Yibing Liu 已提交
420
    """
C
chengduo 已提交
421
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yu Yang 已提交
422
    helper = LayerHelper('lstm', **locals())
M
minqiyang 已提交
423
    size = size // 4
Y
Yu Yang 已提交
424 425 426 427 428 429 430 431
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
432 433 434 435
    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yancey 已提交
436 437 438 439 440 441 442 443 444 445
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yu Yang 已提交
446 447 448

    helper.append_op(
        type='lstm',
Y
Yancey 已提交
449
        inputs=inputs,
Y
Yu Yang 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell


Y
Yibing Liu 已提交
466 467 468 469 470 471 472 473 474 475 476
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
477 478
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
479 480 481
    """
    **Dynamic LSTMP Layer**

482 483 484 485 486 487
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
488 489 490 491 492

    The formula is as follows:

    .. math::

493
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
494

495
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
496

497
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
498

499
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
500

501
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
502

503
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
504

505
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
506

Y
Yibing Liu 已提交
507 508 509 510 511 512
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
513
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
514
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
515
          bias vector).
Y
Yibing Liu 已提交
516 517 518
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
519
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
520
    * :math:`h`: The hidden state.
521
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
522 523
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
524
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
525
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
526
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
527 528
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
529 530 531 532

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
533

Y
Yibing Liu 已提交
534 535 536 537 538 539 540 541 542 543 544 545
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
546
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
547 548
                               hidden-hidden weight and projection weight.

549 550
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
551 552
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
553 554
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
555
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
556 557 558 559 560

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
561
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
562 563 564 565 566 567
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
568
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
569 570 571
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
572
                                - The shape is (1 x 7D).
C
chengduo 已提交
573 574 575 576 577

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
578 579 580 581 582 583 584 585 586
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
587
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
588 589
                              default "tanh".
        proj_activation(str): The activation for projection output.
590
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
591 592
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
593 594
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
595 596

    Returns:
597 598 599 600
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
601 602

    Examples:
603

Y
Yibing Liu 已提交
604 605
        .. code-block:: python

606 607 608 609
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
610
            hidden_dim, proj_dim = 512, 256
611
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
612
                                     act=None, bias_attr=None)
613 614 615
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
616 617 618 619
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
620
    """
621

C
chengduo 已提交
622
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
623
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
624
    size = size // 4
Y
Yibing Liu 已提交
625 626 627 628 629 630 631 632 633 634
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
635 636 637 638 639 640
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
669 670 671 672 673 674 675 676 677
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
678
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
679

680
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
681
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
682

G
guosheng 已提交
683 684 685 686 687 688 689 690 691
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
692

G
guosheng 已提交
693
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
694

G
guosheng 已提交
695
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
696 697
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
698 699 700 701
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
702
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
703 704

    Args:
705 706
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
707
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
708
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
709 710
            is the hidden size.
        size(int): The dimension of the gru cell.
711
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
712 713
            hidden-hidden weight matrix. Note:

714
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
715
              :math:`D` is the hidden size.
716
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
717
              The first part are weights of the update gate and reset gate with
718
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
719
              candidate hidden state with shape :math:`(D \\times D)`.
720 721 722 723 724 725 726 727 728 729 730 731

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
732
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
733 734 735
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
736
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
737
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
738 739 740 741
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
742 743

    Returns:
G
guosheng 已提交
744
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
745
            and sequence length is the same with the input.
746

G
guosheng 已提交
747
    Examples:
748

G
guosheng 已提交
749 750
        .. code-block:: python

751 752 753 754
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
755
            hidden_dim = 512
756
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
757 758 759 760 761 762 763 764 765 766
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
767
    batch_size = input.shape[0]
G
guosheng 已提交
768
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
769
    if h_0:
G
guosheng 已提交
770
        assert h_0.shape == (
Y
Yancey 已提交
771 772 773
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
774

X
Xin Pan 已提交
775 776 777 778
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
797 798 799
def gru_unit(input,
             hidden,
             size,
800 801
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
802
             activation='tanh',
803
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
804
    """
805
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
806

807 808
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
809

810
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
811

812
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
813

814
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
815 816

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
817 818 819
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
820 821
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

822 823
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
824 825 826
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
827 828 829

    Args:
        input (Variable): The fc transformed input value of current step.
830
        hidden (Variable): The hidden value of gru unit from previous step.
831
        size (integer): The input dimension value.
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
853 854 855 856
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
857

858 859 860 861 862 863
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
864

865
             # assuming we have x_t_data and prev_hidden of size=10
866
             x_t = fluid.layers.fc(input=x_t_data, size=30)
867 868
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
869 870 871 872 873 874 875 876 877 878 879 880

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
881
    size = size // 3
Y
Yu Yang 已提交
882 883

    # create weight
884 885
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
886

X
Xin Pan 已提交
887 888 889
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
890
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
891
    # create bias
892
    if helper.bias_attr:
Y
Yu Yang 已提交
893 894 895
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
896
        inputs['Bias'] = bias
Y
Yu Yang 已提交
897 898 899

    helper.append_op(
        type='gru_unit',
900
        inputs=inputs,
Y
Yu Yang 已提交
901 902 903 904 905 906
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
907 908
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
909 910 911 912 913
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
914
@templatedoc()
915
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
916 917 918 919 920 921 922
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
923
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
924 925 926 927
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
928 929 930
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
931 932

    """
Y
Yu Yang 已提交
933 934 935 936 937 938
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
939 940 941 942 943 944 945 946
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


Y
yuyang18 已提交
962
@templatedoc()
963
def crf_decoding(input, param_attr, label=None):
Y
yuyang18 已提交
964 965 966 967 968
    """
    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
969

Y
yuyang18 已提交
970
        param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
971

Y
yuyang18 已提交
972 973 974
        label(${label_type}): ${label_comment}

    Returns:
Y
update  
yi.wu 已提交
975
        Variable: ${viterbi_path_comment}
976

Y
yi.wu 已提交
977 978 979 980 981
    Examples:
        .. code-block:: python

           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
Y
yuyang18 已提交
982
    """
Y
Yu Yang 已提交
983 984
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
X
Xin Pan 已提交
985 986
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
987 988 989 990 991 992 993 994 995 996
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})

    return viterbi_path


Y
yi.wu 已提交
997
@templatedoc()
F
fengjiayi 已提交
998
def cos_sim(X, Y):
Y
Yu Yang 已提交
999
    """
Y
yi.wu 已提交
1000 1001 1002
    ${comment}

    Args:
1003 1004
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1005

Y
yi.wu 已提交
1006
    Returns:
1007
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1008
    """
F
fengjiayi 已提交
1009
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1010 1011 1012
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1023 1024 1025 1026 1027
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1028
            dropout_implementation="downgrade_in_infer"):
1029 1030 1031 1032 1033
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1034
    training. The dropout operator randomly sets (according to the given dropout
1035 1036 1037 1038
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1039 1040
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1041 1042 1043 1044 1045 1046 1047
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1062

1063 1064

    Returns:
1065
        Variable: A tensor variable is the shape with `x`.
1066 1067

    Examples:
1068

1069 1070
        .. code-block:: python

1071 1072
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1073 1074
    """

F
fengjiayi 已提交
1075
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1076 1077 1078
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1079 1080 1081 1082

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1083 1084 1085 1086 1087
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1088 1089 1090 1091
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1092 1093
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1094
        })
1095 1096 1097
    return out


1098
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1099
    """
Y
Yibing Liu 已提交
1100 1101
    **Cross Entropy Layer**

1102 1103 1104
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1105 1106

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1107
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1108

Y
Yibing Liu 已提交
1109
        .. math::
Y
yangyaming 已提交
1110

Y
Yibing Liu 已提交
1111 1112 1113
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1114 1115
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1116 1117 1118 1119 1120

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1121
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1122 1123 1124
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1125 1126
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1127
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1128

Y
Yibing Liu 已提交
1129
    Args:
Y
yangyaming 已提交
1130
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1131 1132 1133 1134
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1135
        label (Variable|list): the ground truth which is a 2-D tensor. When
1136 1137 1138 1139
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1140
        soft_label (bool): a flag indicating whether to
1141
                                           interpretate the given labels as soft
1142
                                           labels. Default: `False`.
M
minqiyang 已提交
1143 1144
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1145
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1146 1147 1148 1149 1150

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1151 1152 1153 1154 1155
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1156 1157 1158 1159 1160 1161

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1162
    """
F
fengjiayi 已提交
1163
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1164
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1165 1166 1167 1168 1169
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1170 1171
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1172 1173 1174
    return out


F
fengjiayi 已提交
1175
def square_error_cost(input, label):
Y
Yu Yang 已提交
1176
    """
1177 1178
    **Square error cost layer**

1179 1180
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1181

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1195 1196
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1197 1198

    Returns:
G
guosheng 已提交
1199
        Variable: The tensor variable storing the element-wise squared error \
1200
                  difference of input and label.
1201 1202 1203 1204 1205 1206 1207 1208

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1209
    """
F
fengjiayi 已提交
1210
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1211
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1212 1213 1214 1215 1216 1217
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1218
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1219
    helper.append_op(
F
fengjiayi 已提交
1220 1221
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1222 1223 1224
    return square_out


