nn.py 300.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
P
peizhilin 已提交
21
import os
Y
Yu Yang 已提交
22 23
from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant
S
sneaxiy 已提交
24
from ..framework import Variable, OpProtoHolder
Y
yangyaming 已提交
25
from ..param_attr import ParamAttr
S
sneaxiy 已提交
26
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
27 28
from .tensor import concat
from . import utils
F
fengjiayi 已提交
29
from .. import unique_name
30
from functools import reduce
31
from .. import core
Y
Yu Yang 已提交
32 33

__all__ = [
X
Xin Pan 已提交
34 35
    'fc',
    'embedding',
P
peizhilin 已提交
36
    'dynamic_lstm',
X
Xin Pan 已提交
37 38 39 40
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
P
peizhilin 已提交
41
    'crf_decoding',
X
Xin Pan 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    'cos_sim',
    'cross_entropy',
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
    'batch_norm',
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
61
    'sequence_unpad',
X
Xin Pan 已提交
62 63 64 65 66 67 68 69
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
70
    'sequence_slice',
X
Xin Pan 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
P
peizhilin 已提交
100
    'roi_pool',
J
jerrywgz 已提交
101
    'roi_align',
X
Xin Pan 已提交
102 103 104 105
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
106
    'resize_nearest',
X
Xin Pan 已提交
107 108 109 110 111 112 113 114 115
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
116
    'margin_rank_loss',
X
Xin Pan 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
160
    'space_to_depth',
W
whs 已提交
161
    'affine_grid',
S
sneaxiy 已提交
162
    'sequence_reverse',
163
    'affine_channel',
B
barrierye 已提交
164
    'similarity_focus',
M
minqiyang 已提交
165
    'hash',
D
dengkaipeng 已提交
166
    'grid_sampler',
G
gmcather 已提交
167 168
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
169
    'bilinear_tensor_product',
Y
Yu Yang 已提交
170 171 172 173 174 175 176 177 178
]


def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
179
       is_test=False,
180
       name=None):
Y
Yu Yang 已提交
181
    """
182
    **Fully Connected Layer**
Y
Yu Yang 已提交
183

184 185 186 187 188 189 190 191
    This function creates a fully connected layer in the network. It can take
    multiple tensors as its inputs. It creates a variable called weights for
    each input tensor, which represents a fully connected weight matrix from
    each input unit to each output unit. The fully connected layer multiplies
    each input tensor with its coresponding weight to produce an output Tensor.
    If multiple input tensors are given, the results of multiple multiplications
    will be sumed up. If bias_attr is not None, a bias variable will be created
    and added to the output. Finally, if activation is not None, it will be applied
F
fengjiayi 已提交
192
    to the output as well.
C
caoying03 已提交
193

C
caoying03 已提交
194
    This process can be formulated as follows:
195 196 197

    .. math::

198
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
199 200 201

    In the above equation:

C
caoying03 已提交
202 203 204 205
    * :math:`N`: Number of the input.
    * :math:`X_i`: The input tensor.
    * :math:`W`: The weights created by this layer.
    * :math:`b`: The bias parameter created by this layer (if needed).
206
    * :math:`Act`: The activation function.
C
caoying03 已提交
207
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
208 209

    Args:
R
ranqiu 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
225 226
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
227
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
228
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
229
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
230

231
    Returns:
F
fengjiayi 已提交
232
        Variable: The transformation result.
233 234

    Raises:
C
caoying03 已提交
235
        ValueError: If rank of the input tensor is less than 2.
236 237 238 239

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
240
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
241
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
Y
Yu Yang 已提交
242
    """
C
caoying03 已提交
243

C
caoying03 已提交
244
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
245 246 247 248

    dtype = helper.input_dtype()

    mul_results = []
249 250
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
251 252 253
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
254

Y
Yu Yang 已提交
255
        w = helper.create_parameter(
256
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
257
        tmp = helper.create_variable_for_type_inference(dtype)
258
        helper.append_op(
259 260 261
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
262
            outputs={"Out": tmp},
M
mozga-intel 已提交
263 264
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
265 266 267 268
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
269
    else:
X
Xin Pan 已提交
270
        pre_bias = helper.create_variable_for_type_inference(dtype)
271
        helper.append_op(
272 273 274
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
275
            attrs={"use_mkldnn": False})
276 277 278 279
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
280 281


282 283 284
def embedding(input,
              size,
              is_sparse=False,
285
              is_distributed=False,
286 287 288
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
289
    """
290 291
    **Embedding Layer**

292
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
293 294
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
295 296 297

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
298 299

    Args:
300 301 302 303 304
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
305
        is_distributed(bool): Whether to run lookup table from remote parameter server.
306 307
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
308
            with zeros whenever lookup encounters it in :attr:`input`. If
309
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
310 311
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
312
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
313

314 315 316
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
317

318 319
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
320

C
chengduoZH 已提交
321
          dict_size = len(dataset.ids)
322
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
323
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
324 325 326 327 328
    """

    helper = LayerHelper('embedding', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
329
    tmp = helper.create_variable_for_type_inference(dtype)
330 331
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
332 333 334 335 336
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
337 338 339 340 341
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
342 343 344
    return tmp


P
peizhilin 已提交
345
if os.name != 'nt':
P
peizhilin 已提交
346

P
peizhilin 已提交
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    @templatedoc(op_type="lstm")
    def dynamic_lstm(input,
                     size,
                     h_0=None,
                     c_0=None,
                     param_attr=None,
                     bias_attr=None,
                     use_peepholes=True,
                     is_reverse=False,
                     gate_activation='sigmoid',
                     cell_activation='tanh',
                     candidate_activation='tanh',
                     dtype='float32',
                     name=None):
        """
        ${comment}

        Args:
            input (Variable): ${input_comment}
            size (int): 4 * hidden size.
            h_0(Variable): The initial hidden state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size and D is the hidden size.
            c_0(Variable): The initial cell state is an optional input, default is zero.
                           This is a tensor with shape (N x D), where N is the
                           batch size. `h_0` and `c_0` can be NULL but only at the same time.
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                                   hidden-hidden weights.

                                   - Weights = {:math:`W_{ch}, W_{ih}, \
                                                    W_{fh}, W_{oh}`}
                                   - The shape is (D x 4D), where D is the hidden
                                     size.

                                   If it is set to None or one attribute of ParamAttr,
                                   dynamic_lstm will create ParamAttr as param_attr.
                                   If the Initializer of the param_attr is not set, the
                                   parameter is initialized with Xavier. Default: None.
            bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                                  weights, which contains two parts, input-hidden
                                  bias weights and peephole connections weights if
                                  setting `use_peepholes` to `True`.

                                  1. `use_peepholes = False`
                                     - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                     - The shape is (1 x 4D).
                                  2. `use_peepholes = True`
                                     - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                     W_{fc}, W_{oc}`}.
                                     - The shape is (1 x 7D).

                                  If it is set to None or one attribute of ParamAttr,
                                  dynamic_lstm will create ParamAttr as bias_attr.
                                  If the Initializer of the bias_attr is not set,
                                  the bias is initialized zero. Default: None.
            use_peepholes (bool): ${use_peepholes_comment}
            is_reverse (bool): ${is_reverse_comment}
            gate_activation (str): ${gate_activation_comment}
            cell_activation (str): ${cell_activation_comment}
            candidate_activation (str): ${candidate_activation_comment}
            dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
            name (str|None): A name for this layer(optional). If set None, the layer
                             will be named automatically.

        Returns:
            tuple: The hidden state, and cell state of LSTM. The shape of both \
            is (T x D), and lod is the same with the `input`.

        Examples:
            .. code-block:: python

                hidden_dim = 512
                forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                               bias_attr=False)
                forward, _ = fluid.layers.dynamic_lstm(
                    input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
        """
        assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
        helper = LayerHelper('lstm', **locals())
        size = size // 4
        weight = helper.create_parameter(
            attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
        bias_size = [1, 7 * size]
        if not use_peepholes:
            bias_size[1] = 4 * size
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
434

P
peizhilin 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448
        hidden = helper.create_variable_for_type_inference(dtype)
        cell = helper.create_variable_for_type_inference(dtype)
        batch_gate = helper.create_variable_for_type_inference(dtype)
        batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
        inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
        batch_size = input.shape[0]
        if h_0:
            assert h_0.shape == (batch_size, size), \
                'The shape of h0 should be (batch_size, %d)' % size
            inputs['H0'] = h_0
        if c_0:
            assert c_0.shape == (batch_size, size), \
                'The shape of c0 should be (batch_size, %d)' % size
            inputs['C0'] = c_0
Y
Yu Yang 已提交
449

P
peizhilin 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
        helper.append_op(
            type='lstm',
            inputs=inputs,
            outputs={
                'Hidden': hidden,
                'Cell': cell,
                'BatchGate': batch_gate,
                'BatchCellPreAct': batch_cell_pre_act
            },
            attrs={
                'use_peepholes': use_peepholes,
                'is_reverse': is_reverse,
                'gate_activation': gate_activation,
                'cell_activation': cell_activation,
                'candidate_activation': candidate_activation
            })
        return hidden, cell
Y
Yu Yang 已提交
467 468


Y
Yibing Liu 已提交
469 470 471 472 473 474 475 476 477 478 479
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
                  proj_activation='tanh',
480 481
                  dtype='float32',
                  name=None):
Y
Yibing Liu 已提交
482 483 484
    """
    **Dynamic LSTMP Layer**

485 486 487 488 489 490
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
491 492 493 494 495

    The formula is as follows:

    .. math::

496
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
497

498
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
499

500
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
501

502
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
503

504
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
505

506
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
507

508
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
509

Y
Yibing Liu 已提交
510 511 512 513 514 515
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
516
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
517
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
518
          bias vector).
Y
Yibing Liu 已提交
519 520 521
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
522
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
523
    * :math:`h`: The hidden state.
524
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
525 526
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
527
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
528
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
529
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
530 531
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
532 533 534 535

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
536

Y
Yibing Liu 已提交
537 538 539 540 541 542 543 544 545 546 547 548
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
549
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
550 551
                               hidden-hidden weight and projection weight.

552 553
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
554 555
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
556 557
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
558
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
559 560 561 562 563

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
564
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
565 566 567 568 569 570
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
571
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
572 573 574
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
575
                                - The shape is (1 x 7D).
C
chengduo 已提交
576 577 578 579 580

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
581 582 583 584 585 586 587 588 589
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
590
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
591 592
                              default "tanh".
        proj_activation(str): The activation for projection output.
593
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
594 595
                              default "tanh".
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
596 597
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
Y
Yibing Liu 已提交
598 599

    Returns:
600 601 602 603
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
604 605

    Examples:
606

Y
Yibing Liu 已提交
607 608
        .. code-block:: python

609 610 611 612
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
613
            hidden_dim, proj_dim = 512, 256
614
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
615
                                     act=None, bias_attr=None)
616 617 618
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
619 620 621 622
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
623
    """
624

C
chengduo 已提交
625
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
626
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
627
    size = size // 4
Y
Yibing Liu 已提交
628 629 630 631 632 633 634 635 636 637
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
638 639 640 641 642 643
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    helper.append_op(
        type='lstmp',
        inputs={
            'Input': input,
            'Weight': weight,
            'ProjWeight': proj_weight,
            'Bias': bias
        },
        outputs={
            'Projection': projection,
            'Cell': cell,
            'OrderedP0': ordered_proj0,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
672 673 674 675 676 677 678 679 680
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
                h_0=None):
    """
681
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
682

683
    Refer to `Empirical Evaluation of Gated Recurrent Neural Networks on
684
    Sequence Modeling <https://arxiv.org/abs/1412.3555>`_ .
685

G
guosheng 已提交
686 687 688 689 690 691 692 693 694
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
695

G
guosheng 已提交
696
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
697

G
guosheng 已提交
698
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
699 700
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
701 702 703 704
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
705
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
706 707

    Args:
708 709
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
710
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
711
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
712 713
            is the hidden size.
        size(int): The dimension of the gru cell.
714
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
715 716
            hidden-hidden weight matrix. Note:

717
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
718
              :math:`D` is the hidden size.
719
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
720
              The first part are weights of the update gate and reset gate with
721
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
722
              candidate hidden state with shape :math:`(D \\times D)`.
723 724 725 726 727 728 729 730 731 732 733 734

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, dynamic_gru will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
735
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
736 737 738
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
739
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
740
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
741 742 743 744
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
745 746

    Returns:
G
guosheng 已提交
747
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
748
            and sequence length is the same with the input.
749

G
guosheng 已提交
750
    Examples:
751

G
guosheng 已提交
752 753
        .. code-block:: python

754 755 756 757
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
758
            hidden_dim = 512
759
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
G
guosheng 已提交
760 761 762 763 764 765 766 767 768 769
            hidden = fluid.layers.dynamic_gru(input=x, dim=hidden_dim)
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
770
    batch_size = input.shape[0]
G
guosheng 已提交
771
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
772
    if h_0:
G
guosheng 已提交
773
        assert h_0.shape == (
Y
Yancey 已提交
774 775 776
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
777

X
Xin Pan 已提交
778 779 780 781
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'activation': candidate_activation
        })
    return hidden


Y
Yu Yang 已提交
800 801 802
def gru_unit(input,
             hidden,
             size,
803 804
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
805
             activation='tanh',
806
             gate_activation='sigmoid'):
Y
Yu Yang 已提交
807
    """
808
    GRU unit layer. The equation of a gru step is:
Y
Yu Yang 已提交
809

810 811
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
812

813
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
814

815
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
816

817
            h_t & = dot((1-u_t), m_t) + dot(u_t, h_{t-1})
818 819

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
820 821 822
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
823 824
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

825 826
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
827 828 829
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
830 831 832

    Args:
        input (Variable): The fc transformed input value of current step.
833
        hidden (Variable): The hidden value of gru unit from previous step.
834
        size (integer): The input dimension value.
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU. Note that the bias with :math:`(1 \\times 3D)` concatenates 
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate, 
            reset gate and candidate calculations. If it is set to None or one 
            attribute of ParamAttr, gru_unit will create ParamAttr as 
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
856 857 858 859
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
860

861 862 863 864 865 866
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
867

868
             # assuming we have x_t_data and prev_hidden of size=10
869
             x_t = fluid.layers.fc(input=x_t_data, size=30)
870 871
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
872 873 874 875 876 877 878 879 880 881 882 883

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
884
    size = size // 3
Y
Yu Yang 已提交
885 886

    # create weight
887 888
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
889

X
Xin Pan 已提交
890 891 892
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
893
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
894
    # create bias
895
    if helper.bias_attr:
Y
Yu Yang 已提交
896 897 898
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
899
        inputs['Bias'] = bias
Y
Yu Yang 已提交
900 901 902

    helper.append_op(
        type='gru_unit',
903
        inputs=inputs,
Y
Yu Yang 已提交
904 905 906 907 908 909
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
910 911
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
912 913 914 915 916
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
917
@templatedoc()
918
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
919 920 921 922 923 924 925
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
926
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
927 928 929 930
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
931 932 933
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
934 935

    """
Y
Yu Yang 已提交
936 937 938 939 940 941
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
942 943 944 945 946 947 948 949
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


P
peizhilin 已提交
965
if os.name != 'nt':
P
peizhilin 已提交
966

P
peizhilin 已提交
967 968 969 970
    @templatedoc()
    def crf_decoding(input, param_attr, label=None):
        """
        ${comment}
Y
yuyang18 已提交
971

P
peizhilin 已提交
972 973
        Args:
            input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
974

P
peizhilin 已提交
975
            param_attr(ParamAttr): The parameter attribute for training.
Y
yi.wu 已提交
976

P
peizhilin 已提交
977
            label(${label_type}): ${label_comment}
Y
yuyang18 已提交
978

P
peizhilin 已提交
979 980
        Returns:
            Variable: ${viterbi_path_comment}
981

P
peizhilin 已提交
982 983
        Examples:
            .. code-block:: python
Y
yi.wu 已提交
984

P
peizhilin 已提交
985 986 987 988 989 990 991 992 993
               crf_decode = layers.crf_decoding(
                    input=hidden, param_attr=ParamAttr(name="crfw"))
        """
        helper = LayerHelper('crf_decoding', **locals())
        transition = helper.get_parameter(param_attr.name)
        viterbi_path = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(
            type='crf_decoding',
P
peizhilin 已提交
994 995 996 997 998
            inputs={
                "Emission": [input],
                "Transition": transition,
                "Label": label
            },
P
peizhilin 已提交
999
            outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1000

P
peizhilin 已提交
1001
        return viterbi_path
Y
Yu Yang 已提交
1002 1003


Y
yi.wu 已提交
1004
@templatedoc()
F
fengjiayi 已提交
1005
def cos_sim(X, Y):
Y
Yu Yang 已提交
1006
    """
Y
yi.wu 已提交
1007 1008 1009
    ${comment}

    Args:
1010 1011
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1012

Y
yi.wu 已提交
1013
    Returns:
1014
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1015
    """
F
fengjiayi 已提交
1016
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1017 1018 1019
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1030 1031 1032 1033 1034
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1035
            dropout_implementation="downgrade_in_infer"):
1036 1037 1038 1039 1040
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1041
    training. The dropout operator randomly sets (according to the given dropout
1042 1043 1044 1045
    probability) the outputs of some units to zero, while others are remain
    unchanged.

    Args:
1046 1047
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1048 1049 1050 1051 1052 1053 1054
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
P
phlrain 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
        dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train']
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
                                           train: out = input * mask
                                           inference: out = input * dropout_prob
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                        2. upscale_in_train, upscale the outcome at training time
                                           train: out = input * mask / ( 1.0 - dropout_prob )
                                           inference: out = input
                                           (make is a tensor same shape with input, value is 0 or 1
                                            ratio of 0 is dropout_prob)
                                           dropout op can be removed from the program. 
                                           the program will be efficient
                                        
P
phlrain 已提交
1069

1070 1071

    Returns:
1072
        Variable: A tensor variable is the shape with `x`.
1073 1074

    Examples:
1075

1076 1077
        .. code-block:: python

1078 1079
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1080 1081
    """

F
fengjiayi 已提交
1082
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1083 1084 1085
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1086 1087 1088 1089

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1090 1091 1092 1093 1094
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1095 1096 1097 1098
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1099 1100
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1101
        })
1102 1103 1104
    return out


1105
def cross_entropy(input, label, soft_label=False, ignore_index=-100):
Y
Yu Yang 已提交
1106
    """
Y
Yibing Liu 已提交
1107 1108
    **Cross Entropy Layer**

1109 1110 1111
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1112 1113

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1114
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1115

Y
Yibing Liu 已提交
1116
        .. math::
Y
yangyaming 已提交
1117

Y
Yibing Liu 已提交
1118 1119 1120
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1121 1122
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1123 1124 1125 1126 1127

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1128
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1129 1130 1131
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1132 1133
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1134
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1135

Y
Yibing Liu 已提交
1136
    Args:
Y
yangyaming 已提交
1137
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1138 1139 1140 1141
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1142
        label (Variable|list): the ground truth which is a 2-D tensor. When
1143 1144 1145 1146
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1147
        soft_label (bool): a flag indicating whether to
1148
                                           interpretate the given labels as soft
1149
                                           labels. Default: `False`.
M
minqiyang 已提交
1150 1151
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
1152
                            if soft_label is set to False. Default: -100
Y
Yibing Liu 已提交
1153 1154 1155 1156 1157

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
1158 1159 1160 1161 1162
        `ValueError`: 1) the 1st dimension of `input` and `label` are not equal.
                      2) when `soft_label == True`, and the 2nd dimension of
                         `input` and `label` are not equal.
                      3) when `soft_label == False`, and the 2nd dimension of
                         `label` is not 1.
Y
Yibing Liu 已提交
1163 1164 1165 1166 1167 1168

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1169
    """
F
fengjiayi 已提交
1170
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1171
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1172 1173 1174 1175 1176
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1177 1178
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1179 1180 1181
    return out


F
fengjiayi 已提交
1182
def square_error_cost(input, label):
Y
Yu Yang 已提交
1183
    """
1184 1185
    **Square error cost layer**

1186 1187
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1202 1203
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1204 1205

    Returns:
G
guosheng 已提交
1206
        Variable: The tensor variable storing the element-wise squared error \
1207
                  difference of input and label.
1208 1209 1210 1211 1212 1213 1214 1215

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1216
    """
F
fengjiayi 已提交
1217
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1218
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1219 1220 1221 1222 1223 1224
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1225
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1226
    helper.append_op(
F
fengjiayi 已提交
1227 1228
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1229 1230 1231
    return square_out


Y
yi.wu 已提交
1232
@templatedoc()
Y
Yu Yang 已提交
1233 1234 1235 1236
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1237
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1238
    """
Y
yi.wu 已提交
1239
    **Chunk Evaluator**
Y
yi.wu 已提交
1240

Y
yangyaming 已提交
1241
    This function computes and outputs the precision, recall and
1242
    F1-score of chunk detection.
Y
yi.wu 已提交
1243

Y
yi.wu 已提交
1244 1245 1246 1247 1248 1249 1250 1251
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1252

Y
yi.wu 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1278

Y
yi.wu 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1303
    Args:
1304 1305 1306 1307 1308
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1309

Y
yi.wu 已提交
1310
    Returns:
Y
update  
yi.wu 已提交
1311 1312 1313
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1314

Y
yi.wu 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1327
    """
F
fengjiayi 已提交
1328
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1329 1330

    # prepare output
X
Xin Pan 已提交
1331 1332 1333 1334 1335 1336 1337
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1338 1339 1340 1341 1342 1343 1344 1345

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1346 1347 1348 1349
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1350 1351 1352
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1353 1354
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1355
        })
1356 1357
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1358 1359


1360
@templatedoc()
Y
Yu Yang 已提交
1361 1362 1363 1364 1365 1366 1367
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1368 1369
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1370 1371 1372 1373
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1374 1375 1376 1377 1378 1379 1380

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1394

1395 1396
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1397 1398 1399 1400 1401 1402 1403
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1404
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1415
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1416 1417 1418 1419 1420 1421
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1422
def sequence_softmax(input, use_cudnn=False, name=None):
1423 1424 1425
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1426
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1443 1444 1445
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1446

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1458 1459
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1460
    softmax_out = helper.create_variable_for_type_inference(dtype)
1461 1462 1463 1464 1465 1466 1467 1468
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


C
chengduo 已提交
1469
def softmax(input, use_cudnn=True, name=None):
Q
qiaolongfei 已提交
1470
    """
1471
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1472
    has the same shape as the input.
Q
qiaolongfei 已提交
1473

1474 1475 1476 1477 1478 1479
    The input tensor will first be logically flattened to a 2-D matrix. The matrix's
    second dimension(row length) is as same as the last dimension of the input
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
    of the input tensor's last dimension) vector of arbitrary real values to a
F
fengjiayi 已提交
1480
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1481 1482 1483 1484 1485 1486 1487

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1488
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1489 1490 1491 1492 1493 1494 1495 1496

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1497 1498 1499
            library is installed.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
Q
qiaolongfei 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
             softmax = fluid.layers.softmax(input=fc)

    """
1512 1513
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1514
    softmax_out = helper.create_variable_for_type_inference(dtype)
1515 1516 1517 1518 1519 1520 1521 1522
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


Y
Yu Yang 已提交
1523 1524 1525
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1526 1527
           stride=1,
           padding=0,
1528
           dilation=1,
Y
Yu Yang 已提交
1529 1530 1531
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1532
           use_cudnn=True,
1533 1534
           act=None,
           name=None):
Y
Yu Yang 已提交
1535
    """
C
chengduoZH 已提交
1536
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1537 1538
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1539
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1540 1541 1542 1543 1544 1545 1546
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1547 1548 1549
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1550

1551
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1552

C
chengduoZH 已提交
1553 1554
    .. math::

C
refine  
chengduoZH 已提交
1555
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1556

T
tensor-tang 已提交
1557
    Where:
C
chengduoZH 已提交
1558

1559 1560 1561 1562 1563
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1564
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1565 1566 1567

    Example:

1568 1569
        - Input:

W
weixing02 已提交
1570
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1571

W
weixing02 已提交
1572
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1573

1574
        - Output:
T
tensor-tang 已提交
1575

W
weixing02 已提交
1576
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1577

C
chengduoZH 已提交
1578
        Where
1579 1580

        .. math::
C
chengduoZH 已提交
1581

W
weixing02 已提交
1582 1583
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1584 1585

    Args:
1586
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1587
        num_filters(int): The number of filter. It is as same as the output
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
             and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1616 1617
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1618 1619
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1620
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1621
            will be named automatically. Default: None
C
chengduoZH 已提交
1622 1623

    Returns:
G
guosheng 已提交
1624
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1625 1626
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1627
    Raises:
1628 1629
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1630

C
chengduoZH 已提交
1631 1632 1633
    Examples:
        .. code-block:: python

1634 1635
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
1636 1637 1638
    """

    num_channels = input.shape[1]
C
chengduo 已提交
1639
    assert param_attr is not False, "param_attr should not be False here."
1640
    l_type = 'conv2d'
X
xzl 已提交
1641 1642
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
1643
        l_type = 'depthwise_conv2d'
1644 1645 1646 1647

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
1648 1649 1650 1651 1652
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1653
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
1654

C
chengduoZH 已提交
1655 1656 1657
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
1658
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
1659

C
chengduoZH 已提交
1660 1661
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
1662 1663

    input_shape = input.shape
M
minqiyang 已提交
1664
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
1665 1666

    def _get_default_param_initializer():
C
chengduo 已提交
1667 1668
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
1669 1670 1671 1672 1673 1674 1675 1676
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1677
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1678

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
1693
    helper.append_op(
1694
        type=l_type,
Y
Yu Yang 已提交
1695 1696 1697 1698 1699
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
1700 1701 1702
        attrs={
            'strides': stride,
            'paddings': padding,
1703
            'dilations': dilation,
C
chengduoZH 已提交
1704
            'groups': groups,
1705
            'use_cudnn': use_cudnn,
1706
            'use_mkldnn': False,
C
chengduoZH 已提交
1707
        })
Y
Yu Yang 已提交
1708 1709 1710 1711 1712 1713