Y
yi.wu 已提交
1225
@templatedoc()
Y
Yu Yang 已提交
1226 1227 1228 1229
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1230
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1231
    """
Y
yi.wu 已提交
1232
    **Chunk Evaluator**
Y
yi.wu 已提交
1233

Y
yangyaming 已提交
1234
    This function computes and outputs the precision, recall and
1235
    F1-score of chunk detection.
Y
yi.wu 已提交
1236

Y
yi.wu 已提交
1237 1238 1239 1240 1241 1242 1243 1244
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1245

Y
yi.wu 已提交
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1271

Y
yi.wu 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1296
    Args:
1297 1298 1299 1300 1301
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1302

Y
yi.wu 已提交
1303
    Returns:
Y
update  
yi.wu 已提交
1304 1305 1306
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1307

Y
yi.wu 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1320
    """
F
fengjiayi 已提交
1321
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1322 1323

    # prepare output
X
Xin Pan 已提交
1324 1325 1326 1327 1328 1329 1330
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1331 1332 1333 1334 1335 1336 1337 1338

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1339 1340 1341 1342
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1343 1344 1345
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1346 1347
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1348
        })
1349 1350
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1351 1352


1353
@templatedoc()
Y
Yu Yang 已提交
1354 1355 1356 1357 1358 1359 1360
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1361 1362
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1363 1364 1365 1366
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1367 1368 1369 1370 1371 1372 1373

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1387

1388 1389
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1390 1391 1392 1393 1394 1395 1396
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1397
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1408
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1409 1410 1411 1412 1413 1414
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1415
def sequence_softmax(input, use_cudnn=False, name=None):
1416 1417 1418
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1419
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1436 1437 1438
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1439

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1451 1452
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1453
    softmax_out = helper.create_variable_for_type_inference(dtype)
1454 1455 1456 1457 1458 1459 1460 1461
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1462
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1463
    """
1464
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1465
    has the same shape as the input.
Q
qiaolongfei 已提交
1466

1467 1468 1469 1470 1471 1472
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1473
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1474 1475 1476 1477 1478 1479 1480

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1481
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1482 1483 1484 1485 1486 1487 1488 1489

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1490 1491 1492
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1505 1506
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1507
    softmax_out = helper.create_variable_for_type_inference(dtype)
1508 1509 1510 1511 1512 1513 1514 1515
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1516 1517 1518
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1519 1520
           stride=1,
           padding=0,
1521
           dilation=1,
Y
Yu Yang 已提交
1522 1523 1524
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1525
           use_cudnn=True,
1526 1527
           act=None,
           name=None):
Y
Yu Yang 已提交
1528
    """
C
chengduoZH 已提交
1529
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1530 1531
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1532
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1533 1534 1535 1536 1537 1538 1539
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1540 1541 1542
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1543

1544
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1545

C
chengduoZH 已提交
1546 1547
    .. math::

C
refine  
chengduoZH 已提交
1548
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1549

T
tensor-tang 已提交
1550
    Where:
C
chengduoZH 已提交
1551

1552 1553 1554 1555 1556
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1557
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1558 1559 1560

    Example:

1561 1562
        - Input:

W
weixing02 已提交
1563
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1564

W
weixing02 已提交
1565
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1566

1567
        - Output:
T
tensor-tang 已提交
1568

W
weixing02 已提交
1569
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1570

C
chengduoZH 已提交
1571
        Where
1572 1573

        .. math::
C
chengduoZH 已提交
1574

W
weixing02 已提交
1575 1576
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1577 1578

    Args:
1579
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1580
        num_filters(int): The number of filter. It is as same as the output
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1609 1610
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1611 1612
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1613
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1614
            will be named automatically. Default: None
C
chengduoZH 已提交
1615 1616

    Returns:
G
guosheng 已提交
1617
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1618 1619
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1620
    Raises:
1621 1622
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1623

C
chengduoZH 已提交
1624 1625 1626
    Examples:
        .. code-block:: python

1627 1628
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1629 1630 1631
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1632
    assert param_attr is not False, "param_attr should not be False here."
1633
    l_type = 'conv2d'
X
xzl 已提交
1634 1635
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1636
        l_type = 'depthwise_conv2d'
1637 1638 1639 1640

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1641 1642 1643 1644 1645
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1646
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1647

C
chengduoZH 已提交
1648 1649 1650
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1651
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1652

C
chengduoZH 已提交
1653 1654
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1655 1656

    input_shape = input.shape
M
minqiyang 已提交
1657
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1658 1659

    def _get_default_param_initializer():
C
chengduo 已提交
1660 1661
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1662 1663 1664 1665 1666 1667 1668 1669
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1670
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1671

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1686
    helper.append_op(
1687
        type=l_type,
Y
Yu Yang 已提交
1688 1689 1690 1691 1692
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1693 1694 1695
        attrs={
            'strides': stride,
            'paddings': padding,
1696
            'dilations': dilation,
C
chengduoZH 已提交
1697
            'groups': groups,
1698
            'use_cudnn': use_cudnn,
1699
            'use_mkldnn': False,
C
chengduoZH 已提交
1700
        })
Y
Yu Yang 已提交
1701 1702 1703 1704 1705 1706

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1724 1725 1726 1727 1728 1729
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1739 1740
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1741 1742 1743
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1744
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1770
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1771 1772
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1773
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1774 1775
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1776
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1777 1778
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1779
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1780 1781 1782 1783 1784 1785
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1796 1797
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1798 1799
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1800
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1801
            will be named automatically. Default: None.
C
chengduoZH 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1814 1815
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1816 1817 1818
    """

    l_type = 'conv3d'
C
chengduo 已提交
1819
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1830
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1844 1845 1846
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1847 1848 1849 1850 1851 1852 1853 1854
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1855
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1870
            'use_mkldnn': False
C
chengduoZH 已提交
1871 1872
        })

1873
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1874 1875 1876 1877

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1878
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1879
    """
Y
yangyaming 已提交
1880 1881 1882
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1894
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1895 1896 1897 1898 1899
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1900
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1901 1902 1903 1904 1905 1906 1907

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1908 1909
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1910

L
Luo Tao 已提交
1911 1912
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1913
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1914
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1915
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1916 1917 1918 1919 1920 1921 1922

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1923

Y
yangyaming 已提交
1924
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1925 1926 1927 1928 1929
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1930 1931
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1932
    """
F
fengjiayi 已提交
1933
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1934
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1935 1936
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1937 1938 1939 1940 1941 1942

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1943 1944
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1945

Y
yangyaming 已提交
1946 1947 1948 1949 1950
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1951 1952 1953
    return pool_out


C
add doc  
chengduoZH 已提交
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1973
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1974 1975 1976 1977 1978
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1979
def sequence_first_step(input):
L
Luo Tao 已提交
1980
    """
L
Luo Tao 已提交
1981
    This function gets the first step of sequence.
L
Luo Tao 已提交
1982 1983 1984 1985

    .. code-block:: text

       x is a 1-level LoDTensor:
1986
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1987 1988 1989 1990 1991
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1992
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1993
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1994

L
Luo Tao 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2004

Y
yangyaming 已提交
2005
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2006 2007 2008
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2009 2010 2011
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2012
def sequence_last_step(input):
L
Luo Tao 已提交
2013
    """
L
Luo Tao 已提交
2014
    This function gets the last step of sequence.
L
Luo Tao 已提交
2015 2016 2017 2018

    .. code-block:: text

       x is a 1-level LoDTensor:
2019
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2020 2021 2022 2023 2024
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2025
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2026
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2027

L
Luo Tao 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2037

Y
yangyaming 已提交
2038
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2039 2040 2041
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2042 2043 2044
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2045 2046 2047 2048
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2049
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2050 2051 2052 2053 2054
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2055

Y
Yibing Liu 已提交
2056 2057
	- Case:

2058
            Given the input Variable **input**:
2059

2060 2061 2062
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2063

2064
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2065

2066
            the output Variable will be
2067

2068 2069 2070
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2071 2072

    NOTE: The first dimension size of **input**, **offset** and **length**
2073
          should be equal. The **offset** should start from 0.
2074

Y
Yibing Liu 已提交
2075
    Args:
2076
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2077
                         sequences.
Y
Yibing Liu 已提交
2078 2079 2080 2081 2082 2083
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2084
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2095
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2096 2097 2098 2099
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2100
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2115
@templatedoc()
Y
Yu Yang 已提交
2116
def pool2d(input,
C
chengduoZH 已提交
2117 2118
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2119 2120
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2121
           global_pooling=False,
C
chengduoZH 已提交
2122
           use_cudnn=True,
2123
           ceil_mode=False,
2124 2125
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2126
    """
F
fengjiayi 已提交
2127
    ${comment}
2128 2129

    Args:
2130 2131 2132
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2133
                          feature, and W is the width of the feature.
2134
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2135
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2136
        pool_type: ${pooling_type_comment}
2137 2138
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2139 2140 2141
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2142
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2143
                        layer will be named automatically.
2144 2145
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2146

2147
    Returns:
F
fengjiayi 已提交
2148
        Variable: The pooling result.
F
fengjiayi 已提交
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2162 2163 2164 2165
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2166
                            global_pooling=False)
Y
Yu Yang 已提交
2167 2168 2169 2170 2171
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2172

C
chengduoZH 已提交
2173 2174 2175 2176 2177
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2178 2179 2180 2181
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2182 2183
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2184