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
1731 1732 1733 1734 1735 1736
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

1746 1747
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
1748 1749 1750
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
1751
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
1777
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
1778 1779
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
1780
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
1781 1782
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
1783
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
1784 1785
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
1786
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
1787 1788 1789 1790 1791 1792
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
1803 1804
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1805 1806
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
1807
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1808
            will be named automatically. Default: None.
C
chengduoZH 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

1821 1822
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
1823 1824 1825
    """

    l_type = 'conv3d'
C
chengduo 已提交
1826
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
1837
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
1851 1852 1853
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
1854 1855 1856 1857 1858 1859 1860 1861
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
1862
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
1877
            'use_mkldnn': False
C
chengduoZH 已提交
1878 1879
        })

1880
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
1881 1882 1883 1884

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
1885
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
1886
    """
Y
yangyaming 已提交
1887 1888 1889
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
1901
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1902 1903 1904 1905 1906
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1907
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
1908 1909 1910 1911 1912 1913 1914

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
1915 1916
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
1917

L
Luo Tao 已提交
1918 1919
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
1920
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
1921
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
1922
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
1923 1924 1925 1926 1927 1928 1929

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
1930

Y
yangyaming 已提交
1931
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
1932 1933 1934 1935 1936
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
1937 1938
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
1939
    """
F
fengjiayi 已提交
1940
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
1941
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1942 1943
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1944 1945 1946 1947 1948 1949

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
1950 1951
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
1952

Y
yangyaming 已提交
1953 1954 1955 1956 1957
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
1958 1959 1960
    return pool_out


C
add doc  
chengduoZH 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
1980
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
1981 1982 1983 1984 1985
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
1986
def sequence_first_step(input):
L
Luo Tao 已提交
1987
    """
L
Luo Tao 已提交
1988
    This function gets the first step of sequence.
L
Luo Tao 已提交
1989 1990 1991 1992

    .. code-block:: text

       x is a 1-level LoDTensor:
1993
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
1994 1995 1996 1997 1998
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
1999
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2000
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2001

L
Luo Tao 已提交
2002 2003 2004 2005 2006 2007 2008 2009 2010
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2011

Y
yangyaming 已提交
2012
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2013 2014 2015
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2016 2017 2018
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2019
def sequence_last_step(input):
L
Luo Tao 已提交
2020
    """
L
Luo Tao 已提交
2021
    This function gets the last step of sequence.
L
Luo Tao 已提交
2022 2023 2024 2025

    .. code-block:: text

       x is a 1-level LoDTensor:
2026
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2027 2028 2029 2030 2031
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2032
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2033
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2034

L
Luo Tao 已提交
2035 2036 2037 2038 2039 2040 2041 2042 2043
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2044

Y
yangyaming 已提交
2045
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2046 2047 2048
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2049 2050 2051
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2052 2053 2054 2055
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2056
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2057 2058 2059 2060 2061
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2062

Y
Yibing Liu 已提交
2063 2064
	- Case:

2065
            Given the input Variable **input**:
2066

2067 2068 2069
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2070

2071
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2072

2073
            the output Variable will be
2074

2075 2076 2077
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2078 2079

    NOTE: The first dimension size of **input**, **offset** and **length**
2080
          should be equal. The **offset** should start from 0.
2081

Y
Yibing Liu 已提交
2082
    Args:
2083
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2084
                         sequences.
Y
Yibing Liu 已提交
2085 2086 2087 2088 2089 2090
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2091
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2102
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2103 2104 2105 2106
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2107
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2122
@templatedoc()
Y
Yu Yang 已提交
2123
def pool2d(input,
C
chengduoZH 已提交
2124 2125
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2126 2127
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2128
           global_pooling=False,
C
chengduoZH 已提交
2129
           use_cudnn=True,
2130
           ceil_mode=False,
2131 2132
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2133
    """
F
fengjiayi 已提交
2134
    ${comment}
2135 2136

    Args:
2137 2138 2139
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2140
                          feature, and W is the width of the feature.
2141
        pool_size (int): The side length of pooling windows. All pooling
F
fengjiayi 已提交
2142
                         windows are squares with pool_size on a side.
F
fengjiayi 已提交
2143
        pool_type: ${pooling_type_comment}
2144 2145
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
2146 2147 2148
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2149
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2150
                        layer will be named automatically.
2151 2152
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
F
fengjiayi 已提交
2153

2154
    Returns:
F
fengjiayi 已提交
2155
        Variable: The pooling result.
F
fengjiayi 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.pool2d(
2169 2170 2171 2172
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2173
                            global_pooling=False)
Y
Yu Yang 已提交
2174 2175 2176 2177 2178
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2179

C
chengduoZH 已提交
2180 2181 2182 2183 2184
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2185 2186 2187 2188
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2189 2190
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2191

C
Add doc  
chengduoZH 已提交
2192
    l_type = 'pool2d'
2193 2194

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2195
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2196
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2197 2198

    helper.append_op(
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2210 2211
            "use_mkldnn": False,
            "exclusive": exclusive,
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
        })

    return pool_out


def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2225 2226
           name=None,
           exclusive=True):
2227 2228
    """
    This function adds the operator for pooling in 3-dimensions, using the
Y
Yu Yang 已提交
2229
    pooling configurations mentioned in input parameters.
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

    Args:
        input (Variable): ${input_comment}
        pool_size (int): ${ksize_comment}
        pool_type (str): ${pooling_type_comment}
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2242 2243
        exclusive (bool): Whether to exclude padding points in average pooling 
                          mode, default is true
2244

2245
    Returns:
2246
        Variable: output of pool3d layer.
Y
Yu Yang 已提交
2247 2248 2249 2250 2251
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2252

C
chengduoZH 已提交
2253 2254 2255 2256 2257
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2258 2259 2260
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2261

C
chengduoZH 已提交
2262 2263
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2264

2265 2266
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2267
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2268
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2269 2270

    helper.append_op(
2271
        type=l_type,
Y
Yu Yang 已提交
2272 2273 2274 2275 2276 2277 2278
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2279
            "paddings": pool_padding,
2280
            "use_cudnn": use_cudnn,
2281
            "ceil_mode": ceil_mode,
2282 2283
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
        })

    return pool_out


def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2296
               data_layout='NCHW',
Y
Yang Yang 已提交
2297
               in_place=False,
2298 2299
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2300
               moving_variance_name=None,
2301 2302
               do_model_average_for_mean_and_var=False,
               fuse_with_relu=False):
Y
Yu Yang 已提交
2303
    """
Q
qiaolongfei 已提交
2304 2305 2306 2307
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2308

Q
qiaolongfei 已提交
2309
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2310

Q
qiaolongfei 已提交
2311 2312
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2313 2314 2315
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2328 2329

    Args:
Q
qiaolongfei 已提交
2330
        input(variable): The input variable which is a LoDTensor.
Q
qiaolongfei 已提交
2331 2332 2333 2334
        act(string, Default None): Activation type, linear|relu|prelu|...
        is_test(bool, Default False): Used for training or training.
        momentum(float, Default 0.9):
        epsilon(float, Default 1e-05):
C
chengduo 已提交
2335 2336 2337 2338 2339 2340 2341 2342
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2343
        data_layout(string, default NCHW): NCHW|NHWC
2344
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2345 2346 2347 2348
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2349
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2350
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2351 2352

    Returns:
Q
qiaolongfei 已提交
2353
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
2354 2355 2356 2357 2358 2359 2360

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
2361
    """
C
chengduo 已提交
2362
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))

    bias = helper.create_parameter(
2385
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
2386

2387 2388
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
2389 2390 2391
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
2392
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2393
        shape=param_shape,
2394 2395 2396 2397 2398 2399 2400
        dtype=input.dtype)
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
2401
            trainable=False,
W
wanghaoshuang 已提交
2402
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
2403
        shape=param_shape,
2404 2405
        dtype=input.dtype)
    variance.stop_gradient = True
Y
Yu Yang 已提交
2406 2407 2408 2409 2410 2411

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
2412 2413 2414 2415
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
2416

X
Xin Pan 已提交
2417 2418
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
2436 2437 2438 2439
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
X
Xin Pan 已提交
2440
            "use_mkldnn": False,
2441
            "fuse_with_relu": fuse_with_relu
2442
        })
Y
Yu Yang 已提交
2443 2444 2445 2446

    return helper.append_activation(batch_norm_out)


Y
yuyang18 已提交
2447
@templatedoc()
G
guosheng 已提交
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
2458
    ${comment}
G
guosheng 已提交
2459 2460 2461

    The formula is as follows:

Y
yuyang18 已提交
2462
    ..  math::
G
guosheng 已提交
2463 2464 2465 2466 2467 2468 2469

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
2470 2471 2472 2473 2474 2475 2476 2477
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
2478

G
guosheng 已提交
2479 2480
    Args:
        input(Variable): The input tensor variable.
2481
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
2482
            normalization. Default True.
2483
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
2484 2485
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
2486
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
2487
            Default 1.
2488
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
2489
            division by zero. Default 1e-05.
G
guosheng 已提交
2490
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2491 2492
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
2493 2494
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
2495
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
2496 2497
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
2498
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
2499
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
2500
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
2501 2502 2503
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
2504 2505

    Returns:
Y
yuyang18 已提交
2506
        ${y_comment}
G
guosheng 已提交
2507 2508 2509

    Examples:

Y
yuyang18 已提交
2510 2511 2512
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
    """
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
2528
    if shift:
G
guosheng 已提交
2529 2530 2531 2532 2533 2534
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
2535 2536 2537 2538 2539
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


Y
Yu Yang 已提交
2555 2556 2557 2558
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2559 2560 2561
                     padding=0,
                     stride=1,
                     dilation=1,
2562
                     groups=None,
C
caoying03 已提交
2563
                     param_attr=None,
2564
                     bias_attr=None,
C
chengduoZH 已提交
2565
                     use_cudnn=True,
2566
                     act=None,
C
caoying03 已提交
2567
                     name=None):
Y
Yu Yang 已提交
2568
    """
2569 2570 2571 2572 2573 2574 2575 2576
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
2577 2578
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2579 2580 2581
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2582 2583 2584 2585 2586

    For each input :math:`X`, the equation is:

    .. math::

2587
        Out = \sigma (W \\ast X + b)
2588

2589
    Where:
2590 2591 2592

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
2593 2594 2595 2596
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2597

2598 2599 2600 2601
    Example:

        - Input:

2602
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
2603

2604
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
2605 2606 2607

        - Output:

2608
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
2609 2610

        Where
Y
Yu Yang 已提交
2611

2612 2613
        .. math::

2614 2615 2616 2617
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
2618 2619

    Args:
2620 2621 2622 2623
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2624 2625 2626 2627
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2656
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
2657 2658 2659
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2660
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2661
            will be named automatically. Default: True.
Y
Yu Yang 已提交
2662 2663

    Returns:
2664
        Variable: The tensor variable storing the convolution transpose result.
2665 2666

    Raises:
2667 2668
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2669 2670 2671 2672

    Examples:
       .. code-block:: python

2673 2674
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2675
    """
C
chengduo 已提交
2676
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
2677 2678 2679 2680 2681 2682 2683 2684
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
2685 2686 2687
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
2688 2689 2690
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
2691

C
chengduoZH 已提交
2692 2693
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
2694

Y
Yu Yang 已提交
2695 2696 2697 2698 2699
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
2700

Y
Yu Yang 已提交
2701 2702
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
2703

C
chengduoZH 已提交
2704
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2705
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
2706
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2707
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
2708
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
2709 2710 2711
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
2712

2713 2714 2715 2716 2717 2718 2719
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
2720
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2721
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
2722

Y
Yu Yang 已提交
2723 2724 2725
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2726
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2727
    helper.append_op(
2728
        type=op_type,
Y
Yu Yang 已提交
2729 2730
        inputs={'Input': [input],
                'Filter': [img_filter]},
2731
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2732
        attrs={
2733
            'output_size': output_size,
2734 2735 2736 2737 2738
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
2739 2740
        })

2741 2742 2743
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
2744 2745


2746
def conv3d_transpose(input,
Y
Yu Yang 已提交
2747 2748 2749
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
2750 2751 2752
                     padding=0,
                     stride=1,
                     dilation=1,
2753
                     groups=None,
C
caoying03 已提交
2754
                     param_attr=None,
2755
                     bias_attr=None,
C
chengduoZH 已提交
2756
                     use_cudnn=True,
2757
                     act=None,
C
caoying03 已提交
2758
                     name=None):
Y
Yu Yang 已提交
2759
    """
2760
    **Convlution3D transpose layer**
2761

2762
    The convolution3D transpose layer calculates the output based on the input,
2763
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
2764 2765 2766 2767 2768 2769
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
2770 2771 2772
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2773 2774 2775 2776 2777

    For each input :math:`X`, the equation is:

    .. math::

2778
        Out = \sigma (W \\ast X + b)
2779 2780 2781

    In the above equation:

2782 2783
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
2784 2785 2786 2787
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
2788

2789 2790 2791 2792
    Example:

        - Input:

2793
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
2794

2795
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
2796 2797 2798

        - Output:

2799
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
2800 2801

        Where
Y
Yu Yang 已提交
2802

2803 2804
        .. math::