C
Add doc  
chengduoZH 已提交
2185
    l_type = 'pool2d'
2186 2187

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2188
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2189
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2190 2191

    helper.append_op(
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2203 2204
            "use_mkldnn": False,
            "exclusive": exclusive,
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2218 2219
           name=None,
           exclusive=True):
2220 2221
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2222
    pooling configurations mentioned in input parameters.
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2235 2236
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2237

2238
    Returns:
2239
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2240 2241 2242 2243 2244
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2245

C
chengduoZH 已提交
2246 2247 2248 2249 2250
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2251 2252 2253
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2254

C
chengduoZH 已提交
2255 2256
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2257

2258 2259
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2260
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2261
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2262 2263

    helper.append_op(
2264
        type=l_type,
Y
Yu Yang 已提交
2265 2266 2267 2268 2269 2270 2271
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2272
            "paddings": pool_padding,
2273
            "use_cudnn": use_cudnn,
2274
            "ceil_mode": ceil_mode,
2275 2276
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2289
               data_layout='NCHW',
Y
Yang Yang 已提交
2290
               in_place=False,
2291 2292
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2293
               moving_variance_name=None,
2294 2295
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2296
    """
Q
qiaolongfei 已提交
2297 2298 2299 2300
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2301

Q
qiaolongfei 已提交
2302
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2303

Q
qiaolongfei 已提交
2304 2305
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2306 2307 2308
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2321 2322

    Args:
Q
qiaolongfei 已提交
2323
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2324 2325 2326 2327
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2328 2329 2330 2331 2332 2333 2334 2335
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2336
        data_layout(string, default NCHW): NCHW|NHWC
2337
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2338 2339 2340 2341
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2342
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2343
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2344 2345

    Returns:
Q
qiaolongfei 已提交
2346
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2347 2348 2349 2350 2351 2352 2353

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2354
    """
C
chengduo 已提交
2355
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2378
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2379

2380 2381
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2382 2383 2384
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2385
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2386
        shape=param_shape,
2387 2388 2389 2390 2391 2392 2393
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2394
            trainable=False,
W
wanghaoshuang 已提交
2395
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2396
        shape=param_shape,
2397 2398
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2399 2400 2401 2402 2403 2404

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2405 2406 2407 2408
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2409

X
Xin Pan 已提交
2410 2411
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2429 2430 2431 2432
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2433
            "use_mkldnn": False,
2434
            "fuse_with_relu": fuse_with_relu
2435
        })
Y
Yu Yang 已提交
2436 2437 2438 2439

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2440
@templatedoc()
G
guosheng 已提交
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2451
    ${comment}
G
guosheng 已提交
2452 2453 2454

    The formula is as follows:

Y
yuyang18 已提交
2455
    ..  math::
G
guosheng 已提交
2456 2457 2458 2459 2460 2461 2462

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2463 2464 2465 2466 2467 2468 2469 2470
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2471

G
guosheng 已提交
2472 2473
    Args:
        input(Variable): The input tensor variable.
2474
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2475
            normalization. Default True.
2476
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2477 2478
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2479
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2480
            Default 1.
2481
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2482
            division by zero. Default 1e-05.
G
guosheng 已提交
2483
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2484 2485
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2486 2487
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2488
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2489 2490
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2491
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2492
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2493
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2494 2495 2496
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2497 2498

    Returns:
Y
yuyang18 已提交
2499
        ${y_comment}
G
guosheng 已提交
2500 2501 2502

    Examples:

Y
yuyang18 已提交
2503 2504 2505
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2521
    if shift:
G
guosheng 已提交
2522 2523 2524 2525 2526 2527
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2528 2529 2530 2531 2532
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2548 2549 2550 2551
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2552 2553 2554
                     padding=0,
                     stride=1,
                     dilation=1,
2555
                     groups=None,
C
caoying03 已提交
2556
                     param_attr=None,
2557
                     bias_attr=None,
C
chengduoZH 已提交
2558
                     use_cudnn=True,
2559
                     act=None,
C
caoying03 已提交
2560
                     name=None):
Y
Yu Yang 已提交
2561
    """
2562 2563 2564 2565 2566 2567 2568 2569
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2570 2571
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2572 2573 2574
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2575 2576 2577 2578 2579

    For each input :math:`X`, the equation is:

    .. math::

2580
        Out = \sigma (W \\ast X + b)
2581

2582
    Where:
2583 2584 2585

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2586 2587 2588 2589
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2590

2591 2592 2593 2594
    Example:

        - Input:

2595
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2596

2597
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2598 2599 2600

        - Output:

2601
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2602 2603

        Where
Y
Yu Yang 已提交
2604

2605 2606
        .. math::

2607 2608 2609 2610
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2611 2612

    Args:
2613 2614 2615 2616
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2617 2618 2619 2620
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2649
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2650 2651 2652
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2653
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2654
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2655 2656

    Returns:
2657
        Variable: The tensor variable storing the convolution transpose result.
2658 2659

    Raises:
2660 2661
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2662 2663 2664 2665

    Examples:
       .. code-block:: python

2666 2667
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2668
    """
C
chengduo 已提交
2669
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2670 2671 2672 2673 2674 2675 2676 2677
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2678 2679 2680
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2681 2682 2683
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2684

C
chengduoZH 已提交
2685 2686
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2687

Y
Yu Yang 已提交
2688 2689 2690 2691 2692
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2693

Y
Yu Yang 已提交
2694 2695
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2696

C
chengduoZH 已提交
2697
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2698
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2699
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2700
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2701
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2702 2703 2704
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2705

2706 2707 2708 2709 2710 2711 2712
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2713
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2714
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2715

Y
Yu Yang 已提交
2716 2717 2718
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2719
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2720
    helper.append_op(
2721
        type=op_type,
Y
Yu Yang 已提交
2722 2723
        inputs={'Input': [input],
                'Filter': [img_filter]},
2724
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2725
        attrs={
2726
            'output_size': output_size,
2727 2728 2729 2730 2731
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2732 2733
        })

2734 2735 2736
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2737 2738


2739
def conv3d_transpose(input,
Y
Yu Yang 已提交
2740 2741 2742
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2743 2744 2745
                     padding=0,
                     stride=1,
                     dilation=1,
2746
                     groups=None,
C
caoying03 已提交
2747
                     param_attr=None,
2748
                     bias_attr=None,
C
chengduoZH 已提交
2749
                     use_cudnn=True,
2750
                     act=None,
C
caoying03 已提交
2751
                     name=None):
Y
Yu Yang 已提交
2752
    """
2753
    **Convlution3D transpose layer**
2754

2755
    The convolution3D transpose layer calculates the output based on the input,
2756
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2757 2758 2759 2760 2761 2762
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2763 2764 2765
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2766 2767 2768 2769 2770

    For each input :math:`X`, the equation is:

    .. math::

2771
        Out = \sigma (W \\ast X + b)
2772 2773 2774

    In the above equation:

2775 2776
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2777 2778 2779 2780
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2781

2782 2783 2784 2785
    Example:

        - Input:

2786
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2787

2788
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2789 2790 2791

        - Output:

2792
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2793 2794

        Where
Y
Yu Yang 已提交
2795

2796 2797
        .. math::

2798 2799 2800
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2801 2802

    Args:
2803
        input(Variable): The input image with [N, C, D, H, W] format.
2804 2805 2806
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2807
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2808 2809
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2810
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2811 2812 2813
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2814 2815
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2816
        stride(int|tuple): The stride size. If stride is a tuple, it must
2817 2818
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2819
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2820 2821 2822
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2823 2824 2825 2826 2827
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2837 2838
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2839 2840
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2841 2842
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2843 2844

    Returns:
2845
        Variable: The tensor variable storing the convolution transpose result.
2846 2847

    Raises:
2848 2849
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2850 2851 2852 2853

    Examples:
       .. code-block:: python

2854 2855
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2856
    """
C
chengduo 已提交
2857
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2858 2859
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2860
    if not isinstance(input, Variable):
2861
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2862 2863
    input_channel = input.shape[1]

2864 2865 2866
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2867

C
chengduoZH 已提交
2868 2869 2870
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2871 2872 2873 2874 2875 2876
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2877 2878 2879
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2880

2881
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2882
                         padding[0] - 1) // dilation[0] + 1
2883
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2884
                         padding[1] - 1) // dilation[1] + 1
2885
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2886
                         padding[2] - 1) // dilation[2] + 1
2887
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2888
    else:
2889 2890
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2891

2892
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2893
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2894 2895 2896
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2897
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2898
    helper.append_op(
2899
        type=l_type,
Y
Yu Yang 已提交
2900 2901
        inputs={'Input': [input],
                'Filter': [img_filter]},
2902
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2903 2904 2905 2906
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2907
            'groups': groups,
C
chengduoZH 已提交
2908 2909
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2910

2911 2912
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2913
    return out
Y
yangyaming 已提交
2914 2915


Y
yangyaming 已提交
2916
def sequence_expand(x, y, ref_level=-1, name=None):
2917
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2918 2919 2920 2921
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2922 2923 2924 2925 2926

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2927
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2928
                x.data = [[a], [b], [c], [d]]
2929 2930 2931
                x.dims = [4, 1]

            y is a LoDTensor:
2932 2933
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2934