2805 2806 2807
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
2808 2809

    Args:
2810
        input(Variable): The input image with [N, C, D, H, W] format.
2811 2812 2813
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
2814
            tuple, it must contain three integers, (image_D, image_H, image_W). This
2815 2816
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
2817
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
2818 2819 2820
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
2821 2822
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
2823
        stride(int|tuple): The stride size. If stride is a tuple, it must
2824 2825
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
2826
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
2827 2828 2829
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
2830 2831 2832 2833 2834
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2844 2845
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2846 2847
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
2848 2849
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
2850 2851

    Returns:
2852
        Variable: The tensor variable storing the convolution transpose result.
2853 2854

    Raises:
2855 2856
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
2857 2858 2859 2860

    Examples:
       .. code-block:: python

2861 2862
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
2863
    """
C
chengduo 已提交
2864
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
2865 2866
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2867
    if not isinstance(input, Variable):
2868
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
2869 2870
    input_channel = input.shape[1]

2871 2872 2873
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
2874

C
chengduoZH 已提交
2875 2876 2877
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
2878 2879 2880 2881 2882 2883
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

2884 2885 2886
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
2887

2888
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
2889
                         padding[0] - 1) // dilation[0] + 1
2890
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
2891
                         padding[1] - 1) // dilation[1] + 1
2892
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
2893
                         padding[2] - 1) // dilation[2] + 1
2894
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
2895
    else:
2896 2897
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
2898

2899
    groups = 1 if groups is None else groups
M
minqiyang 已提交
2900
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
2901 2902 2903
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
2904
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
2905
    helper.append_op(
2906
        type=l_type,
Y
Yu Yang 已提交
2907 2908
        inputs={'Input': [input],
                'Filter': [img_filter]},
2909
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
2910 2911 2912 2913
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
2914
            'groups': groups,
C
chengduoZH 已提交
2915 2916
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
2917

2918 2919
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
2920
    return out
Y
yangyaming 已提交
2921 2922


Y
yangyaming 已提交
2923
def sequence_expand(x, y, ref_level=-1, name=None):
2924
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
2925 2926 2927 2928
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
2929 2930 2931 2932 2933

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
2934
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
2935
                x.data = [[a], [b], [c], [d]]
2936 2937 2938
                x.dims = [4, 1]

            y is a LoDTensor:
2939 2940
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
2941

Y
yangyaming 已提交
2942
            ref_level: 0
2943

Y
yangyaming 已提交
2944
            then output is a 1-level LoDTensor:
2945
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
2946
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
2947 2948 2949 2950
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
2951
                x.data = [[a], [b], [c]]
2952 2953 2954
                x.dims = [3, 1]

            y is a LoDTensor:
2955
                y.lod = [[2, 0, 3]]
2956

Y
yangyaming 已提交
2957
            ref_level: -1
2958

Y
yangyaming 已提交
2959 2960 2961
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
2962 2963 2964
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2965 2966
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
2967
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
2968
                        will be named automatically.
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
2979
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
2980
    """
Y
yangyaming 已提交
2981
    helper = LayerHelper('sequence_expand', input=x, **locals())
2982
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2983
    tmp = helper.create_variable_for_type_inference(dtype)
2984
    helper.append_op(
Y
yangyaming 已提交
2985 2986 2987 2988 2989
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
2990
    return tmp
2991 2992


C
chengduo 已提交
2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3049
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
3050 3051 3052 3053 3054 3055 3056 3057
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
3058
@templatedoc()
3059
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
3060 3061 3062 3063 3064
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
3065 3066 3067
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
3068
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
3069 3070 3071 3072
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
3073 3074 3075
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
3076

F
fengjiayi 已提交
3077
    Returns:
M
minqiyang 已提交
3078
        Variable: The padded sequence batch and the original lengths before
3079
                  padding. All sequences has the same length.
M
minqiyang 已提交
3080

F
fengjiayi 已提交
3081 3082 3083 3084 3085 3086 3087
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
3088
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
3089
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
3090 3091 3092 3093 3094
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3095 3096
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
3097 3098 3099 3100

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
3101 3102 3103 3104 3105 3106
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
3107 3108
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
3109
        attrs={'padded_length': maxlen})
3110
    return out, length
F
fengjiayi 已提交
3111 3112


3113
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
3114
    """
3115
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
3116

3117 3118
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
3128 3129 3130
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
3131
	specified by input Variable **length**:
Y
Yibing Liu 已提交
3132 3133 3134 3135 3136 3137

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
3138
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
3139 3140 3141 3142 3143 3144

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
3145 3146
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3161
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


3173 3174 3175 3176 3177 3178 3179 3180 3181
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
                name=None):
    """
3182 3183
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
3184 3185 3186

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
3187 3188

    This layer does the search in beams for one time step. Specifically, it
3189 3190 3191 3192 3193 3194
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
    computation cell. Additionally, :attr:`pre_ids` and :attr:`pre_scores` are
    the output of beam_search at previous step, they are needed for special use
    to handle ended candidate translations.
M
minqiyang 已提交
3195

3196 3197 3198 3199 3200 3201 3202 3203
    Note that the :attr:`scores` passed in should be accumulated scores, and
    length penalty should be done with extra operators before calculating the
    accumulated scores if needed, also suggest finding top-K before it and
    using the top-K candidates following.

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
3204

3205
    Args:
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
F
fengjiayi 已提交
3231

3232
    Returns:
3233 3234
        Variable: The LodTensor pair containing the selected ids and the \
            corresponding scores.
Y
Yan Chunwei 已提交
3235 3236 3237 3238

    Examples:
        .. code-block:: python

3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
3256 3257 3258 3259
    helper = LayerHelper('beam_search', **locals())
    score_type = scores.dtype
    id_type = ids.dtype

X
Xin Pan 已提交
3260 3261 3262
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
Q
Qiao Longfei 已提交
3263 3264 3265 3266 3267

    helper.append_op(
        type='beam_search',
        inputs={
            'pre_ids': pre_ids,
3268
            'pre_scores': pre_scores,
Q
Qiao Longfei 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
            'ids': ids,
            'scores': scores,
        },
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
        })

    return selected_ids, selected_scores


3286 3287 3288 3289 3290 3291 3292
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
3293

3294 3295 3296 3297 3298 3299 3300 3301 3302
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
3303

3304 3305 3306 3307 3308 3309
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
3310

3311 3312 3313 3314 3315 3316 3317 3318
    Examples:
        .. code-block:: python
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
3319 3320
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
3336 3337 3338 3339
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
3340
              param_attr=None,
C
caoying03 已提交
3341 3342
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
3343 3344 3345 3346
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

3347
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
3348

3349
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
3350

3351
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
3352

3353
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
3354 3355 3356

            h_t & = o_t tanh(c_t)

3357 3358 3359 3360 3361 3362
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
3363 3364 3365

        .. math::

3366
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
3367 3368 3369 3370 3371 3372 3373 3374

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
3375
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
3376 3377

    Args:
Y
yangyaming 已提交
3378 3379 3380 3381 3382 3383
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
3384
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
3397 3398
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
3399 3400

    Returns:
Y
yangyaming 已提交
3401
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
3402 3403

    Raises:
3404 3405 3406 3407
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
3408 3409 3410 3411 3412 3413

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
3414
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
3415
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
3416
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
3433
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
3434 3435 3436 3437
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
3438 3439
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
3440 3441 3442
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
3443
    size = cell_t_prev.shape[1]
3444
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
3445 3446
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
3447
                param_attr=param_attr,
3448
                bias_attr=bias_attr)
Y
yangyaming 已提交
3449
    dtype = x_t.dtype
X
Xin Pan 已提交
3450 3451
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
3461
    return h, c
G
guosheng 已提交
3462 3463


C
caoying03 已提交
3464
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3465
    """
Y
yangyaming 已提交
3466
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
3467 3468 3469

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3470
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
3471 3472
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3473 3474
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3475
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
3476
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3477
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3478 3479
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3480 3481 3482

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
3483

G
guosheng 已提交
3484 3485 3486 3487 3488 3489
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
3490
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
3491 3492 3493 3494
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
3495 3496 3497 3498

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
3499
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
3500 3501 3502
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
3503 3504
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
3505
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3506 3507
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3508 3509 3510 3511 3512
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3513
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3514 3515 3516 3517
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3518 3519


C
caoying03 已提交
3520
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
3521
    """
Y
Yibing Liu 已提交
3522
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
3523 3524 3525

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
3526 3527 3528
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
3529
            must be in the range :math:`[-rank(input), rank(input))`. If
3530
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
3531
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
3532 3533
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
3534
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
3535
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
3536
                       will be named automatically.
G
guosheng 已提交
3537 3538

    Returns:
Y
Yibing Liu 已提交
3539
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
3540

G
guosheng 已提交
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
3551 3552
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
3553 3554 3555 3556 3557 3558 3559

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
3560 3561
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
3562
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3563 3564
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
3565 3566 3567 3568 3569
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3570
            'dim': dim if dim != None else [0],
G
guosheng 已提交
3571 3572 3573 3574
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
3575 3576


C
caoying03 已提交
3577
def reduce_max(input, dim=None, keep_dim=False, name=None):
3578
    """
Y
yangyaming 已提交
3579
    Computes the maximum of tensor elements over the given dimension.
3580 3581 3582

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3583
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
3584 3585 3586
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3587
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3588 3589
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3590
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3591 3592
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3593 3594 3595

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3596

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
3608 3609 3610 3611 3612 3613 3614

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
3615 3616
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
3617
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3618 3619
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3620 3621 3622 3623 3624
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3625
            'dim': dim if dim != None else [0],
3626 3627 3628 3629 3630 3631
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3632
def reduce_min(input, dim=None, keep_dim=False, name=None):
3633
    """
Y
yangyaming 已提交
3634
    Computes the minimum of tensor elements over the given dimension.
3635 3636 3637

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3638
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
3639 3640 3641
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
3642
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
3643 3644
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
3645
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
3646 3647
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
3648 3649 3650

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
3651

3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
3663 3664 3665 3666 3667 3668 3669

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
3670 3671
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
3672
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3673 3674
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3675 3676 3677 3678 3679
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3680
            'dim': dim if dim != None else [0],
3681 3682 3683 3684
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
3685 3686


3687 3688 3689 3690 3691 3692
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
3693
        dim (list|int|None): The dimensions along which the product is performed. If
3694 3695
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
3696 3697
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
3698 3699 3700
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
3701
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
3702
            layer will be named automatically.
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
3717
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
3718
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
3719 3720 3721 3722 3723 3724 3725

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
3726 3727
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
3728
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
3729 3730
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
3731 3732 3733 3734 3735
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
3736
            'dim': dim if dim != None else [0],
3737 3738 3739 3740 3741 3742
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
3743
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
3744
    """
C
caoying03 已提交
3745
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
3746 3747 3748

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
3749 3750 3751 3752 3753
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
3754
            :attr:`dim` dimension orderly.
C
caoying03 已提交
3755
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
3756
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
3757 3758
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
3759 3760

    Returns:
D
dzhwinter 已提交
3761
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
3762 3763 3764 3765 3766 3767 3768 3769 3770

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
3771 3772
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
3788
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

3811
    .. math::
3812 3813

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
3814 3815 3816 3817 3818

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
3819
        x(Variable|list): The input tensor to l2_normalize layer.
3820
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
3821 3822
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
3823
        epsilon(float): The epsilon value is used to avoid division by zero, \
3824
            the defalut value is 1e-10.
3825
        name(str|None): A name for this layer(optional). If set None, the layer \
3826
            will be named automatically.
C
caoying03 已提交
3827 3828

    Returns:
3829
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
3830 3831

    Examples:
3832

C
caoying03 已提交
3833 3834
        .. code-block:: python

3835 3836 3837 3838
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
3839 3840
    """

F
fengjiayi 已提交
3841 3842
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
3843 3844
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
3845 3846
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
3847
    helper.append_op(
3848 3849 3850 3851
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
3852
        attrs={
3853 3854
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
3855 3856
        })
    return out
3857 3858


S
sneaxiy 已提交
3859
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
3860
    """
Y
ying 已提交
3861 3862 3863 3864
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
3865

C
chengduoZH 已提交
3866
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
3867
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
3868

3869 3870 3871 3872 3873
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
3874
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
3875

C
chengduoZH 已提交
3876
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
3877
      performs in the following way.
G
guosheng 已提交
3878

3879
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
3880
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
3881
        last two dimensions and a batched matrix multiply supporting broadcast
3882
        applies on the two tensors.
G
guosheng 已提交
3883

Y
ying 已提交
3884 3885
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
3886
    removed after matrix multiplication.
G
guosheng 已提交
3887 3888 3889

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
3890 3891 3892
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
3893
        alpha (float): The scale of output. Default 1.0.
3894
        name(str|None): A name for this layer(optional). If set None, the layer
3895
            will be named automatically.
G
guosheng 已提交
3896 3897

    Returns:
3898
        Variable: The product Tensor variable.
G
guosheng 已提交
3899

G
guosheng 已提交
3900 3901 3902
    Examples:
        .. code-block:: python

3903
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
3904 3905
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
3906

3907 3908
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3909

3910 3911
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
3912

3913 3914
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
3915 3916 3917 3918

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

3919 3920
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
3921

Y
ying 已提交
3922
            # x: [M], y: [N]
3923
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
3924
    """
Y
ying 已提交
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936

    def __check_input(x, y):
        if len(y.shape) > len(x.shape):
            raise ValueError(
                "Invalid inputs for matmul. "
                "x's rank should be always greater than or equal to y'rank.")