Y
yangyaming 已提交
2935
            ref_level: 0
2936

Y
yangyaming 已提交
2937
            then output is a 1-level LoDTensor:
2938
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2939
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2940 2941 2942 2943
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2944
                x.data = [[a], [b], [c]]
2945 2946 2947
                x.dims = [3, 1]

            y is a LoDTensor:
2948
                y.lod = [[2, 0, 3]]
2949

Y
yangyaming 已提交
2950
            ref_level: -1
2951

Y
yangyaming 已提交
2952 2953 2954
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2955 2956 2957
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2958 2959
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2960
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2961
                        will be named automatically.
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2972
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2973
    """
Y
yangyaming 已提交
2974
    helper = LayerHelper('sequence_expand', input=x, **locals())
2975
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2976
    tmp = helper.create_variable_for_type_inference(dtype)
2977
    helper.append_op(
Y
yangyaming 已提交
2978 2979 2980 2981 2982
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2983
    return tmp
2984 2985


C
chengduo 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3042
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3043 3044 3045 3046 3047 3048 3049 3050
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3051
@templatedoc()
3052
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3053 3054 3055 3056 3057
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3058 3059 3060
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3061
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3062 3063 3064 3065
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3066 3067 3068
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3069

F
fengjiayi 已提交
3070
    Returns:
M
minqiyang 已提交
3071
        Variable: The padded sequence batch and the original lengths before
3072
                  padding. All sequences has the same length.
M
minqiyang 已提交
3073

F
fengjiayi 已提交
3074 3075 3076 3077 3078 3079 3080
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3081
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3082
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3083 3084 3085 3086 3087
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3088 3089
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3090 3091 3092 3093

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3094 3095 3096 3097 3098 3099
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3100 3101
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3102
        attrs={'padded_length': maxlen})
3103
    return out, length
F
fengjiayi 已提交
3104 3105


3106
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3107
    """
3108
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3109

3110 3111
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3112 3113 3114 3115 3116 3117 3118 3119 3120
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3121 3122 3123
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3124
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3125 3126 3127 3128 3129 3130

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3131
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3132 3133 3134 3135 3136 3137

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3138 3139
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3154
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3166 3167 3168 3169 3170 3171 3172 3173 3174
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3175 3176
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3177 3178 3179

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3180 3181

    This layer does the search in beams for one time step. Specifically, it
3182 3183 3184 3185 3186 3187
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3188

3189 3190 3191 3192 3193 3194 3195 3196
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3197

3198
    Args:
3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3224

3225
    Returns:
3226 3227
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3228 3229 3230 3231

    Examples:
        .. code-block:: python

3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3249 3250 3251 3252
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3253 3254 3255
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3256 3257 3258 3259 3260

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3261
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3279 3280 3281 3282 3283 3284 3285
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3286

3287 3288 3289 3290 3291 3292 3293 3294 3295
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3296

3297 3298 3299 3300 3301 3302
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3303

3304 3305 3306 3307 3308 3309 3310 3311
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3312 3313
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3329 3330 3331 3332
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3333
              param_attr=None,
C
caoying03 已提交
3334 3335
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3336 3337 3338 3339
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3340
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3341

3342
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3343

3344
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3345

3346
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3347 3348 3349

            h_t & = o_t tanh(c_t)

3350 3351 3352 3353 3354 3355
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3356 3357 3358

        .. math::

3359
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3360 3361 3362 3363 3364 3365 3366 3367

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3368
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3369 3370

    Args:
Y
yangyaming 已提交
3371 3372 3373 3374 3375 3376
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3377
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3390 3391
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3392 3393

    Returns:
Y
yangyaming 已提交
3394
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3395 3396

    Raises:
3397 3398 3399 3400
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3401 3402 3403 3404 3405 3406

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3407
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3408
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3409
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3426
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3427 3428 3429 3430
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3431 3432
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3433 3434 3435
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3436
    size = cell_t_prev.shape[1]
3437
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3438 3439
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3440
                param_attr=param_attr,
3441
                bias_attr=bias_attr)
Y
yangyaming 已提交
3442
    dtype = x_t.dtype
X
Xin Pan 已提交
3443 3444
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3454
    return h, c
G
guosheng 已提交
3455 3456


C
caoying03 已提交
3457
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3458
    """
Y
yangyaming 已提交
3459
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3460 3461 3462

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3463
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3464 3465
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3466 3467
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3468
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3469
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3470
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3471 3472
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3473 3474 3475

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3476

G
guosheng 已提交
3477 3478 3479 3480 3481 3482
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3483
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3484 3485 3486 3487
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3488 3489 3490 3491

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3492
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3493 3494 3495
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3496 3497
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3498
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3499 3500
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3501 3502 3503 3504 3505
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3506
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3507 3508 3509 3510
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3511 3512


C
caoying03 已提交
3513
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3514
    """
Y
Yibing Liu 已提交
3515
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3516 3517 3518

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3519 3520 3521
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3522
            must be in the range :math:`[-rank(input), rank(input))`. If
3523
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3524
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3525 3526
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3527
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3528
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3529
                       will be named automatically.
G
guosheng 已提交
3530 3531

    Returns:
Y
Yibing Liu 已提交
3532
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3533

G
guosheng 已提交
3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3544 3545
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3546 3547 3548 3549 3550 3551 3552

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3553 3554
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3555
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3556 3557
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3558 3559 3560 3561 3562
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3563
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3564 3565 3566 3567
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3568 3569


C
caoying03 已提交
3570
def reduce_max(input, dim=None, keep_dim=False, name=None):
3571
    """
Y
yangyaming 已提交
3572
    Computes the maximum of tensor elements over the given dimension.
3573 3574 3575

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3576
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3577 3578 3579
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3580
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3581 3582
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3583
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3584 3585
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3586 3587 3588

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3589

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3601 3602 3603 3604 3605 3606 3607

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3608 3609
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3610
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3611 3612
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3613 3614 3615 3616 3617
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3618
            'dim': dim if dim != None else [0],
3619 3620 3621 3622 3623 3624
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3625
def reduce_min(input, dim=None, keep_dim=False, name=None):
3626
    """
Y
yangyaming 已提交
3627
    Computes the minimum of tensor elements over the given dimension.
3628 3629 3630

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3631
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3632 3633 3634
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3635
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3636 3637
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3638
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3639 3640
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3641 3642 3643

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3644

3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3656 3657 3658 3659 3660 3661 3662

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3663 3664
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3665
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3666 3667
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3668 3669 3670 3671 3672
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3673
            'dim': dim if dim != None else [0],
3674 3675 3676 3677
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3678 3679


3680 3681 3682 3683 3684 3685
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3686
        dim (list|int|None): The dimensions along which the product is performed. If
3687 3688
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3689 3690
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3691 3692 3693
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3694
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3695
            layer will be named automatically.
3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3710
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3711
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3712 3713 3714 3715 3716 3717 3718

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3719 3720
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3721
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3722 3723
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3724 3725 3726 3727 3728
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3729
            'dim': dim if dim != None else [0],
3730 3731 3732 3733 3734 3735
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3736
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3737
    """
C
caoying03 已提交
3738
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3739 3740 3741

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3742 3743 3744 3745 3746
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3747
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3748
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3749
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3750 3751
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3752 3753

    Returns:
D
dzhwinter 已提交
3754
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3755 3756 3757 3758 3759 3760 3761 3762 3763

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3764 3765
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3781
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3795 3796 3797 3798 3799 3800 3801 3802 3803


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3804
    .. math::
3805 3806

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3807 3808 3809 3810 3811

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3812
        x(Variable|list): The input tensor to l2_normalize layer.
3813
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3814 3815
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3816
        epsilon(float): The epsilon value is used to avoid division by zero, \
3817
            the defalut value is 1e-10.
3818
        name(str|None): A name for this layer(optional). If set None, the layer \
3819
            will be named automatically.
C
caoying03 已提交
3820 3821

    Returns:
3822
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3823 3824

    Examples:
3825

C
caoying03 已提交
3826 3827
        .. code-block:: python

3828 3829 3830 3831
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3832 3833
    """

F
fengjiayi 已提交
3834 3835
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3836 3837
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3838 3839
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3840
    helper.append_op(
3841 3842 3843 3844
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3845
        attrs={
3846 3847
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3848 3849
        })
    return out
3850 3851


S
sneaxiy 已提交
3852
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3853
    """
Y
ying 已提交
3854 3855 3856 3857
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3858

C
chengduoZH 已提交
3859
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3860
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3861

3862 3863 3864 3865 3866
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3867
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3868

C
chengduoZH 已提交
3869
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3870
      performs in the following way.
G
guosheng 已提交
3871

3872
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3873
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3874
        last two dimensions and a batched matrix multiply supporting broadcast
3875
        applies on the two tensors.
G
guosheng 已提交
3876

Y
ying 已提交
3877 3878
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3879
    removed after matrix multiplication.
G
guosheng 已提交
3880 3881 3882

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3883 3884 3885
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3886
        alpha (float): The scale of output. Default 1.0.
3887
        name(str|None): A name for this layer(optional). If set None, the layer
3888
            will be named automatically.
G
guosheng 已提交
3889 3890

    Returns:
3891
        Variable: The product Tensor variable.
G
guosheng 已提交
3892

G
guosheng 已提交
3893 3894 3895
    Examples:
        .. code-block:: python

3896
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3897 3898
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3899

3900 3901
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3902

3903 3904
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3905

3906 3907
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3908 3909 3910 3911