        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
3937
            y_shape = y_shape + [1]
Y
ying 已提交
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
            raise ValueError("Invalid inputs for matmul.")

        if len(y_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                if dim_x != y_shape[i]:
                    raise ValueError("Invalid inputs for matmul.")

    __check_input(x, y)

3954
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
3955
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
3956
    helper.append_op(
3957 3958 3959 3960
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
3961 3962 3963
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
3964
            'alpha': float(alpha),
S
sneaxiy 已提交
3965
        })
3966
    return out
3967 3968


3969
def topk(input, k, name=None):
Q
qingqing01 已提交
3970 3971 3972 3973
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
3974
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
3975 3976 3977 3978 3979 3980
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4002 4003 4004
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
4005
        k(int):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4006
                 of input.
4007
        name(str|None): A name for this layer(optional). If set None, the layer
4008
                       will be named automatically.
F
fengjiayi 已提交
4009
                       Default: None
Q
qingqing01 已提交
4010 4011

    Returns:
4012 4013 4014
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4015
        within the last dimension of input.
Q
qingqing01 已提交
4016

F
fengjiayi 已提交
4017 4018
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4019 4020 4021 4022 4023 4024 4025

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4026 4027
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
Q
qingqing01 已提交
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
    helper.append_op(
        type="top_k",
        inputs={"X": [input]},
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs={"k": k})
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


4039
def edit_distance(input, label, normalized=True, ignored_tokens=None):
4040
    """
Y
ying 已提交
4041 4042 4043 4044 4045 4046 4047 4048 4049
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
4050

Y
ying 已提交
4051
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
4052

4053
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
4054 4055
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
4056
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
4057

4058
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
4059 4060
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
4061

4062 4063 4064
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
4065
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
4066
                          the length of reference string.
4067
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
4068
                                     calculating edit distance.
4069
        name (str): The name of this layer. It is optional.
4070

W
wanghaoshuang 已提交
4071
    Returns:
W
wanghaoshuang 已提交
4072
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
4073 4074 4075 4076

    Examples:
        .. code-block:: python

T
tink2123 已提交
4077 4078
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
4079
            cost = fluid.layers.edit_distance(input=x,label=y)
4080
    """
4081
    helper = LayerHelper("edit_distance", **locals())
4082

4083
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
4084
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
4085 4086
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
4087 4088 4089 4090 4091

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
4092
            attrs={"tokens": ignored_tokens})
4093 4094 4095 4096 4097
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
4098
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
4099
            attrs={"tokens": ignored_tokens})
4100 4101
        label = erased_label

4102
    # edit distance op
X
Xin Pan 已提交
4103 4104
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
4105 4106 4107 4108
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
4109 4110
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
4111 4112
        attrs={"normalized": normalized})

4113
    return edit_distance_out, sequence_num
4114 4115 4116 4117 4118


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
4119

Y
ying 已提交
4120 4121 4122 4123
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

4141
        input.lod = [[4, 4]]
4142 4143 4144 4145 4146 4147 4148

        Then:

        output.data = [[2],
                       [1],
                       [3]]

4149
        output.lod = [[2, 1]]
4150 4151 4152

    Args:

Y
ying 已提交
4153 4154 4155 4156 4157 4158 4159 4160 4161
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
4162
        name (str): The name of this layer. It is optional.
4163 4164

    Returns:
4165
        Variable: CTC greedy decode result. If all the sequences in result were
4166
        empty, the result LoDTensor will be [-1] with LoD [[]] and dims [1, 1].
4167 4168 4169 4170 4171

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
4172

4173
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
4174
    """
4175
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
4176
    _, topk_indices = topk(input, k=1)
4177 4178

    # ctc align op
X
Xin Pan 已提交
4179
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
4180 4181 4182
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
4183
        outputs={"Output": [ctc_out]},
4184 4185
        attrs={"merge_repeated": True,
               "blank": blank})
4186
    return ctc_out
4187 4188


F
fengjiayi 已提交
4189
def warpctc(input, label, blank=0, norm_by_times=False):
W
wanghaoshuang 已提交
4190
    """
4191 4192
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
4193
    to compute Connectionist Temporal Classification (CTC) loss.
4194 4195
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
4196 4197 4198
    input tensor.

    Args:
4199
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
4200 4201 4202 4203
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
4204
       label (Variable): The ground truth of variable-length sequence,
4205 4206 4207
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
4208 4209
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
4210 4211 4212
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
4213
         follewed by a mean_op.
W
wanghaoshuang 已提交
4214 4215

    Returns:
4216 4217
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
4218 4219

    Examples:
4220

W
wanghaoshuang 已提交
4221
        .. code-block:: python
4222

4223 4224 4225
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
4226 4227

    """
F
fengjiayi 已提交
4228
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
4229 4230
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
4231 4232 4233 4234 4235 4236 4237 4238 4239
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
        attrs={'blank': blank,
               'norm_by_times': norm_by_times})
    return loss_out
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
4255 4256 4257
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
4258 4259 4260 4261 4262
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
4263

4264
            out.lod  = [[0, 1, 3]]
4265 4266 4267 4268

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
4269 4270 4271 4272 4273 4274 4275
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
4276 4277 4278

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
4279 4280

    Returns:
4281

4282 4283 4284 4285 4286
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

4287
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
4288
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
4289 4290
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
4291
    out = helper.create_variable_for_type_inference(helper.input_dtype())
4292 4293 4294 4295 4296 4297
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
4298 4299


4300 4301 4302 4303
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
4304 4305 4306 4307 4308 4309
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
4310 4311
        num_neg_samples=None,
        name=None):
4312 4313 4314 4315 4316 4317 4318
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
4319 4320
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
4321
            sample is 1.0.
C
chengduo 已提交
4322 4323 4324 4325 4326 4327 4328 4329 4330
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
4331
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
4332 4333
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
F
fengjiayi 已提交
4334

4335
    Returns:
Y
Yibing Liu 已提交
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
4363
    """
Y
Yang Yu 已提交
4364 4365 4366
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
4367 4368

    dim = input.shape[1]
Y
Yang Yu 已提交
4369 4370 4371 4372 4373 4374
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
C
chengduo 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
    inputs = {
        'Input': input,
        'Label': label,
        'Weight': w,
        'SampleWeight': sample_weight if sample_weight is not None else []
    }
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
4388 4389 4390
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
4391

Y
Yang Yu 已提交
4392 4393 4394 4395 4396 4397 4398 4399 4400
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

    attrs = {
        'num_total_classes': int(num_total_classes),
        'num_neg_samples': num_neg_samples
    }
Y
Yang Yu 已提交
4401 4402 4403

    helper.append_op(
        type='nce',
C
chengduo 已提交
4404
        inputs=inputs,
Y
Yang Yu 已提交
4405 4406 4407 4408 4409 4410
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
4411
    return cost / (num_neg_samples + 1)
4412 4413


C
chengduo 已提交
4414 4415 4416 4417 4418 4419
def hsigmoid(input,
             label,
             num_classes,
             param_attr=None,
             bias_attr=None,
             name=None):
W
weixing02 已提交
4420 4421
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
4422
    process of language model. This operator organizes the classes into a
G
guosheng 已提交
4423 4424 4425 4426 4427 4428 4429 4430 4431
    complete binary tree, each leaf node represents a class(a word) and each
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

    Refer to `Hierarchical Probabilistic Neural Network Language Model
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
4432

W
weixing02 已提交
4433
    Args:
M
minqiyang 已提交
4434
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
4435 4436 4437 4438 4439
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
        num_classes: (int), The number of classes, must not be less than 2.
C
chengduo 已提交
4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
W
weixing02 已提交
4451 4452 4453 4454 4455 4456 4457 4458

    Returns:
        Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]

    Examples:

        .. code-block:: python

G
guosheng 已提交
4459 4460 4461
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
4462 4463 4464 4465
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4466 4467
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
4468 4469
    dim = input.shape[1]
    if num_classes < 2:
G
guosheng 已提交
4470
        raise ValueError("num_classes must not be less than 2.")
W
weixing02 已提交
4471 4472 4473 4474 4475
    weights = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_classes - 1, dim],
        is_bias=False,
        dtype=input.dtype)
W
weixing02 已提交
4476 4477 4478 4479 4480 4481 4482 4483
    inputs = {"X": input, "W": weights, "Label": label}
    if helper.bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[1, num_classes - 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = bias
W
weixing02 已提交
4484 4485
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
4486
        inputs=inputs,
W
weixing02 已提交
4487 4488 4489 4490 4491 4492
        outputs={"Out": out,
                 "PreOut": pre_out},
        attrs={"num_classes": num_classes})
    return out


Y
fix ci.  
ying 已提交
4493
def transpose(x, perm, name=None):
Y
ying 已提交
4494 4495 4496 4497 4498 4499 4500
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
4501 4502 4503
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
4504 4505 4506 4507 4508 4509 4510

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

4511 4512 4513 4514
            # use append_batch_size=False to avoid prepending extra 
            # batch size in shape
            x = fluid.layers.data(name='x', shape=[5, 10, 15], 
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
4515
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
4516 4517
    """

Y
fix ci.  
ying 已提交
4518
    if len(perm) != len(x.shape):
Y
ying 已提交
4519 4520 4521
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
4522 4523 4524 4525 4526 4527
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
4528 4529

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
4530 4531
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
4532
    helper.append_op(
4533
        type='transpose2',
Y
fix ci.  
ying 已提交
4534
        inputs={'X': [x]},
4535 4536
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
4537 4538
        attrs={'axis': perm})
    return out
4539 4540


4541 4542 4543 4544 4545 4546 4547
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
4548
    """
4549 4550 4551 4552 4553 4554 4555
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

4584 4585 4586 4587 4588 4589 4590 4591 4592
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

4593 4594 4595
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
4596 4597 4598 4599 4600
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
4628 4629 4630
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

4643
            output.dims = {8, 8}
4644

4645
            output.lod = [[4, 4]]
4646

D
dzhwinter 已提交
4647
     Examples:
4648 4649 4650

        .. code-block:: python

4651 4652
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
4653 4654

    """
W
wanghaoshuang 已提交
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
4665 4666 4667 4668 4669 4670 4671
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
4672
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
4673
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
4674
    helper.append_op(
4675
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
4676
    return out
4677 4678


Y
yuyang18 已提交
4679
@templatedoc()
4680
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
4681 4682
    """
    ${comment}
4683 4684

    Args:
Y
yuyang18 已提交
4685
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
4686 4687
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
4688 4689 4690 4691 4692
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
4693
        ${out_comment}.
4694 4695

    Examples:
Y
yuyang18 已提交
4696 4697 4698 4699
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
4700 4701 4702 4703 4704 4705
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
4706
    out = helper.create_variable_for_type_inference(dtype)
4707 4708 4709 4710 4711
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
4712
    return helper.append_activation(out)
4713 4714


Y
yuyang18 已提交
4715
@templatedoc()
4716 4717
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
4718 4719 4720 4721 4722 4723 4724
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
    >>> x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
    >>> index = fluid.layers.data(name='index', shape=[1], dtype='int32')
    >>> out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
4725 4726

    Args:
Y
yuyang18 已提交
4727 4728
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
4729 4730

    Returns:
Y
yuyang18 已提交
4731
        ${out_comment}.
4732 4733
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
4734 4735 4736 4737 4738

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
4739
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
4740 4741 4742 4743 4744 4745
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
4746 4747


4748 4749 4750
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
S
sneaxiy 已提交
4751
                               ignore_index=-100,
4752 4753
                               numeric_stable_mode=False,
                               return_softmax=False):
4754 4755
    """
    **Softmax With Cross Entropy Operator.**
4756

4757 4758 4759 4760
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
4761

4762 4763 4764
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
4765

4766 4767 4768
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
4769

4770
    The equation is as follows:
4771

4772
    1) Hard label (one-hot label, so every sample has exactly one class)
4773

4774 4775 4776 4777
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
4778

4779 4780 4781
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
4782

4783 4784 4785 4786
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
        
        max_j = \\max_{i=0}^{K}{\\text{logit}_i}

        log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)

        softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j)

    and then cross entropy loss is calculated by softmax and label.