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3912 3913
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3914

Y
ying 已提交
3915
            # x: [M], y: [N]
3916
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3917
    """
Y
ying 已提交
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3930
            y_shape = y_shape + [1]
Y
ying 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3947
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3948
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3949
    helper.append_op(
3950 3951 3952 3953
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3954 3955 3956
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3957
            'alpha': float(alpha),
S
sneaxiy 已提交
3958
        })
3959
    return out
3960 3961


3962
def topk(input, k, name=None):
Q
qingqing01 已提交
3963 3964 3965 3966
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3967
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3968 3969 3970 3971 3972 3973
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
3995 3996 3997
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
3998
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
3999
                 of input.
4000
        name(str|None): A name for this layer(optional). If set None, the layer
4001
                       will be named automatically.
F
fengjiayi 已提交
4002
                       Default: None
Q
qingqing01 已提交
4003 4004

    Returns:
4005 4006 4007
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4008
        within the last dimension of input.
Q
qingqing01 已提交
4009

F
fengjiayi 已提交
4010 4011
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4012 4013 4014 4015 4016 4017 4018

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4019 4020
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4032
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4033
    """
Y
ying 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4043

Y
ying 已提交
4044
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4045

4046
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4047 4048
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4049
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4050

4051
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4052 4053
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4054

4055 4056 4057
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4058
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4059
                          the length of reference string.
4060
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4061
                                     calculating edit distance.
4062
        name (str): The name of this layer. It is optional.
4063

W
wanghaoshuang 已提交
4064
    Returns:
W
wanghaoshuang 已提交
4065
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4066 4067 4068 4069 4070

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
4071
            y = fluid.layers.data(name='y', shape=[7], dtype='float32')
4072
            cost = fluid.layers.edit_distance(input=x,label=y)
4073
    """
4074
    helper = LayerHelper("edit_distance", **locals())
4075

4076
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4077
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4078 4079
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4080 4081 4082 4083 4084

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4085
            attrs={"tokens": ignored_tokens})
4086 4087 4088 4089 4090
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4091
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4092
            attrs={"tokens": ignored_tokens})
4093 4094
        label = erased_label

4095
    # edit distance op
X
Xin Pan 已提交
4096 4097
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4098 4099 4100 4101
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4102 4103
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4104 4105
        attrs={"normalized": normalized})

4106
    return edit_distance_out, sequence_num
4107 4108 4109 4110 4111


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4112

Y
ying 已提交
4113 4114 4115 4116
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4134
        input.lod = [[4, 4]]
4135 4136 4137 4138 4139 4140 4141

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4142
        output.lod = [[2, 1]]
4143 4144 4145

    Args:

Y
ying 已提交
4146 4147 4148 4149 4150 4151 4152 4153 4154
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4155
        name (str): The name of this layer. It is optional.
4156 4157

    Returns:
4158
        Variable: CTC greedy decode result. If all the sequences in result were
4159
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4160 4161 4162 4163 4164

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4165

4166
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4167
    """
4168
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4169
    _, topk_indices = topk(input, k=1)
4170 4171

    # ctc align op
X
Xin Pan 已提交
4172
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4173 4174 4175
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4176
        outputs={"Output": [ctc_out]},
4177 4178
        attrs={"merge_repeated": True,
               "blank": blank})
4179
    return ctc_out
4180 4181


F
fengjiayi 已提交
4182
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4183
    """
4184 4185
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4186
    to compute Connectionist Temporal Classification (CTC) loss.
4187 4188
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4189 4190 4191
    input tensor.

    Args:
4192
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4193 4194 4195 4196
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4197
       label (Variable): The ground truth of variable-length sequence,
4198 4199 4200
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4201 4202
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4203 4204 4205
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4206
         follewed by a mean_op.
W
wanghaoshuang 已提交
4207 4208

    Returns:
4209 4210
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4211 4212

    Examples:
4213

W
wanghaoshuang 已提交
4214
        .. code-block:: python
4215

4216 4217 4218
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4219 4220

    """
F
fengjiayi 已提交
4221
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4222 4223
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4224 4225 4226 4227 4228 4229 4230 4231 4232
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4248 4249 4250
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4251 4252 4253 4254 4255
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4256

4257
            out.lod  = [[0, 1, 3]]
4258 4259 4260 4261

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4262 4263 4264 4265 4266 4267 4268
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4269 4270 4271

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4272 4273

    Returns:
4274

4275 4276 4277 4278 4279
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4280
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4281
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4282 4283
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4284
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4285 4286 4287 4288 4289 4290
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4291 4292


4293 4294 4295 4296
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4297 4298 4299 4300 4301 4302
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4303 4304
        num_neg_samples=None,
        name=None):
4305 4306 4307 4308 4309 4310 4311
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4312 4313
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4314
            sample is 1.0.
C
chengduo 已提交
4315 4316 4317 4318 4319 4320 4321 4322 4323
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4324
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4325 4326
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4327

4328
    Returns:
Y
Yibing Liu 已提交
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4356
    """
Y
Yang Yu 已提交
4357 4358 4359
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4360 4361

    dim = input.shape[1]
Y
Yang Yu 已提交
4362 4363 4364 4365 4366 4367
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4381 4382 4383
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4384

Y
Yang Yu 已提交
4385 4386 4387 4388 4389 4390 4391 4392 4393
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4394 4395 4396

    helper.append_op(
        type='nce',
C
chengduo 已提交
4397
        inputs=inputs,
Y
Yang Yu 已提交
4398 4399 4400 4401 4402 4403
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4404
    return cost / (num_neg_samples + 1)
4405 4406


C
chengduo 已提交
4407 4408 4409 4410 4411 4412
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4413 4414
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4415
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4416 4417 4418 4419 4420 4421 4422 4423 4424
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4425

W
weixing02 已提交
4426
    Args:
M
minqiyang 已提交
4427
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4428 4429 4430 4431 4432
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4444 4445 4446 4447 4448 4449 4450 4451

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4452 4453 4454
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4455 4456 4457 4458
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4459 4460
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4461 4462
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4463
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4464 4465 4466 4467 4468
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4469 4470 4471 4472 4473 4474 4475 4476
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4477 4478
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4479
        inputs=inputs,
W
weixing02 已提交
4480 4481 4482 4483 4484 4485
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4486
def transpose(x, perm, name=None):
Y
ying 已提交
4487 4488 4489 4490 4491 4492 4493
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4494 4495 4496
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4497 4498 4499 4500 4501 4502 4503

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4504 4505 4506 4507
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4508
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4509 4510
    """

Y
fix ci.  
ying 已提交
4511
    if len(perm) != len(x.shape):
Y
ying 已提交
4512 4513 4514
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4515 4516 4517 4518 4519 4520
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4521 4522

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4523 4524
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4525
    helper.append_op(
4526
        type='transpose2',
Y
fix ci.  
ying 已提交
4527
        inputs={'X': [x]},
4528 4529
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4530 4531
        attrs={'axis': perm})
    return out
4532 4533


4534 4535 4536 4537 4538 4539 4540
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4541
    """
4542 4543 4544 4545 4546 4547 4548
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4577 4578 4579 4580 4581 4582 4583 4584 4585
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4586 4587 4588
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4589 4590 4591 4592 4593
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4621 4622 4623
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4636
            output.dims = {8, 8}
4637

4638
            output.lod = [[4, 4]]
4639

D
dzhwinter 已提交
4640
     Examples:
4641 4642 4643

        .. code-block:: python

4644 4645
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4646 4647

    """
W
wanghaoshuang 已提交
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4658 4659 4660 4661 4662 4663 4664
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4665
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4666
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4667
    helper.append_op(
4668
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4669
    return out
4670 4671


Y
yuyang18 已提交
4672
@templatedoc()
4673
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4674 4675
    """
    ${comment}
4676 4677

    Args:
Y
yuyang18 已提交
4678
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4679 4680
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4681 4682 4683 4684 4685
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4686
        ${out_comment}.
4687 4688

    Examples:
Y
yuyang18 已提交
4689 4690 4691 4692
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4693 4694 4695 4696 4697 4698
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4699
    out = helper.create_variable_for_type_inference(dtype)
4700 4701 4702 4703 4704
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4705
    return helper.append_activation(out)
4706 4707


Y
yuyang18 已提交
4708
@templatedoc()
4709 4710
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4711 4712 4713 4714 4715 4716 4717
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4718 4719

    Args:
Y
yuyang18 已提交
4720 4721
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4722 4723

    Returns:
Y
yuyang18 已提交
4724
        ${out_comment}.
4725 4726
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4727 4728 4729 4730 4731

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4732
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4733 4734 4735 4736 4737 4738
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4739 4740


4741 4742 4743
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4744
                               ignore_index=-100,
4745 4746
                               numeric_stable_mode=False,
                               return_softmax=False):
4747 4748
    """
    **Softmax With Cross Entropy Operator.**
4749

4750 4751 4752 4753
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4754

4755 4756 4757
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4758

4759 4760 4761
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4762

4763
    The equation is as follows:
4764

4765
    1) Hard label (one-hot label, so every sample has exactly one class)
4766

4767 4768 4769 4770
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4771

4772 4773 4774
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4775

4776 4777 4778 4779
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4792 4793 4794 4795 4796 4797 4798 4799
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4800 4801
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4802
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4803 4804 4805 4806 4807 4808 4809
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4810 4811
        return_softmax (bool): A flag indicating whether to return the softmax 
                               along with the cross entropy loss. Default: False
4812

4813
    Returns:
4814 4815 4816 4817 4818
        Variable or Tuple of two Variables: Return the cross entropy loss if 
                              `return_softmax` is False, otherwise the tuple 
                              (loss, softmax), where the cross entropy loss is 
                              a 2-D tensor with shape [N x 1], and softmax is a 
                              2-D tensor with shape [N x K].
4819 4820 4821 4822 4823 4824 4825

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4826 4827
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4828 4829
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4830 4831
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4832 4833 4834 4835 4836 4837
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4838 4839 4840 4841 4842
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4843 4844 4845 4846

    if return_softmax:
        return loss, softmax

4847 4848 4849 4850 4851
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4852 4853
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4854
    For each instance, it computes the smooth L1 loss element by element first
4855
    and then sums all the losses. So the shape of ouput Variable is
4856
    [batch_size, 1].
4857

4858 4859
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4860
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4861
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4862
            L1 loss op with same shape as :attr:`x`.
4863
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4864 4865
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4866
            by this tensor element by element.
4867
        outside_weight (Variable|None): A tensor with rank at least 2. This
4868 4869
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4870
            element by element.
4871
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4872 4873
           scalar with default value 1.0.