4799 4800 4801 4802 4803 4804 4805 4806
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
4807 4808
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
4809
                            if soft_label is set to False. Default: -100
S
sneaxiy 已提交
4810 4811 4812 4813 4814 4815 4816
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
                                    When soft_label is True or CPU is used, 
                                    the algorithm is always numerically stable. 
                                    Note that the speed may be slower when use 
                                    stable algorithm. Default: False
4817 4818
        return_softmax (bool): A flag indicating whether to return the softmax 
                               along with the cross entropy loss. Default: False
4819

4820
    Returns:
4821 4822 4823 4824 4825
        Variable or Tuple of two Variables: Return the cross entropy loss if 
                              `return_softmax` is False, otherwise the tuple 
                              (loss, softmax), where the cross entropy loss is 
                              a 2-D tensor with shape [N x 1], and softmax is a 
                              2-D tensor with shape [N x K].
4826 4827 4828 4829 4830 4831 4832

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
4833 4834
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
4835 4836
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
4837 4838
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
4839 4840 4841 4842 4843 4844
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
4845 4846 4847 4848 4849
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
4850 4851 4852 4853

    if return_softmax:
        return loss, softmax

4854 4855 4856 4857 4858
    return loss


def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
4859 4860
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
4861
    For each instance, it computes the smooth L1 loss element by element first
4862
    and then sums all the losses. So the shape of ouput Variable is
4863
    [batch_size, 1].
4864

4865 4866
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
4867
            L1 loss op with shape [batch_size, dim1, ..., dimN].
4868
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
4869
            L1 loss op with same shape as :attr:`x`.
4870
        inside_weight (Variable|None):  A tensor with rank at least 2. This
4871 4872
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
4873
            by this tensor element by element.
4874
        outside_weight (Variable|None): A tensor with rank at least 2. This
4875 4876
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
4877
            element by element.
4878
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
4879 4880
           scalar with default value 1.0.

4881
    Returns:
4882
        Variable: The output smooth L1 loss with shape [batch_size, 1].
4883 4884 4885 4886 4887

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
4888 4889
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
4890
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
4891
            out = fluid.layers.smooth_l1(x=fc, y=label)
4892
    """
4893

4894
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
4895 4896
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
4909 4910 4911 4912


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
4913
    This layer creates the one-hot representations for input indices.
4914 4915

    Args:
Y
Yibing Liu 已提交
4916 4917
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
4918 4919

    Returns:
Y
Yibing Liu 已提交
4920
        Variable: The one-hot representations of input.
4921 4922

    Examples:
C
caoying03 已提交
4923
        .. code-block:: python
4924

Y
Yibing Liu 已提交
4925 4926
            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
4927 4928
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
4929
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
4930 4931 4932 4933 4934 4935
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
        outputs={'Out': one_hot_out})
    return one_hot_out
Y
Yu Yang 已提交
4936 4937


Y
Yu Yang 已提交
4938
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
4939
    """
Y
yi.wu 已提交
4940 4941 4942
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
4943 4944 4945 4946 4947 4948

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

4949 4950
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
4951 4952 4953 4954 4955 4956

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
4957 4958
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
4959 4960
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
4961 4962 4963 4964 4965
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
4966
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
4967
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
4968 4969
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
4970 4971
            outputs={'Out': [counter]},
            attrs={'step': float(step)})
Y
Yu Yang 已提交
4972 4973 4974
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
4975 4976


4977
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
4978
    """
C
caoying03 已提交
4979 4980
    Gives a new shape to the input Tensor without changing its data.

4981 4982 4983 4984 4985
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
4986

4987
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
4988

4989 4990 4991 4992
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

4993
    2. 0 means the actual dimension value is going to be copied from the
4994 4995 4996 4997
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
4998 4999

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
5000
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
5001
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
5002

5003
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5004 5005
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
5006 5007
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
5008
    dimensions.
C
caoying03 已提交
5009

5010
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
5011 5012 5013 5014
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
5015 5016

    Args:
5017
        x(variable): The input tensor.
C
caoying03 已提交
5018 5019
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
5020 5021 5022 5023 5024
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
5025 5026
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
5027 5028 5029 5030 5031 5032 5033
        inplace(bool): Must use :attr:`False` if :attr:`x` is used in multiple
                       operators. If this flag is set :attr:`True`, reuse input
                       :attr:`x` to reshape, which will change the shape of
                       tensor variable :attr:`x` and might cause errors when
                       :attr:`x` is used in multiple operators. If :attr:`False`,
                       preserve the shape :attr:`x` and create a new output tensor
                       variable whose data is copied from input x but reshaped.
5034
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
5035

5036
    Returns:
G
guosheng 已提交
5037 5038 5039 5040
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
5041

X
Xin Pan 已提交
5042 5043 5044
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
5045 5046
    Examples:
        .. code-block:: python
G
guosheng 已提交
5047

5048
            data = fluid.layers.data(
5049
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
5050
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
5051
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
5052 5053 5054
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
5055
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
5056 5057 5058 5059 5060
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
5061

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

5077
    helper = LayerHelper("reshape2", **locals())
5078 5079
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
5080
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
5081
    helper.append_op(
5082
        type="reshape2",
X
Xin Pan 已提交
5083
        inputs=inputs,
D
dzhwinter 已提交
5084
        attrs={"shape": shape},
5085 5086
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
5087

D
dzhwinter 已提交
5088
    return helper.append_activation(out)
5089

5090

5091
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
5092
    """
M
minqiyang 已提交
5093 5094 5095
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
5096
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
5097

Y
Yibing Liu 已提交
5098 5099
    Examples:
    Case 1:
M
minqiyang 已提交
5100
      Given
Y
Yibing Liu 已提交
5101 5102 5103 5104 5105 5106 5107 5108
        X.shape = (1, 3, 1, 5)
      and
        axes = [0]
      we get:
        Out.shape = (3, 1, 5)
      Case 2:
        Given
          X.shape = (1, 3, 1, 5)
M
minqiyang 已提交
5109
        and
Y
Yibing Liu 已提交
5110 5111 5112
          axes = []
        we get:
          Out.shape = (3, 5)
M
minqiyang 已提交
5113

Y
Yibing Liu 已提交
5114
    Args:
5115
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
5116
        axes (list): List of integers, indicating the dimensions to be squeezed.
5117
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5118 5119 5120 5121 5122 5123 5124 5125

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
5126
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5127 5128
    """
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
5129 5130
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5131
    helper.append_op(
5132
        type="squeeze2",
5133
        inputs={"X": input},
Y
Yibing Liu 已提交
5134
        attrs={"axes": axes},
5135 5136
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5137

5138 5139 5140
    return out


5141
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
5142
    """
M
minqiyang 已提交
5143 5144 5145
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
5146

M
minqiyang 已提交
5147 5148
    For example:
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
5149
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
5150

Y
Yibing Liu 已提交
5151
    Args:
5152
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
5153
        axes (list): List of integers, indicating the dimensions to be inserted.
5154
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
5155 5156 5157 5158 5159 5160 5161 5162

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
5163
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
5164 5165
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
5166 5167
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
5168
    helper.append_op(
5169
        type="unsqueeze2",
5170
        inputs={"X": input},
Y
Yibing Liu 已提交
5171
        attrs={"axes": axes},
5172 5173
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
5174

5175 5176
    return out

5177

Y
yangyaming 已提交
5178
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
5179
    """
Y
Yibing Liu 已提交
5180
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
5181 5182 5183 5184
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
5185
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
5186 5187 5188 5189 5190 5191

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
5192
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
5193 5194 5195
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

5196
            target_lod: [4, 2]
Y
yangyaming 已提交
5197 5198

            then we get a 1-level LoDTensor:
5199
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
5200 5201 5202 5203 5204 5205
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
5206
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5207 5208 5209 5210
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
5211
                y.data = [[2, 4]]
Y
yangyaming 已提交
5212 5213 5214
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
5215
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
5216 5217 5218 5219 5220 5221
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
5222
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
5223 5224 5225 5226
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
5227
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5228 5229 5230 5231
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
5232
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
5233 5234 5235 5236 5237
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
5238
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
5239
                           from :attr:`y`.
Y
yangyaming 已提交
5240
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
5241
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
5242 5243

    Returns:
Y
Yibing Liu 已提交
5244
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
5245 5246

    Raises:
Y
Yibing Liu 已提交
5247
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
5248 5249 5250 5251 5252 5253 5254 5255 5256

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
5257
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
5283
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
5312 5313
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
5326 5327 5328
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
5342 5343 5344 5345


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
5346
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
5347
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
5348

G
guosheng 已提交
5349 5350 5351 5352
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
5375
                         The length of :attr:paddings must be
G
guosheng 已提交
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
5386

G
guosheng 已提交
5387 5388 5389 5390 5391 5392
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5393
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
5394 5395 5396 5397 5398 5399 5400
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
5401 5402


C
chengduo 已提交
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)

    And
        pad_value = -1,

    Return:
        Out = [[[[35, 36, 37],
                  [-1, -1, -1]],
                [[38, 39, 40],
                  [-1, -1, -1]],
                 [[41, 42, 43],
                  [-1, -1, -1]]],
                [[[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]],
                 [[-1, -1, -1],
                  [-1, -1, -1]]]]
        Out.shape = (2, 3, 2, 3)

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5473
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
5474 5475 5476 5477 5478 5479 5480 5481 5482
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


5483 5484 5485 5486 5487 5488 5489
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
5490 5491
    called label-smoothing regularization (LSR).

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
5515
                              be :math:`(1, class\_num)`.
5516 5517
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
5518
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
5538
    smooth_label = helper.create_variable_for_type_inference(dtype)
5539 5540 5541 5542 5543 5544 5545
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
5546 5547


P
peizhilin 已提交
5548
if os.name != 'nt':
P
peizhilin 已提交
5549

P
peizhilin 已提交
5550
    @templatedoc()
P
peizhilin 已提交
5551 5552 5553 5554 5555
    def roi_pool(input,
                 rois,
                 pooled_height=1,
                 pooled_width=1,
                 spatial_scale=1.0):
P
peizhilin 已提交
5556 5557
        """
        ${comment}
5558

P
peizhilin 已提交
5559 5560 5561 5562 5563 5564
        Args:
            input (Variable): ${x_comment}
            rois (Variable): ROIs (Regions of Interest) to pool over.
            pooled_height (integer): ${pooled_height_comment} Default: 1
            pooled_width (integer): ${pooled_width_comment} Default: 1
            spatial_scale (float): ${spatial_scale_comment} Default: 1.0
5565

P
peizhilin 已提交
5566 5567
        Returns:
            Variable: ${out_comment}.
5568

P
peizhilin 已提交
5569 5570
        Examples:
            .. code-block:: python
5571

P
peizhilin 已提交
5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
                pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
        """
        helper = LayerHelper('roi_pool', **locals())
        dtype = helper.input_dtype()
        pool_out = helper.create_variable_for_type_inference(dtype)
        argmaxes = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type="roi_pool",
            inputs={"X": input,
                    "ROIs": rois},
            outputs={"Out": pool_out,
                     "Argmax": argmaxes},
            attrs={
                "pooled_height": pooled_height,
                "pooled_width": pooled_width,
                "spatial_scale": spatial_scale
            })
        return pool_out
W
whs 已提交
5590 5591


J
jerrywgz 已提交
5592 5593 5594 5595 5596 5597
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
5598 5599
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

5616 5617 5618
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
5619 5620 5621 5622 5623 5624
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5625
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
5666 5667
        .. code-block:: python

W
whs 已提交
5668 5669 5670 5671
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
5672
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
5673 5674 5675 5676 5677 5678
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
5679 5680


5681 5682 5683 5684
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
5685 5686
                 resample='BILINEAR',
                 actual_shape=None):
5687
    """
Q
qiaolongfei 已提交
5688
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
5689

5690
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
5691 5692 5693
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
5694

5695
        'BILINEAR' : Bilinear interpolation
5696
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
5697

5698
    Args:
5699
        input (Variable): The input tensor of image resize layer,
5700 5701
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
5702
        out_shape(list|tuple|Variable|None): Output shape of image resize
5703 5704
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
5705
        scale(float|None): The multiplier for the input height or width.
5706 5707 5708
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
5709 5710
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
5711 5712
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST' 
                       currently.
5713
                       Default: 'BILINEAR'
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
5727 5728

    Returns:
Q
update  
qiaolongfei 已提交
5729 5730
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
5731

5732 5733 5734 5735 5736 5737 5738 5739
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR' 
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.

5740 5741 5742
    Examples:
        .. code-block:: python

5743
            out = fluid.layers.image_resize(input, out_shape=[12, 12])
5744
    """
5745 5746 5747 5748
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
5749 5750
    if resample not in resample_methods:
        raise ValueError(
5751
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
5752
        )
5753
    if out_shape is None and scale is None:
5754
        raise ValueError("One of out_shape and scale must not be None.")
5755
    helper = LayerHelper('interpolate', **locals())
5756
    dtype = helper.input_dtype()
5757 5758 5759 5760

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

5761 5762 5763
    out_h = 0
    out_w = 0
    inputs = {"X": input}
5764
    if out_shape is not None:
5765 5766 5767 5768
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
5769
            inputs['OutSize'] = out_shape
5770 5771 5772 5773 5774 5775 5776 5777
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
5778 5779 5780 5781
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

5782 5783 5784 5785 5786
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
5787
    out = helper.create_variable_for_type_inference(dtype)
5788
    helper.append_op(
5789
        type='interpolate',
5790
        inputs=inputs,
5791
        outputs={"Out": out},
5792 5793 5794 5795 5796
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_methods[resample]
        })
5797
    return out
F
stash  
fengjiayi 已提交
5798 5799


5800
@templatedoc(op_type="interpolate")
5801 5802 5803 5804 5805
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
                    actual_shape=None):
5806
    """
5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818
    Resize input by performing bilinear interpolation based on given 
    output shape which specified by actual_shape, out_shape and scale 
    in priority order.