4874
    Returns:
4875
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4876 4877 4878 4879 4880

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4881 4882
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4883
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4884
            out = fluid.layers.smooth_l1(x=fc, y=label)
4885
    """
4886

4887
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4888 4889
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4902 4903 4904 4905


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4906
    This layer creates the one-hot representations for input indices.
4907 4908

    Args:
Y
Yibing Liu 已提交
4909 4910
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4911 4912

    Returns:
Y
Yibing Liu 已提交
4913
        Variable: The one-hot representations of input.
4914 4915

    Examples:
C
caoying03 已提交
4916
        .. code-block:: python
4917

Y
Yibing Liu 已提交
4918 4919
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4920 4921
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4922
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4923 4924 4925 4926 4927 4928
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4929 4930


Y
Yu Yang 已提交
4931
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4932
    """
Y
yi.wu 已提交
4933 4934 4935
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4936 4937 4938 4939 4940 4941

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4942 4943
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4944 4945 4946 4947 4948 4949

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4950 4951
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4952 4953
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4954 4955 4956 4957 4958
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4959
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4960
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4961 4962
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4963 4964
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4965 4966 4967
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4968 4969


4970
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4971
    """
C
caoying03 已提交
4972 4973
    Gives a new shape to the input Tensor without changing its data.

4974 4975 4976 4977 4978
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4979

4980
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4981

4982 4983 4984 4985
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4986
    2. 0 means the actual dimension value is going to be copied from the
4987 4988 4989 4990
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4991 4992

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
4993
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
4994
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
4995

4996
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
4997 4998
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
4999 5000
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5001
    dimensions.
C
caoying03 已提交
5002

5003
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5004 5005 5006 5007
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5008 5009

    Args:
5010
        x(variable): The input tensor.
C
caoying03 已提交
5011 5012
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5013 5014 5015 5016 5017
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5018 5019
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5020 5021 5022 5023 5024 5025 5026
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5027
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5028

5029
    Returns:
G
guosheng 已提交
5030 5031 5032 5033
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5034

X
Xin Pan 已提交
5035 5036 5037
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5038 5039
    Examples:
        .. code-block:: python
G
guosheng 已提交
5040

5041
            data = fluid.layers.data(
5042
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5043
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5044
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5045 5046 5047
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5048
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5049 5050 5051 5052 5053
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5054

5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5070
    helper = LayerHelper("reshape2", **locals())
5071 5072
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5073
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5074
    helper.append_op(
5075
        type="reshape2",
X
Xin Pan 已提交
5076
        inputs=inputs,
D
dzhwinter 已提交
5077
        attrs={"shape": shape},
5078 5079
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5080

D
dzhwinter 已提交
5081
    return helper.append_activation(out)
5082

5083

5084
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5085
    """
M
minqiyang 已提交
5086 5087 5088
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5089
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5090

Y
Yibing Liu 已提交
5091 5092
    Examples:
    Case 1:
M
minqiyang 已提交
5093
      Given
Y
Yibing Liu 已提交
5094 5095 5096 5097 5098 5099 5100 5101
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5102
        and
Y
Yibing Liu 已提交
5103 5104 5105
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5106

Y
Yibing Liu 已提交
5107
    Args:
5108
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5109
        axes (list): List of integers, indicating the dimensions to be squeezed.
5110
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5111 5112 5113 5114 5115 5116 5117 5118

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5119
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5120 5121
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5122 5123
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5124
    helper.append_op(
5125
        type="squeeze2",
5126
        inputs={"X": input},
Y
Yibing Liu 已提交
5127
        attrs={"axes": axes},
5128 5129
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5130

5131 5132 5133
    return out


5134
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5135
    """
M
minqiyang 已提交
5136 5137 5138
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5139

M
minqiyang 已提交
5140 5141
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5142
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5143

Y
Yibing Liu 已提交
5144
    Args:
5145
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5146
        axes (list): List of integers, indicating the dimensions to be inserted.
5147
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5148 5149 5150 5151 5152 5153 5154 5155

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5156
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5157 5158
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5159 5160
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5161
    helper.append_op(
5162
        type="unsqueeze2",
5163
        inputs={"X": input},
Y
Yibing Liu 已提交
5164
        attrs={"axes": axes},
5165 5166
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5167

5168 5169
    return out

5170

Y
yangyaming 已提交
5171
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5172
    """
Y
Yibing Liu 已提交
5173
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5174 5175 5176 5177
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5178
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5179 5180 5181 5182 5183 5184

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5185
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5186 5187 5188
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5189
            target_lod: [4, 2]
Y
yangyaming 已提交
5190 5191

            then we get a 1-level LoDTensor:
5192
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5193 5194 5195 5196 5197 5198
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5199
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5200 5201 5202 5203
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5204
                y.data = [[2, 4]]
Y
yangyaming 已提交
5205 5206 5207
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5208
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5209 5210 5211 5212 5213 5214
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5215
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5216 5217 5218 5219
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5220
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5221 5222 5223 5224
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5225
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5226 5227 5228 5229 5230
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5231
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5232
                           from :attr:`y`.
Y
yangyaming 已提交
5233
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5234
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5235 5236

    Returns:
Y
Yibing Liu 已提交
5237
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5238 5239

    Raises:
Y
Yibing Liu 已提交
5240
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5250
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5276
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5305 5306
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5319 5320 5321
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5335 5336 5337 5338


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5339
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5340
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5341

G
guosheng 已提交
5342 5343 5344 5345
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5368
                         The length of :attr:paddings must be
G
guosheng 已提交
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5379

G
guosheng 已提交
5380 5381 5382 5383 5384 5385
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5386
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5387 5388 5389 5390 5391 5392 5393
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5394 5395


C
chengduo 已提交
5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5466
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5467 5468 5469 5470 5471 5472 5473 5474 5475
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5476 5477 5478 5479 5480 5481 5482
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5483 5484
    called label-smoothing regularization (LSR).

5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5508
                              be :math:`(1, class\_num)`.
5509 5510
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5511
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5531
    smooth_label = helper.create_variable_for_type_inference(dtype)
5532 5533 5534 5535 5536 5537 5538
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5539 5540


Y
yi.wu 已提交
5541
@templatedoc()
5542 5543
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
Y
yi.wu 已提交
5544
    ${comment}
5545 5546

    Args:
Y
yi.wu 已提交
5547 5548
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
Y
yi.wu 已提交
5549 5550 5551
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5552 5553

    Returns:
Y
update  
yi.wu 已提交
5554
        Variable: ${out_comment}.
5555 5556

    Examples:
5557 5558
        .. code-block:: python

5559
            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
5560 5561 5562
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5563 5564
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
5577 5578


J
jerrywgz 已提交
5579 5580 5581 5582 5583 5584
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5585 5586
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5603 5604 5605
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5606 5607 5608 5609 5610 5611
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5612
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5653 5654
        .. code-block:: python

W
whs 已提交
5655 5656 5657 5658
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5659
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5660 5661 5662 5663 5664 5665
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5666 5667


5668 5669 5670 5671
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5672 5673
                 resample='BILINEAR',
                 actual_shape=None):
5674
    """
Q
qiaolongfei 已提交
5675
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5676

5677
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5678 5679 5680
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5681

5682
        'BILINEAR' : Bilinear interpolation
5683
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5684

5685
    Args:
5686
        input (Variable): The input tensor of image resize layer,
5687 5688
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5689
        out_shape(list|tuple|Variable|None): Output shape of image resize
5690 5691
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5692
        scale(float|None): The multiplier for the input height or width.
5693 5694 5695
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5696 5697
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5698 5699
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5700
                       Default: 'BILINEAR'
5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5714 5715

    Returns:
Q
update  
qiaolongfei 已提交
5716 5717
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5718

5719 5720 5721 5722 5723 5724 5725 5726
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5727 5728 5729
    Examples:
        .. code-block:: python

5730
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5731
    """
5732 5733 5734 5735
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5736 5737
    if resample not in resample_methods:
        raise ValueError(
5738
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5739
        )
5740
    if out_shape is None and scale is None:
5741
        raise ValueError("One of out_shape and scale must not be None.")
5742
    helper = LayerHelper('interpolate', **locals())
5743
    dtype = helper.input_dtype()
5744 5745 5746 5747

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5748 5749 5750
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5751
    if out_shape is not None:
5752 5753 5754 5755
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5756
            inputs['OutSize'] = out_shape
5757 5758 5759 5760 5761 5762 5763 5764
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5765 5766 5767 5768
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5769 5770 5771 5772 5773
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5774
    out = helper.create_variable_for_type_inference(dtype)
5775
    helper.append_op(
5776
        type='interpolate',
5777
        inputs=inputs,
5778
        outputs={"Out": out},
5779 5780 5781 5782 5783
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5784
    return out
F
stash  
fengjiayi 已提交
5785 5786


5787
@templatedoc(op_type="interpolate")
5788 5789 5790 5791 5792
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5793
    """
5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5806 5807 5808 5809 5810

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5811

Y
yuyang18 已提交
5812 5813 5814 5815 5816
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5830 5831 5832

    Returns:
        ${out_comment}.
5833 5834
    """

5835
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5836 5837


5838
@templatedoc(op_type="interpolate")
5839 5840 5841 5842 5843
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5844
    """
5845 5846 5847 5848 5849 5850 5851
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5852 5853 5854 5855 5856

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5857

Y
yuyang18 已提交
5858 5859 5860 5861 5862
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5876 5877 5878

    Returns:
        ${out_comment}.
5879 5880
    """

5881
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5882 5883 5884 5885


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5886 5887 5888
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5889 5890 5891 5892 5893 5894 5895
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5896
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5897

5898
    Returns:
Q
update  
qiaolongfei 已提交
5899
        Variable: The output is a 4-D tensor of the shape
5900
        (num_batches, channls, out_h, out_w).
5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5911 5912 5913
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5914 5915 5916
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5917 5918
def gather(input, index):
    """
Q
qiaolongfei 已提交
5919 5920
    **Gather Layer**

5921
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5922 5923 5924 5925
    of X indexed by `index` and concatenate them together.

    .. math::

5926
        Out = X[Index]
W
whs 已提交
5927 5928 5929 5930 5931 5932 5933


    .. code-block:: text


                Given:

5934 5935
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5936 5937 5938 5939 5940 5941 5942 5943 5944 5945
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5946
        input (Variable): The source input with rank>=1.
W
whs 已提交
5947 5948 5949 5950 5951 5952
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5953

W
whs 已提交
5954 5955 5956 5957 5958 5959
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5960
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5961 5962 5963 5964 5965 5966 5967 5968
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6000
    out = helper.create_variable_for_type_inference(dtype)
6001 6002 6003 6004 6005 6006 6007 6008 6009
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6060
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6061 6062 6063 6064 6065 6066 6067 6068 6069
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6083

6084 6085 6086
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6087
    """
F
stash  
fengjiayi 已提交
6088
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6089
    dtype = x.dtype
X
Xin Pan 已提交
6090
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6091
    if seed is None:
6092
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6093
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6094
    if isinstance(seed, int):
F
fengjiayi 已提交
6095 6096 6097 6098 6099
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6100 6101 6102 6103
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6104
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6105 6106
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6107 6108
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6109
    return out
W
whs 已提交
6110 6111


6112
def log(x, name=None):
W
wanghaoshuang 已提交
6113 6114 6115 6116 6117
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6118
        Out = \\ln(x)
W
wanghaoshuang 已提交
6119 6120

    Args:
6121
        x (Variable): Input tensor.
6122 6123
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6124 6125 6126 6127 6128 6129 6130 6131

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6132
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6133 6134
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6135
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6136
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6137
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6138 6139 6140
    return out


6141
def relu(x, name=None):
W
wanghaoshuang 已提交
6142 6143
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6144
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6145 6146 6147 6148
    the tensor elementwise.

    .. math::

6149
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6150 6151

    Args:
6152
        x (Variable): The input tensor.
6153 6154
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6155 6156 6157 6158 6159 6160 6161 6162

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6163
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6164 6165
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6166
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6167
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6168
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6169
    return out
6170 6171


W
whs 已提交
6172 6173 6174
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6175 6176 6177 6178
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6179
    .. math::
6180 6181

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6182

6183
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6184 6185 6186 6187 6188
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6189
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6190
                           Its shape should be the same as input.
6191
        num_classes (int): The possible number of labels.
W
whs 已提交
6192 6193 6194 6195

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6196
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6197 6198 6199 6200

    Examples:

        .. code-block:: python
6201

W
whs 已提交
6202 6203 6204 6205
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6206 6207 6208
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6209 6210
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6211 6212
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6213
        outputs={
W
whs 已提交
6214 6215 6216
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6217 6218 6219
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6294
                    isinstance(shape, Variable)):
6295 6296 6297 6298 6299
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6300
    out = helper.create_variable_for_type_inference(x.dtype)
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6318 6319


W
whs 已提交
6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6438 6439 6440 6441 6442 6443 6444 6445
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6446

6447 6448
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6449

6450 6451 6452 6453
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6454

6455 6456 6457 6458 6459
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6460 6461 6462

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6498
    out = helper.create_variable_for_type_inference("float32")
6499 6500 6501 6502 6503 6504 6505 6506

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6507 6508


M
minqiyang 已提交
6509 6510
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6511
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6512
    which compares left score and right score passed in.
M
minqiyang 已提交
6513
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6514 6515 6516 6517 6518 6519

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6520
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6521 6522
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6523
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6524 6525 6526
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6527
       Variable: The ranking loss.
M
minqiyang 已提交
6528
    Raises:
M
minqiyang 已提交
6529
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6530 6531 6532 6533 6534 6535 6536
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6537
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6538 6539 6540 6541 6542 6543
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6544 6545
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6571

W
whs 已提交
6572 6573
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6574

W
whs 已提交
6575
      Case 0:
M
minqiyang 已提交
6576

W
whs 已提交
6577 6578 6579
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6580

W
whs 已提交
6581 6582 6583
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6584

W
whs 已提交
6585
      Case 1:
M
minqiyang 已提交
6586

W
whs 已提交
6587 6588
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6589

W
whs 已提交
6590 6591 6592
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6593

W
whs 已提交
6594
      Case 2:
M
minqiyang 已提交
6595

W
whs 已提交
6596 6597
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6598

W
whs 已提交
6599 6600 6601
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6602 6603


W
whs 已提交
6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6630
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6659
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6682
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6705
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6729
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6754
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6778
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6779 6780 6781 6782 6783 6784 6785 6786
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6801
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6802
                        will be named automatically.
J
jerrywgz 已提交
6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6830
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6831 6832 6833 6834 6835 6836 6837 6838 6839
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6854
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6877
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6899
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6900 6901 6902 6903 6904 6905 6906 6907
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6921

6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6932 6933
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6949
        ValueError: If axis is not in range [0, rank(x)].
6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6966 6967
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6968
    helper.append_op(
6969
        type='flatten2',
6970
        inputs={"X": x},
6971 6972
        outputs={'Out': out,
                 'XShape': x_shape},
6973 6974
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6975 6976


C
chenweihang 已提交
6977
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6978
    """
C
chenweihang 已提交
6979
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6980
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6981 6982
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6983

C
chenweihang 已提交
6984 6985 6986 6987
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
6988
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
6989 6990 6991 6992 6993 6994
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
6995
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
6996 6997 6998
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
6999 7000 7001
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7013 7014
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7015 7016 7017 7018 7019 7020
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7021
    return out
7022

7023

S
sneaxiy 已提交
7024 7025 7026 7027 7028 7029 7030 7031 7032
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7033

S
sneaxiy 已提交
7034
    .. math::
7035

S
sneaxiy 已提交
7036 7037 7038
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7039
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7040 7041 7042 7043
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7044 7045 7046
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7047 7048
    Returns:
        Variable: The output sequence mask.
7049

S
sneaxiy 已提交
7050 7051
    """

Q
qingqing01 已提交
7052
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7053
    if name is None:
X
Xin Pan 已提交
7054
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7055
    else:
X
Xin Pan 已提交
7056
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7057

Q
qingqing01 已提交
7058 7059 7060
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7061 7062
        outputs={'Y': out},
        attrs={
7063
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7064 7065 7066
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7067 7068


X
Xin Pan 已提交
7069
def stack(x, axis=0):
S
sneaxiy 已提交
7070 7071 7072 7073
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7074 7075 7076 7077 7078 7079 7080

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7081
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7082
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7083 7084

    Args:
7085
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7086
        axis (int|None): The axis along which all inputs are stacked.
7087

S
sneaxiy 已提交
7088 7089
    Returns:
        Variable: The stacked variable.
7090

S
sneaxiy 已提交
7091 7092
    """

X
Xin Pan 已提交
7093 7094 7095 7096 7097 7098
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7099
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7100
    helper.append_op(
S
sneaxiy 已提交
7101 7102
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7103

X
Xin Pan 已提交
7104
    return out
D
dzhwinter 已提交
7105 7106 7107 7108 7109 7110 7111


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7112

D
dzhwinter 已提交
7113 7114 7115
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7116
    raised.
D
dzhwinter 已提交
7117 7118