    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
5819 5820 5821 5822 5823

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5824

Y
yuyang18 已提交
5825 5826 5827 5828 5829
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5843 5844 5845

    Returns:
        ${out_comment}.
5846 5847
    """

5848
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape)
5849 5850


5851
@templatedoc(op_type="interpolate")
5852 5853 5854 5855 5856
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
                   actual_shape=None):
5857
    """
5858 5859 5860 5861 5862 5863 5864
    Resize input by performing nearest neighbor interpolation in both the
    3rd dimention(in height direction) and the 4th dimention(in width 
    direction) based on given output shape which specified by actual_shape, 
    out_shape and scale in priority order.

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
5865 5866 5867 5868 5869

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
5870

Y
yuyang18 已提交
5871 5872 5873 5874 5875
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888
        actual_shape(Variable): An optional input to specify output shape 
                                dynamically. If provided, image resize  
                                according to this given shape rather than 
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the 
                                highest priority. It is recommended to use 
                                actual_shape instead of :attr:`out_shape` if you 
                                want to specify output shape dynamically. When 
                                using actual_shape to specify output shape, one of 
                                :attr:`out_shape` and :attr:`scale` should also be 
                                set, otherwise errors would be occured in graph 
                                constructing stage.
                                Default: None
Y
yuyang18 已提交
5889 5890 5891

    Returns:
        ${out_comment}.
5892 5893
    """

5894
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape)
5895 5896 5897 5898


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
5899 5900 5901
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
5902 5903 5904 5905 5906 5907 5908
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
5909
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
5910

5911
    Returns:
Q
update  
qiaolongfei 已提交
5912
        Variable: The output is a 4-D tensor of the shape
5913
        (num_batches, channls, out_h, out_w).
5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
5924 5925 5926
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
5927 5928 5929
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
5930 5931
def gather(input, index):
    """
Q
qiaolongfei 已提交
5932 5933
    **Gather Layer**

5934
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
5935 5936 5937 5938
    of X indexed by `index` and concatenate them together.

    .. math::

5939
        Out = X[Index]
W
whs 已提交
5940 5941 5942 5943 5944 5945 5946


    .. code-block:: text


                Given:

5947 5948
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957 5958
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
5959
        input (Variable): The source input with rank>=1.
W
whs 已提交
5960 5961 5962 5963 5964 5965
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
5966

W
whs 已提交
5967 5968 5969 5970 5971 5972
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5973
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
5974 5975 5976 5977 5978 5979 5980 5981
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6013
    out = helper.create_variable_for_type_inference(dtype)
6014 6015 6016 6017 6018 6019 6020 6021 6022
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
    Given the following input:
    .. code-block:: text
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
    .. code-block:: text
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6073
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
6096

6097 6098 6099
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
6100
    """
F
stash  
fengjiayi 已提交
6101
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
6102
    dtype = x.dtype
X
Xin Pan 已提交
6103
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
6104
    if seed is None:
6105
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
6106
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
6107
    if isinstance(seed, int):
F
fengjiayi 已提交
6108 6109 6110 6111 6112
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
6113 6114 6115 6116
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
6117
        inputs={"X": x,
F
stash  
fengjiayi 已提交
6118 6119
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
6120 6121
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
6122
    return out
W
whs 已提交
6123 6124


6125
def log(x, name=None):
W
wanghaoshuang 已提交
6126 6127 6128 6129 6130
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

6131
        Out = \\ln(x)
W
wanghaoshuang 已提交
6132 6133

    Args:
6134
        x (Variable): Input tensor.
6135 6136
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6137 6138 6139 6140 6141 6142 6143 6144

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

6145
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
6146 6147
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
6148
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6149
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6150
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6151 6152 6153
    return out


6154
def relu(x, name=None):
W
wanghaoshuang 已提交
6155 6156
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
6157
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
6158 6159 6160 6161
    the tensor elementwise.

    .. math::

6162
        Out = \\max(0, x)
W
wanghaoshuang 已提交
6163 6164

    Args:
6165
        x (Variable): The input tensor.
6166 6167
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
6168 6169 6170 6171 6172 6173 6174 6175

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

6176
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
6177 6178
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
6179
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
6180
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
6181
    helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
6182
    return out
6183 6184


W
whs 已提交
6185 6186 6187
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
6188 6189 6190 6191
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
6192
    .. math::
6193 6194

        IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
6195

6196
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
6197 6198 6199 6200 6201
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
6202
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
6203
                           Its shape should be the same as input.
6204
        num_classes (int): The possible number of labels.
W
whs 已提交
6205 6206 6207 6208

    Returns:
        mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1].
        out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
6209
        out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
6210 6211 6212 6213

    Examples:

        .. code-block:: python
6214

W
whs 已提交
6215 6216 6217 6218
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6219 6220 6221
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
6222 6223
    helper.append_op(
        type="mean_iou",
W
whs 已提交
6224 6225
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
6226
        outputs={
W
whs 已提交
6227 6228 6229
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
6230 6231 6232
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
            crop = fluid.layers.crop(z, shape=[2, 3])

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
C
chengduo 已提交
6307
                    isinstance(shape, Variable)):
6308 6309 6310 6311 6312
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
6313
    out = helper.create_variable_for_type_inference(x.dtype)
6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
6331 6332


W
whs 已提交
6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
      
              out_shape = [2, 3, 5, 5]
      
          Step 1:
      
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
      
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
        out_shape can be a Variable or a list or tuple.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
        isinstance(out_shape, Variable)):
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


6451 6452 6453 6454 6455 6456 6457 6458
def rank_loss(label, left, right, name=None):
    """
    **Rank loss layer for RankNet**

    RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf)
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
6459

6460 6461
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
6462

6463 6464 6465 6466
    Rank loss layer takes three inputs: left (o_i), right (o_j) and
    label (P_{i,j}). The inputs respectively represent RankNet's output scores
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
6467

6468 6469 6470 6471 6472
    $$
      C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
      o_{i,j} =  o_i - o_j  \\
      \tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
    $$
M
minqiyang 已提交
6473 6474 6475

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)


    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
6511
    out = helper.create_variable_for_type_inference("float32")
6512 6513 6514 6515 6516 6517 6518 6519

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
6520 6521


M
minqiyang 已提交
6522 6523
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
6524
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
6525
    which compares left score and right score passed in.
M
minqiyang 已提交
6526
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
6527 6528 6529 6530 6531 6532

    .. math::

        rank\_loss &= max(0, -label * (left - right) + margin)

    Args:
M
minqiyang 已提交
6533
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
6534 6535
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
6536
       margin (float): Indicates the given margin.
M
minqiyang 已提交
6537 6538 6539
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
    Returns:
M
minqiyang 已提交
6540
       Variable: The ranking loss.
M
minqiyang 已提交
6541
    Raises:
M
minqiyang 已提交
6542
       ValueError: Any of label, left, and right is not a Variable.
M
minqiyang 已提交
6543 6544 6545 6546 6547 6548 6549
    Examples:
        .. code-block:: python
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
6550
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
6551 6552 6553 6554 6555 6556
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
6557 6558
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:

      Given that X is a channel of image from input:
M
minqiyang 已提交
6584

W
whs 已提交
6585 6586
      X = [[1, 2, 3],
           [4, 5, 6]]
M
minqiyang 已提交
6587

W
whs 已提交
6588
      Case 0:
M
minqiyang 已提交
6589

W
whs 已提交
6590 6591 6592
        paddings = [0, 1, 2, 3],
        mode = 'constant'
        pad_value = 0
M
minqiyang 已提交
6593

W
whs 已提交
6594 6595 6596
        Out = [[0, 0, 1, 2, 3, 0, 0, 0]
               [0, 0, 4, 5, 6, 0, 0, 0]
               [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
6597

W
whs 已提交
6598
      Case 1:
M
minqiyang 已提交
6599

W
whs 已提交
6600 6601
        paddings = [0, 1, 2, 1],
        mode = 'reflect'
M
minqiyang 已提交
6602

W
whs 已提交
6603 6604 6605
        Out = [[3, 2, 1, 2, 3, 2]
               [6, 5, 4, 5, 6, 5]
               [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
6606

W
whs 已提交
6607
      Case 2:
M
minqiyang 已提交
6608

W
whs 已提交
6609 6610
        paddings = [0, 1, 2, 1],
        mode = 'edge'
M
minqiyang 已提交
6611

W
whs 已提交
6612 6613 6614
        Out = [[1, 1, 1, 2, 3, 3]
               [4, 4, 4, 5, 6, 6]
               [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
6615 6616


W
whs 已提交
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
        paddings (tuple|list): The padding size. If padding is a tuple, it must
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
6643
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657
    helper.append_op(
        type='pad2d',
        inputs={'X': input},
        outputs={"Out": out},
        attrs={
            'paddings': paddings,
            'mode': mode,
            'pad_value': pad_value,
            'data_frmat': data_format
        })

    return out


6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
6672
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
6695
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
6718
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
6742
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
6767
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
6791
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6792 6793 6794 6795 6796 6797 6798 6799
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

        y = \max(0, x) + alpha \min(0, x)

    Args:
        x (Variable): The input tensor.
	  param_attr(ParamAttr|None): The parameter attribute for the learnable
                                    weight (alpha).
        mode (string): The mode for weight sharing
		       all: all elements share same weight
 		       channel:elements in a channel share same weight
 		       element:each element has a weight
W
whs 已提交
6814
	name(str|None): A name for this layer(optional). If set None, the layer
M
minqiyang 已提交
6815
                        will be named automatically.
J
jerrywgz 已提交
6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

         x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
        attr=param_attr,
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
6843
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6844 6845 6846 6847 6848 6849 6850 6851 6852
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
6867
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
6890
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
     Returns:
        output(${out_type}): ${out_comment}
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
6912
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
6913 6914 6915 6916 6917 6918 6919 6920
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.

    Examples:
    Case 1:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 2
      We get:
        Out.shape = (3 * 100, 4 * 100)
6934

6935 6936 6937 6938 6939 6940 6941 6942 6943 6944
    Case 2:
      Given
        X.shape = (3, 100, 100, 4)
      and
        axis = 0
      We get:
        Out.shape = (1, 3 * 100 * 100 * 4)

    Args:
        x (Variable): A tensor of rank >= axis.
6945 6946
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: A 2D tensor with the contents of the input tensor, with input
                  dimensions up to axis flattened to the outer dimension of
                  the output and remaining input dimensions flattened into the
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
6962
        ValueError: If axis is not in range [0, rank(x)].
6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
6979 6980
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
6981
    helper.append_op(
6982
        type='flatten2',
6983
        inputs={"X": x},
6984 6985
        outputs={'Out': out,
                 'XShape': x_shape},
6986 6987
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
6988 6989


C
chenweihang 已提交
6990
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
6991
    """
C
chenweihang 已提交
6992
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
6993
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
6994 6995
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
6996

C
chenweihang 已提交
6997 6998 6999 7000
    Examples:
    Case 1:
      Input:
        X.lod = [[0, 3, 5]]
7001
        X.data = [[1], [2], [3], [4], [5]]
C
chenweihang 已提交
7002 7003 7004 7005 7006 7007
        X.dims = [5, 1]
      Attrs:
        win_size = 2
        pad_value = 0
      Output:
        Out.lod = [[0, 3, 5]]
7008
        Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
C
chenweihang 已提交
7009 7010 7011
        Out.dims = [5, 2]

    Args:
C
chenweihang 已提交
7012 7013 7014
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
7026 7027
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
7028 7029 7030 7031 7032 7033
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
7034
    return out
7035

7036

S
sneaxiy 已提交
7037 7038 7039 7040 7041 7042 7043 7044 7045
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
7046

S
sneaxiy 已提交
7047
    .. math::
7048

S
sneaxiy 已提交
7049 7050 7051
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
7052
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
7053 7054 7055 7056
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
7057 7058 7059
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
7060 7061
    Returns:
        Variable: The output sequence mask.
7062

S
sneaxiy 已提交
7063 7064
    """

Q
qingqing01 已提交
7065
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
7066
    if name is None:
X
Xin Pan 已提交
7067
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
7068
    else:
X
Xin Pan 已提交
7069
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
7070

Q
qingqing01 已提交
7071 7072 7073
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
7074 7075
        outputs={'Y': out},
        attrs={
7076
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
7077 7078 7079
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
7080 7081


X
Xin Pan 已提交
7082
def stack(x, axis=0):
S
sneaxiy 已提交
7083 7084 7085 7086
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
7087 7088 7089 7090 7091 7092 7093

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
7094
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
7095
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
7096 7097

    Args:
7098
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
7099
        axis (int|None): The axis along which all inputs are stacked.
7100

S
sneaxiy 已提交
7101 7102
    Returns:
        Variable: The stacked variable.
7103

S
sneaxiy 已提交
7104 7105
    """

X
Xin Pan 已提交
7106 7107 7108 7109 7110 7111
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
7112
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
7113
    helper.append_op(
S
sneaxiy 已提交
7114 7115
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
7116

X
Xin Pan 已提交
7117
    return out
D
dzhwinter 已提交
7118 7119 7120 7121 7122 7123 7124