    Args:
M
minqiyang 已提交
7119
        x (Variable): Input variable.
D
dzhwinter 已提交
7120 7121
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7122

D
dzhwinter 已提交
7123 7124
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7125

D
dzhwinter 已提交
7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7137
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7138 7139 7140 7141 7142 7143 7144 7145

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7158

W
whs 已提交
7159 7160 7161 7162
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7163

W
whs 已提交
7164
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7165

W
whs 已提交
7166
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7167

W
whs 已提交
7168 7169 7170 7171
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7172

W
whs 已提交
7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7189
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7190 7191 7192 7193 7194 7195
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7196 7197


G
fix  
gongweibao 已提交
7198 7199 7200
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7201
@templatedoc()
G
fix  
gongweibao 已提交
7202 7203 7204 7205 7206 7207 7208 7209 7210
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7211
    ${comment}
G
fix  
gongweibao 已提交
7212 7213

    Args:
G
gongweibao 已提交
7214 7215 7216
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7217
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7218 7219 7220
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7221 7222
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7223
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7224 7225 7226 7227

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7228
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7245 7246


G
gongweibao 已提交
7247
@templatedoc()
X
Xin Pan 已提交
7248
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7249
    """
G
gongweibao 已提交
7250
    ${comment}
G
fix  
gongweibao 已提交
7251 7252

    Args:
G
gongweibao 已提交
7253 7254 7255 7256
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7257 7258 7259
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7260
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7261 7262 7263 7264

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7265
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7276
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7277 7278 7279 7280 7281
        })

    return out


G
gongweibao 已提交
7282
@templatedoc()
G
fix  
gongweibao 已提交
7283
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7284
    """
G
gongweibao 已提交
7285
    ${comment}
G
fix  
gongweibao 已提交
7286 7287

    Args:
G
gongweibao 已提交
7288 7289 7290 7291
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7292
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7293 7294

    Returns:
G
gongweibao 已提交
7295
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7296 7297 7298 7299

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7300
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7312
@templatedoc()
G
fix  
gongweibao 已提交
7313 7314 7315 7316 7317 7318 7319 7320 7321
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7322
    ${comment}
G
fix  
gongweibao 已提交
7323 7324

    Args:
G
gongweibao 已提交
7325 7326
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7327
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7328 7329 7330 7331
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7332
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7333 7334

    Returns:
G
gongweibao 已提交
7335
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7336 7337 7338
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7339
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7358
@templatedoc()
X
Xin Pan 已提交
7359
def sum(x):
G
fix  
gongweibao 已提交
7360
    """
G
gongweibao 已提交
7361
    ${comment}
G
fix  
gongweibao 已提交
7362 7363

    Args:
G
gongweibao 已提交
7364
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7365 7366

    Returns:
G
gongweibao 已提交
7367
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7368 7369 7370
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7371 7372
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7373 7374 7375 7376
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7377
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7378 7379 7380 7381

    return out


G
gongweibao 已提交
7382
@templatedoc()
G
fix  
gongweibao 已提交
7383 7384
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7385
    ${comment}
G
fix  
gongweibao 已提交
7386 7387

    Args:
G
gongweibao 已提交
7388 7389 7390 7391
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7392 7393

    Returns:
G
gongweibao 已提交
7394
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7395 7396 7397 7398

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7399 7400
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7412
@templatedoc()
G
fix  
gongweibao 已提交
7413 7414
def shape(input):
    """
G
gongweibao 已提交
7415
    ${comment}
G
fix  
gongweibao 已提交
7416 7417

    Args:
G
gongweibao 已提交
7418
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7419 7420

    Returns:
G
gongweibao 已提交
7421
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7422 7423 7424 7425

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7426 7427
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7428
    helper.append_op(
G
fix  
gongweibao 已提交
7429
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7430 7431

    return out
G
merge  
gongweibao 已提交
7432 7433


S
sneaxiy 已提交
7434 7435 7436 7437 7438 7439 7440 7441
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7442 7443
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7444
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7445 7446 7447
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7448

S
sneaxiy 已提交
7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7460
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7461 7462 7463 7464 7465 7466 7467 7468
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7469
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7470
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7471 7472 7473 7474 7475 7476

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7477
    if name is None:
X
Xin Pan 已提交
7478
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7479 7480 7481
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7492
    return helper.append_activation(out)
S
sneaxiy 已提交
7493 7494


X
Xin Pan 已提交
7495
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7496 7497 7498
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7499
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7500 7501 7502
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7503
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7504 7505 7506
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7507
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7508 7509 7510
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7511
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7512 7513 7514
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7515
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7516 7517 7518
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7519
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7531 7532
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7533
        ])
M
minqiyang 已提交
7534 7535


7536
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7537 7538
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7539 7540
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7541 7542 7543

    if out is None:
        if name is None:
X
Xin Pan 已提交
7544
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7560
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7579
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7598
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7617
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7652 7653 7654 7655
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7684 7685 7686 7687
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7688 7689 7690 7691 7692 7693 7694 7695

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7714
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7744
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7745 7746 7747 7748 7749 7750 7751 7752 7753
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7754 7755
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7778
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7808
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7809 7810 7811 7812 7813 7814 7815 7816 7817 7818
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
M
minqiyang 已提交
7819 7820


J
JiabinYang 已提交
7821
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7822
    """
J
JiabinYang 已提交
7823
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7824
    
J
JiabinYang 已提交
7825
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7826
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7827
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7828 7829
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7830
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7831 7832 7833
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7834

J
JiabinYang 已提交
7835 7836 7837 7838 7839 7840 7841
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7842
    Args:
J
JiabinYang 已提交
7843
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7844
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7845 7846

    Returns:
J
JiabinYang 已提交
7847
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7848 7849

    Raises:
J
JiabinYang 已提交
7850
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7851 7852 7853 7854 7855 7856

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7857
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7858
                x=data, blocksize=2)
J
JiabinYang 已提交
7859 7860
    """

J
JiabinYang 已提交
7861
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7862

J
JiabinYang 已提交
7863 7864
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7865 7866

    if name is None:
J
JiabinYang 已提交
7867 7868
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7869 7870 7871 7872 7873
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7874
        type="space_to_depth",
J
JiabinYang 已提交
7875
        inputs={"X": x},
J
JiabinYang 已提交
7876
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7877
        outputs={"Out": out})
J
JiabinYang 已提交
7878 7879
    return out

J
JiabinYang 已提交
7880

S
sneaxiy 已提交
7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7895
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7906 7907


7908 7909 7910 7911 7912 7913
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7914

7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7934
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7947 7948


B
barrierye 已提交
7949 7950
def similarity_focus(input, axis, indexes, name=None):
    """  
B
barrierye 已提交
7951
    SimilarityFocus Operator
B
barrierye 已提交
7952 7953

    Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
7954
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 
B
barrierye 已提交
7955
       to the axis according to the indexes. For example, if axis=1 and indexes=[a], 
B
barrierye 已提交
7956
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X 
B
barrierye 已提交
7957 7958 7959 7960
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
    2. For each index, find the largest numbers in the tensor T, so that the same 
       row and same column has at most one number(what it means is that if the 
       largest number has been found in the i-th row and the j-th column, then 
B
barrierye 已提交
7961 7962 7963
       the numbers in the i-th row or j-th column will be skipped. And then the 
       next largest number will be selected from the remaining numbers. Obviously 
       there will be min(B, C) numbers), and mark the corresponding position of the 
B
barrierye 已提交
7964 7965
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 
       each index.
B
barrierye 已提交
7966 7967 7968 7969
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8019 8020 8021
    Args:
        input(Variable): The input tensor variable(default float). It should 
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8022
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8023
            1, 2 or 3.
B
barrierye 已提交
8024
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8025 8026 8027 8028 8029 8030 8031 8032

    Returns:
        Variable: A tensor variable with the same shape and same type 
            as the input.
        
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8033 8034
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8047 8048 8049 8050 8051
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8052 8053 8054 8055 8056 8057 8058
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8059 8060


M
minqiyang 已提交
8061 8062
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8063 8064
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8065 8066
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8105
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8106
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8107 8108 8109 8110 8111 8112 8113 8114 8115

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8116 8117
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8118 8119
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8120 8121 8122 8123 8124 8125 8126
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8127 8128


D
dengkaipeng 已提交
8129
@templatedoc()
8130 8131
def grid_sampler(x, grid, name=None):
    """
8132 8133 8134 8135 8136 8137 8138
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8177 8178

    Args:
8179 8180 8181
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8182 8183

    Returns:
8184 8185 8186 8187 8188 8189 8190 8191 8192 8193
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8194 8195 8196 8197 8198 8199 8200 8201 8202
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8203
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8204 8205
    ipts = {'X': x, 'Grid': grid}

8206
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8207 8208 8209
    return out


G
gmcather 已提交
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8304 8305 8306 8307 8308 8309 8310 8311 8312 8313


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8314
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8315

Q
Qiao Longfei 已提交
8316
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8317 8318 8319
    For example:

    .. math::
8320
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8321

Q
Qiao Longfei 已提交
8322
    In this formula:
8323 8324
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8325
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8326
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8327 8328 8329
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8330 8331
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8332 8333 8334
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8335
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8336
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8337
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8338 8339 8340 8341
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8342
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8343 8344 8345 8346

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8347
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8348 8349
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8350
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8351 8352 8353 8354

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8355
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)