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
7125

D
dzhwinter 已提交
7126 7127 7128
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
7129
    raised.
D
dzhwinter 已提交
7130 7131

    Args:
M
minqiyang 已提交
7132
        x (Variable): Input variable.
D
dzhwinter 已提交
7133 7134
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
7135

D
dzhwinter 已提交
7136 7137
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
7138

D
dzhwinter 已提交
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
    for _ in num:
X
Xin Pan 已提交
7150
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
7151 7152 7153 7154 7155 7156 7157 7158

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
7171

W
whs 已提交
7172 7173 7174 7175
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
7176

W
whs 已提交
7177
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
7178

W
whs 已提交
7179
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
7180

W
whs 已提交
7181 7182 7183 7184
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
7185

W
whs 已提交
7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7202
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7203 7204 7205 7206 7207 7208
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
7209 7210


G
fix  
gongweibao 已提交
7211 7212 7213
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
7214
@templatedoc()
G
fix  
gongweibao 已提交
7215 7216 7217 7218 7219 7220 7221 7222 7223
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
7224
    ${comment}
G
fix  
gongweibao 已提交
7225 7226

    Args:
G
gongweibao 已提交
7227 7228 7229
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7230
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
7231 7232 7233
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7234 7235
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
7236
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7237 7238 7239 7240

    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
7241
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
7258 7259


G
gongweibao 已提交
7260
@templatedoc()
X
Xin Pan 已提交
7261
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7262
    """
G
gongweibao 已提交
7263
    ${comment}
G
fix  
gongweibao 已提交
7264 7265

    Args:
G
gongweibao 已提交
7266 7267 7268 7269
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7270 7271 7272
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
7273
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7274 7275 7276 7277

    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
7278
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
7289
            'use_mkldnn': False
G
fix  
gongweibao 已提交
7290 7291 7292 7293 7294
        })

    return out


G
gongweibao 已提交
7295
@templatedoc()
G
fix  
gongweibao 已提交
7296
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
7297
    """
G
gongweibao 已提交
7298
    ${comment}
G
fix  
gongweibao 已提交
7299 7300

    Args:
G
gongweibao 已提交
7301 7302 7303 7304
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
7305
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7306 7307

    Returns:
G
gongweibao 已提交
7308
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7309 7310 7311 7312

    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
7313
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
7325
@templatedoc()
G
fix  
gongweibao 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
7335
    ${comment}
G
fix  
gongweibao 已提交
7336 7337

    Args:
G
gongweibao 已提交
7338 7339
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
7340
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
7341 7342 7343 7344
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
7345
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
7346 7347

    Returns:
G
gongweibao 已提交
7348
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7349 7350 7351
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
7352
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
7371
@templatedoc()
X
Xin Pan 已提交
7372
def sum(x):
G
fix  
gongweibao 已提交
7373
    """
G
gongweibao 已提交
7374
    ${comment}
G
fix  
gongweibao 已提交
7375 7376

    Args:
G
gongweibao 已提交
7377
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
7378 7379

    Returns:
G
gongweibao 已提交
7380
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7381 7382 7383
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
7384 7385
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
7386 7387 7388 7389
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
7390
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
7391 7392 7393 7394

    return out


G
gongweibao 已提交
7395
@templatedoc()
G
fix  
gongweibao 已提交
7396 7397
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
7398
    ${comment}
G
fix  
gongweibao 已提交
7399 7400

    Args:
G
gongweibao 已提交
7401 7402 7403 7404
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
7405 7406

    Returns:
G
gongweibao 已提交
7407
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7408 7409 7410 7411

    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
7412 7413
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


G
gongweibao 已提交
7425
@templatedoc()
G
fix  
gongweibao 已提交
7426 7427
def shape(input):
    """
G
gongweibao 已提交
7428
    ${comment}
G
fix  
gongweibao 已提交
7429 7430

    Args:
G
gongweibao 已提交
7431
        input (Variable): ${input_comment}
G
fix  
gongweibao 已提交
7432 7433

    Returns:
G
gongweibao 已提交
7434
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
7435 7436 7437 7438

    """

    helper = LayerHelper('shape', **locals())
X
Xin Pan 已提交
7439 7440
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
7441
    helper.append_op(
G
fix  
gongweibao 已提交
7442
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
7443 7444

    return out
G
merge  
gongweibao 已提交
7445 7446


S
sneaxiy 已提交
7447 7448 7449 7450 7451 7452 7453 7454
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
7455 7456
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
7457
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7458 7459 7460
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7461

S
sneaxiy 已提交
7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
7473
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
7474 7475 7476 7477 7478 7479 7480 7481
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
7482
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
7483
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
7484 7485 7486 7487 7488 7489

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
7490
    if name is None:
X
Xin Pan 已提交
7491
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7492 7493 7494
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
7495 7496 7497 7498 7499 7500 7501 7502 7503 7504

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
7505
    return helper.append_activation(out)
S
sneaxiy 已提交
7506 7507


X
Xin Pan 已提交
7508
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7509 7510 7511
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
7512
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7513 7514 7515
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
7516
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7517 7518 7519
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
7520
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7521 7522 7523
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
7524
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7525 7526 7527
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
7528
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7529 7530 7531
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
7532
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


for func in [
        elementwise_add, elementwise_div, elementwise_sub, elementwise_mul,
        elementwise_max, elementwise_min, elementwise_pow
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
7544 7545
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
7546
        ])
M
minqiyang 已提交
7547 7548


7549
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
7550 7551
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
7552 7553
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
7554 7555 7556

    if out is None:
        if name is None:
X
Xin Pan 已提交
7557
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
7573
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7592
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7611
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
7630
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
7665 7666 7667 7668
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
7697 7698 7699 7700
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
7701 7702 7703 7704 7705 7706 7707 7708

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
7727
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
7757
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7758 7759 7760 7761 7762 7763 7764 7765 7766
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
7767 7768
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790
        },
        outputs={"Out": out})
    return out


@templatedoc()
def sigmoid_cross_entropy_with_logits(x, label, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
7791
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
7821
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
7822 7823 7824 7825 7826 7827 7828 7829 7830 7831
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
7832 7833


J
JiabinYang 已提交
7834
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
7835
    """
J
JiabinYang 已提交
7836
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
J
JiabinYang 已提交
7837
    
J
JiabinYang 已提交
7838
    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the 
J
JiabinYang 已提交
7839
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension. 
J
JiabinYang 已提交
7840
    The attr blocksize indicates the input block size.
J
JiabinYang 已提交
7841 7842
    
    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according 
J
JiabinYang 已提交
7843
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
J
JiabinYang 已提交
7844 7845 7846
    
    space_to_depth is used to This operation is useful for resizing the activations between convolutions 
    (but keeping all data)
J
JiabinYang 已提交
7847

J
JiabinYang 已提交
7848 7849 7850 7851 7852 7853 7854
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
    - The depth of the output tensor is block_size * block_size * input channel 
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
7855
    Args:
J
JiabinYang 已提交
7856
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
7857
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
7858 7859

    Returns:
J
JiabinYang 已提交
7860
        Variable: The output LoDtensor.
J
JiabinYang 已提交
7861 7862

    Raises:
J
JiabinYang 已提交
7863
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
7864 7865 7866 7867 7868 7869

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
                name='data', shape=[1, 4, 2, 2], dtype='float32')
J
JiabinYang 已提交
7870
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
7871
                x=data, blocksize=2)
J
JiabinYang 已提交
7872 7873
    """

J
JiabinYang 已提交
7874
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
7875

J
JiabinYang 已提交
7876 7877
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
7878 7879

    if name is None:
J
JiabinYang 已提交
7880 7881
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
7882 7883 7884 7885 7886
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
7887
        type="space_to_depth",
J
JiabinYang 已提交
7888
        inputs={"X": x},
J
JiabinYang 已提交
7889
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
7890
        outputs={"Out": out})
J
JiabinYang 已提交
7891 7892
    return out

J
JiabinYang 已提交
7893

S
sneaxiy 已提交
7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907
@templatedoc()
def sequence_reverse(x, name=None):
    """ 
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
7908
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
7919 7920


7921 7922 7923 7924 7925 7926
def affine_channel(x, scale=None, bias=None, data_layout='NCHW', name=None):
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
7927

7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
7947
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
    return out
7960 7961


B
barrierye 已提交
7962 7963
def similarity_focus(input, axis, indexes, name=None):
    """  
B
barrierye 已提交
7964
    SimilarityFocus Operator
B
barrierye 已提交
7965 7966

    Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
7967
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 
B
barrierye 已提交
7968
       to the axis according to the indexes. For example, if axis=1 and indexes=[a], 
B
barrierye 已提交
7969
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X 
B
barrierye 已提交
7970 7971 7972 7973
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
    2. For each index, find the largest numbers in the tensor T, so that the same 
       row and same column has at most one number(what it means is that if the 
       largest number has been found in the i-th row and the j-th column, then 
B
barrierye 已提交
7974 7975 7976
       the numbers in the i-th row or j-th column will be skipped. And then the 
       next largest number will be selected from the remaining numbers. Obviously 
       there will be min(B, C) numbers), and mark the corresponding position of the 
B
barrierye 已提交
7977 7978
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for 
       each index.
B
barrierye 已提交
7979 7980 7981 7982
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
8032 8033 8034
    Args:
        input(Variable): The input tensor variable(default float). It should 
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
8035
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
8036
            1, 2 or 3.
B
barrierye 已提交
8037
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
8038 8039 8040 8041 8042 8043 8044 8045

    Returns:
        Variable: A tensor variable with the same shape and same type 
            as the input.
        
    Examples:
        .. code-block:: python
            data = fluid.layers.data(
B
barrierye 已提交
8046 8047
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
B
barrierye 已提交
8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
8060 8061 8062 8063 8064
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
8065 8066 8067 8068 8069 8070 8071
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
8072 8073


M
minqiyang 已提交
8074 8075
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
8076 8077
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
8078 8079
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
8118
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
8119
        name (str, default None): The name of this layer.
M
minqiyang 已提交
8120 8121 8122 8123 8124 8125 8126 8127 8128

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
8129 8130
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
8131 8132
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
8133 8134 8135 8136 8137 8138 8139
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
8140 8141


D
dengkaipeng 已提交
8142
@templatedoc()
8143 8144
def grid_sampler(x, grid, name=None):
    """
8145 8146 8147 8148 8149 8150 8151
    This operation samples input X by using bilinear interpolation based on 
    flow field grid, which is usually gennerated by affine_grid. The grid of
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
    (in width dimension) of input data x and grid_y is indexng the 3rd 
    dimention (in height dimension), finally results is the bilinear 
    interpolation value of 4 nearest corner points.
8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189

    Step 1:
    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
    grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
    interpolate point value by 4 nearest points.

      wn ------- y_n ------- en
      |           |           |
      |          d_n          |
      |           |           |
     x_w --d_w-- grid--d_e-- x_e
      |           |           |
      |          d_s          |
      |           |           |
      ws ------- y_s ------- wn

    x_w = floor(x)              // west side x coord
    x_e = x_w + 1               // east side x coord
    y_n = floor(y)              // north side y coord
    y_s = y_s + 1               // south side y coord

    d_w = grid_x - x_w          // distance to west side
    d_e = x_e - grid_x          // distance to east side
    d_n = grid_y - y_n          // distance to north side
    d_s = y_s - grid_y          // distance to south side

    wn = X[:, :, y_n, x_w]      // north-west point value
    en = X[:, :, y_n, x_e]      // north-east point value
    ws = X[:, :, y_s, x_w]      // south-east point value
    es = X[:, :, y_s, x_w]      // north-east point value

    output = wn * d_e * d_s + en * d_w * d_s
           + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
8190 8191

    Args:
8192 8193 8194
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
8195 8196

    Returns:
8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
        out(Variable): Output of shape [N, C, H, W] data samples input X 
        using bilnear interpolation based on input grid.

    Exmples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
        theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
        grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
        out = fluid.layers.grid_sampler(x=x, grid=grid)
D
dengkaipeng 已提交
8207 8208 8209 8210 8211 8212 8213 8214 8215
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

8216
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
8217 8218
    ipts = {'X': x, 'Grid': grid}

8219
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
8220 8221 8222
    return out


G
gmcather 已提交
8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

    This layer accepts an input 3D-Tensor of shape [N x M x P], and return an
    output Tensor of shape [N x M x P] with positional encoding value.

    Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ .

    .. math::
        PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i)

    Where:
    * PE(pos, 2i): the increment for the number at even position
    * PE(pos, 2i + 1): the increment for the number at odd position

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
8317 8318 8319 8320 8321 8322 8323 8324 8325 8326


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
8327
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
8328

Q
Qiao Longfei 已提交
8329
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
8330 8331 8332
    For example:

    .. math::
8333
       out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
8334

Q
Qiao Longfei 已提交
8335
    In this formula:
8336 8337
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
8338
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
8339
      - :math:`out{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
8340 8341 8342
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
8343 8344
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
8345 8346 8347
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
8348
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
8349
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
8350
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
8351 8352 8353 8354
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
8355
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
8356 8357 8358 8359

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
8360
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
8361 8362
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
8363
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
8364 8365 8366 8367

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
8368
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)